JP2019131456A - Polypyrrole film-coated graphene oxide cement-based composite material and preparation method thereof - Google Patents

Polypyrrole film-coated graphene oxide cement-based composite material and preparation method thereof Download PDF

Info

Publication number
JP2019131456A
JP2019131456A JP2018243821A JP2018243821A JP2019131456A JP 2019131456 A JP2019131456 A JP 2019131456A JP 2018243821 A JP2018243821 A JP 2018243821A JP 2018243821 A JP2018243821 A JP 2018243821A JP 2019131456 A JP2019131456 A JP 2019131456A
Authority
JP
Japan
Prior art keywords
graphene oxide
cement
matrix material
polypyrrole
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018243821A
Other languages
Japanese (ja)
Other versions
JP6915887B2 (en
Inventor
趙若紅
Ruohong Zhao
翁余斌
Yu Bin Weng
徐安
An Xu
傅継陽
Jiyang Fu
劉愛栄
Airong Liu
呉玖栄
Jiurong Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou University
Original Assignee
Guangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou University filed Critical Guangzhou University
Publication of JP2019131456A publication Critical patent/JP2019131456A/en
Application granted granted Critical
Publication of JP6915887B2 publication Critical patent/JP6915887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00258Electromagnetic wave absorbing or shielding materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

To provide a polypyrrole film-coated graphene oxide cement-based composite material and a preparation method thereof.SOLUTION: The present invention relates to a concrete technology area, chemical macromolecule area, and an electromagnetic shield area. This invention includes combining an electrically conductive concrete and a polypyrrole thin film technology, and exploring its electromagnetic shield effect. In the study, it has been found out that how a polypyrrole is formed into a uniform and dense thin film with good adhesion and stable thickness on a surface of a cement matrix is a key issue for preparation of this composite material. This invention proposes a surface treatment agent for pretreatment for a cement surface, followed by spraying a polypyrrole solution. Application of a graphene oxide and a polypyrrole thin film to a cement-based material produces a cement-based composite material having excellent electromagnetic shield performance and can be applied to military or municipal constructions.SELECTED DRAWING: Figure 1

Description

本発明はコンクリート技術分野と、化学高分子分野と電磁シールド分野とを取り上げて、具体的にはポリピロール被膜酸化グラフェンセメント系複合材料及びその調製方法である。 The present invention covers the field of concrete technology, the field of chemical polymers and the field of electromagnetic shielding, specifically a polypyrrole-coated graphene oxide cementitious composite and a method for preparing the same.

