JP2019136623A - Separation membrane with electrode, separation unit and fluid separation method - Google Patents

Separation membrane with electrode, separation unit and fluid separation method Download PDF

Info

Publication number
JP2019136623A
JP2019136623A JP2018019180A JP2018019180A JP2019136623A JP 2019136623 A JP2019136623 A JP 2019136623A JP 2018019180 A JP2018019180 A JP 2018019180A JP 2018019180 A JP2018019180 A JP 2018019180A JP 2019136623 A JP2019136623 A JP 2019136623A
Authority
JP
Japan
Prior art keywords
separation membrane
separation
membrane
electrode
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018019180A
Other languages
Japanese (ja)
Other versions
JP7018778B2 (en
Inventor
神村 正憲
Masanori Kamimura
正憲 神村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2018019180A priority Critical patent/JP7018778B2/en
Publication of JP2019136623A publication Critical patent/JP2019136623A/en
Application granted granted Critical
Publication of JP7018778B2 publication Critical patent/JP7018778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

To provide a separation membrane, a separation unit, and a fluid separation method which enable a specific component to be separated from a mixture fluid containing a plurality of components.SOLUTION: A separation membrane 1 with electrodes 4 comprises at least two electrodes with a volume resistivity of 1×10Ω m - 1×10Ω m and has a porous support and is provided on the surface of the same. A separation unit 11 comprises a separation membrane 1 with electrodes and a power source 3 connected with the electrodes 4. A method enables a specific component to be separated from a mixture fluid containing a plurality of components with the separation membrane 1.SELECTED DRAWING: Figure 1

Description

本開示は、電極付き分離膜、それを用いた分離装置および流体分離方法に関する。   The present disclosure relates to a separation membrane with an electrode, a separation device using the same, and a fluid separation method.

バイオマス発電では廃材や生ゴミなどを腐敗させ、そこで発生したメタン、エタンなどの炭化水素を回収し燃料として使用している。回収した炭化水素を燃焼させて水蒸気を発生させ、タービンを回すことによって電気を発電している。廃材や生ゴミなどを腐敗させると、炭化水素以外に二酸化炭素や水蒸気なども含む混合ガスが発生する。そのため、燃焼効率を上げるには、発生した混合ガスから二酸化炭素や水蒸気など炭化水素以外のガスを効率よく取り除く必要がある。   In biomass power generation, waste materials and raw garbage are spoiled, and hydrocarbons such as methane and ethane are recovered and used as fuel. Electricity is generated by burning the recovered hydrocarbons to generate water vapor and turning the turbine. When waste materials, garbage, etc. are spoiled, a mixed gas containing carbon dioxide and water vapor in addition to hydrocarbons is generated. Therefore, in order to increase combustion efficiency, it is necessary to efficiently remove gases other than hydrocarbons such as carbon dioxide and water vapor from the generated mixed gas.

複数のガス成分を含んだ混合ガスから特定のガス成分を選択的に透過・分離するために、分離膜が使用されている。例えば、特許文献1および2には、このような分離膜に関する技術が開示されている。   In order to selectively permeate and separate a specific gas component from a mixed gas containing a plurality of gas components, a separation membrane is used. For example, Patent Documents 1 and 2 disclose techniques relating to such a separation membrane.

特許第5595044号Patent No. 5595044 特開2006−326555号公報JP 2006-326555 A

本開示の電極付き分離膜は、分離膜と、分離膜に設けられた少なくとも2つの電極とを備えている。   The separation membrane with an electrode of the present disclosure includes a separation membrane and at least two electrodes provided on the separation membrane.

本開示の分離装置は上記の電極付き分離膜と、電極に接続された電源とを備える。   The separation device of the present disclosure includes the above-described separation membrane with an electrode and a power source connected to the electrode.

本開示の流体分離方法は、分離膜に通電することにより、分離膜を発熱させつつ、分離膜により複数の成分を含む混合流体から特定の成分を分離する。   In the fluid separation method of the present disclosure, a specific component is separated from a mixed fluid containing a plurality of components by the separation membrane while heating the separation membrane by energizing the separation membrane.

本開示の一実施形態に係る電極付き分離膜を含む分離装置を示す概略断面図である。It is a schematic sectional drawing showing a separation device containing a separation membrane with an electrode concerning one embodiment of this indication. 図1に示す分離膜の一部拡大断面図である。It is a partial expanded sectional view of the separation membrane shown in FIG.

本開示の一実施形態に係る電極付き分離膜を、二酸化炭素とメタンとを分離する分離膜を例に説明する。二酸化炭素とメタンとを分離する分離膜とは、複数の成分を含む混合流体、すなわち二酸化炭素およびメタンを含む混合気体を、分離膜を透過する成分(以下、透過成分という)である二酸化炭素と、分離膜を透過しない成分であるメタンとに分離する分離膜である。一実施形態に係る分離膜1は、図1に示すように、例えば、一実施形態に係る分離装置11に使用される。   An electrode-equipped separation membrane according to an embodiment of the present disclosure will be described using a separation membrane that separates carbon dioxide and methane as an example. A separation membrane that separates carbon dioxide and methane is a mixed fluid containing a plurality of components, that is, a mixed gas containing carbon dioxide and methane, and carbon dioxide, which is a component that permeates the separation membrane (hereinafter referred to as a permeating component). The separation membrane separates into methane, which is a component that does not permeate the separation membrane. As shown in FIG. 1, the separation membrane 1 according to an embodiment is used in a separation device 11 according to an embodiment, for example.

分離装置11は、分離膜1と流体導入部2と電源3とを備えている。分離膜1は、図2に示すように、多孔質支持体8と、多孔質支持体8の表面に形成された中間層9と、中間層9の表面に形成された炭素膜10とを含む。   The separation device 11 includes a separation membrane 1, a fluid introduction unit 2, and a power source 3. As shown in FIG. 2, the separation membrane 1 includes a porous support 8, an intermediate layer 9 formed on the surface of the porous support 8, and a carbon membrane 10 formed on the surface of the intermediate layer 9. .

多孔質支持体8は、例えばセラミック粒子を含む層で形成されている。セラミック粒子としては特に限定されず、例えば、アルミナ、ムライト、コージェライト、ジルコニアなどが挙げられる。このようなセラミック粒子を使用すると、中間層9および炭素膜10の熱膨張差を小さくすることができ、さらに、多孔質支持体8の耐熱性、機械的強度、耐摩耗性、耐熱衝撃性、耐薬品性などもより向上させることができる。本明細書において、多孔質支持体8に含まれるセラミック粒子は、便宜上「第1のセラミック粒子12」と記載する。   The porous support 8 is formed of a layer containing ceramic particles, for example. The ceramic particles are not particularly limited, and examples thereof include alumina, mullite, cordierite, and zirconia. When such ceramic particles are used, the difference in thermal expansion between the intermediate layer 9 and the carbon film 10 can be reduced. Furthermore, the heat resistance, mechanical strength, wear resistance, thermal shock resistance of the porous support 8, Chemical resistance can be further improved. In this specification, the ceramic particles contained in the porous support 8 are referred to as “first ceramic particles 12” for convenience.

