JP2019142024A - Additive manufacturing apparatus - Google Patents

Additive manufacturing apparatus Download PDF

Info

Publication number
JP2019142024A
JP2019142024A JP2018026039A JP2018026039A JP2019142024A JP 2019142024 A JP2019142024 A JP 2019142024A JP 2018026039 A JP2018026039 A JP 2018026039A JP 2018026039 A JP2018026039 A JP 2018026039A JP 2019142024 A JP2019142024 A JP 2019142024A
Authority
JP
Japan
Prior art keywords
side wall
manufacturing apparatus
stage
unit
upper plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018026039A
Other languages
Japanese (ja)
Inventor
川中 啓嗣
Keiji Kawanaka
啓嗣 川中
昇 齋藤
Noboru Saito
昇 齋藤
青田 欣也
Kinya Aota
欣也 青田
慎二 松下
Shinji Matsushita
慎二 松下
インジャ ヤン
Yingjuan Yang
インジャ ヤン
篤彦 大沼
Atsuhiko Onuma
篤彦 大沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2018026039A priority Critical patent/JP2019142024A/en
Priority to PCT/JP2019/002278 priority patent/WO2019159635A1/en
Publication of JP2019142024A publication Critical patent/JP2019142024A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Abstract

To provide an additive manufacturing apparatus that can improve responsiveness of temperature control during preheating of material powder and can improve modeling accuracy of a modeled article.SOLUTION: An additive manufacturing apparatus 1 comprises a stage 51 on which material powder P is placed, an elevation part 10 for hoisting and lowering the stage 51, a side wall part 52 surrounding the stage 51, and a side wall heating part that is built in the side wall part 52 and heats the side wall part 52 from the inside. The stage 51 has an upper plate part 51a for placing the material powder P on its upper surface, an upper plate heating part 51b for heating a lower surface of the upper plate part 51a, and a heat insulation part 51c interposed between the upper plate heating part 51b and the elevation part 10.SELECTED DRAWING: Figure 1

Description

本発明は、付加製造装置に関する。   The present invention relates to an additive manufacturing apparatus.

従来から、付加製造技術が知られている。付加製造は、材料を付着することによって物体を三次元形状の数値表現から作製するプロセスであり、除去的な製造とは対照をなすものである。付加製造は、「3Dプリンター」や「積層造形」とも呼ばれ、多くの場合、複数の層を積層させることによって実現される。付加製造技術の一例として、三次元積層造形物の材料である粉末に電子ビームを照射して三次元積層造形物を造形する技術に関する発明が知られている(下記特許文献1を参照)。   Conventionally, an additive manufacturing technique is known. Additive manufacturing is a process in which an object is made from a numerical representation of a three-dimensional shape by depositing material, in contrast to repetitive manufacturing. Additive manufacturing is also called “3D printer” or “laminated modeling”, and is often realized by laminating a plurality of layers. As an example of the additive manufacturing technique, an invention relating to a technique for forming a three-dimensional layered object by irradiating an electron beam onto a powder that is a material of the three-dimensional layered object is known (see Patent Document 1 below).

特許文献1は、粉末に電子ビームを照射して三次元積層造形物を造形する三次元積層造形装置であって、前記三次元積層造形物が造形される造形ボックスと、前記造形ボックスの外部に配置された予備加熱用加熱手段と、を備える三次元積層造形装置に係る発明を開示している(同文献、請求項1等を参照)。この発明によれば、粉末の予備加熱に電子ビームを用いないので、三次元積層造形物の造形速度を上げることができる(同文献、第0009段落等を参照)。   Patent Document 1 is a three-dimensional additive manufacturing apparatus that irradiates a powder with an electron beam to form a three-dimensional additive object, and includes a forming box in which the three-dimensional additive object is formed, and the outside of the forming box. An invention relating to a three-dimensional additive manufacturing apparatus provided with a heating means for preheating arranged is disclosed (see the same document, claim 1, etc.). According to this invention, since an electron beam is not used for preheating the powder, the modeling speed of the three-dimensional layered object can be increased (see the same document, paragraph 0009, etc.).

また、特許文献1は、上記の造形ボックスが、冷媒を流す流路を備える構成を開示している(同文献、請求項14を参照)。このような冷媒用流路に冷媒を流して、造形ボックスを冷却すれば、造形ボックスを大気開放することなく、また、自然冷却により造形ボックスを冷却するよりも短時間で、造形ボックスから三次元積層造形物を取り出すことができる(同文献、第0036段落等を参照)。   Moreover, patent document 1 is disclosing the structure with which said modeling box is provided with the flow path through which a refrigerant | coolant flows (refer the same document and Claim 14). Cooling the modeling box by flowing a coolant through such a refrigerant flow path does not open the modeling box to the atmosphere, and in a shorter time than cooling the modeling box by natural cooling, The layered object can be taken out (see the same document, paragraph 0036, etc.).

国際公開第2017/081812号International Publication No. 2017/0881812

上記従来の三次元積層造形装置は、前述のように、予備加熱用加熱手段が造形ボックスの外部に配置されているため、粉末の予備加熱時の温度制御の応答性が低い。また、予備加熱用加熱手段によって外部から造形ボックスを加熱すると、造形ボックスに設けられたベースプレートを上下方向に駆動する駆動部が加熱されて高温になる。そのため、駆動部が熱膨張して、ベースプレート上の三次元積層造形物の造形精度が低下するおそれがある。   As described above, the conventional three-dimensional layered manufacturing apparatus has a low temperature control responsiveness during the preheating of the powder because the preheating heating means is disposed outside the modeling box. Further, when the modeling box is heated from the outside by the preheating heating means, the drive unit that drives the base plate provided in the modeling box in the vertical direction is heated to a high temperature. Therefore, the drive unit may be thermally expanded, and the modeling accuracy of the three-dimensional layered object on the base plate may be reduced.

本開示は、材料粉末の予熱時の温度制御の応答性を向上させるとともに、造形物の造形精度を向上させることが可能な粉末床溶融結合方式の付加製造装置を提供する。   The present disclosure provides an additive manufacturing apparatus of a powder bed fusion bonding system capable of improving the temperature control responsiveness during preheating of the material powder and improving the modeling accuracy of the modeled object.

本開示の一態様は、粉末床溶融結合方式の付加製造装置であって、材料粉末が載置されるステージと、該ステージを昇降させる昇降部と、前記ステージを囲む側壁部と、該側壁部に内蔵されて該側壁部を内部から加熱する側壁加熱部と、を備え、前記ステージは、前記材料粉末を上面に載置する上板部と、該上板部の下面を加熱する上板加熱部と、該上板加熱部と前記昇降部との間に介在された断熱部と、を有することを特徴とする付加製造装置である。   One aspect of the present disclosure is an additive manufacturing apparatus of a powder bed fusion bonding method, which includes a stage on which material powder is placed, a lifting unit that lifts and lowers the stage, a side wall that surrounds the stage, and the side wall A side wall heating unit that heats the side wall unit from the inside, and the stage has an upper plate unit on which the material powder is placed on an upper surface, and an upper plate heating unit that heats the lower surface of the upper plate unit And a heat insulating part interposed between the upper plate heating part and the elevating part.

