JP2019149314A - 低温プラズマの生成方法及び圧縮着火式エンジン - Google Patents

低温プラズマの生成方法及び圧縮着火式エンジン Download PDF

Info

Publication number
JP2019149314A
JP2019149314A JP2018033899A JP2018033899A JP2019149314A JP 2019149314 A JP2019149314 A JP 2019149314A JP 2018033899 A JP2018033899 A JP 2018033899A JP 2018033899 A JP2018033899 A JP 2018033899A JP 2019149314 A JP2019149314 A JP 2019149314A
Authority
JP
Japan
Prior art keywords
voltage
temperature plasma
electrodes
low
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018033899A
Other languages
English (en)
Other versions
JP7003731B2 (ja
Inventor
田中 達也
Tatsuya Tanaka
達也 田中
次男 服平
Tsugio Hatsuhira
次男 服平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2018033899A priority Critical patent/JP7003731B2/ja
Publication of JP2019149314A publication Critical patent/JP2019149314A/ja
Application granted granted Critical
Publication of JP7003731B2 publication Critical patent/JP7003731B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

【課題】低温プラズマの生成を容易にする。【解決手段】低温プラズマの生成方法は、容積室内に配設された電極間に、パッシェンの法則によって定まる電圧以上の第一電圧を印加する第1ステップと、第1ステップに続けて、第一電圧よりも低い第二電圧を、所定の高周波で電極間に印加する第2ステップと、を備えている。【選択図】図6