多孔質支持体8に含まれるセラミック粒子(第1のセラミック粒子12)の平均粒子径は特に限定されない。例えば、多孔質支持体8の機械的強度をより向上させるために、第1のセラミック粒子12は、1.0μm〜10.0μmの平均粒子径を有していてもよく、1.0μm〜5.0μmの平均粒子径を有していてもよい。第1のセラミック粒子12の平均粒子径は、走査型電子顕微鏡(SEM)による多孔質支持体8の断面写真から、例えばインターセプト方により求められる。   The average particle diameter of the ceramic particles (first ceramic particles 12) included in the porous support 8 is not particularly limited. For example, in order to further improve the mechanical strength of the porous support 8, the first ceramic particles 12 may have an average particle diameter of 1.0 μm to 10.0 μm, and 1.0 μm to 5 It may have an average particle diameter of 0.0 μm. The average particle diameter of the first ceramic particles 12 is obtained from the cross-sectional photograph of the porous support 8 by a scanning electron microscope (SEM), for example, by the intercept method.

多孔質支持体8の気孔率は特に限定されない。透過成分の透過係数と多孔質支持体8の機械的強度とを考慮して、多孔質支持体8は例えば20%〜60%程度の気孔率を有していてもよく、20%〜50%程度の気孔率を有していてもよい。多孔質支持体8の気孔率は、例えば水銀圧入法で求められる。多孔質支持体8の厚みは特に限定されず、例えば、透過成分の種類および用途に応じて適宜設定される。   The porosity of the porous support 8 is not particularly limited. Considering the permeability coefficient of the permeable component and the mechanical strength of the porous support 8, the porous support 8 may have a porosity of about 20% to 60%, for example, 20% to 50%. It may have a degree of porosity. The porosity of the porous support 8 is determined by, for example, a mercury intrusion method. The thickness of the porous support 8 is not particularly limited, and is appropriately set according to, for example, the type and use of the permeable component.

中間層9は、多孔質支持体8の表面に形成されていれば特に限定されず、例えばセラミック粒子を含む層で形成されている。セラミック粒子としては特に限定されず、例えば、アルミナ、ムライト、コージェライト、ジルコニア、炭素などが挙げられる。本明細書において、中間層9に含まれるセラミック粒子は、多孔質支持体8に含まれる第1のセラミック粒子12と区別するために、便宜上「第2のセラミック粒子13」と記載する。   The intermediate layer 9 is not particularly limited as long as it is formed on the surface of the porous support 8, and is formed of a layer containing ceramic particles, for example. The ceramic particles are not particularly limited, and examples thereof include alumina, mullite, cordierite, zirconia, and carbon. In the present specification, the ceramic particles contained in the intermediate layer 9 are referred to as “second ceramic particles 13” for convenience in order to distinguish them from the first ceramic particles 12 contained in the porous support 8.

中間層9に含まれる第2のセラミック粒子13の平均粒子径は特に限定されない。中間層9と炭素膜10との接触面を平滑にするために、第2のセラミック粒子13は、第1のセラミック粒子12の平均粒子径よりも小さな平均粒子径を有してもよい。中間層9と炭素膜10との接触面を平滑にすると、炭素膜10にピンホールなどの欠陥が発生するのを低減することができる。   The average particle diameter of the second ceramic particles 13 included in the intermediate layer 9 is not particularly limited. In order to smooth the contact surface between the intermediate layer 9 and the carbon film 10, the second ceramic particles 13 may have an average particle size smaller than the average particle size of the first ceramic particles 12. When the contact surface between the intermediate layer 9 and the carbon film 10 is smoothed, the occurrence of defects such as pinholes in the carbon film 10 can be reduced.

具体的には、第2のセラミック粒子13は、0.5μm以下の平均粒子径を有していてもよく、0.25μm以下の平均粒子径を有していてもよい。さらに、透過成分の透過係数を考慮すると、平均粒子径の下限は0.15μm程度であってもよい。中間層9の厚みは特に限定されず、例えば、ピンホールなどの欠陥の発生をより低減し、透過成分の透過係数をより高めることができる点で、中間層9は3.0μm〜8.0μm程度の厚みを有していてもよい。   Specifically, the second ceramic particles 13 may have an average particle size of 0.5 μm or less, and may have an average particle size of 0.25 μm or less. Furthermore, considering the transmission coefficient of the transmission component, the lower limit of the average particle diameter may be about 0.15 μm. The thickness of the intermediate layer 9 is not particularly limited. For example, the intermediate layer 9 has a thickness of 3.0 μm to 8.0 μm in that the occurrence of defects such as pinholes can be further reduced and the transmission coefficient of the transmission component can be further increased. You may have the thickness of a grade.

炭素膜10は特に限定されず、例えば、ガラス状炭素を含む膜が挙げられる。ガラス状炭素とは、光学顕微鏡レベルで観察したときに粒界などの内部構造を有さず、均一な外観からなる炭素と定義され、炭素粒子とは全く相違する。本明細書において「ガラス状炭素」とは、内部に微細な細孔が多数存在し、分子ふるいとしての機能を有するものを意味する。例えば、混合流体に含まれる成分の中で分子の小さい成分は、炭素膜10を構成するガラス状炭素の細孔を通過することができる。   The carbon film 10 is not specifically limited, For example, the film | membrane containing glassy carbon is mentioned. Glassy carbon is defined as carbon having no internal structure such as a grain boundary when observed at the optical microscope level and having a uniform appearance, and is completely different from carbon particles. In the present specification, “glassy carbon” means a substance having a number of fine pores inside and having a function as a molecular sieve. For example, a component having a small molecule among components contained in the mixed fluid can pass through the pores of glassy carbon constituting the carbon film 10.