上記一態様によれば、材料粉末の予熱時の温度制御の応答性を向上させるとともに、造形物の造形精度を向上させることが可能な付加製造装置を提供することができる。   According to the one aspect, it is possible to provide an additional manufacturing apparatus capable of improving the temperature control responsiveness during preheating of the material powder and improving the modeling accuracy of the modeled object.

本開示の一実施形態に係る付加製造装置の断面図。Sectional drawing of the addition manufacturing apparatus which concerns on one Embodiment of this indication. 図1の付加製造装置の付加製造部の一部を例示する正面図。The front view which illustrates a part of additional manufacturing part of the additional manufacturing apparatus of FIG. 図2の付加製造部の一部のIII−III線に沿う断面図。Sectional drawing which follows the III-III line of a part of additional manufacturing part of FIG. 図2の付加製造部のステージと昇降部を示す正面図。The front view which shows the stage and raising / lowering part of the addition manufacturing part of FIG.

以下、図面を参照して本開示に係る付加製造装置の一実施形態を説明する。図1は、本開示の一実施形態に係る付加製造装置1の概略構成を示す模式的な断面図である。   Hereinafter, an embodiment of an additive manufacturing apparatus according to the present disclosure will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view illustrating a schematic configuration of an additive manufacturing apparatus 1 according to an embodiment of the present disclosure.

本実施形態の付加製造装置1は、粉末床溶融結合方式の付加製造装置であり、次のような構成を主な特徴としている。付加製造装置1は、材料粉末Pが載置されるステージ51と、このステージ51を昇降させる昇降部10と、ステージ51を囲む側壁部52と、この側壁部52に内蔵されてこの側壁部52を内部から加熱する側壁加熱部53(図2参照)と、を備えている。そして、ステージ51は、材料粉末Pを上面に載置する上板部51aと、この上板部51aの下面を加熱する上板加熱部51bと、この上板加熱部51bと昇降部10との間に介在された断熱部51cと、を有している。以下、本実施形態の付加製造装置1の各部の構成について詳細に説明する。   The additive manufacturing apparatus 1 of this embodiment is an additive manufacturing apparatus of a powder bed fusion bonding system, and has the following features as main features. The additive manufacturing apparatus 1 includes a stage 51 on which the material powder P is placed, an elevating unit 10 that raises and lowers the stage 51, a side wall 52 that surrounds the stage 51, and a side wall 52 that is built in the side wall 52. And a side wall heating section 53 (see FIG. 2). The stage 51 includes an upper plate portion 51a for placing the material powder P on the upper surface, an upper plate heating portion 51b for heating the lower surface of the upper plate portion 51a, and the upper plate heating portion 51b and the lifting portion 10 And a heat insulating part 51c interposed therebetween. Hereinafter, the structure of each part of the additional manufacturing apparatus 1 of this embodiment is demonstrated in detail.

付加製造装置1は、たとえば、チャンバー2と、真空ポンプ3と、材料供給部4と、付加製造部5と、回収部6と、リコータ7と、ビーム源8と、を備えている。また、図示を省略するが、付加製造装置1は、不活性ガス供給部を備えてもよい。   The additional manufacturing apparatus 1 includes, for example, a chamber 2, a vacuum pump 3, a material supply unit 4, an additional manufacturing unit 5, a recovery unit 6, a recoater 7, and a beam source 8. Moreover, although illustration is abbreviate | omitted, the addition manufacturing apparatus 1 may be provided with the inert gas supply part.

チャンバー2は、たとえば、大気圧よりも減圧される内部の空間である真空部Vに、ビーム源8および真空ポンプ3を除く付加製造装置1の各部を収容している。チャンバー2は、たとえば、保護ガラス21がはめ込まれた透過窓22を有している。透過窓22は、チャンバー2の外部に配置されたビーム源8から照射される高エネルギービームBを透過させ、チャンバー2の内部の付加製造部5のステージ51に載置された材料粉末Pに到達させる。図示を省略するが、チャンバー2は、不活性ガス供給部に接続されたガス入口を有してもよい。   The chamber 2 accommodates each part of the additional manufacturing apparatus 1 excluding the beam source 8 and the vacuum pump 3 in, for example, a vacuum part V that is an internal space depressurized from the atmospheric pressure. The chamber 2 has, for example, a transmission window 22 in which a protective glass 21 is fitted. The transmission window 22 transmits the high energy beam B irradiated from the beam source 8 arranged outside the chamber 2 and reaches the material powder P placed on the stage 51 of the additional manufacturing unit 5 inside the chamber 2. Let Although not shown, the chamber 2 may have a gas inlet connected to the inert gas supply unit.

真空ポンプ3は、たとえば、チャンバー2に設けられた真空引き用の配管23に接続される。真空ポンプ3は、たとえば、真空引き用の配管23を介して、チャンバー2内の空気を排出することで、チャンバー2の内圧を大気圧よりも減圧された真空圧にする。すなわち、真空ポンプ3は、チャンバー2の内部に、大気圧よりも減圧された空間である真空部Vを形成する。不活性ガス供給部は、チャンバー2のガス入口を介して、チャンバー2の真空部Vに、たとえば窒素やアルゴンなどの不活性ガスを導入する。   The vacuum pump 3 is connected to, for example, a vacuuming pipe 23 provided in the chamber 2. For example, the vacuum pump 3 discharges the air in the chamber 2 through the piping 23 for evacuation, so that the internal pressure of the chamber 2 is reduced to a vacuum pressure lower than the atmospheric pressure. That is, the vacuum pump 3 forms a vacuum part V that is a space whose pressure is reduced from the atmospheric pressure inside the chamber 2. The inert gas supply unit introduces an inert gas such as nitrogen or argon into the vacuum part V of the chamber 2 through the gas inlet of the chamber 2.

材料供給部4は、たとえば、側壁と底壁とによって囲まれた凹状の部分である。材料供給部4は、材料粉末Pを供給するためのステージ41を有している。材料供給部4の底壁は、材料供給用のステージ41によって構成されている。材料供給部4は、上方が開放されて側壁の上端に開口部を有し、材料供給用のステージ41上に材料粉末Pが載置される。材料供給用のステージ41は、たとえば、昇降部10によって、所定のピッチで昇降可能に設けられている。   The material supply unit 4 is, for example, a concave part surrounded by a side wall and a bottom wall. The material supply unit 4 has a stage 41 for supplying the material powder P. The bottom wall of the material supply unit 4 is configured by a material supply stage 41. The material supply unit 4 is open at the top and has an opening at the upper end of the side wall, and the material powder P is placed on the material supply stage 41. The stage 41 for material supply is provided so that it can be moved up and down at a predetermined pitch by the elevating unit 10, for example.

