JP2019148470A - Method for promptly analyzing heavy metal contamination soil - Google Patents

Method for promptly analyzing heavy metal contamination soil Download PDF

Info

Publication number
JP2019148470A
JP2019148470A JP2018032664A JP2018032664A JP2019148470A JP 2019148470 A JP2019148470 A JP 2019148470A JP 2018032664 A JP2018032664 A JP 2018032664A JP 2018032664 A JP2018032664 A JP 2018032664A JP 2019148470 A JP2019148470 A JP 2019148470A
Authority
JP
Japan
Prior art keywords
heavy metal
analysis
eluate
soil
chelate complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018032664A
Other languages
Japanese (ja)
Other versions
JP6994408B2 (en
Inventor
まゆ 須江
Mayu Sue
まゆ 須江
山本 達生
Tatsuo Yamamoto
達生 山本
純 森川
Jun Morikawa
純 森川
めぐみ 高橋
Megumi Takahashi
めぐみ 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Original Assignee
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp filed Critical Maeda Corp
Priority to JP2018032664A priority Critical patent/JP6994408B2/en
Publication of JP2019148470A publication Critical patent/JP2019148470A/en
Application granted granted Critical
Publication of JP6994408B2 publication Critical patent/JP6994408B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

To provide a method for promptly analyzing metal heavy metal contamination soil, capable of reducing an analysis time as compared with an official method without requiring an expensive analytical instrument in order to analyze the elution amount concentration of heavy metal eluted from soil contaminated with the heavy metal and obtaining an accurate analysis result according to the official method at a site.SOLUTION: A method for promptly analyzing metal heavy metal contamination soil comprises steps of: (S2) controlling a solid-liquid ratio of a contaminated soil to be analyzed; (S3) irradiating a contaminated soil solution having the controlled solid-liquid ratio with a microwave to elute heavy metal; (S4) centrifuging an eluate having the eluted heavy metal to collect a supernatant liquid; (S5) filtering the supernatant liquid to extract the eluate having the heavy metal; (S6) adding a chelating agent to the eluate filtered and extracted and having the heavy metal to form a chelate complex; and (S7) performing fluorescent X-ray analysis on the formed chelate complex to analyze the elution amount concentration of the heavy metal.SELECTED DRAWING: Figure 1

Description

本発明は、重金属汚染土壌の迅速分析方法に関するものであり、詳しくは、砒素や鉛等の重金属を含有した汚染土壌について、公定法と比較して簡易な機器構成を用い、かつ短時間で正確な分析結果を得ることが可能な分析方法に関するものである。   The present invention relates to a rapid analysis method for heavy metal-contaminated soil, and more specifically, for contaminated soil containing heavy metals such as arsenic and lead, using a simple device configuration and accurate in a short time compared to the official method. The present invention relates to an analysis method capable of obtaining a simple analysis result.

工事現場から発生する砒素や鉛で汚染された土を対象にした溶出量濃度分析方法(以下、公定法という)は、「土壌溶出量調査に係る測定方法を定める件(平成15年3月6日環境省告示第18号)」に規定されている。この公定法では、風乾に2日程度、溶出操作に6時間程度を要する。さらに、溶出液からの検出分析に、ICP発光分光光度計や可燃性ガスを用いる原子吸光分光光度計を使用するため、大がかりで高額な分析機器を用意する必要がある。このため、専門の分析機関に試料を送付して分析するのが一般的である。   The elution concentration analysis method (hereinafter referred to as the official method) for soil contaminated with arsenic and lead generated from construction sites is “A method for determining the soil elution amount survey (March 6, 2003). Japan Ministry of the Environment Notification No. 18) ”. This official method requires about 2 days for air drying and about 6 hours for elution operation. Furthermore, since an ICP emission spectrophotometer or an atomic absorption spectrophotometer using a flammable gas is used for detection analysis from the eluate, it is necessary to prepare a large-scale and expensive analytical instrument. For this reason, it is common to send a sample to a specialized analysis organization for analysis.

公定法に準じた簡易な分析方法としては、溶出操作に超音波を用いることで時間を短縮する方法やキレート錯体を作成して蛍光X線分析を行う方法が提案されている(特許文献1、特許文献2参照)。   As a simple analysis method according to the official method, a method of shortening the time by using ultrasonic waves for the elution operation and a method of creating a chelate complex and performing a fluorescent X-ray analysis have been proposed (Patent Document 1, Patent Document 2).

特許文献1に記載された技術は、土壌中から溶出される重金属等の有害物質の含有量を簡易かつ迅速に測定するための土壌中有害物質含有量分析方法に関するものである。この土壌中有害物質含有量分析方法は、採取された土壌を試料として蛍光X線分析により有害物質の含有量を分析する前分析工程と、試料とされた土壌から有害物質を溶出するように前記土壌に水系溶媒を加えて混合した後に固液分離する溶出工程と、溶出工程において固液分離されたうちの固体成分を試料として蛍光X線分析法により有害物質の含有量を分析する後分析工程と、前分析工程で分析された有害物質の含有量から後分析工程で分析された有害物質の含有量を減算し、溶出された有害物質の含有量を算出する溶出量算出工程とを有している。   The technique described in Patent Document 1 relates to a method for analyzing the content of toxic substances in soil for simply and quickly measuring the content of toxic substances such as heavy metals eluted from the soil. This method for analyzing the content of toxic substances in soil includes a pre-analysis step of analyzing the content of toxic substances by fluorescent X-ray analysis using the collected soil as a sample, and a method for eluting toxic substances from the sampled soil. An elution process for solid-liquid separation after adding water-based solvent to the soil and mixing, and a post-analysis process for analyzing the content of hazardous substances by fluorescent X-ray analysis using solid components separated in the elution process as samples And an elution amount calculation step of subtracting the content of the hazardous substance analyzed in the post-analysis step from the content of the hazardous substance analyzed in the pre-analysis step to calculate the content of the eluted harmful substance. ing.

