JP2019140790A - スイッチング回路 - Google Patents

スイッチング回路 Download PDF

Info

Publication number
JP2019140790A
JP2019140790A JP2018021957A JP2018021957A JP2019140790A JP 2019140790 A JP2019140790 A JP 2019140790A JP 2018021957 A JP2018021957 A JP 2018021957A JP 2018021957 A JP2018021957 A JP 2018021957A JP 2019140790 A JP2019140790 A JP 2019140790A
Authority
JP
Japan
Prior art keywords
switching element
voltage
potential
emitter
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018021957A
Other languages
English (en)
Other versions
JP6919592B2 (ja
Inventor
敦子 横山
Atsuko Yokoyama
敦子 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018021957A priority Critical patent/JP6919592B2/ja
Priority to CN201910092711.9A priority patent/CN110138251A/zh
Priority to US16/264,753 priority patent/US10418903B2/en
Priority to DE102019103066.8A priority patent/DE102019103066A1/de
Publication of JP2019140790A publication Critical patent/JP2019140790A/ja
Application granted granted Critical
Publication of JP6919592B2 publication Critical patent/JP6919592B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/143Arrangements for reducing ripples from dc input or output using compensating arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】既存の構成を利用してスイッチング素子のコレクタとエミッタとの間に印加される電圧を測定することができる技術を提供する。【解決手段】第1スイッチング素子に流れる電流が第2スイッチング素子に流れる電流より大きく、前記第1スイッチング素子の第1ゲートの電位と前記第2スイッチング素子の第2ゲートの電位とが同じオン電位にされている状態から、制御装置が、前記第2ゲートの電位をオフ電位にすることによって前記第2スイッチング素子をオフにした後に、前記第1ゲートの電位をオフ電位にすることによって前記第1スイッチング素子をオフにし、前記第1スイッチング素子をオフにした後に電圧センサによって検出される電圧に比例する値を積分することによって、前記第1スイッチング素子をオフにした後に第1コレクタと第1エミッタとの間に印加される電圧を演算する、スイッチング回路。【選択図】図2