炭素膜10は多孔質支持体8の表面に形成される。例えば、図2に示すように、多孔質支持体8の表面に中間層9が形成されていてもよい。中間層9は、第2のセラミック粒子13の間に炭素質材料14を有していてもよい。言い換えると、炭素質材料14が第2のセラミック粒子13間に浸潤していてもよい。炭素質材料14は、図2では炭素膜10と同じ材料として示したが、炭素膜10とは異なる材料を含んでいてもよい。炭素膜10の厚みは特に限定されず、例えば0.1μm〜25μmとしてもよい。透過成分の透過速度を高くする為に透過成分が通る経路となる細孔の長さを短くする点で、炭素膜10は0.1μm〜2.5μm程度の厚みを有していてもよく、また多孔質支持体8および中間層9を設けず自立体として用いる場合は、炭素膜10の形状を維持できる強度を付与する点で、15μm〜25μm程度の厚みを有していてもよい。   The carbon film 10 is formed on the surface of the porous support 8. For example, as shown in FIG. 2, an intermediate layer 9 may be formed on the surface of the porous support 8. The intermediate layer 9 may have a carbonaceous material 14 between the second ceramic particles 13. In other words, the carbonaceous material 14 may be infiltrated between the second ceramic particles 13. Although the carbonaceous material 14 is shown as the same material as the carbon film 10 in FIG. 2, the carbonaceous material 14 may include a material different from the carbon film 10. The thickness of the carbon film 10 is not particularly limited, and may be 0.1 μm to 25 μm, for example. The carbon film 10 may have a thickness of about 0.1 μm to 2.5 μm in terms of shortening the length of the pores through which the permeation component passes in order to increase the permeation rate of the permeation component. Moreover, when using as a self-solid without providing the porous support body 8 and the intermediate | middle layer 9, you may have the thickness of about 15 micrometers-25 micrometers in the point which provides the intensity | strength which can maintain the shape of the carbon film 10. FIG.

分離膜1には、通電するための電極4が2つ設けられている。炭素膜10を有する分離膜1の場合、電極4は炭素膜10に設けられていてもよい。電極4が設けられていることによって、例えば分離装置11に示すように、電極4と電源3とを接続すると分離膜1に電圧をかけることができる。分離膜1に電圧をかけ通電することによって、分離膜1にジュール熱を発生させることができ、透過成分の透過係数を向上させることができる。電極4を設ける位置は特に限定されない。例えば、混合流体に含まれる水蒸気などによる腐食を低減できる点で、電極4は流体導入部2の外側に設けられてもよい。また、分離膜1の混合流体と接触する接触領域の全体に比較的均一な電流を流すという点で、電極4は接触領域、すなわち流体導入部2を挟むように配置されてもよい。分離膜1の接触領域が電極4に挟まれていることで、電極4間の接触領域が均一的に加熱され、温度の異なる部分が生じにくくなる。接触領域全体に対して、一つの電極4を他の一つの電極4の反対に配置することで、接触領域全体に流れる電流をより均一に近づけることができる。電極4は、例えば、銅、銀、アルミニウム、はんだ合金などの導電性金属で形成してもよい。   The separation membrane 1 is provided with two electrodes 4 for energization. In the case of the separation membrane 1 having the carbon membrane 10, the electrode 4 may be provided on the carbon membrane 10. By providing the electrode 4, for example, as shown in the separation device 11, a voltage can be applied to the separation membrane 1 when the electrode 4 and the power source 3 are connected. By applying voltage to the separation membrane 1 and energizing it, Joule heat can be generated in the separation membrane 1 and the permeation coefficient of the permeation component can be improved. The position where the electrode 4 is provided is not particularly limited. For example, the electrode 4 may be provided outside the fluid introduction part 2 in that corrosion due to water vapor or the like contained in the mixed fluid can be reduced. In addition, the electrode 4 may be disposed so as to sandwich the contact region, that is, the fluid introduction part 2 in that a relatively uniform current flows through the entire contact region in contact with the mixed fluid of the separation membrane 1. Since the contact region of the separation membrane 1 is sandwiched between the electrodes 4, the contact region between the electrodes 4 is uniformly heated, and portions having different temperatures are less likely to occur. By disposing one electrode 4 opposite to the other electrode 4 with respect to the entire contact region, the current flowing through the entire contact region can be made more uniform. The electrode 4 may be formed of, for example, a conductive metal such as copper, silver, aluminum, or a solder alloy.

流体導入部2の外側に位置する分離膜1の端部は、エポキシ樹脂などの樹脂(図示せず)で被覆されていてもよい。分離膜1の端部を樹脂で被覆することによって、流体導入部2からの気体の漏れを防止することができる。   The end of the separation membrane 1 located outside the fluid introduction part 2 may be covered with a resin (not shown) such as an epoxy resin. By covering the end portion of the separation membrane 1 with resin, gas leakage from the fluid introduction portion 2 can be prevented.

一実施形態に係る分離膜1は、1×10-6Ω・m〜1×10-2Ω・mの体積固有抵抗を有していてもよい。一実施形態に係る分離膜1がこのような体積固有抵抗を有することによって、電圧をかけた時に分離膜1に適度な電流が流れ、分離する気体を温めるのに十分なジュール熱を発生させることができ、より透過係数を向上させることができる。分離膜1の体積固有抵抗は、分離膜1を使用する温度、および分離膜1に印加する電圧の大きさなどの使用条件に応じて適宜調整すればよい。例えば、10V〜20V程度の電圧で分離膜を50℃〜100℃程度の温度に調整する場合、分離膜1の体積固有抵抗は1×10-6Ω・m〜1×10-4Ω・mとしてもよい。さらに高電圧または高温で使用する場合、分離膜1の体積固有抵抗は1×10-4Ω・m〜1×10-2Ω・mとしてもよい。炭素膜10を有する分離膜1の場合、炭素膜10の体積固有抵抗を上記の範囲としてもよい。 The separation membrane 1 according to one embodiment may have a volume resistivity of 1 × 10 −6 Ω · m to 1 × 10 −2 Ω · m. Since the separation membrane 1 according to an embodiment has such a volume resistivity, an appropriate current flows through the separation membrane 1 when a voltage is applied, thereby generating Joule heat sufficient to warm the gas to be separated. And the transmission coefficient can be further improved. The volume specific resistance of the separation membrane 1 may be appropriately adjusted according to usage conditions such as the temperature at which the separation membrane 1 is used and the voltage applied to the separation membrane 1. For example, when the separation membrane is adjusted to a temperature of about 50 ° C. to 100 ° C. with a voltage of about 10V to 20V, the volume resistivity of the separation membrane 1 is 1 × 10 −6 Ω · m to 1 × 10 −4 Ω · m. It is good. Further, when used at a high voltage or high temperature, the volume resistivity of the separation membrane 1 may be 1 × 10 −4 Ω · m to 1 × 10 −2 Ω · m. In the case of the separation membrane 1 having the carbon membrane 10, the volume resistivity of the carbon membrane 10 may be in the above range.