Description

ここに開示する技術は、低温プラズマの生成方法及び圧縮着火式エンジンに関する。
特許文献1には、リーンバーン運転を行う4ストローク型レシプロエンジンにおいて、電極間に低温プラズマ状態を形成することによって、筒内の流速を計測する技術が記載されている。具体的にこのエンジンでは、電圧制御回路が、点火時期よりも前に、点火プラグに短パルスの電界を与えることによって、電極間に低温プラズマ状態を形成している。
特開2014−141919号公報
ところで、エンジンの燃焼室等の、所定の容積室内において低温プラズマを生成しようとすると、容積室内に配設した電極間に、超短パルスの電圧、及び/又は、高電圧を印加しなければならない。プラズマ生成装置のコストが増大すると共に、消費電力も増大する。
そのため、例えば自動車に搭載したエンジンの燃焼室内に低温プラズマを生成しようとしても、高コストのプラズマ生成装置を自動車に搭載することは難しく、しかも、仮にプラズマ生成装置を自動車に搭載しても、消費電力が大きいため、自動車の燃費性能が低下してしまう。
ここに開示する技術は、低温プラズマの生成を容易にする。
低温プラズマは、超短パルスよりも波長の長い電圧、及び/又は、比較的低い電圧を、電極間に印加することによっても生成することが可能であるが、安定的に生成することが難しい。一方で、比較的長いパルスでかつ、比較的高い電圧を、電極間に印加することによって、高温プラズマ(又は熱プラズマ)は安定的に生成することが可能である。本願発明者らは、この点に着目し、鋭意検討を重ねた。その結果、本願発明者らは、電極間の最初の放電時に、比較的高い電圧を電極間に印加することによって電極間に絶縁破壊を生じさせて高温プラズマを生成すれば、電極間に、熱電子や高温のラジカルが残留するようになり、その後、超短パルスよりも波長の長い電圧、及び/又は、比較的低い電圧を電極間に印加することによって低温プラズマを安定的に生成することができることを見出した。
具体的に、ここに開示する技術は、低温プラズマの生成方法に係る。低温プラズマの生成方法は、容積室内に配設された電極間に、パッシェン(Paschen)の法則によって定まる電圧以上の第一電圧を印加する第1ステップと、前記第1ステップに続けて、前記第一電圧よりも低い第二電圧を、所定の高周波で前記電極間に印加する第2ステップと、を備えている。
この構成によると、第1ステップでは、容積室内に配設された電極間に、パッシェンの法則によって定まる電圧以上の第一電圧を印加する。パッシェンの法則は、電極間に絶縁破壊が発生する電圧に関する実験側であり、パッシェンの法則によって定まる電圧は、電極間の距離と容積室内の圧力との積の関数である。パッシェンの法則によって定まる電圧以上の第一電圧を、電極間に印加することにより、電極間に絶縁破壊が生じて、高温プラズマが生成される。
第2ステップは、第1ステップに続いて行う。第2ステップでは、第一電圧よりも低い第二電圧を、所定の高周波で前記電極間に印加する。電極間に絶縁破壊が生じているから、相対的に低い第二電圧を、所定の高周波で電極間に印加することにより、低温プラズマを安定的に生成することができる。尚、「第二電圧」は、低温プラズマを生成することができる電圧として適宜定めることができ、「所定の高周波」は、低温プラズマを生成することができる周波数として適宜定めることができる。また、第2ステップは、電極間に熱電子や高温のラジカルが残留している間に行うようにすればよい。つまり、第2ステップは、第1ステップの直後に開始してもよいし、第1ステップの後、微少の休止期間を空けて開始してもよい。
この低温プラズマの生成方法によると、低温プラズマを生成するために、超短パルスの電圧、及び/又は、高電圧を、電極間に印加する必要がない。プラズマ生成装置のコストを低くすることができると共に、低温プラズマ生成時の消費電力も下げることができる。
前記第2ステップは、前記第一電圧から前記第二電圧に切り替えて、前記電極間に電圧を印加する、としてもよい。
こうすることで、低温プラズマを安定して生成することができる。
前記第2ステップは、前記電極間に印加する電圧を、前記第一電圧から前記第二電圧まで、徐々に下げる、としてもよい。
つまり、第一電圧から第二電圧まで電圧を低下させる移行期間を設けても、電極間に生成するプラズマを、高温プラズマから低温プラズマへと安定して移行させることができる。
前記第1ステップは、前記電極間に、少なくとも一回の前記第一電圧を印加する、としてもよい。つまり、電極間に、第一電圧を一回だけ印加した後、第二電圧を電極間に印加してもよいし、電極間に、第一電圧を複数回印加した後、第二電圧を電極間に印加してもよい。
前記容積室の圧力が高いときには、低いときよりも、前記電極間に前記第一電圧を印加する回数を多くする、としてもよい。
容積室の圧力が高くなると、電極間の絶縁破壊がし難くなる。容積室の圧力が高いときには、低いときよりも、電極間に第一電圧を印加する回数を多くする。このことにより、高温プラズマを適切に生成した後、第二電圧の印加によって低温プラズマを安定的に生成することができる。
尚、第一電圧の印加回数は、容積室の圧力が所定圧力よりも高いときに、所定圧力以下のときよりも第一電圧の印加回数が多くなるよう、容積室の圧力の高低に対して段階的に変更してもよい。尚、印加回数を変更する段階数は、任意である。また、第一電圧の印加回数は、容積室の圧力が高くなるに従って多くなるよう、容積室の圧力の高低に対して連続的に変更してもよい。
尚、容積室の圧力が高くなると、パッシェンの法則により、第一電圧は高くなる。
前記容積室は、幾何学的圧縮比が15以上のエンジンの燃焼室であり、前記エンジンは、前記燃焼室内に生成した低温プラズマによってオゾン又はOラジカルなどの化学種を生成すると共に、前記燃焼室内の混合気を圧縮着火により燃焼させる、としてもよい。
低温プラズマによってオゾン又はOラジカルなどの化学種を生成することにより、燃焼室内の混合気の低温酸化反応が促進する。その結果、混合気の着火性が向上するため、燃焼室内の混合気を、安定的に圧縮着火により燃焼させることができる。また、燃焼室内に低温プラズマを生成することにより、燃焼室内のガス温度が高くなることが抑制されるため、燃焼温度を低くすることができる。その結果、冷却損失が低減し、エンジンの燃費性能の向上に有利になる。
前記エンジンは、燃焼室が吸気行程、圧縮行程、膨張行程及び排気行程を繰り返すことにより運転する4ストロークエンジンであり、前記エンジンは、圧縮行程を前半と後半とに二等分したときの後半の期間に、前記燃焼室内に低温プラズマを生成する、としてもよい。