Description

本明細書に開示する技術は、スイッチング回路に関する。
特許文献1にスイッチング回路が開示されている。特許文献1のスイッチング回路は、直流電源と、直流電源に接続されているスイッチング素子と、制御装置とを備えている。スイッチング素子は、ゲートと、直流電源の正極側に接続されているコレクタと、直流電源の負極側に接続されているエミッタとを備えている。また、特許文献1のスイッチング回路は、コンデンサと抵抗体とによって構成されている微分回路と、コンパレータとを備えている。
特開2016−073052号公報
特許文献1のスイッチング回路では、スイッチング素子がオンからオフに切り換わるときに、スイッチング回路における寄生インダクタンスに起因して、スイッチング素子のコレクタとエミッタとの間にサージ電圧が印加される。特許文献1のスイッチング回路では、微分回路による微分値をコンパレータによって電圧微分基準値と比較することによって、スイッチング素子のコレクタとエミッタとの間に印加されるサージ電圧の変化を検出している。しかしながら、特許文献1のスイッチング回路では、サージ電圧を検出するために微分回路を構成する追加のコンデンサが必要になる。追加のコンデンサは、サージ電圧を検出するために高耐圧にする必要があるので、高価になり、コストが増大する原因になる。そこで本明細書は、既存の構成を利用してスイッチング素子のコレクタとエミッタとの間に印加される電圧を測定することができる技術を提供する。
本明細書に開示するスイッチング回路は、直流電源と、前記直流電源に接続されている第1スイッチング素子と、前記第1スイッチング素子と並列で前記直流電源に接続されている第2スイッチング素子と、前記第2スイッチング素子と直列で前記直流電源に接続されている抵抗体と、前記抵抗体に印加される電圧を検出する電圧センサと、制御装置と、を備えている。前記第1スイッチング素子は、第1ゲートと、前記直流電源の正極側に接続されている第1コレクタと、前記直流電源の負極側に接続されている第1エミッタと、を備えている。前記第2スイッチング素子は、第2ゲートと、前記直流電源の正極側に接続されている第2コレクタと、前記直流電源の負極側に接続されている第2エミッタと、を備えている。前記第1スイッチング素子に流れる電流が前記第2スイッチング素子に流れる電流より大きく、前記第1スイッチング素子の前記第1ゲートの電位と前記第2スイッチング素子の前記第2ゲートの電位とが同じオン電位にされている状態から、前記制御装置が、前記第2ゲートの電位をオフ電位にすることによって前記第2スイッチング素子をオフにした後に、前記第1ゲートの電位をオフ電位にすることによって前記第1スイッチング素子をオフにし、前記第1スイッチング素子をオフにした後に前記電圧センサによって検出される電圧に比例する値を積分することによって、前記第1スイッチング素子をオフにした後に前記第1コレクタと前記第1エミッタとの間に印加される電圧を演算する。
スイッチング回路では、メインのスイッチング素子(第1スイッチング素子)に流れる電流を測定するために、サブのスイッチング素子(第2スイッチング素子)と抵抗体とを備えていることがある。上記の構成によれば、サブのスイッチング素子(第2スイッチング素子)と抵抗体とを利用して、メインのスイッチング素子(第1スイッチング素子)のコレクタ(第1コレクタ)とエミッタ(第1エミッタ)との間に印加される電圧を測定することができる。すなわち、上記の構成によれば、制御装置が第2スイッチング素子をオフにすると、第2スイッチング素子によって寄生容量が形成される。この寄生容量に蓄えられる電荷は、第1スイッチング素子の第1コレクタと第1エミッタとの間に印加される電圧に比例する値になる。その結果、この寄生容量から流れる電流は、第1スイッチング素子の第1コレクタと第1エミッタとの間に印加される電圧の時間微分に比例する値になる。そのため、制御装置が第2スイッチング素子をオフにした後に、第2スイッチング素子と直列で接続されている抵抗体に流れる電流は、第1スイッチング素子の第1コレクタと第1エミッタとの間に印加される電圧の時間微分に比例する値になる。そこで、制御装置が、第1スイッチング素子をオフにした後に、抵抗体に印加される電圧(電圧センサによって検出される電圧)に比例する値を積分することによって、第1スイッチング素子の第1コレクタと第1エミッタとの間に印加される電圧を演算することができる。この構成によれば、追加の構成(例えば、コンデンサ)が無くても、既存の第2スイッチング素子と抵抗体とを利用して第1スイッチング素子の第1コレクタと第1エミッタとの間に印加される電圧を測定することができる。
実施例に係るスイッチング回路を模式的に示す図である。 実施例に係るスイッチング回路の一部を模式的に示す図である。 実施例に係る制御装置が実行する制御内容を模式的に示す図である。 実施例に係るスイッチング回路の一部を模式的に示す図である。
実施例に係るスイッチング回路1について図面を参照して説明する。図1に示すように、実施例に係るスイッチング回路1は、直流電源100と、平滑コンデンサ90と、インバーター80と、制御装置50とを備えている。このスイッチング回路1は、モータ200に接続されている。モータ200は、例えばハイブリッド自動車や電気自動車の駆動用のモータである。
スイッチング回路1における直流電源100は、正極101と負極102を備えている。直流電源100は、例えば、ニッケル水素電池やリチウムイオン電池などの二次電池である。直流電源100の電圧は、例えば200V〜400Vである。直流電源100は、平滑コンデンサ90を介してインバーター80に接続されている。直流電源100は、インバーター80を介してモータ200に接続されている。直流電源100は、インバーター80を介してモータ200に電力を供給する。平滑コンデンサ90は、直流電源100とインバーター80の間に配置されている。平滑コンデンサ90は、直流電源100の電圧を平滑化する。
インバーター80は、直流電源100とモータ200の間に配置されている。インバーター80は、直流電源100の直流電力を交流電力に変換してモータ200に供給する。インバーター80は、複数の第1スイッチング素子10と、複数のダイオード60とを備えている。また、インバーター80は、複数の第2スイッチング素子20と、複数の抵抗体30と、複数の電圧センサ40とを備えている。インバーター80は、複数の第1スイッチング素子10がオン/オフすることによって、直流電力を交流電力に変換する。
以下では、インバーター80における1個の第1スイッチング素子10と、1個のダイオード60と、1個の第2スイッチング素子20と、1個の抵抗体30と、1個の電圧センサ40とについて説明する(図2参照)。その他の複数の第1スイッチング素子10と、複数のダイオード60と、複数の第2スイッチング素子20と、複数の抵抗体30と、複数の電圧センサ40については、以下で説明する内容と同様なので詳細な説明を省略する。