多孔質支持体8、中間層9および炭素膜10を有する分離膜1では、中間層9に含まれる第2のセラミック粒子13を、例えば炭素膜10よりも高抵抗を有する材料としてもよい。中間層9に、炭素膜10よりも高抵抗を有する第2のセラミック粒子13を含むことで、中間層9の体積固有抵抗が炭素膜10よりも高くなる。その結果、炭素膜10に電流が流れやすくなり、分離膜1で発生するジュール熱を調整しやすくなる。   In the separation membrane 1 having the porous support 8, the intermediate layer 9, and the carbon membrane 10, the second ceramic particles 13 included in the intermediate layer 9 may be made of a material having higher resistance than the carbon membrane 10, for example. By including the second ceramic particles 13 having higher resistance than the carbon film 10 in the intermediate layer 9, the volume specific resistance of the intermediate layer 9 is higher than that of the carbon film 10. As a result, it becomes easier for current to flow through the carbon membrane 10, and it becomes easier to adjust the Joule heat generated in the separation membrane 1.

分離膜1を製造する方法は特に限定されない。以下、分離膜1の製造方法の一実施形態を説明する。まず、多孔質支持体8を準備する。多孔質支持体8の詳細については上述のとおりであり省略する。次いで、多孔質支持体8の表面に、第2のセラミック粒子13の層を形成する。具体的には、第2のセラミック粒子13とバインダーと必要に応じて水などの溶媒とを混合してスラリーを得る。得られたスラリーを多孔質支持体8の表面に塗布して乾燥させることによって、第2のセラミック粒子13の層が形成される。スラリーの塗布方法は限定されず、例えば、浸漬法、刷毛塗り法、スプレー法などが挙げられる。   The method for producing the separation membrane 1 is not particularly limited. Hereinafter, an embodiment of a method for manufacturing the separation membrane 1 will be described. First, the porous support 8 is prepared. The details of the porous support 8 are as described above, and will be omitted. Next, a layer of second ceramic particles 13 is formed on the surface of the porous support 8. Specifically, the second ceramic particles 13, a binder, and a solvent such as water as necessary are mixed to obtain a slurry. The obtained slurry is applied to the surface of the porous support 8 and dried, whereby a layer of the second ceramic particles 13 is formed. The method for applying the slurry is not limited, and examples thereof include a dipping method, a brush coating method, and a spray method.

次いで、多孔質支持体8の表面に炭素膜10を形成する。具体的には、炭素膜前駆体と溶媒とを混合して得られる炭素膜前駆体溶液を、第2のセラミック粒子13の層が形成された多孔質支持体8の表面に塗布して乾燥させる。その後、非酸化性雰囲気下で熱処理して炭化させることによって、炭素膜10が形成される。炭素膜前駆体溶液の塗布方法は限定されず、例えば、浸漬法、刷毛塗り法、スプレー法などが挙げられる。塗布された炭素膜前駆体溶液は第2のセラミック粒子13の層に浸潤する。第2のセラミック粒子13の層に浸潤した炭素膜前駆体溶液は炭化して炭素質材料14となり、第2のセラミック粒子13と炭素質材料14とを含む中間層9を形成する。なお、炭素質材料14は多孔質支持体8の第1のセラミック粒子12の表面に存在していてもよい。   Next, the carbon film 10 is formed on the surface of the porous support 8. Specifically, a carbon film precursor solution obtained by mixing a carbon film precursor and a solvent is applied to the surface of the porous support 8 on which the second ceramic particle 13 layer is formed and dried. . Thereafter, the carbon film 10 is formed by heat-treating and carbonizing in a non-oxidizing atmosphere. The coating method of the carbon film precursor solution is not limited, and examples thereof include a dipping method, a brush coating method, and a spray method. The applied carbon film precursor solution infiltrates into the second ceramic particle 13 layer. The carbon film precursor solution infiltrated into the layer of the second ceramic particles 13 is carbonized to become the carbonaceous material 14, thereby forming the intermediate layer 9 including the second ceramic particles 13 and the carbonaceous material 14. The carbonaceous material 14 may be present on the surface of the first ceramic particles 12 of the porous support 8.

炭素膜前駆体としては限定されず、例えば、芳香族ポリイミド、ポリピロロン、ポリフルフリルアルコール、ポリ塩化ビニリデン、フェノール樹脂などが挙げられる。これらの炭素膜前駆体の中でもフェノール樹脂は、分子内に親水性の官能基を多く有するため、炭化後に残存する水酸基に二酸化炭素がより吸着しやすく、さらに炭素膜10の細孔内を表面拡散しやすい。   The carbon film precursor is not limited, and examples thereof include aromatic polyimide, polypyrrolone, polyfurfuryl alcohol, polyvinylidene chloride, and phenol resin. Among these carbon film precursors, the phenol resin has many hydrophilic functional groups in the molecule, so that carbon dioxide is more easily adsorbed to the hydroxyl groups remaining after carbonization, and surface diffusion in the pores of the carbon film 10 occurs. It's easy to do.

炭素膜10の体積固有抵抗および細孔径は、炭素膜前駆体の種類および熱処理条件により調整される。熱処理は、例えば1℃/分〜10℃/分程度の速度で昇温させ、750℃〜1000℃程度の温度で行われる。このような条件で熱処理を行うことによって、通電により発熱させることが可能な体積固有抵抗、および透過係数をより高める細孔径を有する炭素膜10が得られる。非酸化性雰囲気に用いる不活性ガスとしては、例えば窒素、ヘリウム、アルゴンなどが挙げられる。熱処理時間は例えば10分〜90分としてもよい。なお、非酸化性雰囲気下で熱処理する前に、空気雰囲気下、150℃〜350℃で30分〜90分熱処理してもよい。空気雰囲気下で150℃〜350℃で熱処理することにより、炭素膜前駆体を熱重合させ、膜の強度を向上させることができる。なお、上記した炭素膜前駆体の熱処理条件は一例であり、これに限定されない。   The volume resistivity and pore diameter of the carbon film 10 are adjusted by the type of carbon film precursor and the heat treatment conditions. The heat treatment is performed at a temperature of about 750 ° C. to 1000 ° C., for example, at a rate of about 1 ° C./min to 10 ° C./min. By performing the heat treatment under such conditions, it is possible to obtain the carbon film 10 having a volume resistivity that can generate heat by energization and a pore diameter that further increases the permeability coefficient. Examples of the inert gas used in the non-oxidizing atmosphere include nitrogen, helium, and argon. The heat treatment time may be, for example, 10 minutes to 90 minutes. In addition, before heat-processing in non-oxidizing atmosphere, you may heat-process at 150 degreeC-350 degreeC for 30 minutes-90 minutes in an air atmosphere. By performing heat treatment at 150 ° C. to 350 ° C. in an air atmosphere, the carbon film precursor can be thermally polymerized to improve the strength of the film. The above-described heat treatment conditions for the carbon film precursor are merely examples, and the present invention is not limited thereto.