低温プラズマの生成タイミングを、圧縮行程の後半の比較的遅いタイミングにすることにより、混合気の過早着火や、ノッキング等の異常燃焼の発生を抑制することができる。この構成は特に、エンジンが高負荷で運転していて、燃焼室内への燃料の供給量が多いときに、異常燃焼の発生を抑制する上で有効である。
前記第一電圧は、5kV以上である、としてもよい。
前記第二電圧は、前記第一電圧よりも0.5kV以上低い、としてもよい。
前記第2ステップは、前記第二電圧を、10kHz以上、1000kHz以下の周波数で前記電極間に印加する、としてもよい。
また、ここに開示する技術は、圧縮着火式エンジンに係る。圧縮着火式エンジンは、吸気行程、圧縮行程、膨張行程及び排気行程を繰り返す燃焼室と、前記燃焼室内に配設された一対の電極と、前記電極の間に電圧を印加する制御部と、を備え、前記制御部は、パッシェンの法則によって定まる電圧以上の第一電圧を、前記電極の間に印加した後、前記第一電圧よりも低い第二電圧を、所定の高周波で前記電極間に印加することによって、前記燃焼室内の混合気が圧縮着火により燃焼する前に、前記燃焼室内に低温プラズマを生成する。
この構成によると、制御部が、第一電圧を、電極間に印加することにより、電極間に絶縁破壊が生じて、燃焼室内に高温プラズマが生成される。
また、制御部が、第一電圧を、電極の間に印加した後、第二電圧を、所定の高周波で電極間に印加することによって、燃焼室内に低温プラズマを安定的に生成することができる。
燃焼室内の混合気が圧縮着火により燃焼する前に、燃焼室内に低温プラズマを生成することによって、燃焼室内にオゾン及び/又はOラジカルなどの化学種が生成される。混合気の着火性が高まるため、混合気を、圧縮着火により安定的に燃焼させることができる。また、低温プラズマを生成することによって、燃焼室内のガス温度が高くなることが抑制される。燃焼温度を低くすることができるため、冷却損失が低減する。これらの結果、前記の構成の圧縮着火式エンジンは、エンジンの熱効率が向上する。
また、低温プラズマを生成する装置のコストを低くすることができると共に、低温プラズマ生成時の消費電力も下げることができるため、当該エンジンを自動車に搭載すれば、自動車の燃費性能が向上する。
前記制御部は、前記第一電圧から前記第二電圧に切り替えて、前記電極間に電圧を印加する、としてもよい。
前記制御部は、前記電極間に印加する電圧を、前記第一電圧から前記第二電圧まで、徐々に下げる、としてもよい。
前記制御部は、前記電極の間に、少なくとも一回の前記第一電圧を印加する、としてもよい。
前記制御部は、前記圧縮行程を前半と後半とに二等分したときの後半の期間に、前記燃焼室内に低温プラズマを生成する、としてもよい。
前記制御部は、前記第一電圧の印加タイミングが遅いときには、早いときよりも、前記電極間に前記第一電圧を印加する回数を多くする、としてもよい。
圧縮行程の後半において、第一電圧の印加タイミングが遅いと、燃焼室内の圧力が高くなっているため、電極間の放電がし難くなる。第一電圧の印加タイミングが遅いときには、電極間に第一電圧を印加する回数を多くすることにより、燃焼室内に高温プラズマを適切に生成した後、低温プラズマを安定的に生成することができる。
尚、第一電圧の印加回数は、印加タイミングが所定タイミングよりも遅いときに、所定タイミング又は所定タイミングよりも早いときよりも第一電圧の印加回数が多くなるよう、印加タイミングの遅早に対して段階的に変更してもよい。尚、印加回数を変更する段階数は、任意である。また、第一電圧の印加回数は、印加タイミングが遅くなるに従って多くなるよう、印加タイミングの遅早に対して連続的に変更してもよい。
前記制御部は、前記第一電圧の印加タイミングが遅いときには、早いときよりも、前記第一電圧を高くする、としてもよい。
前記と同様に、第一電圧の印加タイミングが遅くて、燃焼室内の圧力が高いときには、電極間に印加する前記第一電圧を高くすることにより、燃焼室内に高温プラズマを適切に生成した後、低温プラズマを安定的に生成することができる。
尚、第一電圧は、印加タイミングが所定タイミングよりも遅いときに、所定タイミング又は所定タイミングよりも早いときよりも第一電圧が高くなるよう、印加タイミングの遅早に対して段階的に変更してもよい。尚、第一電圧を変更する段階数は、任意である。また、第一電圧は、印加タイミングが遅くなるに従って高くなるよう、印加タイミングの遅早に対して連続的に変更してもよい。
前記エンジンの幾何学的圧縮比は15以上である、としてもよい。
前記第一電圧は、5kV以上である、としてもよい。
前記第二電圧は、前記第一電圧よりも0.5kV以上低い、としてもよい。
前記制御部は、前記第二電圧を、10kHz以上、1000kHz以下の周波数で前記電極間に印加する、としてもよい。
前記の低温プラズマの生成方法及び圧縮着火式エンジンによると、低温プラズマの生成を容易にすることができる。
図1は、エンジンの構成を例示する図である。 図2は、エンジンの制御装置の構成を例示するブロック図である。 図3は、プラズマ生成装置の構成を例示する図である。 図4は、図3とは異なる構成のプラズマ生成装置を例示する図である。 図5は、燃焼室内において低温プラズマ及び高温プラズマが生成する、放電開始からの時間と、電極間への印加電圧との関係を示す図である。 図6は、低温プラズマを生成する際に電極間に印加する電圧の時間波形を例示する図である。 図7は、パッシェン曲線を例示する図である。 図8は、図6とは異なる、低温プラズマを生成する際に電極間に印加する電圧の時間波形を例示する図である。 図9は、筒内圧力の変化曲線と共に、燃焼室内にプラズマを生成するタイミング、及び、燃料を噴射するタイミングを例示する図である。 図10は、エンジンの低温プラズマの生成に係る制御を例示するフローチャートである。
以下、低温プラズマの生成方法及び圧縮着火式エンジンの例示的な実施形態を図面に基づいて詳細に説明する。図1は、エンジン1の構成を例示する図である。図2は、エンジンの制御装置の構成を例示するブロック図である。なお、図1において、吸気側は紙面左側であり、排気側は紙面右側である。
エンジン1は、燃焼室17が吸気行程、圧縮行程、膨張行程及び排気行程を繰り返すことにより運転する4ストロークエンジンである。エンジン1は、四輪の自動車に搭載される。自動車は、エンジン1が運転することによって走行する。エンジン1の燃料は、この構成例においてはガソリンである。燃料は、バイオエタノール等を含むガソリンであってもよい。エンジン1の燃料は、少なくともガソリンを含む液体燃料であれば、どのような燃料であってもよい。
〈エンジンの構成〉