インバーター80における第1スイッチング素子10は、例えばIGBT(Insulated Gate Bipolar Transistor)、または、MOSFET(Metal Oxide Semiconductor Field-Effect Transistor)である。第1スイッチング素子10は、直流電源100に接続されている。第1スイッチング素子10には、図示しない複数のセルが形成されている。例えば、第1スイッチング素子10には、複数のIGBTセル、または、複数のMOSFETセルが形成されている。
図2に示すように、第1スイッチング素子10は、第1ゲート11と、第1コレクタ12と、第1エミッタ13とを備えている。第1ゲート11の電位がオン電位になると、第1スイッチング素子10がオンになる。第1ゲート11の電位がオフ電位になると、第1スイッチング素子10がオフになる。第1ゲート11のオフ電位は、第1スイッチング素子10の第1コレクタ12と第1エミッタ13との間にチャネルが形成されず、電流が流れない程度の電位である。
第1コレクタ12は、直流電源100の正極101側に接続されている。第1エミッタ13は、直流電源100の負極102側に接続されている。第1ゲート11の電位がオン電位になると、第1コレクタ12から第1エミッタ13へ電流が流れる(第1エミッタ13から第1コレクタ12へ電子が移動する。)。
ダイオード60は、還流ダイオードである。ダイオード60は、第1スイッチング素子10と逆並列で直流電源100に接続されている。
第2スイッチング素子20は、例えばIGBT、または、MOSFETである。第2スイッチング素子20は、第1スイッチング素子10と並列で直流電源100に接続されている。第2スイッチング素子20には、図示しない複数のセルが形成されている。例えば、第2スイッチング素子20には、複数のIGBTセル、または、複数のMOSFETセルが形成されている。
第2スイッチング素子20は、第2ゲート21と、第2コレクタ22と、第2エミッタ23とを備えている。第2ゲート21の電位がオン電位になると、第2スイッチング素子20がオンになる。第2ゲート21の電位がオフ電位になると、第2スイッチング素子20がオフになる。第2ゲート21のオフ電位は、第2スイッチング素子20の第2コレクタ22と第2エミッタ23との間にチャネルが形成されず、電流が流れない程度の電位である。
第2コレクタ22は、直流電源100の正極101側に接続されている。第2コレクタ22は、第1スイッチング素子10の第1コレクタ12と電極(図示省略)を共有している。第2エミッタ23は、直流電源100の負極102側に接続されている。第2ゲート21の電位がオン電位になると、第2コレクタ22から第2エミッタ23へ電流が流れる(第2エミッタ23から第2コレクタ22へ電子が移動する。)。
第1スイッチング素子10と第2スイッチング素子20では、内部に形成されているセルの数が異なっている。第1スイッチング素子10におけるセルの数は、第2スイッチング素子20におけるセルの数より多い。例えば、第1スイッチング素子10におけるセルの数は、第2スイッチング素子20におけるセルの数の100倍である。そのため、第1スイッチング素子10を流れる電流は、第2スイッチング素子20を流れる電流より大きい。例えば、第1スイッチング素子10を流れる電流は、第2スイッチング素子20を流れる電流の100倍である。
抵抗体30の一端部31は、第2スイッチング素子20の第2エミッタ23に接続されている。抵抗体30の他端部32は、直流電源100の負極102側に接続されている。抵抗体30は、第2スイッチング素子20と直列で直流電源100に接続されている。
電圧センサ40は、抵抗体30に印加される電圧を検出する。電圧センサ40は、抵抗体30の一端部31と他端部32に接続されている。電圧センサ40は、抵抗体30と並列で第2スイッチング素子20に接続されている。
図1に示すように、スイッチング回路1には、寄生インダクタンス70が形成されている。寄生インダクタンス70は図1において仮想的に示されている。寄生インダクタンス70は、スイッチング回路1における本来の要素ではないが、スイッチング回路1に含まれている他の要素に起因して不可避的に形成されている。例えば、寄生インダクタンス70は、スイッチング回路1における平滑コンデンサ90、バスバー、導線(いずれも図示せず)等に起因して形成されている。また、スイッチング回路1には、直流電源100を含まない閉回路71が形成されている。閉回路71は、少なくとも、第1スイッチング素子10と、第2スイッチング素子20と、抵抗体30と、寄生インダクタンス70とを含んでいる。
次に、上記のスイッチング回路1の動作について説明する。上記のスイッチング回路1では、制御装置50が、インバーター80における複数の第1スイッチング素子10をオン/オフする。そうすると、直流電源100から出力される直流電力がインバーター80によって交流電力に変換されてモータ200に供給される。以下では、インバーター80における1個の第1スイッチング素子10と、1個の第2スイッチング素子20と、1個の抵抗体30と、1個の電圧センサ40に着目して説明する。その他の複数の第1スイッチング素子10と、複数の第2スイッチング素子20と、複数の抵抗体30と、複数の電圧センサ40についても以下で説明する内容が適用される。
上記のスイッチング回路1では、まず、制御装置50が、第1スイッチング素子10の第1ゲート11の電位をオフ電位からオン電位に切り換える。これによって、第1スイッチング素子10がオンになる。第1スイッチング素子10がオンになると、第1コレクタ12と第1エミッタ13を通じて第1スイッチング素子10に電流が流れる。
また、上記のスイッチング回路1では、制御装置50が、第2スイッチング素子20の第2ゲート21の電位をオフ電位からオン電位に切り換える。制御装置50は、第1ゲート11の電位と第2ゲート21の電位とを同じオン電位にする。また、制御装置50は、第1ゲート11の電位と第2ゲート21の電位とを同じタイミングでオン電位に切り換える。したがって、第1スイッチング素子10と第2スイッチング素子20とが同じタイミングでオンになる。第2スイッチング素子20がオンになると、第2コレクタ22と第2エミッタ23を通じて第2スイッチング素子20に電流が流れる。
また、第2スイッチング素子20がオンになると、第2スイッチング素子20に直列で接続されている抵抗体30に電圧が印加されて抵抗体30に電流が流れる。抵抗体30に印加される電圧は、電圧センサ40によって検出される。電圧センサ40は、抵抗体30の一端部31と他端部32の間の電圧を検出する。電圧センサ40によって検出された電圧は、電圧センサ40から制御装置50へ送信される。