次いで、炭素膜10に電極4を形成する。電極4は上述のように銅、銀、アルミニウム、はんだ合金などの導電性金属で形成されている。電極4を形成する方法は限定されず、例えば、導電性金属箔を炭素膜10に貼り付けてもよく、導電性金属を含むスラリーを炭素膜10に塗布・乾燥して形成してもよく、めっき処理によって形成してもよい。なお、分離膜1は炭素膜10のみを有し、多孔質支持体8および中間層9を有していなくてもよい。炭素膜10からなる、すなわち自立した炭素膜10からなる分離膜1の製法は、特に限定されない。自立した炭素膜10の製造方法の一実施形態を説明する。   Next, the electrode 4 is formed on the carbon film 10. The electrode 4 is formed of a conductive metal such as copper, silver, aluminum, or a solder alloy as described above. The method of forming the electrode 4 is not limited. For example, a conductive metal foil may be attached to the carbon film 10, or a slurry containing a conductive metal may be formed by applying and drying the carbon film 10. You may form by a plating process. The separation membrane 1 has only the carbon membrane 10 and does not have to have the porous support 8 and the intermediate layer 9. The method for producing the separation membrane 1 made of the carbon membrane 10, that is, the self-supporting carbon membrane 10, is not particularly limited. An embodiment of a method for manufacturing a self-supporting carbon film 10 will be described.

自立した炭素膜10は、炭素膜前駆体を成形した後、非酸化性雰囲気下で熱処理して炭化させることによって得られる。具体的には、まず、炭素膜前駆体を準備する。炭素膜前駆体としては限定されず、芳香族ポリイミド、ポリフェニレンオキシド、フェノール樹脂などがあげられる。これらの炭素膜前駆体の中でも芳香族ポリイミドは耐熱性が高く、炭化させる際に軟化しにくく、自立した炭素膜10を形成しやすい。   The self-supporting carbon film 10 is obtained by forming a carbon film precursor and then carbonizing it by heat treatment in a non-oxidizing atmosphere. Specifically, first, a carbon film precursor is prepared. The carbon film precursor is not limited, and examples thereof include aromatic polyimide, polyphenylene oxide, and phenol resin. Among these carbon film precursors, aromatic polyimide has high heat resistance, is not easily softened when carbonized, and easily forms a self-supporting carbon film 10.

炭素膜前駆体を成形する方法は、例えば射出成形法、押出成形法などを用いればよく、特に限定されない。例えば筒状の成形体を得る場合の成形方法としては、二重管環状構造の中空糸紡糸ノズルを使用する押出成形法が挙げられる。この押出成形法は、具体的には、炭素膜前駆体が溶媒に溶解した炭素膜前駆体溶液を二重管の外側の管から押し出すとともに、芯液として溶媒を二重管の内側の管から押し出す方法である。押し出された炭素膜前駆体を凝固浴に通して凝固させることで、炭素膜前駆体の成形体が得られる。なお、凝固浴や芯液の温度は0℃〜30℃とすればよい。   The method for molding the carbon film precursor is not particularly limited, for example, an injection molding method or an extrusion molding method may be used. For example, as a molding method in the case of obtaining a cylindrical molded body, an extrusion molding method using a hollow fiber spinning nozzle having a double tube annular structure can be mentioned. Specifically, this extrusion molding method involves extruding a carbon film precursor solution in which a carbon film precursor is dissolved in a solvent from a tube outside the double tube, and a solvent as a core solution from the tube inside the double tube. Extruding method. The extruded carbon film precursor is solidified by passing it through a coagulation bath to obtain a molded body of the carbon film precursor. The temperature of the coagulation bath and the core liquid may be 0 ° C to 30 ° C.

炭素膜前駆体を溶解する溶媒は、例えば適宜選択されるべきであるが、メタノール、エタノール、テトラヒドロフランなどから適宜選択すればよい。凝固浴や芯液に使用する溶媒は、例えば水、硝酸アンモニウム塩水溶液、塩酸アンモニウム塩水溶液などから適宜選択すればよい。熱処理は、上述の多孔質支持体8上に炭素膜10を形成する場合と同様に行えばよい。   The solvent for dissolving the carbon film precursor should be appropriately selected, for example, but may be appropriately selected from methanol, ethanol, tetrahydrofuran and the like. The solvent used for the coagulation bath and core solution may be appropriately selected from, for example, water, ammonium nitrate aqueous solution, ammonium hydrochloride aqueous solution and the like. The heat treatment may be performed in the same manner as when the carbon film 10 is formed on the porous support 8 described above.

また、分離膜1は、多孔質支持体8および中間層9を有し、炭素膜10を有していなくてもよい。すなわち、分離膜1は第2のセラミック粒子13と炭素質材料14とを含む中間層9であってもよい。また、分離膜1は、通電による発熱が可能であればよく、炭素膜10や炭素質材料14を含んでいなくてもよい。   Further, the separation membrane 1 has the porous support 8 and the intermediate layer 9 and may not have the carbon membrane 10. That is, the separation membrane 1 may be the intermediate layer 9 including the second ceramic particles 13 and the carbonaceous material 14. Further, the separation membrane 1 only needs to be able to generate heat by energization, and may not include the carbon membrane 10 or the carbonaceous material 14.

次に、一実施形態に係る分離装置11は、上記のように、分離膜1と流体導入部2と電源3とを備えている。流体導入部2は、流体導入部2の入口5および流体導入部2の出口7が設けられている。流体導入部2は、流体導入部2の入口5から導入された複数の成分を含む混合気体が分離膜1の少なくとも一部と接触するように備えられている。分離膜1と接触した混合気体は分離され、分離膜1の出口6から分離膜1を透過した透過成分が排出され、流体導入部2の出口7から分離膜1を透過しなかった成分が排出される。さらに、流体導入部2の内圧を調整するため、流体導入部2の入口5および流体導入部2の出口7に圧力調整用のバルブが備えられていてもよい。   Next, the separation device 11 according to an embodiment includes the separation membrane 1, the fluid introduction unit 2, and the power source 3 as described above. The fluid introduction part 2 is provided with an inlet 5 of the fluid introduction part 2 and an outlet 7 of the fluid introduction part 2. The fluid introduction part 2 is provided such that a mixed gas containing a plurality of components introduced from the inlet 5 of the fluid introduction part 2 comes into contact with at least a part of the separation membrane 1. The mixed gas in contact with the separation membrane 1 is separated, the permeated component that has permeated the separation membrane 1 is discharged from the outlet 6 of the separation membrane 1, and the component that has not permeated the separation membrane 1 is discharged from the outlet 7 of the fluid introduction unit 2. Is done. Furthermore, in order to adjust the internal pressure of the fluid introduction part 2, a pressure adjusting valve may be provided at the inlet 5 of the fluid introduction part 2 and the outlet 7 of the fluid introduction part 2.