特許文献2に記載された技術は、環境基準の極めて微量な測定対象物質の溶出量を、現場で迅速に測定することができる土壌の重金属類の溶出量の分析方法に関するものである。この溶出量分析方法は、土壌から作成した検液に所定の割合でキレート剤を加え、このキレート剤に検液中の測定対象物質を吸着させる手順と、検液をろ過して測定対象物質を吸着したキレート剤を回収する手順と、蛍光X線分析装置により、回収したキレート剤が吸着した測定対象物質を定量分析し、この分析結果を前記検液中の測定対象物質の溶出量に換算する手順とを有している。   The technique described in Patent Document 2 relates to a method for analyzing the elution amount of heavy metals in soil, which can quickly measure the elution amount of a very small amount of a measurement target substance based on environmental standards on site. This elution amount analysis method involves adding a chelating agent to a test solution prepared from soil at a predetermined ratio, adsorbing the measurement target substance in the test solution to this chelating agent, and filtering the test solution to remove the measurement target substance. Using the procedure to collect the adsorbed chelating agent and the fluorescent X-ray analyzer, quantitatively analyze the measurement target substance adsorbed by the recovered chelating agent, and convert the analysis result into the amount of the measurement target substance eluted in the test solution. Procedures.

特許第4647405号公報Japanese Patent No. 4647405 特開2004−294329号公報JP 2004-294329 A

上述したように、公定法は大がかりな分析方法であるため、以下の問題点があった。第1に、現場から採取した泥水試料について、溶出量濃度の分析結果が明らかになるまでに1週間程度の期間が必要であり、工事現場ではその間に廃棄される土の置き場に広大な面積を要する。第2に、分析機器を設置する環境を整えるために高額なコストが必要となるだけではなく、精密な分析機器であるため、振動、粉塵対策の他に、コンタミネーション防止のためにガラス器具洗浄用の超純水等も必要となる。第3に、分析機器の操作に熟練した技術を要するため、分析専門スタッフの常駐が必要となる。   As described above, the official method is a large-scale analysis method, and thus has the following problems. First, a period of about one week is required for the muddy water sample collected from the site until the analysis result of the elution amount concentration becomes clear. Cost. Secondly, not only is expensive cost required to prepare the environment for installing analytical instruments, but because it is a precision analytical instrument, in addition to measures against vibration and dust, glassware is washed to prevent contamination. Ultrapure water for use is also required. Thirdly, since a skillful technique is required for operating the analytical instrument, a staff of analysis specialists is required to be resident.

各特許文献に記載された技術を含めて、従来の簡易分析方法には、以下の問題があった。第1に、泥水を対象とした場合に、超音波による溶出操作では測定結果にばらつきが発生する。第2に、キレート錯体の生成が不十分であると、粒子径が小さいためフィルターで捕捉できずに、正確な分析を行うことができない。   The conventional simple analysis methods including the techniques described in each patent document have the following problems. First, when muddy water is used as a target, the measurement results vary in the elution operation using ultrasonic waves. Second, if the formation of the chelate complex is insufficient, the particle size is small, so that it cannot be captured by a filter and accurate analysis cannot be performed.

本発明は、上述した事情に鑑み提案されたもので、高額な分析機器を必要とせずに、公定法と比較して分析時間を短縮することができるとともに、公定法に準じた正確な分析結果を得ることができる重金属汚染土壌の迅速分析方法を提供することを目的とする。   The present invention has been proposed in view of the above-described circumstances, and does not require expensive analysis equipment, and can shorten the analysis time as compared with the official method, and the accurate analysis result according to the official method. It is an object to provide a rapid analysis method for heavy metal contaminated soil.

本発明に係る重金属汚染土壌の迅速分析方法は、上述した目的を達成するため、以下の特徴点を有している。すなわち、本発明に係る重金属汚染土壌の迅速分析方法は、分析対象となる汚染土壌について固液比(土量と水分量との割合)を調整する工程と、固液比を調整した汚染土壌溶液にマイクロ波を照射して重金属を溶出させる工程と、重金属が溶出した溶出液を遠心分離して上澄み液を抽出する工程と、上澄み液を濾過して重金属の溶出液を取り出す工程と、濾過して取り出した重金属の溶出液にキレート剤を添加してキレート錯体を生成する工程と、生成したキレート錯体について蛍光X線分析を行って、重金属の溶出量濃度を分析する工程とを含むことを特徴とするものである。   The rapid analysis method for heavy metal-contaminated soil according to the present invention has the following features in order to achieve the above-described object. That is, the rapid analysis method for heavy metal-contaminated soil according to the present invention includes a step of adjusting a solid-liquid ratio (ratio of soil amount and water amount) for the contaminated soil to be analyzed, and a contaminated soil solution with an adjusted solid-liquid ratio. Irradiating microwaves to elution of heavy metal, centrifuging the eluate from which heavy metal was eluted, extracting the supernatant, filtering the supernatant to remove the eluate of heavy metal, and filtering A step of adding a chelating agent to the heavy metal eluate taken out and generating a chelate complex, and a step of analyzing the generated chelate complex by fluorescent X-ray analysis to analyze the concentration of elution of heavy metal It is what.

上述した重金属汚染土壌の迅速分析方法において、マイクロ波を照射して重金属を溶出させる工程では、溶出液における固液比(土量と水分量との割合)を調整することが好ましい。   In the above-described rapid analysis method for heavy metal-contaminated soil, it is preferable to adjust the solid-liquid ratio (ratio between the amount of soil and the amount of water) in the eluate in the step of eluting heavy metal by irradiating microwaves.

また、上述した重金属汚染土壌の迅速分析方法において、キレート錯体を生成する工程では、重金属の溶出液のpHを調整して、所定粒径以上のキレート錯体を生成し、生成した所定粒径以上のキレート錯体をフィルターで捕捉し、重金属の溶出量濃度を分析する工程において蛍光X線分析を行うことが好ましい。   In the above-described rapid analysis method for heavy metal-contaminated soil, in the step of generating a chelate complex, the pH of the eluate of heavy metal is adjusted to generate a chelate complex having a predetermined particle size or more, It is preferable to perform fluorescent X-ray analysis in the step of capturing the chelate complex with a filter and analyzing the concentration of heavy metal elution.

本発明に係る重金属汚染土壌の迅速分析方法によれば、風乾工程を省略し、重金属の溶出操作にマイクロ波を用いるとともに、蛍光X線分析により重金属の溶出量濃度を分析することにより、公定法では2日間以上要していた分析時間を約1時間半程度に短縮することができる。   According to the rapid analysis method for heavy metal-contaminated soil according to the present invention, an air drying step is omitted, microwaves are used for the elution operation of heavy metal, and the elution amount concentration of heavy metal is analyzed by fluorescent X-ray analysis. Then, the analysis time which took two days or more can be shortened to about one and a half hours.