制御装置50は、電圧センサ40によって検出される電圧に基づいて、抵抗体30に流れる電流を演算する。また、制御装置50は、抵抗体30に流れる電流に基づいて、第2スイッチング素子20に流れる電流を演算する。また、制御装置50は、第2スイッチング素子20に流れる電流に基づいて、第1スイッチング素子10に流れる電流を演算する。制御装置50は、下記の式(1)、(2)及び(3)に基づいて各値を演算する。下記の式(1)において、I30は、抵抗体30に流れる電流である。また、V30は、抵抗体30に印加される電圧である。また、R30は、抵抗体30の抵抗である。この抵抗R30は、例えば設計条件等によって定まる既知の値である。また、下記の式(2)において、I20は、第2スイッチング素子20に流れる電流である。また、下記の式(3)において、I10は、第1スイッチング素子10に流れる電流である。下記の式(3)は、第1スイッチング素子10に流れる電流が、第2スイッチング素子20に流れる電流の100倍である場合における計算式である。
Figure 2019140790
Figure 2019140790
Figure 2019140790
続いて、第1スイッチング素子10と第2スイッチング素子20とがオフになるタイミングについて図3を参照して説明する。スイッチング回路1の制御装置50は、図3に示すように、第1ゲート11の電位と第2ゲート21の電位とが同じオン電位にされている状態から、まず時刻t1において、第2ゲート21の電位をオフ電位に切り換える。より詳細には、制御装置50が、第2ゲート21の電位を、第2エミッタ23の電位と同じ電位に切り換える。これによって、第2ゲート21の電位がオフ電位になる。第2ゲート21の電位がオフ電位になると、第2スイッチング素子20がオフになる。したがって、第2スイッチング素子20に電流が流れなくなる。
また、第2スイッチング素子20には、図4に示すように、第2スイッチング素子20の第2コレクタ22と第2エミッタ23の間に、第1寄生容量41が形成されている。第1寄生容量41は図4において仮想的に示されている。第1寄生容量41は、スイッチング回路1における本来の機能要素ではないが、第2スイッチング素子20に不可避的に形成される。
同様に、第2スイッチング素子20には、第2スイッチング素子20の第2コレクタ22と第2ゲート21の間に、第2寄生容量42が形成されている。第2寄生容量42は図4において仮想的に示されている。第2寄生容量42は、スイッチング回路1における本来の機能要素ではないが、第2スイッチング素子20に不可避的に形成される。
第1寄生容量41と第2寄生容量42は、第2スイッチング素子20において並列で形成される。また、第2スイッチング素子20は、第1スイッチング素子10と並列で設けられている。そのため、第1寄生容量41と第2寄生容量42は、第1スイッチング素子10と並列で設けられる。その結果、第1寄生容量41と第2寄生容量42には、第1スイッチング素子10に印加されている電圧とほぼ同じ電圧が印加される。なお、第1スイッチング素子10に印加される電圧と第2スイッチング素子20に印加される電圧とは、第1寄生容量41と第2寄生容量42に直列で接続されている抵抗体30に印加される電圧の分だけ差があるが、直流電源100の電圧に比べて非常に小さいので、その差は無視できる。
第1寄生容量41と第2寄生容量42には、電圧が印加されることによって電荷が蓄えられる。各電荷は、下記の式(4)、(5)及び(6)に基づいて演算される。下記の式(4)において、Q41は、第1寄生容量41に蓄えられる電荷である。また、C41は、第1寄生容量41の静電容量である。この静電容量C41は、例えば設計条件等によって定まる既知の値である。また、Vxは、第1寄生容量41と第2寄生容量42に印加されている電圧である(すなわち、第1スイッチング素子10に印加されている電圧である。)。また、下記の式(5)において、Q42は、第2寄生容量42に蓄えられる電荷である。また、C42は、第2寄生容量42の静電容量である。この静電容量C42は、例えば設計条件等によって定まる既知の値である。また、下記の式(6)において、Qsは、第1寄生容量41と第2寄生容量42に蓄えられる電荷の合計である。
Figure 2019140790
Figure 2019140790
Figure 2019140790
引き続いて、第1スイッチング素子10がオフになるタイミングについて説明する。制御装置50は、図3に示すように、第2スイッチング素子20をオフにした後に、時刻t2において、第1スイッチング素子10の第1ゲート11の電位をオン電位からオフ電位に切り換える。時刻t2は時刻t1より後の時刻である。第1ゲート11の電位がオフ電位になると、第1スイッチング素子10がオフになる。したがって、第1スイッチング素子10に電流が流れなくなる。
時刻t2では、第1スイッチング素子10がオンからオフに切り換わることによって、第1スイッチング素子10に電流が流れている状態から、第1スイッチング素子10に電流が流れていない状態に変化し、第1スイッチング素子10に直流電源100の電圧が印加される。加えて、スイッチング回路1における寄生インダクタンス70に起因して起電力が生じる。寄生インダクタンス70に流れる電流が変化することによって起電力が生じる。その結果、第1スイッチング素子10の第1コレクタ12と第1エミッタ13の間に起電力に起因する電圧が印加される。
第1スイッチング素子10がオンであるときには、第1スイッチング素子10には第2スイッチング素子20と比較して大きな電流が流れている。そのため、第1スイッチング素子10がオンからオフに切り換わると、第2スイッチング素子20がオンからオフに切り換わる場合と比較して大きな起電力が生じる。その結果、図3に示すように、第1スイッチング素子10がオンからオフに切り換わると、第1スイッチング素子10に大きなサージ電圧Vsが印加される。
第1スイッチング素子10がオフになり、第1スイッチング素子10の第1コレクタ12と第1エミッタ13の間に印加される電圧が変化すると、抵抗体30に印加される電圧も変化する。抵抗体30に印加される電圧は、電圧センサ40によって検出される。また、第1スイッチング素子10がオフになると、第1寄生容量41と第2寄生容量42に蓄えられる電荷量が変化するため、図1に示す閉回路71に電流が流れる。そのため、閉回路71に含まれている抵抗体30に電流が流れる。
続いて、上記のスイッチング回路1では、制御装置50が、第1スイッチング素子10をオフにした後に、電圧センサ40によって検出される電圧に比例する値を時間積分する。制御装置50は、電圧センサ40によって検出される電圧に比例する値を、第1スイッチング素子10をオフにした時刻t2から、所定時刻txまで時間積分する。これによって、制御装置50は、第1スイッチング素子10をオフにした後に、所定時刻txにおいて第1スイッチング素子10に印加される電圧を演算する。より詳細には、制御装置50は、下記の式(7)、(8)、(9)及び(10)に基づいて、所定時刻txにおいて第1スイッチング素子10に印加される電圧を演算する。下記の式(7)において、dQs/dtは、第1寄生容量41と第2寄生容量42に蓄えられる電荷の合計Qsの時間微分であり、第1寄生容量41と第2寄生容量42から流れる電流である。すなわち、dQs/dtは、第1寄生容量41と第2寄生容量42に直列で接続されている抵抗体30に流れる電流I30である。下記の式(7)、(8)、(9)及び(10)において、V30、R30、C41、C42及びVxについては、上述したので詳細な説明を省略する。