エンジン1は、図1では一つのシリンダ11のみを示すが、複数のシリンダ11を有する多気筒エンジンである。このエンジン1は、燃焼室17を有するエンジン本体2を備える。エンジン本体2は、シリンダブロック12と、シリンダブロック12上に載置されるシリンダヘッド13とを備えている。燃焼室17は、容積室の一例である。
各シリンダ11内には、ピストン3が摺動自在に内挿されている。ピストン3は、コネクティングロッド14を介して、図示を省略するクランクシャフトに連結されている。ピストン3は、シリンダ11及びシリンダヘッド13と共に燃焼室17を区画する。ここで、「燃焼室」は、ピストン3が圧縮上死点に至ったときの空間の意味に限定されない。「燃焼室」の語は広義で用いる場合がある。つまり、「燃焼室」は、ピストン3の位置に関わらず、ピストン3、シリンダ11及びシリンダヘッド13によって形成される空間を意味する場合がある。「燃焼室」は、「シリンダ11の内部」と言い換えることも可能である。
シリンダヘッド13の下面、つまり燃焼室17の天井面は、いわゆるペントルーフ形状である。ピストン3の上面は、燃焼室17の天井面に向かって***している。エンジン本体2の幾何学的圧縮比は、15以上且つ30以下に設定されている。後述するように、エンジン本体2は、高い幾何学的圧縮比を利用して、燃焼室17内の混合気を、圧縮着火により燃焼させる。
シリンダヘッド13には、シリンダ11毎に、吸気ポート18が形成されている。吸気ポート18は、燃焼室17に連通している。吸気ポート18には、吸気弁21が設けられている。吸気弁21は、燃焼室17と吸気ポート18との間で吸気ポート18を開閉する。エンジン本体2には、吸気弁21の動弁機構23(図2参照)が設けられている。吸気弁21は、動弁機構23によって所定のタイミングで開閉する。吸気弁21の動弁機構23は、バルブタイミング及び/又はバルブリフトを可変にする可変動弁機構とすればよい。
シリンダヘッド13にはまた、シリンダ11毎に、排気ポート19が形成されている。排気ポート19は、燃焼室17に連通している。排気ポート19には、排気弁22が設けられている。排気弁22は、燃焼室17と排気ポート19との間で排気ポート19を開閉する。エンジン本体2には、排気弁22の動弁機構24(図2参照)が設けられている。排気弁22は、動弁機構24によって所定のタイミングで開閉する。排気弁22の動弁機構24は、バルブタイミング及び/又はバルブリフトを可変にする可変動弁機構とすればよい。
シリンダヘッド13には、シリンダ11毎に、インジェクタ6が取り付けられている。インジェクタ6は、燃焼室17の中に燃料を直接噴射するように構成されている。インジェクタ6は、燃料供給部の一例である。インジェクタ6は、図1の構成例においては、シリンダ11の中心付近に配設されている。インジェクタ6の配設箇所は、図1の構成例に限定されるものではない。インジェクタ6は、詳細な図示は省略するが、例えば複数の噴口を有する多噴口型の燃焼噴射弁によって構成されている。インジェクタ6は、外開弁式の燃料噴射弁によって構成してもよい。
シリンダヘッド13には、シリンダ11毎に、放電電極4が取り付けられている。本構成例において、放電電極4は、燃焼室17で、インジェクタ6よりも排気側に配置されている。詳細は後述するが、放電電極4は、放電を行うことにより、燃焼室17の中においてプラズマを生成する。放電電極4は、燃焼室17内に配設された一対の電極の一例である。
放電電極4は、例えば図3に例示するように、中心電極41と、接地電極42と、中心電極41と接地電極42との間に介在する絶縁体43とを、有している。中心電極41と絶縁体43とは、筒体44に収容されている。接地電極42は、側面視でL字状に構成されている。接地電極42の根元は、筒体44の下端面に、導通状態で固定されている。接地電極42の先端は、中心電極41に対向している。放電電極4は、火花点火用の一般的な点火プラグと同様の構成を有している。
放電電極4の中心電極41と接地電極42との間のギャップは、燃焼室17の中に臨んでおり、且つ燃焼室17の天井面の付近に位置している。
放電電極4は、このエンジン1において、燃焼室17内に低温プラズマを生成するプラズマ生成装置49を構成する。プラズマ生成装置49は、例えば図3に示すように、放電電極4と、放電電極4に電圧を印加する印加部45とを備えている。図3に例示する印加部45は、交流式に構成されている。印加部45は、所望の周波数の交流電流を発生する周波数発生回路451と、周波数発生回路451が発生させた所望の周波数の交流電流を、所望の電圧まで昇圧する昇圧回路452と、を有している。印加部45は、後述するECU10からの制御信号に従って、放電電極4の電極間に、所定の周波数でかつ、所定の電圧を印加する。印加部45は、ECU10と共に、電極の間に電圧を印加する制御部を構成する。
尚、放電電極は、図3に示す構成に限定されない。例えば図4は、放電電極の変形例を例示している。この放電電極40は、L字状の接地電極を省略し、絶縁体43を囲む筒体44が、接地電極を構成している。放電電極40は、いわゆる沿面型の点火プラグによって構成してもよい。
また、印加部は、図3に示す交流式に構成することに限らず、例えば図4に示すように、直流式の印加部46に構成してもよい。直流式の印加部46は、所望の高電圧の直流電流を発生させる高電圧発生回路461と、高電圧の直流電流を、所望の周波数のパルス波形に変換するスイッチング回路462と、を有している。印加部46も、後述するECU10からの制御信号に従って、放電電極40の電極間に、所定の周波数でかつ、所定の電圧を印加する。印加部46は、ECU10と共に、電極の間に電圧を印加する制御部を構成する。
尚、図3に示す放電電極4と、図4に示す印加部46とを組み合わせること、及び、図3に示す印加部45と、図4に示す放電電極40とを組み合わせることもそれぞれ可能である。
エンジン本体2の吸気ポート18には、図示を省略する吸気通路が接続される。吸気通路には、スロットル弁51が介設している(図2を参照)。また、エンジン本体2の排気ポート19には、図示を省略する排気通路が接続される。排気通路には、燃焼室17から排出された排気ガスを浄化する触媒コンバーターが配設されている。また、排気通路及び吸気通路にはそれぞれ、排気ガスの一部を吸気通路に還流させるEGR通路が接続される。EGR通路には、排気ガスの還流量を調整するEGR弁52が介設している(図2を参照)。
エンジン1は、エンジン本体2を運転するためのECU(Engine Control Unit)10を備えている。ECU10は、周知のマイクロコンピュータをベースとするコントローラーである。ECU10は、図4に示すように、プログラムを実行する中央演算処理装置(Central Processing Unit:CPU)101と、例えばRAM(Random Access Memory)やROM(Read Only Memory)により構成されてプログラム及びデータを格納するメモリ102と、電気信号の入出力をする入出力バス103とを備えている。