各種の電子電気機器及び無線通信設備の普及に伴い、人類に豊富な電磁波資源を提供すると同時に弥増さる電磁波放射と干渉をもたらした。電磁干渉はすでに全世界の公害になっている。そこで、電磁シールド効果を持つ材料を開発することには重要な研究意義がある。コンクリートは現在の建築業で最も広く使用される材料であり、資材を調達することが便利で、値段が安く、圧縮強度が高く、可塑性が高い等のメリットがある。普通のコンクリートは電気抵抗率が一般的に104〜107Ω・mの範囲内にあり、絶縁体にも良導体にも属していなく、二者の間に介在している。もし普通のコンクリートの中に一定量の導電性成分材料を添加すれば、その導電性能を大幅に改善でき、これによって比較的にいい導電性能を持つ導電体を生成する。こうなると、導電コンクリートはコンクリートが備える一切の優良性能を有しつつ、良好の導電性を有し、このような優勢はそれに多くの分野で巨大で潜在的な応用の将来性を持たせる。その中、電磁シールドは導電コンクリートの重要応用の一つである。普通のコンクリートの中に導電性材料を添加し、それに導電性能と電磁波吸収性能を持たせ、これが電磁シールド効果を持つ導電コンクリートである。導電コンクリートは電磁波放射の低減を実現でき、電磁干渉を防止でき、軍事プライバシーを保護でき、レーダーステルスを行える等の機能を備え、構成と機能を一元化させ、材料を節減できると同時にエネルギーを節減でき、とても重要な意味を有する。
しかし、現在の導電コンクリートの電磁シールド分野における関連文献を見ると、常用の電磁シールド用の導電コンクリートは一般的に金属あるいは炭素系材料をコンクリートの中に混入することによって、コンクリートに金属反射電磁波性能あるいは炭素系材料電磁波吸収性能を備えさせ、これによって電磁シールド効果を達成することが分かる。しかし、導電材料をコンクリートの中に混入すると、導電材料の分布が不均一である固有なデメリットが存在し、電磁波が漏れる点が生成しやすく、同時に従来の電磁シールド用の導電コンクリートの配合方法は、シールド性が低く、シールド帯域幅が狭い等の問題が普遍的に存在する。
従来の電磁シールド材料はいつも高導電性と優良力学性能を持つ金属材料を用いる。例えばCu、Ag、Fe、Ni等、しかし、これらは密度が高く、腐食しやすく、局限性が高い。導電高分子は、軽量で、加工成型しやすく、コストパフォーマンスに優れる等のメリットによって、電磁波シールド方面において潜在的な優勢及び良好な応用の将来性を見せる。反射を通して電磁波を消耗できるだけでなく、消耗を吸収する点でより有利である。導電高分子を封止材の表面に分布させて導電薄膜を形成することにより電磁波を遮蔽する方法は、近年発展してきた新しい方法であり、ポリピロールは導電率が高く、重合成膜しやすく、混在しやすく、環境安定性及び耐薬品性に優れている等のメリットによって、この種類の導電薄膜の研究では多くの注目を集める。
従来においてポリピロール薄膜をセメント系材料に用いる関連報告はないが、ポリピロールをセメントマトリックスの表面に均一且つ緻密で、付着力がよく且つ一定の厚さを有する薄膜にいかに形成するかはこの複合材料を調製する鍵となる問題であるということを実験的に見出した。本発明が提案した表面処理方法によってこの問題を見事に解決できる。
Along with the widespread use of various electronic and electrical equipment and wireless communication equipment, it has provided human resources with abundant electromagnetic resources, and at the same time brought about an increase in electromagnetic radiation and interference. Electromagnetic interference has already become a worldwide pollution. Therefore, there is an important research significance in developing a material having an electromagnetic shielding effect. Concrete is the most widely used material in the current building industry. It is convenient to procure materials, has the advantages of low price, high compressive strength, and high plasticity. Ordinary concrete generally has an electrical resistivity in the range of 10 4 to 10 7 Ω · m, does not belong to an insulator or a good conductor, and is interposed between the two. If a certain amount of conductive component material is added to ordinary concrete, its conductive performance can be greatly improved, thereby producing a conductor with relatively good conductive performance. When this happens, conductive concrete has good electrical conductivity while having all the superior performance that concrete provides, and such superiority makes it a huge and potential application potential in many areas. Among them, electromagnetic shielding is one of the important applications of conductive concrete. Conductive material is added to ordinary concrete, and it has conductive performance and electromagnetic wave absorption performance. This is conductive concrete with electromagnetic shielding effect. Conductive concrete can reduce electromagnetic radiation, prevent electromagnetic interference, protect military privacy, perform radar stealth, etc., and can consolidate composition and function, saving material and saving energy at the same time Has a very important meaning.
However, looking at the related literature in the field of electromagnetic shielding of conductive concrete, conductive concrete for conventional electromagnetic shielding generally has a metal reflected electromagnetic wave performance in concrete by mixing metal or carbon-based material into the concrete. Alternatively, it is understood that the electromagnetic shielding effect is achieved by providing the carbon-based material with electromagnetic wave absorption performance. However, when conductive material is mixed into concrete, there is an inherent disadvantage that the distribution of the conductive material is non-uniform, and it is easy to generate a point where electromagnetic waves leak, and at the same time, the conventional method of blending conductive concrete for electromagnetic shielding is There are universal problems such as low shielding and narrow shielding bandwidth.
Conventional electromagnetic shielding materials always use metal materials with high conductivity and excellent mechanical performance. For example, Cu, Ag, Fe, Ni, etc. However, these are high in density, easily corroded, and highly localized. Conductive polymers are light in weight, easy to process and mold, and show potential advantages in the electromagnetic shielding direction and the potential for good applications due to their superior cost performance. Not only can electromagnetic waves be consumed through reflection, it is more advantageous in that it absorbs the consumption. A method of shielding electromagnetic waves by forming a conductive thin film by distributing a conductive polymer on the surface of a sealing material is a new method that has been developed in recent years. Polypyrrole has high conductivity, is easy to form a polymerized film, and is mixed. This type of conductive thin film has attracted a lot of attention because of its merit, such as ease of use, environmental stability and chemical resistance.
There is no related report on the use of polypyrrole thin film for cementitious materials in the past, but how to form polypyrrole into a thin film that is uniform and dense on the cement matrix surface, has good adhesion, and has a certain thickness. We found experimentally that it was a key problem to prepare. This problem can be solved by the surface treatment method proposed by the present invention.