Figure 2019140790
Figure 2019140790
Figure 2019140790
Figure 2019140790
以上によって、所定時刻txにおいて第1スイッチング素子10の第1コレクタ12と第1エミッタ13との間に印加される電圧Vxが算出される。その後、制御装置50は、第1スイッチング素子10と第2スイッチング素子20を再びオンにする。
制御装置50は、上記の式(7)、(8)、(9)及び(10)に基づいて、第1スイッチング素子10に印加される電圧Vxの最大値を演算することもできる。例えば、第1スイッチング素子10に印加される電圧Vxが時刻t3において最大値になる場合は、制御装置50は、上記の式(10)において、電圧センサ40によって検出される電圧に比例する値を、時刻t2から時刻t3まで時間積分する。これによって、第1スイッチング素子10に印加される電圧Vxの最大値が算出される。
第1スイッチング素子10に印加される電圧Vxの最大値に対応する時刻t3は、例えば、抵抗体30に印加される電圧が最初に正の値から負の値になる時刻に基づいて算出される。また、制御装置50は、上記の式(10)に基づいて時間積分した値を監視することによって、第1スイッチング素子10に印加される電圧Vxの最大値を特定してもよい。
以上、実施例に係るスイッチング回路1について説明した。上記の説明から明らかなように、スイッチング回路1は、直流電源100と、直流電源100に接続されている第1スイッチング素子10と、第1スイッチング素子10と並列で直流電源100に接続されている第2スイッチング素子20とを備えている。また、スイッチング回路1は、第2スイッチング素子20と直列で直流電源100に接続されている抵抗体30と、抵抗体30に印加される電圧を検出する電圧センサ40と、制御装置50とを備えている。第2スイッチング素子20と抵抗体30とは、第1スイッチング素子10に流れる電流を測定するために設けられている。第1スイッチング素子10は、第1ゲート11と、直流電源100の正極101側に接続されている第1コレクタ12と、直流電源100の負極102側に接続されている第1エミッタ13とを備えている。第2スイッチング素子20は、第2ゲート21と、直流電源100の正極101側に接続されている第2コレクタ22と、直流電源100の負極102側に接続されている第2エミッタ23とを備えている。上記のスイッチング回路1では、第1スイッチング素子10に流れる電流が第2スイッチング素子20に流れる電流より大きく、第1スイッチング素子10の第1ゲート11の電位と第2スイッチング素子20の第2ゲート21の電位とが同じオン電位にされている状態から、制御装置50が、第2ゲート21の電位をオフ電位にすることによって第2スイッチング素子20をオフにする。その後に、制御装置50は、第1ゲート11の電位をオフ電位にすることによって第1スイッチング素子10をオフにする。制御装置50は、第1スイッチング素子10をオフにした後に電圧センサ40によって検出される電圧に比例する値を時間積分することによって、第1スイッチング素子10をオフにした後に第1コレクタ12と第1エミッタ13との間に印加される電圧を演算する(式(10)参照)。
上記のスイッチング回路1によれば、第2スイッチング素子20と抵抗体30とを利用して、第1スイッチング素子10の第1コレクタ12と第1エミッタ13との間に印加される電圧Vxを測定することができる。すなわち、上記のスイッチング回路1によれば、制御装置50が第2スイッチング素子をオフにすると、第2スイッチング素子20が第1寄生容量41と第2寄生容量42との合成容量として動作する。第1寄生容量41と第2寄生容量42に蓄えられる電荷Qsは、第1スイッチング素子10に印加される電圧Vxに比例する値になる(式(6)参照)。その結果、第1寄生容量41と第2寄生容量42から流れる電流は、第1スイッチング素子10に印加される電圧Vxの時間微分に比例する値になる(式(7)参照)。そのため、制御装置50が第2スイッチング素子20をオフにした後に、抵抗体30に流れる電流I30は、第1スイッチング素子10に印加される電圧Vxの時間微分に比例する値になる(式(7)参照)。そこで、制御装置50が、第1スイッチング素子10をオフにした後に、抵抗体30に印加される電圧V30(電圧センサ40によって検出される電圧)に比例する値を時間積分することによって、第1スイッチング素子に印加される電圧Vxを演算することができる(式(8)から(10)参照)。この構成によれば、追加の構成(例えば、コンデンサ)が無くても、既存の第2スイッチング素子20と抵抗体30を利用して第1スイッチング素子10に印加される電圧Vxを測定することができる。そのため、第1スイッチング素子10に印加されるサージ電圧Vsを簡易な構成で測定することができる。測定された電圧Vx(あるいはVs)は、例えば、制御装置50において利用される。例えば、制御装置50が複数の第1スイッチング素子10をオン/オフするタイミングを調整するために、上記で測定された電圧Vx(あるいはVs)が利用される。
また、上記のスイッチング回路1では、制御装置50が、第2スイッチング素子20をオフにする前に電圧センサ40によって検出される電圧に基づいて、第1スイッチング素子10に流れる電流を演算する(上記の式(1)から(3)参照)。そのため、制御装置50が第2スイッチング素子20をオフにする前には、既存の第2スイッチング素子20と抵抗体30とを利用して、第1スイッチング素子10に流れる電流I10を測定することができる。また、制御装置50が第1スイッチング素子10をオフにした後には、既存の第2スイッチング素子20と抵抗体30とを利用して、第1スイッチング素子10に印加される電圧Vxを測定することができる。そのため、電流測定用の構成を電圧測定用の構成に流用することができ、追加の構成が無くても、第1スイッチング素子10に印加される電圧を測定することができる。
また、上記のスイッチング回路1では、制御装置50が、第1スイッチング素子10をオフにした後に第1コレクタ12と第1エミッタ13との間に印加される電圧Vxの最大値を演算する。そのため、第1スイッチング素子10に最も負担がかかるとき(最も耐圧が要求されるとき)の電圧Vxを測定することができる。
以上、一実施例について説明したが、具体的な態様は上記実施例に限定されるものではない。以下の説明において、上述の説明における構成と同様の構成については、同一の符号を付して説明を省略する。
他の実施例では、制御装置50が、演算した第1スイッチング素子10に印加される電圧Vxを補正係数に基づいて補正してもよい。この場合は、制御装置50は、電圧センサ40によって検出される電圧に比例する値を時間積分する際に、図3に示すように、電圧センサ40によって検出される電圧が安定する所定時刻t4まで時間積分する。これによって、所定時刻t4において第1スイッチング素子10に印加されている電圧Vxが算出される。