前記のスロットル弁51、EGR弁52、インジェクタ6、プラズマ生成装置49、吸気動弁機構23、及び、排気動弁機構24はそれぞれ、ECU10に接続されている。ECU10にはまた、少なくともセンサ71〜74が接続されている。センサ71〜74はそれぞれ、検知信号をECU10に出力する。
当該センサには、吸気通路に配置されたエアフローセンサ71が含まれる。エアフローセンサ71は、吸気通路を流れる新気の流量を検知する。
前記センサには、エンジン本体2に取り付けられた水温センサ72、及び、クランク角センサ73が含まれる。水温センサ72は、冷却水の温度を検知する。クランク角センサ73は、クランクシャフトの回転角を検知する。
前記センサには、アクセルペダル機構に取り付けられたアクセル開度センサ74が含まれる。アクセル開度センサ74は、アクセル開度を検知する。
ECU10は、これらの検知信号に基づいて、エンジン本体2の運転状態を判断すると共に、各デバイスの制御量を計算する。ECU10は、計算した制御量に係る制御信号をスロットル弁51、EGR弁52、インジェクタ6、プラズマ生成装置49、吸気動弁機構23、及び、排気動弁機構24に出力する。
〈エンジンの運転制御〉
このエンジン1は、運転領域の全域において、燃焼室17内の混合気を圧縮着火により燃焼させるよう構成されている。エンジン1は、混合気が安定的に圧縮着火するように、燃焼室17内において低温プラズマを生成する。低温プラズマが燃焼室17内の酸素と化学反応することにより、燃焼室17内に、オゾン又はOラジカルなどの化学種が生成される。そして、Oラジカルなどの化学種が混合気の低温酸化反応を促進することにより、混合気の着火性が向上する。
ここで、燃焼室17内において高温プラズマを生成すると、燃焼室17の中の中心電極41と接地電極42との間のギャップ付近のガス温度が高くなって、燃焼温度が高くなってしまう。燃焼室17内において低温プラズマを生成すると、燃焼室17の中の中心電極41と接地電極42との間のギャップ付近のガス温度が高くなることが抑制され、燃焼温度を低くすることができる。これは、冷却損失の低減に有利になる。
従って、燃焼室17内において低温プラズマを生成することにより、圧縮着火燃焼による熱効率の向上と共に、冷却損失が低減し、エンジン1の熱効率を大幅に向上させることができる。
〈低温プラズマの生成〉
図5は、燃焼室17内が、大気圧又は大気圧以上であるときに、低温プラズマ及び高温プラズマが生成する、放電開始からの時間(横軸)と、電極間に印加した電圧(縦軸)との関係を示している。低温プラズマは、図5に破線で囲んだ領域5Aのように、放電開始からの時間を短くする(つまり、超短パルスの電圧を電極間に印加する)、及び/又は、高電圧を電極間に印加することによって生成することが可能であるが、それを実現するためのプラズマ生成装置は、コストが増大してしまうと共に、消費電力も増大してしまう。自動車の燃費性能の向上のために、燃焼室17内に低温プラズマを生成させようとしたときに、超短パルスの電圧を電極間に印加する、及び/又は、高電圧を電極間に印加するプラズマ生成装置は、自動車への搭載に不利である。
図5に破線で囲んだ領域5Bのように、低温プラズマは、放電開始からの時間が比較的長い、及び/又は、電圧が比較的低いときにも生成することが可能であるが、この条件では、低温プラズマを安定的に生成することは難しい。
そこで、ここに開示するプラズマの生成方法は、燃焼室17内において先ず高温プラズマを生成する(図5の符号5Cの領域参照)。このことにより、電極間に、熱電子や高温のラジカルを残留させ、その状態で、符号5Bで示すように、電極間に、所定の高周波の比較的低い電圧を印加することにより、低温プラズマを生成する(図5の白抜きの矢印参照)。
こうすることで、超短パルスの電圧を電極間に印加したり、高電圧を電極間に印加したりしなくても、低温プラズマを安定的に生成することができる。また、超短パルスの電圧を電極間に印加したり、高電圧を電極間に印加したりする必要がなくなるから、プラズマ生成装置のコストが下がる。さらに、低温プラズマの生成時の消費電力が低くなるから、自動車へ搭載したときに、燃費性能が低下することが回避される。
具体的に、図6は、印加部45が放電電極4の電極間に印加する電圧の時間波形を例示している。印加部45は、図6に例示するように、最初に、所定電圧よりも高い第一電圧を、放電電極4の電極間に印加する(つまり、第1ステップ)。ここで、所定電圧は、パッシェン(Paschen)の法則によって定まる電圧である。パッシェンの法則は、電極間に絶縁破壊が発生する電圧に関する実験側であり、図7に示すように、パッシェンの法則によって定まる所定電圧は、電極間の距離(つまり、ギャップ長)と燃焼室17内の圧力との積の関数である。パッシェン曲線によると、電極間の距離が長い、及び/又は、圧力が高いと、所定電圧は高くなる。パッシェンの法則によって定まる電圧以上の第一電圧を電極間に印加することによって(図5の5C参照)、電極間に絶縁破壊が生じ、高温プラズマを、燃焼室17内に生成することができる。第一電圧は、幾何学的圧縮が15以上に設定されかつ、後述するように、圧縮行程の後半の期間に第一電圧を電極間に印加する場合は、例えば5kV以上としてもよい。
次に、第一電圧を電極間に印加した後に続けて、印加部45は、第一電圧よりも低い第二電圧を、所定の高周波で、放電電極4の電極間に印加する(つまり、第2ステップ)。第二電圧は、低温プラズマが生成される電圧でかつ、所定の高周波も、低温プラズマが生成される周波数である。第二電圧は、第一電圧よりも0.5kV以上低い電圧としてもよい。また、所定の高周波は、10kHz以上、1000kHz以下の周波数としてもよい。第二電圧を、所定の高周波で電極間に印加することにより、燃焼室17内に低温プラズマを生成することができる(図5の5B参照)。第二電圧の印加は、所定の期間、継続してもよい。
第一電圧は、少なくとも一回、電極間に印加すればよい。燃焼室17内の圧力が高いと、電極間において放電がし難くなる。そのため、燃焼室17内の圧力に応じて、圧力が高いときには、図6に二点鎖線で例示するように、第一電圧を印加する回数を、二回以上にしてもよい。こうすることで、燃焼室17内に高温プラズマを安定的に生成することができ、その後、第二電圧を電極間に印加することによって、低温プラズマを安定的に生成することが可能になる。第一電圧を印加する回数を、二回以上にする場合に、第一電圧の印加周波数は、第二電圧の印加周波数と同じ、又は、略同じにしてもよいし、第二電圧の印加周波数よりも低い周波数にしてもよい。