中国特許出願公開第103130466号明細書Chinese Patent Application No. 103130466 Specification

従来技術における欠点及び不足を解消するために、本発明はポリピロール被膜酸化グラフェンセメント系複合材料の調製方法を提供することを主要な目的とする。 In order to eliminate the shortcomings and deficiencies in the prior art, the main object of the present invention is to provide a method for preparing a polypyrrole-coated graphene oxide cementitious composite.

ポリピロールは化学導電高分子材料として、優良な電磁シールド性能を備える。酸化グラフェンとポリピロール薄膜をセメント系材料に応用することは、優良な電磁シールド性能を備えるセメント系複合材料を作製し、軍用あるいは民用の建築の中に広く活用されることができる。 Polypyrrole has excellent electromagnetic shielding performance as a chemically conductive polymer material. Applying graphene oxide and polypyrrole thin film to cement-based materials can produce cement-based composite materials with excellent electromagnetic shielding performance and can be widely used in military or civilian buildings.

本発明は上記調製方法により調製されたポリピロール被膜酸化グラフェンセメント系複合材料を提供することを他の目的とする。当該複合材料は電磁シールドに用いられることができる。 Another object of the present invention is to provide a polypyrrole-coated graphene oxide cement composite material prepared by the above preparation method. The composite material can be used for electromagnetic shielding.

本発明の目的は以下の技術プランを通じて実現する。 The object of the present invention is realized through the following technical plan.

ポリピロール被膜酸化グラフェンセメント系複合材料の調製方法は、下記のステップA〜Hを含む: The method for preparing a polypyrrole-coated graphene oxide cementitious composite includes the following steps A to H:

前記ステップA:試料を準備する:主要材料は:ビスフェノールA型エポキシ樹脂、エチレングリコールモノブチルエーテル、n ―ブタノール、水性アクリル樹脂、トリエタノールアミン、ポリ酢酸ビニル、ビニルトリエトキシシラン、純ピロール、塩化第二鉄、テトラシロキサン四級アンモニウムクロライド塩(Si4ACl)、ジメチルシリコーンオイル、酸化グラフェン粉末、ポルトランドセメント、無水エタノール、脱イオン水である。 Step A: Prepare a sample: Main materials are: bisphenol A type epoxy resin, ethylene glycol monobutyl ether, n-butanol, aqueous acrylic resin, triethanolamine, polyvinyl acetate, vinyltriethoxysilane, pure pyrrole, chloride Diiron, tetrasiloxane quaternary ammonium chloride salt (Si4ACl), dimethyl silicone oil, graphene oxide powder, Portland cement, absolute ethanol, deionized water.

前記ステップB:酸化グラフェン分散剤を調製する:配合質量比は:テトラシロキサン四級アンモニウムクロライド塩(Si4ACl):ジメチルシリコーンオイル:脱イオン水=5:1:15である;テトラシロキサン四級アンモニウムクロライド塩(Si4ACl)とジメチルシリコーンオイルをガラスビーカーの中に入れ、2〜2.5min攪拌し、テトラシロキサン四級アンモニウムクロライド塩(Si4ACl)とジメチルシリコーンオイルとを均一相にさせる;その後徐々に水を入れ、継続して15〜18min攪拌し、混合物を乳化機に置いて3000〜3500r/minの回転速度で15〜18min乳化させ、酸化グラフェン分散剤を得る。 Step B: Preparation of graphene oxide dispersant: blending mass ratio: tetrasiloxane quaternary ammonium chloride salt (Si4ACl): dimethyl silicone oil: deionized water = 5: 1: 15; tetrasiloxane quaternary ammonium chloride Put the salt (Si4ACl) and dimethyl silicone oil in a glass beaker and stir for 2-2.5 min to make the tetrasiloxane quaternary ammonium chloride salt (Si4ACl) and dimethyl silicone oil uniform phase; then gradually add water Then, the mixture is stirred for 15 to 18 minutes, and the mixture is placed in an emulsifier and emulsified for 15 to 18 minutes at a rotational speed of 3000 to 3500 r / min to obtain a graphene oxide dispersant.