また、蛍光X線分析装置は、公定法で用いるICP発光分光光度計や原子吸光分光光度計と異なり、操作が容易で簡易な構成の装置であり、操作に熟練した技術を必要とせず、分析コストを低減することができる。   In addition, unlike the ICP emission spectrophotometer and atomic absorption spectrophotometer used in the official method, the X-ray fluorescence analyzer is an easy-to-operate and simple configuration device that does not require skill in operation and can be analyzed. Cost can be reduced.

したがって、本発明に係る重金属汚染土壌の迅速分析方法を用いることにより、高額な分析機器を必要とせずに、公定法と比較して分析時間を短縮することができるとともに、現場において公定法に準じた正確な分析結果を得ることが可能となる。   Therefore, by using the rapid analysis method for heavy metal-contaminated soil according to the present invention, the analysis time can be shortened compared to the official method without the need for expensive analytical equipment, and in accordance with the official method in the field. It is possible to obtain accurate analysis results.

本発明の実施形態に係る重金属汚染土壌の迅速分析方法を示すフローチャート。The flowchart which shows the rapid analysis method of the heavy metal contamination soil which concerns on embodiment of this invention. キレート錯体の生成工程を示すフローチャート。The flowchart which shows the production | generation process of a chelate complex. 蛍光X線分析法とICP発光分光分析法による分析結果、迅速分析方法と公定法による分析結果を比較した説明図(鉛)。An explanatory diagram (lead) comparing the analysis results by the fluorescent X-ray analysis method and the ICP emission spectroscopic analysis method, and the analysis results by the rapid analysis method and the official method. 蛍光X線分析法とICP発光分光分析法による分析結果、迅速分析方法と公定法による分析結果を比較した説明図(砒素)。An explanatory diagram (arsenic) comparing the results of analysis by X-ray fluorescence analysis and ICP emission spectroscopy, and the results of analysis by rapid analysis and official methods. 公定法を示すフローチャート。The flowchart which shows an official method.

以下、図面を参照して、本発明の実施形態に係る重金属汚染土壌の迅速分析方法(以下、迅速分析方法と略記する)を説明する。図1〜図4は本発明の実施形態に係る迅速分析方法を説明するもので、図1は工程全体のフローチャート、図2はキレート錯体の生成工程のフローチャート、図3及び図4は蛍光X線分析法とICP発光分光分析法による分析結果、迅速分析方法と公定法による分析結果を比較した説明図である。また、図5は従来用いていた公定法を示すフローチャートである。   Hereinafter, a rapid analysis method for heavy metal-contaminated soil according to an embodiment of the present invention (hereinafter abbreviated as a rapid analysis method) will be described with reference to the drawings. 1 to 4 illustrate a rapid analysis method according to an embodiment of the present invention. FIG. 1 is a flowchart of the entire process, FIG. 2 is a flowchart of a chelate complex generation process, and FIGS. 3 and 4 are fluorescent X-rays. It is explanatory drawing which compared the analysis result by the analysis method and ICP emission-spectral-analysis method, and the analysis result by the rapid analysis method and the official method. FIG. 5 is a flowchart showing the official method used conventionally.

<迅速分析方法の特徴>
本発明の実施形態に係る迅速分析方法は、高額な分析機器を必要とせずに、公定法と比較して分析時間を短縮することができるとともに、現場において公定法に準じた正確な分析結果を得るために、風乾工程を省略し、重金属の溶出にマイクロ波を利用し、蛍光X線分析を行って重金属の溶出量濃度を分析する点に特徴がある。
<Characteristics of rapid analysis method>
The rapid analysis method according to the embodiment of the present invention can shorten the analysis time as compared with the official method without requiring an expensive analytical instrument, and provides an accurate analysis result according to the official method in the field. In order to obtain this, there is a feature in that the air drying step is omitted, microwaves are used for elution of heavy metals, and the concentration of elution amount of heavy metals is analyzed by fluorescent X-ray analysis.

<迅速分析方法の概要>
本発明の実施形態に係る迅速分析方法は、分析対象となる汚染土壌について、土量と水分量との割合を調整する工程、マイクロ波により重金属を溶出させる工程、遠心分離により上澄み液を抽出する工程、濾過により重金属の溶出液(濾液)を取り出す工程、濾液にキレート剤を添加してキレート錯体を生成する工程、キレート錯体について蛍光X線分析を行って、重金属の溶出量濃度を分析する工程に大別することができる。
<Outline of rapid analysis method>
The rapid analysis method according to the embodiment of the present invention includes a step of adjusting the ratio of the amount of soil and the amount of water for the contaminated soil to be analyzed, a step of eluting heavy metals by microwaves, and a supernatant liquid by centrifugation. A step, a step of taking out an eluate of heavy metal (filtrate) by filtration, a step of adding a chelating agent to the filtrate to form a chelate complex, a step of analyzing the chelate complex by X-ray fluorescence analysis and analyzing the concentration of elution of heavy metal Can be broadly classified.

これらの工程の内のいくつかは、公定法とほぼ同様の工程であり、本発明の実施形態に係る迅速分析方法は、公定法に準じたものとなる。本発明の実施形態に係る迅速分析方法では、特にシールド工事等で発生する泥水を分析対象として想定したものであるが、固液比(土量と水分量との割合)を調整する工程及びその前処理工程において適切な処理を行うことにより、一般的な土壌に対しても重金属溶出濃度の分析を行うことができる。   Some of these steps are almost the same as the official method, and the rapid analysis method according to the embodiment of the present invention conforms to the official method. In the rapid analysis method according to the embodiment of the present invention, especially the muddy water generated in shield construction or the like is assumed as an analysis target, and the step of adjusting the solid-liquid ratio (ratio of soil amount and moisture amount) and its By performing an appropriate treatment in the pretreatment step, it is possible to analyze the heavy metal elution concentration even for general soil.

また、以下に示す実施例では、重金属として砒素及び鉛を例にとって説明を行うが、分析対象となる重金属は砒素及び鉛に限られず、例えば、水銀、セレン、カドミウム、六価クロム等も分析対象とすることができる。さらに、キレート剤によりキレート錯体を生成することができるとともに、蛍光X線分析装置で分析可能な元素も分析対象とすることができる。   In the following examples, arsenic and lead are explained as examples of heavy metals, but the heavy metals to be analyzed are not limited to arsenic and lead. For example, mercury, selenium, cadmium, hexavalent chromium and the like are also analyzed. It can be. Furthermore, a chelate complex can be generated by a chelating agent, and an element that can be analyzed with a fluorescent X-ray analyzer can also be an analysis target.