また、燃焼室17内の圧力が高いときには、第一電圧を印加する回数を増やす代わりに、又は、増やすと共に、第一電圧をさらに高くしてもよい。こうすることでも、燃焼室17内に高温プラズマを安定的に生成することができ、その後、第二電圧を電極間に印加することによって、低温プラズマを安定的に生成することが可能になる。
また、低温プラズマの生成に際し、プラズマ生成装置49は、図6に示したように、電極間に印加する電圧を、第一電圧から第二電圧に切り替えて印加するようにしてもよいし、例えば図8に例示するように、電極間に印加する電圧を、第一電圧から前記第二電圧まで、徐々に下げるようにしてもよい。電圧を下げる移行期間を設けることでも、燃焼室17内に生成するプラズマを、高温プラズマから低温プラズマへと移行させることができる。
〈エンジン運転時のプラズマ生成〉
次に、エンジンの運転時における、プラズマの生成タイミング、及び、燃料の噴射タイミングについて図9を参照しながら説明をする。図9の横軸はクランク角を示している。図9は、クランク角の進行に伴う燃焼室17内の圧力の変化を例示している。尚、エンジン1は、所定負荷よりも高い、比較的高負荷で運転しているものとする。
プラズマ生成装置は、圧縮行程の後半に、燃焼室17内にプラズマを生成する。ここで、圧縮行程の後半とは、圧縮行程を前半と後半とに二等分したときの後半の期間を意味する(つまり、−90°〜0°ATDC)。エンジン1の負荷が高いため、燃焼室17内に供給する燃料量が多くなる。燃焼室17内に低温プラズマを生成するタイミングが早くなり過ぎると、過早着火やノッキング等の異常燃焼を招く恐れがある。そのため、低温プラズマは、圧縮行程の後半に燃焼室17内に生成してもよい。また、異常燃焼を回避するために、プラズマ生成装置は、図9に図示するように、圧縮行程の終期に、低温プラズマを生成してもよい。ここで、圧縮行程の終期とは、圧縮行程を初期、中期、終期とに三等分したときの終期の期間を意味する(つまり、−60°〜0°ATDC)。
但し、圧縮行程においては、ピストン3が上死点に向かって上昇するに従い、燃焼室17内の圧力は次第に高くなるが、プラズマの生成開始タイミングが遅すぎると、燃焼室17内の圧力が高いため、放電には不利になる。特に、このエンジン1は、幾何学的圧縮比が高いため、圧縮上死点に近づくと燃焼室17内の圧力は、かなり高くなる。
そのため、プラズマの生成開始は、−30°ATDCよりも遅くならないようにしてもよい。プラズマの生成開始を、−30°ATDC以前にすると、燃焼室17内の圧力が比較的低いときに高温プラズマを生成することができ、その後、低温プラズマを生成することができる。そして電極間への第二電圧の印加を、そのまま継続すれば、クランク角の進行に伴い燃焼室17内の圧力が高くなっても、比較的低い電圧の印加によって低温プラズマの生成を継続することができる。
プラズマ生成装置49はまた、圧縮上死点(TDC)よりも所定期間前に、低温プラズマの生成を終了してもよい。前述の通り、このエンジン1は、燃焼室17内に低温プラズマを生成することにより、オゾン又はOラジカルなどの化学種を生成して、混合気の低温酸化反応を促進する。そのため、低温プラズマは、燃焼室17内に燃料を供給する前に生成する。プラズマ生成装置49は、例えば、−10°ATDCまでに、低温プラズマの生成を終了してもよい。
インジェクタ6は、低温プラズマの生成後に、燃焼室17内に燃料を噴射する。燃料の噴射時期を圧縮上死点の近くにまで遅らせることにより、異常燃焼の発生を回避することができる。前述したように、燃焼室17内に低温プラズマを生成することにより、混合気の低温酸化反応が促進されるため、混合気の着火性が高まる。その結果、混合気は、圧縮上死点付近において、安定的に圧縮着火し、燃焼する。
図10は、エンジン1の運転時の、低温プラズマの生成に係る制御フローを示している。制御フローは、ECU10が実行する。スタート後のステップS1において、ECU10は、各センサ等の検知信号を読み込んで、エンジン1の運転状態を判断する。続くステップS2において、ECU10は、エンジン1の運転状態に応じて、低温プラズマの生成時期を設定する。例えばエンジン1の負荷が高いときには、異常燃焼を回避するために、低温プラズマの生成時期を遅くしてもよい。一方、エンジン1の負荷が低いときには、異常燃焼が発生し難いため、低温プラズマの生成時期を早くしてもよい。
ステップS3においてECU10は、低温プラズマの生成開始時期が遅いか否かを判定する。判定がYESのときには、制御プロセスはステップS4に進み、判定がNOのときには、制御プロセスはステップS5に進む。
ステップS4においては、低温プラズマの生成開始時期が遅いため、燃焼室17の圧力が相対的に高いことから、ECU10は、第一電圧を高くする、及び/又は、第一電圧の印加回数を増やす。これにより、高温プラズマを安定的に生成し、その後の低温プラズマを安定的に生成する。一方、ステップS5においては、低温プラズマの生成開始時期が早いため、燃焼室17の圧力が相対的に低いことから、ECU10は、第一電圧を低くする、及び/又は、第一電圧の印加回数を減らす。これにより、低温プラズマを安定的に生成することができると共に、消費電力を低減することができる。
尚、第一電圧、及び/又は、第一電圧の印加回数は、プラズマ生成の開始時期(つまり、第一電圧の印加タイミング)が所定時期よりも遅いときに、所定時期又は所定時期よりも早いときよりも第一電圧、及び/又は、第一電圧の印加回数が高く/多くなるよう、プラズマ生成の開始時期の遅早に対して段階的に変更してもよい。尚、第一電圧、及び/又は、第一電圧の印加回数を変更する段階数は、任意である。また、第一電圧、及び/又は、第一電圧の印加回数は、プラズマ生成の開始時期が遅くなるに従って高く/多くなるよう、プラズマ生成の開始時期の遅早に対して連続的に変更してもよい。
ECU10及び印加部45は、ステップS5において、放電電極40の電極間に第一電圧を印加し、ステップS6において、放電電極40の電極間に第二電圧を印加する。
尚、ここに開示する技術は、前記の構成に限定されるものではない。前述したプラズマ生成装置は、自動車に搭載したエンジン1の燃焼室17内において低温プラズマを生成する用途に限らず、その他の用途にも広く適用することが可能である。
1 エンジン
10 ECU(制御部)
17 燃焼室
2 エンジン本体
4 放電電極(電極)
40 放電電極(電極)
45 印加部(制御部)
46 印加部(制御部)
49 プラズマ生成装置
6 インジェクタ(燃料供給部)