電源3は、分離膜1に形成された電極4と接続されている。電源3によって分離膜1に電圧をかけることができる。さらに、分離装置11の温度制御を容易にすることができる点で、分離装置11は温度センサー(図示せず)を備えていてもよい。   The power source 3 is connected to an electrode 4 formed on the separation membrane 1. A voltage can be applied to the separation membrane 1 by the power source 3. Furthermore, the separation device 11 may include a temperature sensor (not shown) in that the temperature control of the separation device 11 can be facilitated.

次に、一実施形態に係る分離装置11を用いて、二酸化炭素およびメタンを含む混合気体から、二酸化炭素とメタンとを分離する方法を説明する。まず、二酸化炭素およびメタンを含む混合気体が流体導入部2の入口5から供給される。混合気体は、流体導入部2で分離膜1と接触する。混合気体に含まれる成分のうち、分離膜1を透過した成分(二酸化炭素)は、分離膜1の出口6から排出される。一方、分離膜1を透過しなかった成分(メタン)は、流体導入部2の出口7から排出される。   Next, a method for separating carbon dioxide and methane from a mixed gas containing carbon dioxide and methane using the separation device 11 according to an embodiment will be described. First, a mixed gas containing carbon dioxide and methane is supplied from the inlet 5 of the fluid introduction unit 2. The mixed gas comes into contact with the separation membrane 1 at the fluid introduction part 2. Among the components contained in the mixed gas, the component (carbon dioxide) that has permeated through the separation membrane 1 is discharged from the outlet 6 of the separation membrane 1. On the other hand, the component (methane) that has not permeated through the separation membrane 1 is discharged from the outlet 7 of the fluid introduction part 2.

本開示の電極付き分離膜は、上述の二酸化炭素およびメタンを含む混合気体に対してのみ用いられるわけではない。本開示の電極付き分離膜は、種々の流体、すなわち種々の気体および液体の分離に使用される。   The separation membrane with an electrode of the present disclosure is not used only for the above-described mixed gas containing carbon dioxide and methane. The electrode separation membrane of the present disclosure is used for separation of various fluids, that is, various gases and liquids.

以上のように、本開示の電極付き分離膜は分離膜および電極を含んでいる。分離膜は内部に微細な細孔が多数存在するため、分子ふるいとして機能する。本開示の電極付き分離膜は、通電することによって分離膜が直接加熱される。通電することによって、分離する気体を温めることができる。その結果、本開示の電極付き分離膜は、耐水性や耐薬品性などの一般的な性能を備えるだけでなく、優れた透過係数を有する。また、そのため、本開示の電極付き分離膜を用いた分離装置は、ヒーターなどの加熱手段を別途備える必要がなく、小型化することができる。また、本開示の電極付き分離膜は、電流が流れた部分の各部が発熱するので、分離膜の面方向および厚さ方向で均一な加熱ができる。これによりヒーターなどの加熱手段を併用した場合でも、より均一的な加熱ができる。   As described above, the separation membrane with electrode of the present disclosure includes the separation membrane and the electrode. The separation membrane functions as a molecular sieve because there are many fine pores inside. In the separation membrane with an electrode of the present disclosure, the separation membrane is directly heated by energization. By energizing, the gas to be separated can be warmed. As a result, the separation membrane with electrode of the present disclosure not only has general performance such as water resistance and chemical resistance, but also has an excellent permeability coefficient. For this reason, the separation device using the separation membrane with an electrode according to the present disclosure does not need to include a heating means such as a heater, and can be downsized. In addition, the separation membrane with electrode of the present disclosure generates heat in each portion of the portion where current flows, so that uniform heating can be performed in the surface direction and the thickness direction of the separation membrane. Thereby, even when heating means such as a heater are used in combination, more uniform heating can be performed.

以下、実施例を挙げて本開示の電極付き分離膜を具体的に説明するが、本開示の電極付き分離膜は以下の実施例に限定されるものではない。   Hereinafter, although the separation membrane with an electrode of the present disclosure will be specifically described with reference to examples, the separation membrane with an electrode of the present disclosure is not limited to the following examples.

まず、多孔質支持体として、アルミナ多孔質管(外径12mm、内径9mm、長さ150mm、平均細孔径1μm)と、中間層の原料であるアルミナ粉末(平均粒径0.2μm)を含むスラリーとを準備した。スラリーは、アルミナ粉末100質量部に対して、ポリビニルアルコール10質量部および水1900質量部を添加して調製した。次いで、アルミナ多孔質管の一方の端部(開口部)を封止してスラリーに浸漬して、アルミナ多孔質管の表面にスラリーを塗布した。塗布後、80℃で30分乾燥させて、アルミナ多孔質管の表面に中間層となるアルミナ粉末の層を形成した。   First, as a porous support, a slurry containing an alumina porous tube (outer diameter 12 mm, inner diameter 9 mm, length 150 mm, average pore diameter 1 μm) and alumina powder (average particle diameter 0.2 μm) as a raw material for the intermediate layer And prepared. The slurry was prepared by adding 10 parts by weight of polyvinyl alcohol and 1900 parts by weight of water to 100 parts by weight of the alumina powder. Next, one end (opening) of the alumina porous tube was sealed and immersed in the slurry, and the slurry was applied to the surface of the alumina porous tube. After the coating, it was dried at 80 ° C. for 30 minutes to form an alumina powder layer as an intermediate layer on the surface of the alumina porous tube.

次いで、炭素膜の原料であるフェノール樹脂粉末100質量部を、テトラヒドロフラン230質量部に添加して溶解し、炭素膜前駆体溶液を調製した。アルミナ粉末の層が形成されたアルミナ多孔質管を炭素膜前駆体溶液に浸漬して、アルミナ粉末の層が形成されたアルミナ多孔質管の表面に炭素膜前駆体溶液を塗布した。塗布後、80℃で10分乾燥させて、アルミナ多孔質管の表面にフェノール樹脂の被膜を形成した。   Next, 100 parts by mass of the phenol resin powder, which is a raw material for the carbon film, was added to 230 parts by mass of tetrahydrofuran and dissolved to prepare a carbon film precursor solution. The alumina porous tube on which the alumina powder layer was formed was immersed in the carbon membrane precursor solution, and the carbon membrane precursor solution was applied to the surface of the alumina porous tube on which the alumina powder layer was formed. After the application, the coating was dried at 80 ° C. for 10 minutes to form a phenol resin film on the surface of the alumina porous tube.