<迅速分析方法の詳細>
本発明の実施形態に係る迅速分析方法は、図1に示すように、分析対象となる試料(汚染土壌(泥水))を採取する工程(S1)と、試料について固液比(土量と水分量との割合)を調整する工程(S2)と、固液比を調整した汚染土壌溶液にマイクロ波を照射して重金属を溶出させる工程(S3)と、重金属が溶出した溶出液を遠心分離して上澄み液を採取する工程(S4)と、上澄み液を濾過して重金属の溶出液を取り出す工程(S5)と、濾過して取り出した重金属の溶出液にキレート剤を添加してキレート錯体を生成する工程(S6)と、生成したキレート錯体について蛍光X線分析を行って、重金属の溶出量濃度を分析する工程(S7)とを主要な工程としている。
<Details of rapid analysis method>
As shown in FIG. 1, the rapid analysis method according to the embodiment of the present invention includes a step (S1) of collecting a sample to be analyzed (contaminated soil (muddy water)), and a solid-liquid ratio (soil volume and moisture) for the sample. The step (S2) of adjusting the ratio of the amount to the solid), the step of irradiating the contaminated soil solution with the adjusted solid-liquid ratio with microwaves to elute the heavy metal (S3), and the eluate from which the heavy metal was eluted by centrifugation. Collecting the supernatant (S4), filtering the supernatant to remove the heavy metal eluate (S5), and adding a chelating agent to the heavy metal eluate filtered to produce a chelate complex The main step is the step (S6) of performing and the step (S7) of analyzing the elution amount concentration of heavy metal by performing fluorescent X-ray analysis on the generated chelate complex.

<固液比の調整>
試料の固液比(土量と水分量との割合)は、公定法に倣って土:水=1:10とする。なお、固液比を調整するためには、予め試料の含水比を把握しておく必要がある。したがって、固液比の調整工程の前処理として、分析対象となる汚染土壌(泥水)の含水比を測定するキャリブレーション工程が必要となる。このキャリブレーション工程は、分析対象となる汚染土壌(泥水)の全量について実施する必要はなく、目視等の観察により汚染土壌(泥水)の性状が極端に変化しない限り、適宜時期に実施すればよい。すなわち、キャリブレーション工程は、迅速分析方法における時間短縮の妨げとはならない。
<Adjustment of solid-liquid ratio>
The solid-liquid ratio of the sample (the ratio between the amount of soil and the amount of water) is set to soil: water = 1: 10 according to the official method. In order to adjust the solid-liquid ratio, it is necessary to grasp the water content ratio of the sample in advance. Therefore, a calibration process for measuring the water content ratio of the contaminated soil (muddy water) to be analyzed is necessary as a pretreatment for the adjustment process of the solid-liquid ratio. This calibration process does not need to be performed for the entire amount of contaminated soil (muddy water) to be analyzed, and may be performed as appropriate as long as the properties of the contaminated soil (muddy water) do not change drastically by visual observation. . That is, the calibration process does not hinder time reduction in the rapid analysis method.

これに対して、公定法では、図5に示すように、試料(分析対象となる汚染土壌(泥水))を採取して分析機関に送付し(S10)、分析機関において2日間程度かけて風乾し(S20)、風乾した試料を粉砕して2mmの篩にかけて礫分を除去した後に(S30)、水を添加して、土:水=1:10となるように固液比を調整する(S40)。公定法では、ここまでの工程に3日間以上の時間が必要となり、本発明に係る迅速分析方法では、試料送付、風乾、2mmの篩い分け工程を省略し、原位置で水分調整(5分程度)を行えばよいことと比較して、大幅に時間短縮を行うことができる。   On the other hand, in the official method, as shown in FIG. 5, a sample (contaminated soil (muddy water) to be analyzed) is collected and sent to the analysis organization (S10), and the analysis organization is air-dried for about 2 days. (S20) After crushing the air-dried sample and passing through a 2 mm sieve to remove gravel (S30), water is added to adjust the solid-liquid ratio so that soil: water = 1: 10 ( S40). The official method requires more than 3 days for the process so far, and the rapid analysis method according to the present invention omits the sample sending, air drying, and 2 mm sieving steps, and adjusts the moisture in situ (about 5 minutes). ), The time can be greatly reduced.

<マイクロ波による重金属の溶出>
試料にマイクロ波を作用させるには、例えば、電子レンジを使用する。電子レンジを使用することにより、設備費用を大幅に節減することができる。試料にマイクロ波を作用させる時間は、試料の状態によって異なるが、例えば5分程度が好ましい。マイクロ波を照射して重金属(鉛、砒素)の溶出試験を行ったところ、約5分までは溶出量が増加し、約5分を超えた辺りから溶出量が減少する傾向にあった。これは、マイクロ波の照射時間が1分程度を経過すると水分を含んだ試料が沸騰し始め、水の蒸発とともに重金属(鉛、砒素)が揮散したためと思われる。
<Elution of heavy metals by microwave>
In order to apply a microwave to the sample, for example, a microwave oven is used. By using a microwave oven, equipment costs can be significantly reduced. The time for which microwaves are applied to the sample varies depending on the state of the sample, but is preferably about 5 minutes, for example. When an elution test for heavy metals (lead and arsenic) was performed by irradiating with microwaves, the elution amount increased until about 5 minutes, and the elution amount tended to decrease from around about 5 minutes. This is probably because the sample containing water began to boil after the microwave irradiation time passed about 1 minute, and heavy metals (lead and arsenic) were volatilized with the evaporation of water.

なお、試料に超音波を作用させることにより重金属(鉛、砒素)を溶出させることも考えられるが、マイクロ波は超音波と比較して短時間で確実に重金属(鉛、砒素)を溶出させることができる。すなわち、超音波を作用させて重金属(鉛、砒素)を溶出する場合(特に泥水の場合)には、溶出度合いにバラツキが大きいが、マイクロ波を照射して重金属(鉛、砒素)を溶出することにより、溶出度合いにバラツキが生じることなく溶出操作を行うことができた。   Although it is possible to elute heavy metals (lead, arsenic) by applying ultrasonic waves to the sample, microwaves can elute heavy metals (lead, arsenic) more reliably in a shorter time than ultrasonic waves. Can do. That is, when eluting heavy metals (lead, arsenic) by applying ultrasonic waves (especially in the case of muddy water), the degree of elution varies greatly, but microwaves are irradiated to elute heavy metals (lead, arsenic). As a result, the elution operation could be performed without variation in the elution degree.