Claims (21)

  1. 容積室内に配設された電極間に、パッシェンの法則によって定まる電圧以上の第一電圧を印加する第1ステップと、
    前記第1ステップに続けて、前記第一電圧よりも低い第二電圧を、所定の高周波で前記電極間に印加する第2ステップと、を備えている低温プラズマの生成方法。
  2. 請求項1に記載の低温プラズマの生成方法において、
    前記第2ステップは、前記第一電圧から前記第二電圧に切り替えて、前記電極間に電圧を印加する低温プラズマの生成方法。
  3. 請求項1に記載の低温プラズマの生成方法において、
    前記第2ステップは、前記電極間に印加する電圧を、前記第一電圧から前記第二電圧まで、徐々に下げる低温プラズマの生成方法。
  4. 請求項1〜3のいずれか1項に記載の低温プラズマの生成方法において、
    前記第1ステップは、前記電極間に、少なくとも一回の前記第一電圧を印加する低温プラズマの生成方法。
  5. 請求項4に記載の低温プラズマの生成方法において、
    前記容積室の圧力が高いときには、低いときよりも、前記電極間に前記第一電圧を印加する回数を多くする低温プラズマの生成方法。
  6. 請求項1〜5のいずれか1項に記載の低温プラズマの生成方法において、
    前記容積室は、幾何学的圧縮比が15以上のエンジンの燃焼室であり、
    前記エンジンは、前記燃焼室内に生成した低温プラズマによってオゾン及び/又はOラジカルを生成すると共に、前記燃焼室内の混合気を圧縮着火により燃焼させる低温プラズマの生成方法。
  7. 請求項6に記載の低温プラズマの生成方法において、
    前記エンジンは、燃焼室が吸気行程、圧縮行程、膨張行程及び排気行程を繰り返すことにより運転する4ストロークエンジンであり、
    前記エンジンは、圧縮行程を前半と後半とに二等分したときの後半の期間に、前記燃焼室内に低温プラズマを生成する低温プラズマの生成方法。
  8. 請求項1〜7のいずれか1項に記載の低温プラズマの生成方法において、
    前記第一電圧は、5kV以上である低温プラズマの生成方法。
  9. 請求項8に記載の低温プラズマの生成方法において、
    前記第二電圧は、前記第一電圧よりも0.5kV以上低い低温プラズマの生成方法。
  10. 請求項1〜9のいずれか1項に記載の低温プラズマの生成方法において、
    前記第2ステップは、前記第二電圧を、10kHz以上、1000kHz以下の周波数で前記電極間に印加する低温プラズマの生成方法。
  11. 吸気行程、圧縮行程、膨張行程及び排気行程を繰り返す燃焼室と、
    前記燃焼室内に配設された一対の電極と、
    前記電極の間に電圧を印加する制御部と、を備え、
    前記制御部は、パッシェンの法則によって定まる電圧以上の第一電圧を、前記電極の間に印加した後、前記第一電圧よりも低い第二電圧を、所定の高周波で前記電極間に印加することによって、前記燃焼室内の混合気が圧縮着火により燃焼する前に、前記燃焼室内に低温プラズマを生成する圧縮着火式エンジン。
  12. 請求項11に記載の圧縮着火式エンジンにおいて、
    前記制御部は、前記第一電圧から前記第二電圧に切り替えて、前記電極間に電圧を印加する圧縮着火式エンジン。
  13. 請求項11に記載の圧縮着火式エンジンにおいて、
    前記制御部は、前記電極間に印加する電圧を、前記第一電圧から前記第二電圧まで、徐々に下げる圧縮着火式エンジン。
  14. 請求項11〜13のいずれか1項に記載の圧縮着火式エンジンにおいて、
    前記制御部は、前記電極の間に、少なくとも一回の前記第一電圧を印加する圧縮着火式エンジン。
  15. 請求項11〜14のいずれか1項に記載の圧縮着火式エンジンにおいて、
    前記制御部は、前記圧縮行程を前半と後半とに二等分したときの後半の期間に、前記燃焼室内に低温プラズマを生成する圧縮着火式エンジン。
  16. 請求項15に記載の圧縮着火式エンジンにおいて、
    前記制御部は、前記第一電圧の印加タイミングが遅いときには、早いときよりも、前記電極間に前記第一電圧を印加する回数を多くする圧縮着火式エンジン。
  17. 請求項15又は16に記載の圧縮着火式エンジンにおいて、
    前記制御部は、前記第一電圧の印加タイミングが遅いときには、早いときよりも、前記第一電圧を高くする圧縮着火式エンジン。
  18. 請求項11〜17のいずれか1項に記載の圧縮着火式エンジンにおいて、
    幾何学的圧縮比は15以上である圧縮着火式エンジン。
  19. 請求項11〜18のいずれか1項に記載の圧縮着火式エンジンにおいて、
    前記第一電圧は、5kV以上である圧縮着火式エンジン。
  20. 請求項19に記載の圧縮着火式エンジンにおいて、
    前記第二電圧は、前記第一電圧よりも0.5kV以上低い圧縮着火式エンジン。
  21. 請求項11〜20のいずれか1項に記載の圧縮着火式エンジンにおいて、
    前記制御部は、前記第二電圧を、10kHz以上、1000kHz以下の周波数で前記電極間に印加する圧縮着火式エンジン。
JP2018033899A 2018-02-27 2018-02-27 低温プラズマの生成方法及び圧縮着火式エンジン Active JP7003731B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018033899A JP7003731B2 (ja) 2018-02-27 2018-02-27 低温プラズマの生成方法及び圧縮着火式エンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018033899A JP7003731B2 (ja) 2018-02-27 2018-02-27 低温プラズマの生成方法及び圧縮着火式エンジン