その後、フェノール樹脂の被膜が形成されたアルミナ多孔質管を熱処理した。熱処理は窒素雰囲気下で行い、昇温速度が5℃/分、最高温度が表1に記載の温度となるように設定し、最高温度を10分間保持した。このようにして、表1の試料No.1〜No.4に示す分離膜を得た。炭素膜の厚みの違いは、炭素膜前駆体溶液からアルミナ多孔質管を引き上げる速度の違いに基づく。得られた分離膜の両端の炭素膜上に、リード線をはんだ合金ではんだ付けして電極とした。   Then, the alumina porous tube in which the phenol resin film was formed was heat-treated. The heat treatment was performed in a nitrogen atmosphere, the temperature increase rate was set to 5 ° C./min, the maximum temperature was set to the temperature shown in Table 1, and the maximum temperature was maintained for 10 minutes. In this way, sample No. 1-No. The separation membrane shown in 4 was obtained. The difference in the thickness of the carbon film is based on the difference in the speed at which the alumina porous tube is pulled up from the carbon film precursor solution. Lead wires were soldered with a solder alloy on the carbon membranes at both ends of the obtained separation membrane to obtain electrodes.

得られた各分離膜について、二酸化炭素またはメタンの透過試験を行うことによって、透過特性を評価した。二酸化炭素またはメタンの供給側(分離膜の炭素膜側)を正圧(大気圧との差圧)0.1MPaとし、透過側(分離膜のアルミナ多孔質側)を大気圧とした。分離膜の炭素膜の外側に存在する二酸化炭素またはメタンをアルミナ多孔質側に透過させ、透過量から透過係数を算出した。試験は、炭素膜に設けた電極に電源を接続し、0V、または15Vの電圧を印加して行った。試験は30℃の環境で行い、印加電圧が0Vの場合の透過係数をP0、印加電圧が15Vの場合の透過係数をP1とし、その比率(P1/P0)を算出した。結果を表1に示す。   About each obtained separation membrane, the permeation | transmission characteristic was evaluated by performing the permeation | transmission test of a carbon dioxide or methane. The carbon dioxide or methane supply side (carbon membrane side of the separation membrane) was set to a positive pressure (differential pressure with respect to atmospheric pressure) 0.1 MPa, and the permeation side (alumina porous side of the separation membrane) was set to atmospheric pressure. Carbon dioxide or methane existing outside the carbon membrane of the separation membrane was permeated to the porous alumina side, and the permeation coefficient was calculated from the permeation amount. The test was performed by connecting a power source to the electrode provided on the carbon film and applying a voltage of 0V or 15V. The test was performed in an environment of 30 ° C., the transmission coefficient when the applied voltage was 0V was P0, the transmission coefficient when the applied voltage was 15V was P1, and the ratio (P1 / P0) was calculated. The results are shown in Table 1.

さらに、得られた各炭素膜の抵抗値測定を行った。具体的には、装置としてCUSTOM社製の「テスターM−07L」を用い、装置の端子を分離膜の両端の炭素膜上に設けた電極に取り付けて抵抗値を測定した。得られた抵抗値に炭素膜の断面積を乗じて炭素膜の長さで除し、体積固有抵抗値も算出した。測定結果を表1に示す。   Furthermore, resistance values of the obtained carbon films were measured. Specifically, “Tester M-07L” manufactured by CUSTOM Co., Ltd. was used as the device, and the terminal of the device was attached to electrodes provided on the carbon membranes at both ends of the separation membrane, and the resistance value was measured. The obtained resistance value was multiplied by the cross-sectional area of the carbon film and divided by the length of the carbon film, and the volume resistivity value was also calculated. The measurement results are shown in Table 1.

Figure 2019136623
Figure 2019136623

表1に示すように試料No.1〜No.4は、炭素膜に設けた電極に電圧を印加することにより、炭素膜から抵抗加熱によるジュール熱が発生し、分離装置に流れるガスを温めることができ、電圧印加により透過係数が増加していた。特に試料No.3およびNo.4は、炭素膜の体積固有抵抗が1×10-6Ω・m〜1×10-4Ω・mの範囲にある為に炭素膜から抵抗加熱によるジュール熱が十分発生し、分離装置に流れるガスを十分に温める事が出来、電圧印加により透過係数が1割以上増加していた。 As shown in Table 1, Sample No. 1-No. No. 4, by applying a voltage to the electrode provided on the carbon membrane, Joule heat was generated from the carbon membrane by resistance heating, and the gas flowing to the separation device could be warmed, and the transmission coefficient was increased by applying the voltage. . In particular, sample no. 3 and no. No. 4, since the volume resistivity of the carbon membrane is in the range of 1 × 10 −6 Ω · m to 1 × 10 −4 Ω · m, Joule heat is sufficiently generated by the resistance heating from the carbon membrane and flows to the separator. The gas could be sufficiently warmed, and the transmission coefficient increased by 10% or more due to voltage application.

1 分離膜
2 流体導入部
3 電源
4 電極
5 流体導入部2の入口
6 分離膜1の出口
7 流体導入部2の出口
8 多孔質支持体
9 中間層
10 炭素膜
11 分離装置
12 第1のセラミック粒子
13 第2のセラミック粒子
14 炭素質材料
DESCRIPTION OF SYMBOLS 1 Separation membrane 2 Fluid introduction part 3 Power supply 4 Electrode 5 Inlet of the fluid introduction part 2 6 Outlet of the separation membrane 1 7 Outlet of the fluid introduction part 2 8 Porous support body 9 Intermediate | middle layer 10 Carbon membrane 11 Separation apparatus 12 1st ceramic Particle 13 Second ceramic particle 14 Carbonaceous material

Claims (11)