前記ステップC:酸化グラフェンを分散する:酸化グラフェンと酸化グラフェン分散剤を1:1.4〜1.6の体積比で混合し、15〜18min攪拌し、酸化グラフェン懸濁液に調製する。 Step C: Disperse graphene oxide: Graphene oxide and graphene oxide dispersant are mixed at a volume ratio of 1: 1.4 to 1.6, and stirred for 15 to 18 minutes to prepare a graphene oxide suspension.

前記ステップD:ポルトランドセメント:水:酸化グラフェン懸濁液=1:0.4:0.1〜0.15の質量比でセメントマトリックス材料を調製し、ポルトランドセメントと水を混合し、セメントペースト攪拌機の中で2〜3min攪拌し、酸化グラフェン懸濁液を入れて2〜3min攪拌する;金型に注入し、温度20℃、湿度98%の条件で12h養成した後で離型し、離型後の部材を継続してこの条件で28d養成し、セメントマトリックス材料を獲得する。 Step D: Portland cement: water: graphene oxide suspension = 1: 0.4: Cement matrix material is prepared at a mass ratio of 0.1-0.15, Portland cement and water are mixed, and 2-3 minutes in a cement paste stirrer Stir, add graphene oxide suspension and stir for 2 to 3 min; pour into mold, mold for 12 h at 20 ° C. and 98% humidity, and continue the part after release Cultivate 28d under this condition to obtain cement matrix material.

前記ステップE:セメントマトリックス材料界面処理剤:エチレングリコールモノブチルエーテルとn ―プロパノールを2:3〜3.2の比例で混合溶剤に調製する;ビスフェノールA型エポキシ樹脂を1:1〜1.2の比例で混合溶剤の中に溶け、水性アクリル樹脂と、トリエタノールアミンと、ポリ酢酸ビニルとを1:1:1.5の比例で十分に溶解させ、1:1〜1.2の比例で溶解完了のビスフェノールA型エポキシ樹脂を入れ、混合物を乳化機に置いて3000〜3500r/minの回転速度で30〜35min乳化させ、セメントマトリックス材料界面処理剤を得る。 Step E: Cement matrix material interfacial treatment agent: ethylene glycol monobutyl ether and n-propanol are prepared in a mixed solvent in a ratio of 2: 3 to 3.2; bisphenol A type epoxy resin is mixed in a ratio of 1: 1 to 1.2 Dissolve bisphenol A type epoxy resin, which is dissolved in water, fully dissolves water-based acrylic resin, triethanolamine, and polyvinyl acetate in a ratio of 1: 1: 1.5, and in a ratio of 1: 1-1.2. The mixture is placed in an emulsifier and emulsified for 30 to 35 minutes at a rotational speed of 3000 to 3500 r / min to obtain a cement matrix material interfacial treatment agent.

前記ステップF:セメントマトリックス材料の表面処理:養成完了のセメントマトリックス材料を、水洗し、表面の灰塵を取り除き、60〜70℃の中で6〜8h乾燥して取り出し、室温まで冷却し、スプレーガンで調製されたセメントマトリックス材料界面処理剤をセメントマトリックス材料表面に均一にスプレーする。 Step F: Surface treatment of cement matrix material: Cultivation completed cement matrix material is washed with water to remove ash on the surface, dried at 60-70 ° C for 6-8h, cooled to room temperature, spray gun The cement matrix material surface treatment agent prepared in step 1 is sprayed uniformly on the cement matrix material surface.