Publications (2)

Publication Number Publication Date
JP2019149314A true JP2019149314A (ja) 2019-09-05
JP7003731B2 JP7003731B2 (ja) 2022-01-21

Family

ID=67850725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018033899A Active JP7003731B2 (ja) 2018-02-27 2018-02-27 低温プラズマの生成方法及び圧縮着火式エンジン

Country Status (1)

Country Link
JP (1) JP7003731B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036123A (ja) * 2007-08-02 2009-02-19 Nissan Motor Co Ltd 非平衡プラズマ放電式エンジン
JP2013238130A (ja) * 2012-05-14 2013-11-28 Nissan Motor Co Ltd 内燃機関の点火制御装置及び点火制御方法
WO2014115707A1 (ja) * 2013-01-22 2014-07-31 イマジニアリング株式会社 プラズマ生成装置、及び内燃機関
JP2016130512A (ja) * 2015-01-09 2016-07-21 イマジニアリング株式会社 点火方法、及び点火システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036123A (ja) * 2007-08-02 2009-02-19 Nissan Motor Co Ltd 非平衡プラズマ放電式エンジン
JP2013238130A (ja) * 2012-05-14 2013-11-28 Nissan Motor Co Ltd 内燃機関の点火制御装置及び点火制御方法
WO2014115707A1 (ja) * 2013-01-22 2014-07-31 イマジニアリング株式会社 プラズマ生成装置、及び内燃機関
JP2016130512A (ja) * 2015-01-09 2016-07-21 イマジニアリング株式会社 点火方法、及び点火システム

Also Published As

Publication number Publication date
JP7003731B2 (ja) 2022-01-21

Similar Documents

Publication Publication Date Title
JP5257168B2 (ja) 内燃機関の着火制御装置
JP6237329B2 (ja) 直噴ガソリンエンジン
JP6445928B2 (ja) 内燃機関の点火装置
JP2010037948A (ja) 筒内直接噴射式内燃機関
US9803568B2 (en) Control system of internal combustion engine (as amended)
JP2010037949A (ja) 内燃機関用バリア放電装置
JP2007247522A (ja) 内燃機関の燃料噴射制御装置
JP2013148098A (ja) エンジンの着火制御装置
JP2010209868A (ja) エンジンの着火制御装置
JP2015187424A (ja) 直噴ガソリンエンジンの始動制御装置
JP6281368B2 (ja) 直噴エンジンの制御装置
JP7003731B2 (ja) 低温プラズマの生成方法及び圧縮着火式エンジン
JP6156223B2 (ja) 圧縮着火式エンジンの制御装置
JP7056229B2 (ja) 予混合圧縮着火式エンジンの制御装置
JP2007262926A (ja) 圧縮自己着火エンジンの燃焼制御装置
JP2010065558A (ja) 内燃機関の燃焼安定化装置
JP7363438B2 (ja) 内燃機関用の点火装置
JP6179441B2 (ja) エンジンの制御装置
JP6149765B2 (ja) 直噴ガソリンエンジンの制御装置
JP6982761B2 (ja) エンジンの燃焼制御方法及び燃焼制御装置
JP6848919B2 (ja) エンジンの制御方法および制御装置
JP2019203400A (ja) エンジンの燃焼制御方法及び燃焼制御装置
JP6217493B2 (ja) 直噴ガソリンエンジンの制御装置
JP7010141B2 (ja) エンジンの燃焼制御方法及び燃焼制御装置
JP2007332933A (ja) エンジンの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211213

R150 Certificate of patent or registration of utility model

Ref document number: 7003731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150