造形物Mの付加製造に用いられる材料粉末Pとしては、特に限定されないが、たとえば、銅、チタン合金、ニッケル合金、アルミニウム合金、コバルトクロム合金、ステンレス鋼などの金属材料の粉末、ポリアミドなどの樹脂材料の粉末、セラミックスの粉末などを用いることができる。本実施形態の付加製造装置1は、材料粉末Pとして、たとえば金属材料の粉末を使用する。   Although it does not specifically limit as material powder P used for addition manufacture of the molded article M, For example, powder of metal materials, such as copper, a titanium alloy, a nickel alloy, an aluminum alloy, a cobalt chromium alloy, stainless steel, resin, such as polyamide Material powder, ceramic powder, or the like can be used. The additive manufacturing apparatus 1 of the present embodiment uses, for example, a metal material powder as the material powder P.

付加製造部5は、たとえば、前述の材料供給部4と同様に、側壁と底壁とによって囲まれた凹状の部分である。付加製造部5は、付加製造用のステージ51を有している。付加製造部5の底壁は、付加製造用のステージ51によって構成されている。付加製造部5の側壁は、ステージ51を囲む側壁部52によって構成されている。なお、図1に示す例において、付加製造部5の側壁は、ステージ51を囲む側壁部52と、その側壁部52の外周を囲む外周壁部54と、これら側壁部52と外周壁部54との間に形成された真空部Vとによって構成されている。真空部Vは、側壁部52と外周壁部54との間の空間であり、大気圧よりも減圧される空間である。   The additional manufacturing unit 5 is, for example, a concave part surrounded by a side wall and a bottom wall, like the material supply unit 4 described above. The additional manufacturing unit 5 includes a stage 51 for additional manufacturing. The bottom wall of the additional manufacturing section 5 is configured by a stage 51 for additional manufacturing. The side wall of the additional manufacturing unit 5 is constituted by a side wall portion 52 that surrounds the stage 51. In the example shown in FIG. 1, the side wall of the additional manufacturing unit 5 includes a side wall portion 52 that surrounds the stage 51, an outer peripheral wall portion 54 that surrounds the outer periphery of the side wall portion 52, and the side wall portion 52 and the outer peripheral wall portion 54. And a vacuum part V formed between the two. The vacuum part V is a space between the side wall part 52 and the outer peripheral wall part 54, and is a space that is depressurized from the atmospheric pressure.

付加製造部5は、材料供給部4と同様に、上方が開放されて側壁の上端に開口部を有し、付加製造用のステージ51上に、材料供給部4から供給される材料粉末Pと、付加製造によって製造される造形物Mが載置される。付加製造用のステージ51は、前述の材料供給用のステージ41と同様に、昇降部10によって、所定のピッチで昇降可能に設けられている。付加製造部5の開口部と材料供給部4の開口部は、たとえば、鉛直方向の高さがおおむね等しく、おおむね水平方向に並んでいる。   Like the material supply unit 4, the additional manufacturing unit 5 has an opening at the upper end of the side wall and an opening at the upper end of the side wall. On the stage 51 for additional manufacturing, the material powder P supplied from the material supply unit 4 and The modeled object M manufactured by addition manufacture is mounted. The stage 51 for additional manufacture is provided so as to be lifted and lowered at a predetermined pitch by the lifting unit 10, similarly to the stage 41 for material supply described above. The opening of the additional manufacturing unit 5 and the opening of the material supply unit 4 are, for example, substantially equal in height in the vertical direction and are generally aligned in the horizontal direction.

より詳細には、付加製造部5のステージ51は、材料粉末Pを上面に載置する上板部51aと、この上板部51aの下面を加熱する上板加熱部51bと、この上板加熱部51bと昇降部10との間に介在された断熱部51cと、を有している。また、側壁部52と昇降部10との間に、大気圧よりも減圧される空間である真空部Vが形成されている。   More specifically, the stage 51 of the additional manufacturing section 5 includes an upper plate portion 51a for placing the material powder P on the upper surface, an upper plate heating portion 51b for heating the lower surface of the upper plate portion 51a, and this upper plate heating. A heat insulating part 51c interposed between the part 51b and the elevating part 10. Further, a vacuum part V, which is a space that is depressurized from the atmospheric pressure, is formed between the side wall part 52 and the elevating part 10.

上板部51aは、たとえば、金属製の平板状の部材である。上板加熱部51bは、たとえば、カートリッジヒーター、シースヒーター、セラミックヒーター、セラミックファイバーヒーター、ホットプレートを含む加熱ユニット、高温面状発熱体など、適宜のヒーターによって構成することができる。上板加熱部51bは、たとえば、上板部51aを約600℃程度の高温に加熱するように構成される。断熱部51cは、たとえば、断熱れんが、セラミックファイバー、ケイ酸カルシウム、ロックウールなどの平板状の断熱材によって構成することができる。   The upper plate portion 51a is, for example, a metal flat plate member. The upper plate heating unit 51b can be configured by an appropriate heater such as a cartridge heater, a sheath heater, a ceramic heater, a ceramic fiber heater, a heating unit including a hot plate, or a high-temperature planar heating element. The upper plate heating part 51b is configured to heat the upper plate part 51a to a high temperature of about 600 ° C., for example. The heat insulating part 51c can be formed of, for example, a heat insulating brick made of a flat plate heat insulating material such as ceramic fiber, calcium silicate, rock wool or the like.

図2は、図1の付加製造装置1の付加製造部5の一部を例示する正面図である。図3は、図2の付加製造部の一部のIII−III線に沿う断面図である。付加製造装置1は、付加製造部5の側壁部52に内蔵されて側壁部52を内部から加熱する側壁加熱部53を備えている。側壁部52は、たとえば、ステージ51を囲む矩形筒状に設けられている。側壁加熱部53は、たとえば、カートリッジヒーター、シースヒーター、セラミックヒーターなどのロッド状またはチューブ状のヒーターによって構成することができる。   FIG. 2 is a front view illustrating a part of the additional manufacturing unit 5 of the additional manufacturing apparatus 1 of FIG. FIG. 3 is a cross-sectional view taken along the line III-III of a part of the additional manufacturing section of FIG. The additional manufacturing apparatus 1 includes a side wall heating unit 53 that is built in the side wall unit 52 of the additional manufacturing unit 5 and heats the side wall unit 52 from the inside. The side wall part 52 is provided in the rectangular cylinder shape which surrounds the stage 51, for example. The side wall heating unit 53 can be configured by a rod-shaped or tube-shaped heater such as a cartridge heater, a sheath heater, or a ceramic heater, for example.

側壁加熱部53は、たとえば、側壁部52に設けられた挿入穴52aに挿入されている。側壁部52の挿入穴52aは、たとえば側壁部52の下端面から上端面の近傍まで、上下方向に一直線に延びている。側壁部52は、たとえば、矩形筒状の側壁部52の全周にわたって、周方向に間隔をあけて設けられた複数の挿入穴52aを有し、各挿入穴52aに側壁加熱部53が挿入されている。すなわち、側壁部52は、矩形の内壁面のすべての面に沿って、複数の側壁加熱部53を内蔵している。   The side wall heating part 53 is inserted into, for example, an insertion hole 52 a provided in the side wall part 52. The insertion hole 52a of the side wall 52 extends, for example, in a straight line from the lower end surface of the side wall 52 to the vicinity of the upper end surface. The side wall portion 52 has, for example, a plurality of insertion holes 52a provided at intervals in the circumferential direction over the entire circumference of the rectangular cylindrical side wall portion 52, and the side wall heating portion 53 is inserted into each insertion hole 52a. ing. That is, the side wall part 52 incorporates a plurality of side wall heating parts 53 along all the surfaces of the rectangular inner wall surface.