前記ステップG:乳液が乾燥する前に、即座にセメントマトリックス材料を2〜2.2%のビニルトリエトキシシランの中に浸漬し、3〜4min後取り出して室温で自然に干す;その後0.7〜0.9mol/Lのピロール水溶液の中に浸漬し、2〜3min後取り出して、0.35〜0.45mol/Lの塩化第二鉄溶液の中に入れて重合反応を行う。 Step G: Immediately before the emulsion dries, the cement matrix material is immersed in 2-2.2% vinyltriethoxysilane, removed after 3-4 min and allowed to dry at room temperature; then 0.7-0.9 mol / It is immersed in L pyrrole aqueous solution, taken out after 2 to 3 minutes, and put into 0.35 to 0.45 mol / L ferric chloride solution for polymerization reaction.

前記ステップH:しばらく反応した後でコンクリート試験ブロックを取り出して、まず脱イオン水で何回も洗浄し、また無水エタノールで洗浄し、風乾した後で重複して第二回、第三回重合反応を行い、洗浄風乾した後でポリピロール被膜酸化グラフェンセメント系複合材料を得る。 Step H: After reacting for a while, the concrete test block is taken out, first washed several times with deionized water, then washed with absolute ethanol, air-dried and then the second and third polymerization reaction. After performing washing and air drying, a polypyrrole-coated graphene oxide cementitious composite material is obtained.

前記ステップBの中、 In step B,

好ましくは、前記の攪拌の時間は2minである; Preferably, the stirring time is 2 min;

好ましくは、前記の継続して攪拌する時間は15minである; Preferably, the continuous stirring time is 15 min;

好ましくは、前記の乳化の条件は3000r/minの回転速度で15min乳化することである; Preferably, the emulsification condition is to emulsify for 15 minutes at a rotational speed of 3000 r / min;

前記ステップCの中、 In step C,

好ましくは、前記の酸化グラフェンと酸化グラフェン分散剤を混合する体積比は1:1.5である; Preferably, the volume ratio of mixing the graphene oxide and the graphene oxide dispersant is 1: 1.5;

好ましくは、前記の攪拌の時間は15minである; Preferably, the stirring time is 15 min;

前記ステップDの中、 In step D,

好ましくは、ポルトランドセメント:水:酸化グラフェン懸濁液=1:0.4:0.1の質量比でセメントマトリックス材料を調製する; Preferably, the cement matrix material is prepared at a mass ratio of Portland cement: water: graphene oxide suspension = 1: 0.4: 0.1;

好ましくは、前記のポルトランドセメントと水を混合した後で攪拌する時間は2minである; Preferably, the stirring time after mixing the Portland cement and water is 2 min;

好ましくは、前記の酸化グラフェン懸濁液を入れて攪拌する時間は2minである; Preferably, the time for adding and stirring the graphene oxide suspension is 2 min;

前記ステップEの中、 In step E,

好ましくは、前記のエチレングリコールモノブチルエーテルとn ―プロパノールを混合溶剤に調製する比例は2:3である; Preferably, the ratio of preparing ethylene glycol monobutyl ether and n-propanol as a mixed solvent is 2: 3;

好ましくは、前記のビスフェノールA型エポキシ樹脂を混合溶剤の中に溶ける比例は1:1である; Preferably, the proportion in which the bisphenol A type epoxy resin is dissolved in the mixed solvent is 1: 1;

好ましくは、溶解完了のビスフェノールA型エポキシ樹脂を入れる比例は1:1である; Preferably, the proportion of adding the completely dissolved bisphenol A type epoxy resin is 1: 1;

好ましくは、前記の乳化の条件は3000r/minの回転速度で30min乳化することである; Preferably, the emulsification condition is emulsification for 30 min at a rotational speed of 3000 r / min;

前記ステップFの中、 In step F,

好ましくは、前記の乾燥の条件は60℃の中で6h乾燥することである; Preferably, the drying condition is to dry at 60 ° C. for 6 hours;

前記ステップGの中、 In step G,

好ましくは、セメントマトリックス材料を2%のビニルトリエトキシシランの中に浸漬し、3min後取り出して室温で自然に干す。 Preferably, the cement matrix material is immersed in 2% vinyltriethoxysilane, removed after 3 min and allowed to dry naturally at room temperature.