続いて、制御装置50は、演算した電圧Vx(所定時刻t4において第1スイッチング素子10に印加されている電圧Vx)と、直流電源100の電圧とに基づいて補正係数を演算する。より詳細には、制御装置50は、下記の式(11)に基づいて、補正係数を演算する。下記の式(11)において、Aは、補正係数である。また、V100は、直流電源100の電圧である。また、Vxt4は、所定時刻t4において第1スイッチング素子10に印加されている電圧Vxである。
Figure 2019140790
続いて、制御装置50は、演算した補正係数Aに基づいて、演算した電圧Vx(所定時刻txにおいて第1スイッチング素子10に印加されている電圧Vx)を補正する。より詳細には、制御装置50は、下記の式(12)に基づいて、演算した電圧Vxを補正する。下記の式(12)において、Vxは、所定時刻txにおいて第1スイッチング素子10に印加される電圧である。また、Vxcは、第1スイッチング素子10に印加される電圧Vxの補正後の値である。制御装置50は、例えば、下記の式(12)に基づいて、第1スイッチング素子10に印加される電圧Vxの最大値を補正することができる。
Figure 2019140790
以上のように、他の実施例では、制御装置50が、電圧センサ40によって検出される電圧に比例する値を所定時刻t4まで時間積分することによって、所定時刻t4において第1スイッチング素子10の第1コレクタ12と第1エミッタ13との間に印加される電圧Vxt4を演算し、演算した電圧Vxt4と直流電源100の電圧V100とに基づいて補正係数Aを演算する(式(11)参照)。また、制御装置50は、その補正係数Aに基づいて電圧Vxの最大値を補正する(式(12)参照)。
スイッチング回路1が何度も使用されると、経年変化によってスイッチング回路1の各要素の特性が変化することがある。その結果、電圧センサ40によって検出される電圧にバラツキが生じることがある。上記の構成によれば、演算される電圧Vxの最大値のバラツキを補正係数Aによって補正することができる。
(その他の実施例)
上記の実施例では、制御装置50が、電圧センサ40によって検出される電圧に比例する値を、第1スイッチング素子10をオフにした時刻t2から、所定時刻まで時間積分していた。他の実施例では、制御装置50が、電圧センサ40によって検出される電圧に比例する値を、第2スイッチング素子20をオフにした時刻t1から、所定時刻まで時間積分してもよい。時刻t1から時刻t2までの間に抵抗体30に印加される電圧(電圧センサ40によって検出される電圧)は略0(ゼロ)Vであるので、制御装置50が時刻t1から時間積分を実行した場合と、時刻t2から時間積分を実行した場合とで略同じ値が算出される。
また、制御装置50が積分を実行するときの積分方法は特に限定されない。例えば、制御装置50が、電圧センサ40によって検出される電圧を高速でAD変換して変換値を累計してもよい。また、例えば、抵抗体30に印加される電圧が、別途の変換回路によって電流に変換されてもよい。そして、変換後の電流が別途のコンデンサに充電されてもよい。制御装置50は、別途のコンデンサに蓄えられている電荷に基づいて積分を実行してもよい。
上記の実施例では、第1スイッチング素子10と第2スイッチング素子20について、コレクタとエミッタを備える構成として説明したが、コレクタとエミッタをドレインとソースに読み替えても同様である。
上記の実施例では、抵抗体30が第2スイッチング素子20の第2エミッタ23に接続されていたが、この構成に限定されず、抵抗体30が第2スイッチング素子20の第2コレクタ22に接続されていてもよい。この場合は、抵抗体30の一端部31が直流電源100の正極101側に接続されており、抵抗体30の他端部32が第2スイッチング素子20の第2コレクタ22に接続されている。
上記の実施例では、制御装置50が、第2スイッチング素子20をオフにする際に、第2スイッチング素子20の第2ゲート21の電位を第2エミッタ23の電位と同じ電位にしていたが、必ずしも第2エミッタ23の電位と同じ電位にしなくてもよい。第2スイッチング素子20がオフになるのであれば、制御装置50が、第2スイッチング素子20の第2ゲート21の電位を第2エミッタ23の電位と異なる電位にしてもよい。
本明細書が開示する技術要素について、以下に列記する。なお、以下の各技術要素は、それぞれ独立して有用なものである。
制御装置は、第2スイッチング素子をオフにする前に電圧センサによって検出される電圧に基づいて、第1スイッチング素子に流れる電流を演算してもよい。
この構成によれば、制御装置が第2スイッチング素子をオフにする前には、既存の第2スイッチング素子と抵抗体とを利用して、第1スイッチング素子に流れる電流を測定することができる。また、制御装置が第1スイッチング素子をオフにした後には、既存の第2スイッチング素子と抵抗体とを利用して、第1スイッチング素子の第1コレクタと第1エミッタとの間に印加される電圧を測定することができる。そのため、電流測定用の構成を電圧測定用の構成に流用することができ、追加の構成が無くても、第1スイッチング素子の第1コレクタと第1エミッタとの間に印加される電圧を測定することができる。
制御装置は、第1スイッチング素子をオフにした後に第1コレクタと第1エミッタとの間に印加される電圧の最大値を演算してもよい。
この構成によれば、第1スイッチング素子に最も負担がかかるとき(最も耐圧が要求されるとき)の電圧を測定することができる。
制御装置は、電圧センサによって検出される電圧に比例する値を所定時刻まで積分することによって、所定時刻において第1スイッチング素子の第1コレクタと第1エミッタとの間に印加される電圧を演算し、演算した電圧と直流電源の電圧とに基づいて補正係数を演算し、その補正係数に基づいて前記最大値を補正してもよい。
スイッチング回路が何度も使用されると、経年変化によってスイッチング回路の各要素の特性が変化することがある。その結果、電圧センサによって検出される電圧にバラツキが生じることがある。上記の構成によれば、演算される電圧の最大値のバラツキを補正係数によって補正することができる。
以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
1:スイッチング回路、10:第1スイッチング素子、11:第1ゲート、12:第1コレクタ、13:第1エミッタ、20:第2スイッチング素子、21:第2ゲート、22:第2コレクタ、23:第2エミッタ、30:抵抗体、31:一端部、32:他端部、40:電圧センサ、41:第1寄生容量、42:第2寄生容量、50:制御装置、60:ダイオード、70:寄生インダクタンス、71:閉回路、80:インバーター、90:平滑コンデンサ、100:直流電源、101:正極、102:負極、200:モータ