また、付加製造装置1は、たとえば、側壁部52に内蔵されて側壁部52を内部から冷却する側壁冷却部55を備えている。側壁冷却部55は、たとえば、側壁部52の内部に形成された冷媒流路55aと、冷媒流路55aに接続された冷媒管55bと、図示を省略する冷媒循環部と、によって構成されている。冷媒流路55aは、たとえば、側壁部52の下端面に冷媒入口55cと冷媒出口55dとを有し、側壁部52の全周にわたって連続している。   Moreover, the additional manufacturing apparatus 1 is provided with the side wall cooling part 55 which is incorporated in the side wall part 52 and cools the side wall part 52 from the inside, for example. The side wall cooling unit 55 includes, for example, a refrigerant channel 55a formed inside the side wall unit 52, a refrigerant pipe 55b connected to the refrigerant channel 55a, and a refrigerant circulation unit (not shown). . The refrigerant channel 55 a has, for example, a refrigerant inlet 55 c and a refrigerant outlet 55 d on the lower end surface of the side wall 52, and is continuous over the entire circumference of the side wall 52.

冷媒流路55aは、たとえば、側壁部52の下端面の冷媒入口55cから側壁部52の上端面の近傍まで上方へ向けて一直線に延びている。そして、冷媒流路55aは、側壁部52の上端面の近傍で屈曲して側壁部52の周方向に延び、側壁加熱部53の上方を通過し、下方へ向けて折り返すように屈曲している。さらに、冷媒流路55aは、側壁部52の下端面の近傍まで下方へ向けて一直線に延び、側壁部52の下端面の近傍で屈曲して側壁部52の周方向へ向けて延び、再び上方へ折り返すように屈曲して側壁部52の上端面の近傍まで上方へ向けて一直線に延びている。このように、冷媒流路55aは、側壁部52の上端面の近傍と下端面の近傍で交互に繰り返し折り返しながら蛇行し、複数の側壁加熱部53の上方を通過して側壁部52の全周にわたって延び、側壁部52の下端面の冷媒出口55dにおいて側壁部52の下端面に開口している。   For example, the refrigerant flow path 55 a extends in a straight line upward from the refrigerant inlet 55 c on the lower end surface of the side wall portion 52 to the vicinity of the upper end surface of the side wall portion 52. The refrigerant flow path 55a is bent in the vicinity of the upper end surface of the side wall portion 52 and extends in the circumferential direction of the side wall portion 52, passes above the side wall heating portion 53, and is bent so as to be turned downward. . Furthermore, the refrigerant flow path 55a extends straight down to the vicinity of the lower end surface of the side wall portion 52, bends near the lower end surface of the side wall portion 52, extends toward the circumferential direction of the side wall portion 52, and again upwards. It bends so as to be folded back and extends straight up to the vicinity of the upper end surface of the side wall 52. As described above, the refrigerant flow path 55a meanders while being alternately and repeatedly folded in the vicinity of the upper end surface and the lower end surface of the side wall portion 52, passes above the plurality of side wall heating portions 53, and passes through the entire circumference of the side wall portion 52. The refrigerant outlet 55d at the lower end surface of the side wall portion 52 opens to the lower end surface of the side wall portion 52.

冷媒管55bは、図示を省略する冷媒循環装置の冷媒供給口と冷媒流路55aの冷媒入口55cとを接続するとともに、冷媒流路55aの冷媒出口55dと冷媒循環装置の冷媒回収口とを接続している。冷媒循環装置は、冷媒供給口から冷媒管55bを介して冷媒流路55aの冷媒入口55cへ冷媒を供給するとともに、冷媒流路55aの冷媒出口55dから冷媒管55bを介して冷媒を冷媒回収口へ回収する。冷媒としては、たとえば、冷却水などの冷却液またはヘリウムガスやアンモニアガスなどの冷却ガスを用いることができる。   The refrigerant pipe 55b connects the refrigerant supply port of the refrigerant circulation device (not shown) and the refrigerant inlet 55c of the refrigerant channel 55a, and connects the refrigerant outlet 55d of the refrigerant channel 55a and the refrigerant recovery port of the refrigerant circulation device. doing. The refrigerant circulation device supplies the refrigerant from the refrigerant supply port to the refrigerant inlet 55c of the refrigerant channel 55a through the refrigerant tube 55b, and supplies the refrigerant from the refrigerant outlet 55d of the refrigerant channel 55a through the refrigerant tube 55b to the refrigerant recovery port. To collect. As the refrigerant, for example, a cooling liquid such as cooling water or a cooling gas such as helium gas or ammonia gas can be used.

本実施形態の付加製造装置1は、たとえば外周壁部54に内蔵されて外周壁部54を内部から冷却する外周壁冷却部56を備えている。外周壁冷却部56は、前述の側壁冷却部と同様に、たとえば、外周壁部54の内部に形成された冷媒流路56aと、冷媒流路56aに接続された冷媒管56bと、図示を省略する冷媒循環部と、によって構成されている。冷媒管56bは冷媒入口56cと冷媒出口56dを有している。外周壁部54の外周壁冷却部56は、前述の側壁部52の側壁冷却部55と同様の構成を有しているため、図2および図3に示す側壁冷却部55の対応する構成に符号を付して説明を省略する。なお、外周壁部54は、挿入穴52aを有しておらず、側壁加熱部53のような加熱部が内蔵されていない点で、側壁部52と異なっている。   The additive manufacturing apparatus 1 according to the present embodiment includes, for example, an outer peripheral wall cooling section 56 that is built in the outer peripheral wall section 54 and cools the outer peripheral wall section 54 from the inside. The outer peripheral wall cooling section 56 is not shown in the figure, for example, similarly to the above-described side wall cooling section, a refrigerant flow path 56a formed inside the outer peripheral wall section 54, a refrigerant pipe 56b connected to the refrigerant flow path 56a, and the like. And a refrigerant circulating part. The refrigerant pipe 56b has a refrigerant inlet 56c and a refrigerant outlet 56d. Since the outer peripheral wall cooling part 56 of the outer peripheral wall part 54 has the same configuration as the side wall cooling part 55 of the side wall part 52 described above, the corresponding configuration of the side wall cooling part 55 shown in FIGS. The description is omitted. The outer peripheral wall portion 54 does not have the insertion hole 52 a and is different from the side wall portion 52 in that a heating portion such as the side wall heating portion 53 is not incorporated.