マイクロ波を照射して重金属(鉛、砒素)を溶出する工程では、水分の蒸発が生じる。したがって、当該工程では、土:水=1:10となるように、溶出液における固液比を調整することが好ましい。   In the process of eluting heavy metals (lead, arsenic) by irradiation with microwaves, evaporation of moisture occurs. Therefore, in this step, it is preferable to adjust the solid-liquid ratio in the eluate so that soil: water = 1: 10.

これに対して、公定法では、重金属を浸透溶出する工程(図5/S50)に約6時間程度を要する。したがって、本発明に係る迅速分析方法では、溶出工程においても、公定法と比較して大幅に時間短縮を行うことができる。   On the other hand, in the official method, about 6 hours are required for the step of permeating and eluting heavy metal (FIG. 5 / S50). Therefore, in the rapid analysis method according to the present invention, the time can be significantly reduced even in the elution step as compared with the official method.

<遠心分離>
遠心分離は、重金属が溶出した溶出液から上澄み液を抽出するための操作である。すなわち、マイクロ波を照射することにより、溶出液には重金属が溶出しているため、分析に必要な重金属以外の雑物を除去するため、遠心分離を行う。この遠心分離には、公定法と同様に約15分程度を要する。
<Centrifuge>
Centrifugation is an operation for extracting a supernatant from an eluate from which heavy metals are eluted. That is, since heavy metals are eluted in the eluate by irradiation with microwaves, centrifugation is performed to remove impurities other than heavy metals necessary for analysis. This centrifugation requires about 15 minutes as in the official method.

<濾過>
濾過は、遠心分離して取り出した上澄み液から重金属の溶出液を取り出す操作であり、工程分析法と同様に0.45μmの篩を用いて分析に必要な重金属以外の雑物を除去する。遠心分離工程(S4)と濾過工程(S5)は、公定法(図5/S60、S70)に対応した工程である。
<Filtration>
Filtration is an operation of removing the heavy metal eluate from the supernatant liquid extracted by centrifugation, and removes impurities other than heavy metals necessary for analysis using a 0.45 μm sieve as in the process analysis method. The centrifugation step (S4) and the filtration step (S5) are steps corresponding to the official method (FIG. 5 / S60, S70).

<キレート錯体の作成>
濾過後の重金属の溶出液には、重金属が溶け込んでいる。この重金属をキレート錯体として取り出す(沈殿させる)ことにより、後段の蛍光X線分析を容易に行うことができる。図2を参照して、キレート錯体の生成工程(図1/S6)を説明する。
<Creation of chelate complex>
Heavy metal is dissolved in the eluate of the heavy metal after filtration. By taking out (precipitating) this heavy metal as a chelate complex, the subsequent fluorescent X-ray analysis can be easily performed. With reference to FIG. 2, the production | generation process (FIG. 1 / S6) of a chelate complex is demonstrated.

キレート錯体を生成するには、図2に示すように、所定量の溶出液(例えば200mL)を準備し(S6−1)、この溶出液に適量の還元剤(例えばチオ硫酸ナトリウム;1moL、0.3mL)を添加し(S6−2)、所定温度で所定時間(例えば50℃の砂浴で10分)加温する(S6−3)。続いて、適量のpH緩衝剤(例えば酢酸ナトリウム;1moL、10mL)を添加してpHを調整し(S6−4)、析出物を視認するために着色剤/共沈剤(例えば、硝酸コバルト液/10mg/L、6mL)を添加し(S6−5)、所定温度で所定時間(例えば30℃〜35℃で10分)加温する(S6−6)。   In order to produce a chelate complex, as shown in FIG. 2, a predetermined amount of eluate (for example, 200 mL) is prepared (S6-1), and an appropriate amount of reducing agent (for example, sodium thiosulfate; 1 moL, 0 .3 mL) is added (S6-2) and heated at a predetermined temperature for a predetermined time (for example, 10 minutes in a 50 ° C. sand bath) (S6-3). Subsequently, an appropriate amount of a pH buffering agent (for example, sodium acetate; 1 mol, 10 mL) is added to adjust the pH (S6-4), and a colorant / coprecipitating agent (for example, a cobalt nitrate solution is used to visually confirm the precipitate. / 10 mg / L, 6 mL) is added (S6-5), and the mixture is heated at a predetermined temperature for a predetermined time (for example, 30 ° C. to 35 ° C. for 10 minutes) (S6-6).

続いて、適量のキレート剤/沈殿剤(例えばジベンジルジチオカルバミン酸ナトリウム(DBDTC);1%、6mL)を添加し(S6−7)、1μmのガラスファイバーフィルター(ガラス濾紙)を用いて加圧濾過することにより、重金属のキレート錯体(沈殿物)を濾し取る(S6−8)。その後、重金属のキレート錯体が付着したガラス濾紙を乾燥させて(S6−9)、蛍光X線分析を行う(図1/S7)。図2に示すキレート錯体の生成工程において、還元剤、pH調整剤、キレート剤の添加量や、温度、加温時間等は、溶出液中に含まれる重金属の種類や量により適宜設定する。   Subsequently, an appropriate amount of a chelating agent / precipitating agent (for example, sodium dibenzyldithiocarbamate (DBDTC); 1%, 6 mL) is added (S6-7), and pressure filtration is performed using a 1 μm glass fiber filter (glass filter paper). By doing so, the chelate complex (precipitate) of heavy metal is filtered out (S6-8). Thereafter, the glass filter paper to which the chelate complex of heavy metal is attached is dried (S6-9), and X-ray fluorescence analysis is performed (FIG. 1 / S7). In the chelate complex production step shown in FIG. 2, the amount of addition of the reducing agent, pH adjuster, chelating agent, temperature, warming time, etc. are appropriately set according to the type and amount of heavy metal contained in the eluate.

また、キレート錯体を生成する工程では、重金属の溶出液のpHを調整して、所定粒径以上のキレート錯体を生成することが好ましい。すなわち、キレート錯体の粒子径が小さいと1μmのガラスファイバーフィルターでは捕捉することができないため、正確な分析を行えない可能性がある。このため、キレート錯体の生成工程において、最適なpHとなるように操作を行う必要がある。pHの調整方法としては、例えば、緩衝剤の添加量や、緩衝剤液の濃度を調整する方法が考えられる。   In the step of generating a chelate complex, it is preferable to adjust the pH of the heavy metal eluate to generate a chelate complex having a predetermined particle size or more. That is, when the particle size of the chelate complex is small, it cannot be captured by a 1 μm glass fiber filter, and thus there is a possibility that accurate analysis cannot be performed. For this reason, it is necessary to operate so that it may become optimal pH in the production | generation process of a chelate complex. As a method for adjusting the pH, for example, a method of adjusting the addition amount of the buffering agent or the concentration of the buffering agent solution can be considered.