Claims (4)

  1. 直流電源と、
    前記直流電源に接続されている第1スイッチング素子と、
    前記第1スイッチング素子と並列で前記直流電源に接続されている第2スイッチング素子と、
    前記第2スイッチング素子と直列で前記直流電源に接続されている抵抗体と、
    前記抵抗体に印加される電圧を検出する電圧センサと、
    制御装置と、を備えており、
    前記第1スイッチング素子は、
    第1ゲートと、
    前記直流電源の正極側に接続されている第1コレクタと、
    前記直流電源の負極側に接続されている第1エミッタと、を備えており、
    前記第2スイッチング素子は、
    第2ゲートと、
    前記直流電源の正極側に接続されている第2コレクタと、
    前記直流電源の負極側に接続されている第2エミッタと、を備えており、
    前記第1スイッチング素子に流れる電流が前記第2スイッチング素子に流れる電流より大きく、前記第1スイッチング素子の前記第1ゲートの電位と前記第2スイッチング素子の前記第2ゲートの電位とが同じオン電位にされている状態から、前記制御装置が、前記第2ゲートの電位をオフ電位にすることによって前記第2スイッチング素子をオフにした後に、前記第1ゲートの電位をオフ電位にすることによって前記第1スイッチング素子をオフにし、前記第1スイッチング素子をオフにした後に前記電圧センサによって検出される電圧に比例する値を積分することによって、前記第1スイッチング素子をオフにした後に前記第1コレクタと前記第1エミッタとの間に印加される電圧を演算する、スイッチング回路。
  2. 前記制御装置が、前記第2スイッチング素子をオフにする前に前記電圧センサによって検出される電圧に基づいて、前記第1スイッチング素子に流れる電流を演算する、請求項1に記載のスイッチング回路。
  3. 前記制御装置が、前記第1スイッチング素子をオフにした後に前記第1コレクタと前記第1エミッタとの間に印加される電圧の最大値を演算する、請求項1または2に記載のスイッチング回路。
  4. 前記制御装置が、前記電圧センサによって検出される電圧に比例する値を所定時刻まで積分することによって、所定時刻において前記第1スイッチング素子の前記第1コレクタと前記第1エミッタとの間に印加される電圧を演算し、演算した電圧と前記直流電源の電圧とに基づいて補正係数を演算し、その補正係数に基づいて前記最大値を補正する、請求項3に記載のスイッチング回路。
JP2018021957A 2018-02-09 2018-02-09 スイッチング回路 Active JP6919592B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018021957A JP6919592B2 (ja) 2018-02-09 2018-02-09 スイッチング回路
CN201910092711.9A CN110138251A (zh) 2018-02-09 2019-01-30 开关电路
US16/264,753 US10418903B2 (en) 2018-02-09 2019-02-01 Switching circuit
DE102019103066.8A DE102019103066A1 (de) 2018-02-09 2019-02-07 Schaltkreis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018021957A JP6919592B2 (ja) 2018-02-09 2018-02-09 スイッチング回路