図4は、図1に示す付加製造部5のステージ51と昇降部10の一例を示す正面図である。前述のように、ステージ51は、上板部51aと、上板加熱部51bと、断熱部51cとが積層されて一体に連結された構成を有している。ステージ51の最上部に、たとえば平板状の金属製の上板部51aが配置され、上板部51aの下面に接するように、たとえば平板状のヒーターによって構成された上板加熱部51bが配置されている。また、上板加熱部51bの下面に接するように、平板状の断熱材によって構成された断熱部51cが配置されている。   FIG. 4 is a front view showing an example of the stage 51 and the lifting unit 10 of the additional manufacturing unit 5 shown in FIG. As described above, the stage 51 has a configuration in which the upper plate portion 51a, the upper plate heating portion 51b, and the heat insulating portion 51c are stacked and integrally connected. For example, a flat metal upper plate portion 51a is disposed at the top of the stage 51, and an upper plate heating portion 51b configured by, for example, a flat plate heater is disposed so as to contact the lower surface of the upper plate portion 51a. ing. Moreover, the heat insulation part 51c comprised by the flat heat insulating material is arrange | positioned so that the lower surface of the upper board heating part 51b may be touched.

昇降部10は、たとえば、駆動モータ11と、ボールねじ12と、基台部13と、シャフト14と、を備えている。駆動モータ11は、ボールねじ12を回転させて軸方向に前進または後退させる。ボールねじ12は、軸方向をステージ51の昇降方向に一致させて配置されている。基台部13は、たとえば、ボールねじ12の前進と後退によって、昇降するステージ51をシャフト14を介して支持する。シャフト14は、基台部13によって支持されるとともに、上端部がステージ51の断熱部51cに固定され、ステージ51を支持している。なお、シャフト14は、上端部に固定されたプレートを介してステージ51の断熱部51cを支持してもよい。   The elevating unit 10 includes, for example, a drive motor 11, a ball screw 12, a base unit 13, and a shaft 14. The drive motor 11 rotates the ball screw 12 to move forward or backward in the axial direction. The ball screw 12 is arranged with its axial direction coinciding with the raising / lowering direction of the stage 51. The base unit 13 supports the stage 51 that moves up and down through the shaft 14 by, for example, advancement and retraction of the ball screw 12. The shaft 14 is supported by the base portion 13, and the upper end portion is fixed to the heat insulating portion 51 c of the stage 51 to support the stage 51. The shaft 14 may support the heat insulating part 51c of the stage 51 through a plate fixed to the upper end part.

このような構成により、図1に示す付加製造部5の昇降部10は、ステージ51を昇降可能に支持している。また、材料供給部4の昇降部10も、付加製造部5の昇降部10と同様の構成により、ステージ41を昇降可能に支持している。   With such a configuration, the elevating unit 10 of the additional manufacturing unit 5 shown in FIG. 1 supports the stage 51 so as to be elevable. Moreover, the raising / lowering part 10 of the material supply part 4 is also supporting the stage 41 so that raising / lowering is possible by the structure similar to the raising / lowering part 10 of the addition manufacturing part 5. FIG.

回収部6は、たとえば、側壁と底壁によって囲まれた凹状の部分である。図示の例において、回収部6の底壁は、側壁の下端部に固定されているが、材料供給部4および付加製造部5と同様に、昇降可能なステージによって構成されていてもよい。回収部6は、上部が開放されて側壁の上端に開口部を有している。回収部6の開口部と、付加製造部5の開口部は、鉛直方向の高さがおおむね等しく、おおむね水平方向に並んでいる。回収部6は、たとえば、リコータ7によって材料供給部4から付加製造部5に供給された余分な材料粉末Pを収容して回収する。   The collection part 6 is a concave part surrounded by a side wall and a bottom wall, for example. In the illustrated example, the bottom wall of the recovery unit 6 is fixed to the lower end of the side wall, but may be configured by a stage that can be raised and lowered, like the material supply unit 4 and the additional manufacturing unit 5. The collection unit 6 is open at the top and has an opening at the upper end of the side wall. The opening of the collection unit 6 and the opening of the additional manufacturing unit 5 are approximately equal in height in the vertical direction and are generally aligned in the horizontal direction. The collection unit 6 accommodates and collects excess material powder P supplied from the material supply unit 4 to the additional production unit 5 by the recoater 7, for example.

リコータ7は、たとえば、適宜の移動機構により、材料供給部4および付加製造部5の開口部に沿って、おおむね水平方向に移動可能に設けられている。リコータ7は、その移動方向に往復することができるように設けられている。リコータ7は、材料供給部4から材料粉末Pを付加製造部5に供給するときに、材料供給部4の開口部の手前側の位置から、材料供給部4の開口部と付加製造部5の開口部を横断して、回収部6の開口部に臨む位置まで移動する。   The recoater 7 is provided so as to be movable in the horizontal direction generally along the openings of the material supply unit 4 and the additional manufacturing unit 5 by an appropriate moving mechanism, for example. The recoater 7 is provided so as to reciprocate in the moving direction. When the recoater 7 supplies the material powder P from the material supply unit 4 to the additional manufacturing unit 5, the recoater 7 opens the opening of the material supply unit 4 and the additional manufacturing unit 5 from the position on the near side of the opening of the material supply unit 4. It moves across the opening to a position facing the opening of the collection unit 6.

ビーム源8は、たとえば、真空中で最大数kW程度の出力の電子ビームを発生させる電子ビーム源や、数十Wから数kW程度の出力のレーザを発生させるレーザ光源を用いることができる。本実施形態の付加製造装置1のビーム源8は、たとえば、波長が1080nm、出力が500Wのシングルモードファイバーレーザ、すなわちエネルギー強度がガウス分布のファイバーレーザを発生させるレーザ光源である。なお、ビーム源8が電子ビーム源である場合、ビーム源8は、チャンバー2内に配置されていてもよい。   As the beam source 8, for example, an electron beam source that generates an electron beam with a maximum output of several kW in a vacuum or a laser light source that generates a laser with an output of several tens to several kW can be used. The beam source 8 of the additive manufacturing apparatus 1 of the present embodiment is a laser light source that generates, for example, a single mode fiber laser having a wavelength of 1080 nm and an output of 500 W, that is, a fiber laser having a Gaussian energy intensity distribution. When the beam source 8 is an electron beam source, the beam source 8 may be arranged in the chamber 2.

以下、本実施形態の付加製造装置1の作用について説明する。   Hereinafter, the operation of the additive manufacturing apparatus 1 of the present embodiment will be described.