好ましくは、0.8mol/Lのピロール水溶液の中に浸漬し、2min後取り出して、0.4mol/Lの塩化第二鉄溶液の中に入れて重合反応を行う; Preferably, it is immersed in an aqueous 0.8 mol / L pyrrole solution, taken out after 2 minutes, and placed in a 0.4 mol / L ferric chloride solution to conduct a polymerization reaction;

前記ステップHの中、 In step H,

前記の重複して第二回、第三回重合反応を行うとは重複してピロール水溶液と塩化第二鉄溶液に浸漬し、洗浄し、風乾することである。 Performing the second and third polymerization reactions in duplicate is to immerse, wash, and air dry in an aqueous pyrrole solution and a ferric chloride solution in duplicate.

ポリピロール被膜酸化グラフェンセメント系複合材料は上記の調製方法により調製される。 The polypyrrole-coated graphene oxide cementitious composite material is prepared by the above preparation method.

本発明のメカニズムは: The mechanism of the present invention is:

本発明は導電コンクリートとポリピロール薄膜技術を結合し、その電磁シールド効果を探究する。研究では、ポリピロールをセメントマトリックスの表面に均一且つ緻密で、付着力がよく且つ一定の厚さを有する薄膜にいかに形成するかはこの複合材料を調製する鍵となる問題であるということが分かる。本発明は表面処理剤を提案し、セメント表面に対して前処理をした後でポリピロール溶液をスプレーし、これも本発明の最大の特点である。 The present invention combines conductive concrete and polypyrrole thin film technology to explore its electromagnetic shielding effect. Studies show that the key issue in preparing this composite is how to form polypyrrole into a thin film that is uniform and dense on the surface of the cement matrix, has good adhesion and has a constant thickness. The present invention proposes a surface treatment agent and sprays a polypyrrole solution after pretreatment on the cement surface, which is also the greatest feature of the present invention.

本発明は現有技術に対して以下のメリット及び効果を有する: The present invention has the following advantages and effects over existing technologies:

現在、ポリピロール被膜セメント系複合材料を報道する文献はないが、現有の電磁シールド用の導電コンクリートには一般的に電磁波が漏れる点が多く、シールド性が低く、シールド帯域幅が狭い等の問題が存在している。本発明がポリピロール-酸化グラフェンセメント系複合材料を提案し、セメント系材料が電磁波をいかに均一に遮蔽するかという難題を見事に解決でき、同時にシールド範囲を極めて増大できる。 Currently, there is no literature reporting on polypyrrole-coated cementitious composites, but current conductive concrete for electromagnetic shielding has many problems such as electromagnetic leakage, low shielding properties and narrow shielding bandwidth. Existing. The present invention proposes a polypyrrole-graphene oxide cement-based composite material, which can solve the problem of how uniformly the cement-based material shields electromagnetic waves, and at the same time, can greatly increase the shielding range.

図1は0-3GHz全帯域シールド性曲線図である。FIG. 1 is a 0-3 GHz full-band shielding curve diagram.

以下は実施例及び付図を交えて本発明について更に詳しく説明し、しかし、本発明の実施方式はこれに限らない。 Hereinafter, the present invention will be described in more detail with reference to examples and accompanying drawings. However, the implementation method of the present invention is not limited thereto.

実施例1 Example 1

ステップA:試料を準備する:主要材料は:ビスフェノールA型エポキシ樹脂、エチレングリコールモノブチルエーテル、n ―ブタノール、水性アクリル樹脂、トリエタノールアミン、ポリ酢酸ビニル、ビニルトリエトキシシラン、純ピロール、塩化第二鉄、テトラシロキサン四級アンモニウムクロライド塩(Si4ACl)、ジメチルシリコーンオイル、酸化グラフェン粉末、ポルトランドセメント、無水エタノール、脱イオン水である; Step A: Prepare the sample: The main materials are: bisphenol A type epoxy resin, ethylene glycol monobutyl ether, n-butanol, aqueous acrylic resin, triethanolamine, polyvinyl acetate, vinyltriethoxysilane, pure pyrrole, secondary chloride Iron, tetrasiloxane quaternary ammonium chloride salt (Si4ACl), dimethyl silicone oil, graphene oxide powder, Portland cement, absolute ethanol, deionized water;