発明者らが行った実験では、キレート剤/沈殿剤として、ジベンジルジチオカルバミン酸ナトリウム(DBDTC)を使用した。ジベンジルジチオカルバミン酸ナトリウム(DBDTC)は、沈殿物が極めて難溶性であり、金属キャリヤーが不要であるため、特に砒素や鉛を対象としたキレート剤/沈殿剤として好適である。   In experiments conducted by the inventors, sodium dibenzyldithiocarbamate (DBDTC) was used as a chelating agent / precipitating agent. Sodium dibenzyldithiocarbamate (DBDTC) is particularly suitable as a chelating agent / precipitating agent for arsenic and lead because the precipitate is extremely insoluble and no metal carrier is required.

また、5価の砒素を3価に還元するためにチオ硫酸ナトリウムを添加した後、pH緩衝剤として酢酸ナトリウムを添加してpH4に調整した。さらに、着色剤/共沈剤として硝酸コバルト液を添加した後に、キレート剤であるジベンジルジチオカルバミン酸ナトリウム(DBDTC)を添加して反応させた。反応温度が低いと1μmのガラスファイバーフィルターの目詰まりで濾過速度が著しく低下する。一方、反応温度を高くすると溶解度が大きくなって回収率が低下する。したがって、反応温度はキレート錯体生成工程における重要な要素となる。   In addition, sodium thiosulfate was added to reduce pentavalent arsenic to trivalent, and then sodium acetate was added as a pH buffer to adjust to pH 4. Further, after adding a cobalt nitrate solution as a colorant / coprecipitant, sodium dibenzyldithiocarbamate (DBDTC) as a chelating agent was added and reacted. When the reaction temperature is low, the filtration rate is significantly reduced due to clogging of the 1 μm glass fiber filter. On the other hand, when the reaction temperature is increased, the solubility increases and the recovery rate decreases. Therefore, the reaction temperature is an important factor in the chelate complex formation process.

<蛍光X線分析>
蛍光X線分析は、X線を試料に照射して発生する固有のX線(蛍光X線)を利用して元素の分析を行う方法である。蛍光X線は、元素毎に固有のエネルギーを有している。そこで、計測したエネルギーから定性分析が可能となり、計測したX線強度(光子の数)から元素の定量が可能となる。すなわち、分析対象となる試料にX線を照射して原子の内殻電子を励起すると、励起された状態(内殻上に空孔が生じた不安定な状態)から安定状態に戻る際に、試料に含まれる元素に固有の波長(エネルギー)を有する蛍光X線が放射される。この蛍光X線を観測することにより、試料に含まれる元素の定性や定量分析を行うことができる。
<Fluorescence X-ray analysis>
X-ray fluorescence analysis is a method of analyzing an element by using intrinsic X-rays (fluorescence X-rays) generated by irradiating a sample with X-rays. The fluorescent X-ray has energy specific to each element. Therefore, qualitative analysis can be performed from the measured energy, and the element can be quantified from the measured X-ray intensity (number of photons). That is, when the sample to be analyzed is irradiated with X-rays to excite the inner shell electrons of the atom, when returning from the excited state (an unstable state in which vacancies are formed on the inner shell) to the stable state, X-ray fluorescence having a wavelength (energy) specific to the element contained in the sample is emitted. By observing this fluorescent X-ray, qualitative and quantitative analysis of elements contained in the sample can be performed.

発明者らが行った鉛と砒素を含有する試料を用いた実験では、図3及び図4に示すように、迅速分析方法における分析結果と公定法における分析結果との間に高い相関性が認められた。図3及び図4は蛍光X線分析法とICP発光分光分析法による分析結果の比較、迅速分析方法と公定法による分析結果の比較を示した説明図であり、図3は鉛についての実験結果、図4は砒素についての実験結果を示している。   In the experiment conducted by the inventors using lead and arsenic samples, as shown in FIGS. 3 and 4, a high correlation was found between the analysis result in the rapid analysis method and the analysis result in the official method. It was. 3 and 4 are explanatory diagrams showing comparison of analysis results by X-ray fluorescence analysis and ICP emission spectroscopy, comparison of analysis results by rapid analysis method and official method, and FIG. 3 is an experimental result of lead. FIG. 4 shows the experimental results for arsenic.

このように、予め試料に含まれる重金属の含有量に対して公定法で分析を行い、公定法における分析結果と蛍光X線分析における分析結果との関係に基づいて較正を行うことにより、蛍光X線分析においても公定法に準じた分析結果を得ることができる。   Thus, by analyzing the heavy metal content contained in the sample in advance by the official method, and performing calibration based on the relationship between the analysis result in the official method and the analysis result in the fluorescent X-ray analysis, the fluorescent X In line analysis, analysis results according to the official method can be obtained.

また、蛍光X線分析法では公定法と比較した場合、鉛について3倍程度検出感度が高い分析結果が得られ、砒素については2倍程度検出感度が高い分析結果が得られた。さらに、公定法と迅速分析法による鉛及び砒素の分析結果は、抽出操作を長くするほど相関関係が強くなることが分かった。したがって、迅速分析方法において抽出時間を5分程度とすることにより、公定法と相関関係の高い代用特性値を得ることができる。   In addition, when compared with the official method, the fluorescent X-ray analysis method obtained an analysis result with a detection sensitivity about three times higher for lead, and an analysis result with a detection sensitivity about twice as high for arsenic. Furthermore, it was found that the correlation between the analysis results of lead and arsenic by the official method and the rapid analysis method became stronger as the extraction operation was made longer. Therefore, by setting the extraction time to about 5 minutes in the rapid analysis method, a substitute characteristic value having a high correlation with the official method can be obtained.