本実施形態の付加製造装置1によって造形物Mの付加製造を行うには、まず、真空ポンプ3によってチャンバー2の内部の空気を排出し、チャンバー2の内部を大気圧よりも減圧して真空状態にする。次に、付加製造部5のステージ51を側壁の上端部の開口部から所定のピッチで下降させ、付加製造部5に所定量の付加製造用の材料粉末Pを収容可能な状態にする。次に、材料供給部4のステージ41を所定のピッチで上昇させ、開口部よりも上方に所定量の付加製造用の材料粉末Pを押し上げる。次に、材料供給部4の開口部を横断するようにリコータ7を移動させ、材料供給部4の開口部の上方に押し上げられた材料粉末Pをリコータ7によって付加製造部5に移動させる。   In order to perform the additional manufacturing of the shaped article M by the additional manufacturing apparatus 1 of the present embodiment, first, the air inside the chamber 2 is discharged by the vacuum pump 3 and the inside of the chamber 2 is depressurized from the atmospheric pressure to be in a vacuum state. To. Next, the stage 51 of the additional manufacturing unit 5 is lowered from the opening at the upper end of the side wall at a predetermined pitch so that a predetermined amount of the material powder P for additional manufacturing can be accommodated in the additional manufacturing unit 5. Next, the stage 41 of the material supply unit 4 is raised at a predetermined pitch, and a predetermined amount of the material powder P for additive manufacturing is pushed up above the opening. Next, the recoater 7 is moved so as to cross the opening of the material supply unit 4, and the material powder P pushed up above the opening of the material supply unit 4 is moved to the additional manufacturing unit 5 by the recoater 7.

さらに、付加製造部5の開口部を横断するようにリコータ7を移動させ、リコータ7によって材料粉末Pを付加製造部5の開口部へ導入して付加製造部5のステージ51に載置するとともに、リコータ7によって材料粉末Pを付加製造部5の開口部の高さに平坦に均して敷き詰める。このとき、余分な材料粉末Pは、リコータ7によって回収部6の開口部へ導入され、回収部6に収容されて回収される。その後、リコータ7を逆方向に移動させて元の位置に戻す。   Further, the recoater 7 is moved so as to cross the opening of the additional manufacturing section 5, and the material powder P is introduced into the opening of the additional manufacturing section 5 by the recoater 7 and placed on the stage 51 of the additional manufacturing section 5. Then, the recoater 7 spreads the material powder P evenly and evenly on the height of the opening of the additional manufacturing section 5. At this time, the excess material powder P is introduced into the opening of the recovery unit 6 by the recoater 7, accommodated in the recovery unit 6 and recovered. Thereafter, the recoater 7 is moved in the reverse direction to return to the original position.

ここで、本実施形態の粉末床溶融結合方式の付加製造装置1は、前述のように、材料粉末Pが載置されるステージ51と、このステージ51を昇降させる昇降部10と、ステージ51を囲む側壁部52と、この側壁部52に内蔵されてこの側壁部52を内部から加熱する側壁加熱部53とを備えている。そして、ステージ51は、材料粉末Pを上面に載置する上板部51aと、この上板部51aの下面を加熱する上板加熱部51bと、この上板加熱部51bと昇降部10との間に介在された断熱部51cとを有している。   Here, as described above, the powder bed fusion bonding type additive manufacturing apparatus 1 of the present embodiment includes the stage 51 on which the material powder P is placed, the elevating unit 10 for moving the stage 51 up and down, and the stage 51. The surrounding side wall part 52 and the side wall heating part 53 which is incorporated in this side wall part 52 and heats this side wall part 52 from the inside are provided. The stage 51 includes an upper plate portion 51a for placing the material powder P on the upper surface, an upper plate heating portion 51b for heating the lower surface of the upper plate portion 51a, and the upper plate heating portion 51b and the lifting portion 10 And a heat insulating portion 51c interposed therebetween.

この構成により、付加製造装置1は、側壁部52に内蔵された側壁加熱部53によって側壁部52を効率よく加熱することができる。したがって、付加製造装置1は、造形ボックスを外部から加熱する従来の三次元積層造形装置と比較して、側壁部52による材料粉末Pの予熱時の温度制御の応答性を向上させることができる。   With this configuration, the additive manufacturing apparatus 1 can efficiently heat the side wall portion 52 by the side wall heating portion 53 built in the side wall portion 52. Therefore, the additive manufacturing apparatus 1 can improve the responsiveness of the temperature control during the preheating of the material powder P by the side wall portion 52, as compared with the conventional three-dimensional layered modeling apparatus that heats the modeling box from the outside.

さらに、付加製造装置1は、前述のように、ステージ51に内蔵された上板加熱部51bによってステージ51の最上部を構成する上板部51aを効率よく加熱することができる。したがって、付加製造装置1は、造形ボックスを外部から加熱する従来の三次元積層造形装置と比較して、側壁部52による材料粉末Pの予熱時の温度制御の応答性を向上させることができる。   Further, as described above, the additive manufacturing apparatus 1 can efficiently heat the upper plate portion 51a constituting the uppermost portion of the stage 51 by the upper plate heating portion 51b built in the stage 51. Therefore, the additive manufacturing apparatus 1 can improve the responsiveness of the temperature control during the preheating of the material powder P by the side wall portion 52, as compared with the conventional three-dimensional layered modeling apparatus that heats the modeling box from the outside.

加えて、付加製造装置1のステージ51は、前述のように、上板加熱部51bと昇降部10との間に介在された断熱部51cを有している。これにより、昇降部10を構成する各部材の温度上昇を抑制し、各部材の熱膨張を抑制してステージ51を高精度に昇降させることができる。なお、本実施形態の付加製造装置1は、付加製造部5において、材料粉末Pを、500℃以上、たとえば約600℃程度の高温まで予熱する。しかし、上板加熱部51bと昇降部10との間に介在された断熱部51cによって上板加熱部51bと昇降部10との間を断熱することで、昇降部の温度を、100℃以下、たとえば約50℃程度の温度に維持することができる。   In addition, the stage 51 of the additive manufacturing apparatus 1 has the heat insulation part 51c interposed between the upper board heating part 51b and the raising / lowering part 10 as mentioned above. Thereby, the temperature rise of each member which comprises the raising / lowering part 10 can be suppressed, the thermal expansion of each member can be suppressed, and the stage 51 can be raised / lowered with high precision. In addition manufacturing apparatus 1 of this embodiment, in addition manufacturing part 5, preheats material powder P to high temperature of about 500 ° C or more, for example, about 600 ° C. However, by thermally insulating the upper plate heating unit 51b and the lifting unit 10 by the heat insulating unit 51c interposed between the upper plate heating unit 51b and the lifting unit 10, the temperature of the lifting unit is 100 ° C. or less, For example, the temperature can be maintained at about 50 ° C.

次に、造形物Mの三次元形状のデータに基づいて、ビーム源8から、付加製造部5のステージ51上の予熱された材料粉末Pの所定の領域に、レーザや電子ビームなどの高エネルギービームBを照射する。これにより、所定の領域の材料粉末Pが溶融結合されて造形物Mの一部が形成される。このとき、付加製造装置1は、前述のように、断熱部51cによって上板加熱部51bと昇降部10との間が断熱され、ステージ51を高精度に昇降させることができるので、造形ボックスを外部から加熱する従来の三次元積層造形装置と比較して、造形物Mの造形精度を向上させることができる。   Next, high energy such as a laser or an electron beam is applied from the beam source 8 to a predetermined region of the preheated material powder P on the stage 51 of the additional manufacturing unit 5 based on the three-dimensional shape data of the model M. Irradiate beam B. As a result, the material powder P in a predetermined region is melt-bonded to form a part of the shaped object M. At this time, as described above, the additional manufacturing apparatus 1 can insulate the space between the upper plate heating unit 51b and the lifting unit 10 by the heat insulating unit 51c and can move the stage 51 up and down with high accuracy. Compared with the conventional three-dimensional additive manufacturing apparatus heated from the outside, the modeling precision of the molded article M can be improved.