Publications (2)

Publication Number Publication Date
JP2019140790A true JP2019140790A (ja) 2019-08-22
JP6919592B2 JP6919592B2 (ja) 2021-08-18

Family

ID=67399860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018021957A Active JP6919592B2 (ja) 2018-02-09 2018-02-09 スイッチング回路

Country Status (4)

Country Link
US (1) US10418903B2 (ja)
JP (1) JP6919592B2 (ja)
CN (1) CN110138251A (ja)
DE (1) DE102019103066A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114236226A (zh) * 2021-12-20 2022-03-25 上海瑞浦青创新能源有限公司 一种电压测量电路

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102578585B1 (ko) * 2019-03-19 2023-09-15 주식회사 엘지에너지솔루션 배터리 안전성 시험 장치 및 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0965644A (ja) * 1995-08-25 1997-03-07 Mitsubishi Electric Corp 絶縁ゲートトランジスタ駆動回路
JP2009142070A (ja) * 2007-12-06 2009-06-25 Fuji Electric Systems Co Ltd 電力用半導体素子のゲート駆動方式
JP2015104220A (ja) * 2013-11-25 2015-06-04 株式会社ジェイテクト 電力変換装置
JP2017123704A (ja) * 2016-01-05 2017-07-13 株式会社日立製作所 電力変換装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3351330B2 (ja) * 1997-12-26 2002-11-25 松下電器産業株式会社 空調用インバータシステム
JP4773172B2 (ja) * 2005-09-22 2011-09-14 東芝三菱電機産業システム株式会社 電力用スイッチング素子の電圧検出方法及びこれを用いた電力変換装置
MY157390A (en) * 2011-05-12 2016-06-15 Nissan Motor Switching circuit and semiconductor module
US9094005B2 (en) * 2013-07-30 2015-07-28 Denso Corporation Semiconductor element module and gate drive circuit
JP5915615B2 (ja) * 2013-10-09 2016-05-11 トヨタ自動車株式会社 半導体制御装置、スイッチング装置、インバータ及び制御システム
JP2016073052A (ja) * 2014-09-29 2016-05-09 アイシン・エィ・ダブリュ株式会社 スイッチング制御装置
JP2016073502A (ja) 2014-10-07 2016-05-12 株式会社ティーエヌケー 上肢運動機能回復訓練器具
FR3043287B1 (fr) * 2015-10-28 2017-12-22 Valeo Systemes De Controle Moteur Dispositif de commande pour transistors
US9994110B2 (en) * 2016-08-30 2018-06-12 Ford Global Technologies, Llc Dual gate solid state devices to reduce switching loss
JP2018153048A (ja) * 2017-03-14 2018-09-27 ルネサスエレクトロニクス株式会社 スイッチングシステム
US10224819B2 (en) * 2017-03-17 2019-03-05 The Curators Of The University Of Missouri Ripple canceling in power conversions circuits
JP6954013B2 (ja) * 2017-11-06 2021-10-27 株式会社デンソー 判定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0965644A (ja) * 1995-08-25 1997-03-07 Mitsubishi Electric Corp 絶縁ゲートトランジスタ駆動回路
JP2009142070A (ja) * 2007-12-06 2009-06-25 Fuji Electric Systems Co Ltd 電力用半導体素子のゲート駆動方式
JP2015104220A (ja) * 2013-11-25 2015-06-04 株式会社ジェイテクト 電力変換装置
JP2017123704A (ja) * 2016-01-05 2017-07-13 株式会社日立製作所 電力変換装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114236226A (zh) * 2021-12-20 2022-03-25 上海瑞浦青创新能源有限公司 一种电压测量电路

Also Published As

Publication number Publication date
DE102019103066A1 (de) 2019-08-14
US10418903B2 (en) 2019-09-17
CN110138251A (zh) 2019-08-16
US20190252977A1 (en) 2019-08-15
JP6919592B2 (ja) 2021-08-18

Similar Documents

Publication Publication Date Title
KR102649093B1 (ko) 전력 변환 장치 및 반도체 장치
KR101921765B1 (ko) 전류 센서
US8674704B2 (en) Method for detecting insulating state of floating power supply, and device therefor
US6992490B2 (en) Ground fault detection device
JP4924086B2 (ja) 半導体装置
US20150293167A1 (en) Insulation detecting device and insulation detecting method of non-grounded power supply
US9825555B2 (en) Semiconductor control device, switching device, inverter, and control system
US20150226787A1 (en) Insulated-gate bipolar transistor collector-emitter saturation voltage measurement
US20130049686A1 (en) Control circuit for limiting a load current, charging circuit and motor vehicle
US8878544B2 (en) Electric leakage sensing apparatus
JP4410693B2 (ja) 電圧変換装置および車両
US11979017B2 (en) Power conversion device
JP6919592B2 (ja) スイッチング回路
CN115940944A (zh) 电流信号采样方法、采样电路和开关电源
CN110361669B (zh) 电池劣化判定装置
US9939495B2 (en) Voltage detecting circuit and voltage detecting method
US9312770B2 (en) Power converter
JP6459914B2 (ja) 電池特性学習装置
US10868487B2 (en) Motor drive device configured to detect capacitor deterioration and to restrict a motor based upon the detected deterioration
CN113002303A (zh) 预充电电路及预充电方法、双向直流变换器和电动汽车
JP2016092962A (ja) 電流制限回路
US11671005B2 (en) Dead time control in a switching cell
JP6973169B2 (ja) Dc−dcコンバータ
JP2017153184A (ja) 電力変換装置及び電力変換方法
JP5112906B2 (ja) 蓄電池駆動用直流電圧変換器、及び蓄電池駆動用直流電圧変換器の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210705

R151 Written notification of patent or utility model registration

Ref document number: 6919592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151