この蛍光X線分析に用いる装置は、公定法の分析公定(図5/S80)で用いるICP発光分光光度計や原子吸光分光光度計と比較して構造が簡易であり、設備費用も安価である。さらに、分析に高度な熟練技術を必要としない。したがって、工事現場において、分析専門スタッフを必要とせずに重金属(鉛、砒素)の分析が可能となる。さらに、公定法で必要であった試料の送付(図5/S10)及び分析結果の通知(図5/S90)が不要となる。   The apparatus used for this X-ray fluorescence analysis has a simpler structure and lower equipment costs compared to the ICP emission spectrophotometer and atomic absorption spectrophotometer used in the official analysis method (FIG. 5 / S80). . In addition, the analysis does not require highly skilled techniques. Therefore, heavy metals (lead, arsenic) can be analyzed at the construction site without the need for an analysis specialist. Further, it is not necessary to send the sample (FIG. 5 / S10) and to notify the analysis result (FIG. 5 / S90), which are necessary in the official method.

<従来技術との比較>
本発明に係る迅速分析方法では、公定法と比較して著しく時間短縮を行うことができる。すなわち、公定法では、図5に示すように、現場から採取した泥水試料について、溶出量濃度の分析結果が明らかになるまでに1週間程度の期間が必要であり、工事現場ではその間に廃棄される土の置き場に広大な面積を要するという問題があった。
<Comparison with conventional technology>
The rapid analysis method according to the present invention can significantly reduce the time compared to the official method. That is, in the official method, as shown in FIG. 5, a period of about one week is required for the muddy water sample collected from the site until the analysis result of the elution amount concentration becomes clear. There was a problem that it required a vast area to store the soil.

これに対して、本発明に係る迅速分析方法では、工事現場等でリアルタイムに土壌溶出液の濃度を判定できる技術として、図2に示すように、風乾工程を省略し、溶出操作にマイクロ波を用い、土壌溶出液の分析に蛍光X線分析装置を適用することで、1検体当たりの分析時間を1時間半以内とし、時間短縮を可能とした。   On the other hand, in the rapid analysis method according to the present invention, as a technique capable of determining the concentration of the soil eluate in real time at a construction site or the like, as shown in FIG. By using a fluorescent X-ray analyzer for the analysis of the soil eluate, the analysis time per sample was set to within one and a half hours, and the time could be shortened.

また、公定法では、分析機器を設置する環境を整えるために高額なコストが必要であり、公定法で使用する分析装置は、精密な機器であるため、振動対策や粉塵対策等の他に、コンタミネーション防止のためにガラス器具洗浄用の超純水等も必要となる。この点においても、本発明に係る迅速分析方法は有利となる。   In addition, the official method requires a high cost to prepare the environment for installing analytical instruments, and the analyzer used in the official method is a precision instrument, so in addition to vibration countermeasures and dust countermeasures, In order to prevent contamination, ultrapure water or the like for cleaning glassware is also required. Also in this point, the rapid analysis method according to the present invention is advantageous.

また、公定法では、分析機器に操作スキルを要するため、分析専門スタッフの常駐が必要となるが、本発明に係る迅速分析方法では、高度な操作スキルを持った専門スタッフを必要とせず、簡易かつ迅速に分析を行うことができる。   In addition, the official method requires operation skills for the analytical instruments, so analysis specialist staff is required to be stationed. However, the rapid analysis method according to the present invention does not require specialized staff with advanced operation skills. Analysis can be performed quickly.

また、公定法では、土壌溶出液の分析にICP発光分光光度計や原子吸光分光光度計などを使用し、これに使用する可燃性ガスを準備する必要もあり、設置環境の大がかりな整備が必要となる。これに対して、本発明に係る迅速分析方法では、高額な分析機器を使用せずに、X線分析装置を使用することにより、工事現場の現場事務所環境で、分析専門スタッフを必要とせずに、砒素や鉛等の重金属の分析が可能となった。   In addition, the official method uses an ICP emission spectrophotometer or atomic absorption spectrophotometer to analyze the soil eluate, and it is necessary to prepare a combustible gas to be used for this. It becomes. On the other hand, in the rapid analysis method according to the present invention, an analysis specialist staff is not required in the field office environment of the construction site by using an X-ray analyzer without using expensive analysis equipment. In addition, it has become possible to analyze heavy metals such as arsenic and lead.

S1 試料採取工程
S2 固液比調整工程
S3 マイクロ波照射による重金属溶出工程
S4 遠心分離工程
S5 濾過工程
S6 キレート錯体生成工程
S7 蛍光X線分析による重金属の溶出量濃度分析工程
S1 Sample collection step S2 Solid-liquid ratio adjustment step S3 Heavy metal elution step by microwave irradiation S4 Centrifugation step S5 Filtration step S6 Chelate complex generation step S7 Elution amount concentration analysis step of heavy metal by fluorescent X-ray analysis

Claims (3)

重金属で汚染された土壌から溶出する重金属の溶出量濃度を分析するための方法であって、
分析対象となる汚染土壌について固液比を調整する工程と、
固液比を調整した汚染土壌溶液にマイクロ波を照射して重金属を溶出させる工程と、
重金属が溶出した溶出液を遠心分離して上澄み液を採取する工程と、
上澄み液を濾過して重金属の溶出液を取り出す工程と、
濾過して取り出した重金属の溶出液にキレート剤を添加してキレート錯体を生成する工程と、
生成したキレート錯体について蛍光X線分析を行って、重金属の溶出量濃度を分析する工程と、
を含むことを特徴とする重金属汚染土壌の迅速分析方法。
A method for analyzing the concentration of heavy metals eluted from soil contaminated with heavy metals,
Adjusting the solid-liquid ratio for the contaminated soil to be analyzed;
Irradiating the contaminated soil solution with adjusted solid-liquid ratio with microwaves to elute heavy metals,
Centrifuging the eluate from which the heavy metal was eluted and collecting the supernatant,
Filtering the supernatant to remove the heavy metal eluate;
Adding a chelating agent to the eluate of heavy metal taken out by filtration to form a chelate complex;
Performing a fluorescent X-ray analysis on the resulting chelate complex to analyze the elution concentration of heavy metals;
A method for rapid analysis of soil contaminated with heavy metals, comprising:
前記マイクロ波を照射して重金属を溶出させる工程では、溶出液における固液比を調整することを特徴とする請求項1に記載の重金属汚染土壌の迅速分析方法。   2. The rapid analysis method for heavy metal-contaminated soil according to claim 1, wherein in the step of eluting heavy metal by irradiating the microwave, the solid-liquid ratio in the eluate is adjusted. 前記キレート錯体を生成する工程では、重金属の溶出液のpHを調整して、所定粒径以上のキレート錯体を生成し、
生成した所定粒径以上のキレート錯体をフィルターで捕捉し、重金属の溶出量濃度を分析する工程において蛍光X線分析を行うことを特徴とする請求項1又は2に記載の重金属汚染土壌の迅速分析方法。
In the step of generating the chelate complex, the pH of the heavy metal eluate is adjusted to generate a chelate complex having a predetermined particle size or more,
3. Rapid analysis of heavy metal-contaminated soil according to claim 1 or 2, wherein the generated chelate complex having a predetermined particle size or more is captured by a filter, and fluorescent X-ray analysis is performed in the step of analyzing the concentration of eluted heavy metal. Method.
JP2018032664A 2018-02-27 2018-02-27 Rapid analysis method for heavy metal contaminated soil Active JP6994408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018032664A JP6994408B2 (en) 2018-02-27 2018-02-27 Rapid analysis method for heavy metal contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018032664A JP6994408B2 (en) 2018-02-27 2018-02-27 Rapid analysis method for heavy metal contaminated soil