また、本実施形態の付加製造装置1は、前述のように、側壁部52に内蔵されてこの側壁部52を内部から冷却する側壁冷却部55を備えている。この構成により、側壁部52に内蔵された側壁冷却部55によって側壁部52を効率よく冷却することができる。したがって、付加製造装置1は、側壁部52の冷却を短時間で行うことができる。さらに、材料粉末Pの予熱時に側壁加熱部53と側壁冷却部55とを併用することで、予熱時の温度制御の応答性をより向上させることができる。   Moreover, the additional manufacturing apparatus 1 of this embodiment is provided with the side wall cooling part 55 which is incorporated in the side wall part 52 and cools this side wall part 52 from the inside as mentioned above. With this configuration, the side wall part 52 can be efficiently cooled by the side wall cooling part 55 built in the side wall part 52. Therefore, the additional manufacturing apparatus 1 can cool the side wall portion 52 in a short time. Furthermore, the responsiveness of the temperature control at the time of preheating can be further improved by using the side wall heating part 53 and the side wall cooling part 55 together when preheating the material powder P.

また、本実施形態の付加製造装置1は、前述のように、大気圧よりも減圧される空間である真空部Vを備えている。この真空部Vは、側壁部52と昇降部10との間に形成されている。この構成により、側壁部52が側壁加熱部53によって加熱されて高温になっても、側壁部52と昇降部10との間に形成された真空部Vによって、側壁部52と昇降部10との間を断熱し、昇降部10の温度上昇を抑制することができる。したがって、昇降部10を構成する各部材の熱膨張を抑制してステージ51を高精度に昇降させることができる。   Moreover, the additional manufacturing apparatus 1 of this embodiment is provided with the vacuum part V which is the space decompressed from atmospheric pressure as mentioned above. The vacuum part V is formed between the side wall part 52 and the elevating part 10. With this configuration, even when the side wall 52 is heated by the side wall heating unit 53 and becomes a high temperature, the vacuum part V formed between the side wall 52 and the elevating unit 10 causes the side wall 52 and the elevating unit 10 to It is possible to insulate the gap and suppress the temperature rise of the elevating unit 10. Therefore, it is possible to raise and lower the stage 51 with high accuracy while suppressing thermal expansion of each member constituting the elevating unit 10.

また、本実施形態の付加製造装置1は、前述のように、側壁部52の外周を囲む外周壁部54を備え、真空部Vは、側壁部52と外周壁部54との間に形成されている。この構成により、側壁部52が側壁加熱部53によって加熱されて高温になっても、側壁部52と外周壁部54との間に形成された真空部Vによって、側壁部52と外周壁部54との間を断熱し、外周壁部54の温度上昇を抑制することができる。これにより、側壁部52の熱が、付加製造部5の周囲に影響を及ぼすのを防止できる。   Further, as described above, the additive manufacturing apparatus 1 of the present embodiment includes the outer peripheral wall portion 54 surrounding the outer periphery of the side wall portion 52, and the vacuum portion V is formed between the side wall portion 52 and the outer peripheral wall portion 54. ing. With this configuration, even when the side wall 52 is heated by the side wall heating unit 53 and becomes a high temperature, the side wall 52 and the outer peripheral wall 54 are formed by the vacuum part V formed between the side wall 52 and the outer peripheral wall 54. And the temperature rise of the outer peripheral wall portion 54 can be suppressed. Thereby, it can prevent that the heat of the side wall part 52 affects the circumference | surroundings of the addition manufacturing part 5. FIG.

また、本実施形態の付加製造装置1は、前述のように、外周壁部54に内蔵されてこの外周壁部54を内部から冷却する外周壁冷却部56を備えている。この構成により、外周壁部54に内蔵された外周壁冷却部56によって外周壁部54を効率よく冷却することができる。したがって、側壁部52の熱が、付加製造部5の周囲に影響を及ぼすのをより効果的に防止できる。   Moreover, the additional manufacturing apparatus 1 of this embodiment is provided with the outer peripheral wall cooling part 56 which is incorporated in the outer peripheral wall part 54 and cools this outer peripheral wall part 54 from the inside as mentioned above. With this configuration, the outer peripheral wall portion 54 can be efficiently cooled by the outer peripheral wall cooling portion 56 built in the outer peripheral wall portion 54. Therefore, it can prevent more effectively that the heat of the side wall part 52 affects the circumference | surroundings of the addition manufacturing part 5. FIG.

さらに、付加製造装置1が真空部Vに不活性ガスを導入する不活性ガス供給部を備える場合には、付加製造終了後の冷却工程において、真空部Vに不活性ガスを導入し、製造された造形物Mやその他の部材を効率よく冷却することができる。   Further, when the additional manufacturing apparatus 1 includes an inert gas supply unit that introduces an inert gas into the vacuum part V, the additional manufacturing apparatus 1 is manufactured by introducing an inert gas into the vacuum part V in the cooling process after the completion of the additional manufacturing. The shaped object M and other members can be efficiently cooled.

以上説明したように、本実施形態によれば、材料粉末Pの予熱時の温度制御の応答性を向上させるとともに、造形物Mの造形精度を向上させることが可能な粉末床溶融結合方式の付加製造装置1を提供することができる。   As described above, according to the present embodiment, the addition of a powder bed fusion bonding method that can improve the responsiveness of temperature control during preheating of the material powder P and improve the modeling accuracy of the model M. The manufacturing apparatus 1 can be provided.

以上、図面を用いて本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

1 付加製造装置
10 昇降部
51 ステージ
51a 上板部
51b 上板加熱部
51c 断熱部
52 側壁部
53 側壁加熱部
54 外周壁部
55 側壁冷却部
56 外周壁冷却部
P 材料粉末
V 真空部
DESCRIPTION OF SYMBOLS 1 Additional manufacturing apparatus 10 Lifting part 51 Stage 51a Upper board part 51b Upper board heating part 51c Heat insulation part 52 Side wall part 53 Side wall heating part 54 Outer wall part 55 Side wall cooling part 56 Outer wall cooling part P Material powder V Vacuum part

Claims (6)