分離膜と、該分離膜に設けられた少なくとも2つの電極とを備える電極付き分離膜。   A separation membrane with an electrode comprising a separation membrane and at least two electrodes provided on the separation membrane. 前記分離膜の体積固有抵抗が1×10-6Ω・m〜1×10-2Ω・mである請求項1に記載の電極付き分離膜。 The separation membrane with an electrode according to claim 1, wherein the separation membrane has a volume resistivity of 1 × 10 −6 Ω · m to 1 × 10 −2 Ω · m. 前記分離膜が、炭素膜である請求項1または2に記載の電極付き分離膜。   The separation membrane with an electrode according to claim 1 or 2, wherein the separation membrane is a carbon membrane. 前記分離膜が、多孔質支持体と、該多孔質支持体の表面に設けられた炭素膜とを有し、
前記電極が、前記炭素膜に設けられている請求項1または2に記載の電極付き分離膜。
The separation membrane has a porous support and a carbon membrane provided on the surface of the porous support,
The separation membrane with an electrode according to claim 1 or 2, wherein the electrode is provided on the carbon membrane.
前記多孔質支持体と前記炭素膜との間に、セラミック粒子と炭素質材料とを含む中間層を有する請求項4に記載の電極付き分離膜。   The separation membrane with an electrode according to claim 4, further comprising an intermediate layer containing ceramic particles and a carbonaceous material between the porous support and the carbon membrane. 前記中間層に含まれるセラミック粒子が0.15μm〜0.25μmの平均粒子径を有する請求項5に記載の電極付き分離膜。   The separation membrane with an electrode according to claim 5, wherein the ceramic particles contained in the intermediate layer have an average particle diameter of 0.15 μm to 0.25 μm. 前記中間層の体積固有抵抗が、前記炭素膜の体積固有抵抗より大きい請求項5または6に記載の電極付き分離膜。   The separation membrane with an electrode according to claim 5 or 6, wherein the volume resistivity of the intermediate layer is larger than the volume resistivity of the carbon membrane. 前記分離膜が、複数の成分を含む混合流体と接触する接触領域を有し、
2つの前記電極が、前記接触領域を挟むように配置されている請求項1〜7のいずれかに記載の電極付き分離膜。
The separation membrane has a contact region that contacts a mixed fluid containing a plurality of components;
The separation membrane with an electrode according to claim 1, wherein the two electrodes are arranged so as to sandwich the contact region.
請求項1〜8のいずれかに記載の電極付き分離膜と、前記電極に接続された電源とを備える分離装置。   The separation apparatus provided with the separation membrane with an electrode in any one of Claims 1-8, and the power supply connected to the said electrode. さらに、温度センサーを備える請求項9に記載の分離装置。   The separation device according to claim 9, further comprising a temperature sensor. 分離膜に通電することにより、前記分離膜を発熱させつつ、前記分離膜により複数の成分を含む混合流体から特定の成分を分離する分離方法。   A separation method in which a specific component is separated from a mixed fluid containing a plurality of components by the separation membrane while the separation membrane is heated by energizing the separation membrane.
JP2018019180A 2018-02-06 2018-02-06 Separator Active JP7018778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018019180A JP7018778B2 (en) 2018-02-06 2018-02-06 Separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018019180A JP7018778B2 (en) 2018-02-06 2018-02-06 Separator

Publications (2)

Publication Number Publication Date
JP2019136623A true JP2019136623A (en) 2019-08-22
JP7018778B2 JP7018778B2 (en) 2022-02-14

Family

ID=67692730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018019180A Active JP7018778B2 (en) 2018-02-06 2018-02-06 Separator

Country Status (1)

Country Link
JP (1) JP7018778B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128505A (en) * 2000-10-17 2002-05-09 Toyota Motor Corp Hydrogen extraction apparatus
JP2013237015A (en) * 2012-05-15 2013-11-28 Kyocera Corp Porous body with carbon film and method of manufacturing the same
JP2017512129A (en) * 2014-03-12 2017-05-18 ロッキード・マーチン・コーポレーション Separation membranes formed from perforated graphene
JP2017535030A (en) * 2014-09-18 2017-11-24 ユニバーシティ・オブ・マンチェスター PROTON CONDUCTIVE MEMBRANE CONTAINING A MONOLITHIC 2-DIMENSIONAL MATERIAL AND IONOMER, METHOD FOR MANUFACTURING THE SAME, AND METHOD OF USE IN FUEL CELLS AND HYDROGEN GAS SENSOR

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128505A (en) * 2000-10-17 2002-05-09 Toyota Motor Corp Hydrogen extraction apparatus
JP2013237015A (en) * 2012-05-15 2013-11-28 Kyocera Corp Porous body with carbon film and method of manufacturing the same
JP2017512129A (en) * 2014-03-12 2017-05-18 ロッキード・マーチン・コーポレーション Separation membranes formed from perforated graphene
JP2017535030A (en) * 2014-09-18 2017-11-24 ユニバーシティ・オブ・マンチェスター PROTON CONDUCTIVE MEMBRANE CONTAINING A MONOLITHIC 2-DIMENSIONAL MATERIAL AND IONOMER, METHOD FOR MANUFACTURING THE SAME, AND METHOD OF USE IN FUEL CELLS AND HYDROGEN GAS SENSOR

Also Published As

Publication number Publication date
JP7018778B2 (en) 2022-02-14

Similar Documents

Publication Publication Date Title
JP6723265B2 (en) Carbon-containing membranes for water and gas separation
Tan et al. Preparation and characterization of inorganic hollow fiber membranes
AU2007263408B2 (en) Ceramic filter
Lee et al. Carbon molecular sieve membranes on porous composite tubular supports for high performance gas separations
JP5624542B2 (en) Carbon membrane manufacturing method, carbon membrane, and separation apparatus
JP3966738B2 (en) Method for producing porous ceramic material
WO2009001970A1 (en) Separation membrane complex, and method for production of separation membrane complex
JP4753180B2 (en) Hydrogen separation material and method for producing the same
JPWO2011148713A1 (en) Carbon membrane composite, method for producing the same, and separation membrane module
JP6436974B2 (en) Monolith type separation membrane structure and method for producing monolith type separation membrane structure
CN111644076B (en) Method for preparing carbonized organic layer on surface of porous ceramic matrix through negative pressure coating
WO2010070992A1 (en) Method for separating liquid mixture, and device for separating liquid mixture
Lee et al. A Hydrogen‐permselective silicon oxycarbide membrane derived from polydimethylsilane
JP5051785B2 (en) Method for producing silicon carbide hydrogen separation membrane
JP7018778B2 (en) Separator
WO2011018919A1 (en) Mixture separation membrane, method for altering composition of mixture using same, and mixture separation device
JP5289790B2 (en) Method for producing separation membrane element comprising carbon membrane
Cai et al. Microstructure modulation of α‐Al2O3 hollow fiber membranes with four‐channel geometric configuration
JP2020032324A (en) Separation device
JP2003112019A (en) Method for producing porous ceramic hollow fiber membrane
JP2009183814A (en) Separation membrane and its manufacturing method
WO2016104048A1 (en) Gas separation method
JP6358839B2 (en) Hydrogen production apparatus and production method thereof
JP2011201753A (en) Method for producing carbon film
JP2010274174A (en) Carbon film composite and separation membrane module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220201

R150 Certificate of patent or registration of utility model

Ref document number: 7018778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150