Publications (2)

Publication Number Publication Date
JP2019148470A true JP2019148470A (en) 2019-09-05
JP6994408B2 JP6994408B2 (en) 2022-01-14

Family

ID=67850418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018032664A Active JP6994408B2 (en) 2018-02-27 2018-02-27 Rapid analysis method for heavy metal contaminated soil

Country Status (1)

Country Link
JP (1) JP6994408B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112697730A (en) * 2020-12-13 2021-04-23 河南农业大学 Rapid screening method of heavy metal passivator
JP7227439B1 (en) 2021-08-27 2023-02-22 生態環境部南京環境科学研究所 A Method for Analyzing Heavy Metal Sources in Sediments of Dark Water Areas Based on Multivariate and PMF Models

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214199A (en) * 2001-01-17 2002-07-31 Sumitomo Metal Mining Co Ltd Determination method of soil contamination area
JP2004198324A (en) * 2002-12-19 2004-07-15 Mitsubishi Materials Corp Analytical method for heavy metal contained in soil
JP2004294329A (en) * 2003-03-27 2004-10-21 Hitachi Constr Mach Co Ltd Method and apparatus for analyzing amount of elution of heavy metals contained in soil, and sample for the same
US20100278312A1 (en) * 2009-04-30 2010-11-04 Kent State University Core measurements stand for use with a portable xrf analyzer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214199A (en) * 2001-01-17 2002-07-31 Sumitomo Metal Mining Co Ltd Determination method of soil contamination area
JP2004198324A (en) * 2002-12-19 2004-07-15 Mitsubishi Materials Corp Analytical method for heavy metal contained in soil
JP2004294329A (en) * 2003-03-27 2004-10-21 Hitachi Constr Mach Co Ltd Method and apparatus for analyzing amount of elution of heavy metals contained in soil, and sample for the same
US20100278312A1 (en) * 2009-04-30 2010-11-04 Kent State University Core measurements stand for use with a portable xrf analyzer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112697730A (en) * 2020-12-13 2021-04-23 河南农业大学 Rapid screening method of heavy metal passivator
JP7227439B1 (en) 2021-08-27 2023-02-22 生態環境部南京環境科学研究所 A Method for Analyzing Heavy Metal Sources in Sediments of Dark Water Areas Based on Multivariate and PMF Models
JP2023033163A (en) * 2021-08-27 2023-03-09 生態環境部南京環境科学研究所 Method for analyzing black and odorous water body sediment heavy metal source based on multiple variables and pmf model

Also Published As

Publication number Publication date
JP6994408B2 (en) 2022-01-14

Similar Documents

Publication Publication Date Title
Zawisza et al. Determination of rare earth elements by spectroscopic techniques: a review
da Silva Gomes et al. A novel strategy for preparing calibration standards for the analysis of plant materials by laser-induced breakdown spectroscopy: a case study with pellets of sugar cane leaves
Manzoori et al. Simplified cloud point extraction for the preconcentration of ultra-trace amounts of gold prior to determination by electrothermal atomic absorption spectrometry
JP2019148470A (en) Method for promptly analyzing heavy metal contamination soil
Butler et al. 2013 Atomic spectrometry update—A review of advances in environmental analysis
Paing et al. Rapid determination of uranium isotopic abundance from cotton swipes: direct extraction via a planar surface reader and coupling to a microplasma ionization source
Liang-Cheng et al. Application of inductively coupled plasma-atomic emission spectrometry/mass spectrometry to phase analysis of gold in gold ores
AU7872387A (en) Ore analysis
JP2008309767A (en) Method for decomposing solid sample and method for determining quantity of chrome using the same
Kebbekus Preparation of samples for metals analysis
Santoro et al. Mercury speciation in the colloidal fraction of a soil polluted by a chlor-alkali plant: a case study in the South of Italy
Hall et al. The design and application of sequential extractions for mercury, Part 1. Optimization of HNO3 extraction for all non-sulphide forms of Hg
JP4647405B2 (en) Method for analyzing toxic substance content in soil
Lashari et al. Evaluation of sequential extraction schemes for the ETAAS determination of cadmium concentrations in coal samples from the Thar coalfield, Pakistan
Azad et al. Determination of selenium in soil digests by non-dispersive atomic-fluorescence spectrometry using an argon-hydrogen flame and the hydride generation technique
Srogi Microwave‐Assisted Sample Preparation of Coal and Coal Fly Ash for Subsequent Metal Determination
Barrett et al. Rapid extraction and assay of uranium from environmental surface samples
Aydin et al. Application of modified BCR sequential extraction method for the fractionation and ICP-OES determination of copper in asphaltite combustion waste
JP4174567B2 (en) Simple quantitative analysis method for heavy metals and chemical substances in the environment
Wang et al. The determination of silicon in airborne particulate matter by XRF and LA-ICP-MS
Krishna et al. Oxidative pyrolysis combined with the microwave-assisted extraction method for the multi-elemental analysis of boron carbide powders by inductively coupled plasma optical emission spectrometry (ICP-OES)
TWI613432B (en) Component analysis apparatus and component analysis method
JP2004093272A (en) Analytical measuring method of heavy metal components contained in liquid, and shape analysis method for heavy metals
Marpaung et al. Quantification of rare earth elements with low pressure laser induced breakdown spectroscopy employing subtarget supported micro mesh sample holder
Yang et al. Characterization of four copper materials for application as reference materials for high precision copper isotope analysis by laser ablation inductively coupled plasma multi-collector mass spectrometry

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20180313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211213

R150 Certificate of patent or registration of utility model

Ref document number: 6994408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150