粉末床溶融結合方式の付加製造装置であって、
材料粉末が載置されるステージと、該ステージを昇降させる昇降部と、前記ステージを囲む側壁部と、該側壁部に内蔵されて該側壁部を内部から加熱する側壁加熱部と、を備え、
前記ステージは、前記材料粉末を上面に載置する上板部と、該上板部の下面を加熱する上板加熱部と、該上板加熱部と前記昇降部との間に介在された断熱部と、を有することを特徴とする付加製造装置。
An additive manufacturing apparatus of powder bed fusion bonding method,
A stage on which the material powder is placed, an elevating part that raises and lowers the stage, a side wall that surrounds the stage, and a side wall heating part that is built in the side wall and heats the side wall from the inside,
The stage includes an upper plate portion on which the material powder is placed on an upper surface, an upper plate heating portion that heats the lower surface of the upper plate portion, and a heat insulation interposed between the upper plate heating portion and the elevating portion. And an additional manufacturing apparatus.
前記側壁部に内蔵されて該側壁部を内部から冷却する側壁冷却部を備えることを特徴とする請求項1に記載の付加製造装置。   The additive manufacturing apparatus according to claim 1, further comprising a side wall cooling unit that is built in the side wall portion and cools the side wall portion from the inside. 大気圧よりも減圧される空間である真空部を備え、
前記真空部は、前記側壁部と前記昇降部との間に形成されていることを特徴とする請求項1または請求項2に記載の付加製造装置。
It has a vacuum part that is a space that is depressurized from atmospheric pressure
The additive manufacturing apparatus according to claim 1, wherein the vacuum part is formed between the side wall part and the elevating part.
前記側壁部の外周を囲む外周壁部を備え、
前記真空部は、前記側壁部と前記外周壁部との間に形成されていることを特徴とする請求項3に記載の付加製造装置。
Comprising an outer peripheral wall surrounding the outer periphery of the side wall;
The additive manufacturing apparatus according to claim 3, wherein the vacuum part is formed between the side wall part and the outer peripheral wall part.
前記外周壁部に内蔵されて該外周壁部を内部から冷却する外周壁冷却部を備えることを特徴とする請求項4に記載の付加製造装置。   The additive manufacturing apparatus according to claim 4, further comprising an outer peripheral wall cooling part that is built in the outer peripheral wall part and cools the outer peripheral wall part from the inside. 前記真空部に不活性ガスを導入する不活性ガス供給部を備えることを特徴とする請求項3から請求項5のいずれか一項に記載の付加製造装置。   The additive manufacturing apparatus according to any one of claims 3 to 5, further comprising an inert gas supply unit that introduces an inert gas into the vacuum unit.
JP2018026039A 2018-02-16 2018-02-16 Additive manufacturing apparatus Pending JP2019142024A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018026039A JP2019142024A (en) 2018-02-16 2018-02-16 Additive manufacturing apparatus
PCT/JP2019/002278 WO2019159635A1 (en) 2018-02-16 2019-01-24 Additive manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018026039A JP2019142024A (en) 2018-02-16 2018-02-16 Additive manufacturing apparatus

Publications (1)

Publication Number Publication Date
JP2019142024A true JP2019142024A (en) 2019-08-29

Family

ID=67619411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018026039A Pending JP2019142024A (en) 2018-02-16 2018-02-16 Additive manufacturing apparatus

Country Status (2)

Country Link
JP (1) JP2019142024A (en)
WO (1) WO2019159635A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6825148B1 (en) * 2020-06-02 2021-02-03 株式会社ソディック Laminated modeling equipment
JP2021042411A (en) * 2019-09-09 2021-03-18 株式会社東芝 Method for producing three-dimensional object and three-dimensional shaping apparatus
WO2022030042A1 (en) * 2020-08-03 2022-02-10 株式会社日立製作所 Additive manufacturing method
JP7453186B2 (en) 2021-08-13 2024-03-19 日本電子株式会社 3D additive manufacturing equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11396063B2 (en) 2020-03-23 2022-07-26 Rosemount Aerospace Inc. Systems and methods for in process heating for direct energy deposition applications

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005030854B3 (en) * 2005-07-01 2007-03-08 Eos Gmbh Electro Optical Systems Device for producing a three-dimensional object
JP4566286B1 (en) * 2010-04-14 2010-10-20 株式会社松浦機械製作所 Manufacturing equipment for 3D modeling products
JP2015193134A (en) * 2014-03-31 2015-11-05 日本電子株式会社 Three-dimensional laminate modeling apparatus
US20160096326A1 (en) * 2014-10-03 2016-04-07 Tyco Electronics Corporation Selective zone temperature control build plate
US20180169938A1 (en) * 2015-11-13 2018-06-21 Technology Research Association For Future Additive Manufacturing Three-dimensional laminating and shaping apparatus, method of manufacturing three-dimensional laminating and shaping apparatus, and program for manufacturing three-dimensional laminating and shaping apparatus
JP6651620B2 (en) * 2016-05-31 2020-02-19 株式会社日立製作所 Additive manufacturing equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021042411A (en) * 2019-09-09 2021-03-18 株式会社東芝 Method for producing three-dimensional object and three-dimensional shaping apparatus
JP7312063B2 (en) 2019-09-09 2023-07-20 株式会社東芝 Three-dimensional object manufacturing method and three-dimensional modeling apparatus
JP6825148B1 (en) * 2020-06-02 2021-02-03 株式会社ソディック Laminated modeling equipment
JP2021188101A (en) * 2020-06-02 2021-12-13 株式会社ソディック Laminate molding device
WO2022030042A1 (en) * 2020-08-03 2022-02-10 株式会社日立製作所 Additive manufacturing method
JP7394032B2 (en) 2020-08-03 2023-12-07 株式会社日立製作所 additive manufacturing methods
JP7453186B2 (en) 2021-08-13 2024-03-19 日本電子株式会社 3D additive manufacturing equipment

Also Published As

Publication number Publication date
WO2019159635A1 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
WO2019159635A1 (en) Additive manufacturing device
US9839960B2 (en) Three dimensional printer
JP2008546572A (en) 3D object manufacturing equipment
JP6154544B1 (en) 3D additive manufacturing equipment
JP6855181B2 (en) 3D modeling device and manufacturing method of 3D modeled object
US20100012630A1 (en) Apparatus for manufacturing a three-dimensional object layer by layer
JP6063081B2 (en) Additive manufacturing equipment
JP2015151566A (en) Three-dimensional lamination shaping device
US10406600B2 (en) Laminate molding device
JP2017144594A (en) Refrigeration optimization device and refrigeration optimization method
TWI794654B (en) Lamination molding apparatus
CN107999755A (en) The 3D printing device and Method of printing of mould
WO2015005047A1 (en) Hot isostatic pressing device
CN108015280A (en) The 3D printing device and Method of printing of oral devices
JP2017165998A (en) Three-dimensional molding method
CN107962778A (en) The equipment for manufacturing three-dimensional body for adding type
CN208261854U (en) A kind of three-stage selective laser melting combination pre-heating system
CN207823960U (en) The 3D printing device of oral devices
JP2018058281A (en) Powder bed fusion binding apparatus
CN207823961U (en) The 3D printing device of mold
JP6962080B2 (en) Laminated modeling equipment and laminated modeling method
JP6884807B2 (en) Laminated modeling equipment and laminated modeling method
JP6864056B1 (en) Laminated modeling equipment
JP5636172B2 (en) Glass forming apparatus and tempered glass manufacturing apparatus
JP2018162488A (en) Method and device for producing three-dimensional laminated molding