ステップB:酸化グラフェン分散剤を調製する:配合質量比は:テトラシロキサン四級アンモニウムクロライド塩(Si4ACl):ジメチルシリコーンオイル:脱イオン水=5:1:15である;テトラシロキサン四級アンモニウムクロライド塩(Si4ACl)とジメチルシリコーンオイルをガラスビーカーの中に入れ、2min攪拌し、テトラシロキサン四級アンモニウムクロライド塩(Si4ACl)とジメチルシリコーンオイルとを均一相にさせる;その後徐々に水を入れ、継続して15min攪拌し、混合物を乳化機に置いて3000r/minの回転速度で15min乳化させ、酸化グラフェン分散剤を得る。 Step B: Prepare graphene oxide dispersant: blending mass ratio: tetrasiloxane quaternary ammonium chloride salt (Si4ACl): dimethyl silicone oil: deionized water = 5: 1: 15; tetrasiloxane quaternary ammonium chloride salt (Si4ACl) and dimethyl silicone oil are placed in a glass beaker and stirred for 2 minutes to make the tetrasiloxane quaternary ammonium chloride salt (Si4ACl) and dimethyl silicone oil a homogeneous phase; then gradually add water and continue Stir for 15 min, place the mixture in an emulsifier and emulsify for 15 min at a rotational speed of 3000 r / min to obtain a graphene oxide dispersant.

ステップC:酸化グラフェンを分散する:酸化グラフェンと酸化グラフェン分散剤を1:1.5の体積比で混合し、15min攪拌し、酸化グラフェン懸濁液に調製する。 Step C: Disperse graphene oxide: Graphene oxide and graphene oxide dispersant are mixed at a volume ratio of 1: 1.5 and stirred for 15 min to prepare a graphene oxide suspension.

ステップD:ポルトランドセメント:水:酸化グラフェン懸濁液=1:0.4:0.1の質量比でセメントマトリックス材料を調製し、ポルトランドセメントと水を混合し、セメントペースト攪拌機の中で2min攪拌し、酸化グラフェン懸濁液を入れて2min攪拌する;金型に注入し、温度20℃、湿度98%の条件で12h養成した後で離型し、離型後の部材を継続してこの条件で28d養成し、セメントマトリックス材料を獲得する。 Step D: Portland cement: water: graphene oxide suspension = 1: 0.4: Prepare a cement matrix material with a mass ratio of 0.4: 0.1, mix Portland cement and water, stir 2 minutes in a cement paste stirrer, graphene oxide Put the suspension and stir for 2 min; pour it into the mold, cultivate for 12 h under the conditions of temperature 20 ° C and humidity 98%, then release the mold, and continue the 28d cultivating under this condition after the mold release Acquire cement matrix material.

ステップE:セメントマトリックス材料界面処理剤:エチレングリコールモノブチルエーテルとn ―プロパノールを2:3の比例で混合溶剤に調製する;ビスフェノールA型エポキシ樹脂を1:1の比例で混合溶剤の中に溶け、水性アクリル樹脂と、トリエタノールアミンと、ポリ酢酸ビニルとを1:1:1.5の比例で十分に溶解させ、1:1の比例で溶解完了のビスフェノールA型エポキシ樹脂を入れ、混合物を乳化機に置いて3000r/minの回転速度で30min乳化させ、セメントマトリックス材料界面処理剤を得る。 Step E: Cement matrix material surface treatment agent: Prepare ethylene glycol monobutyl ether and n-propanol in a mixed solvent in a ratio of 2: 3; dissolve bisphenol A type epoxy resin in a mixed solvent in a ratio of 1: 1; Aqueous acrylic resin, triethanolamine, and polyvinyl acetate are sufficiently dissolved in a ratio of 1: 1: 1.5, and bisphenol A type epoxy resin is completely dissolved in a ratio of 1: 1, and the mixture is put into an emulsifier. Then, emulsify for 30 min at a rotational speed of 3000 r / min to obtain a cement matrix material interfacial treatment agent.

ステップF:セメントマトリックス材料の表面処理:養成完了のセメントマトリックス材料を、水洗し、表面の灰塵を取り除き、60℃の中で6h乾燥して取り出し、室温まで冷却し、スプレーガンで調製されたセメントマトリックス材料界面処理剤をセメントマトリックス材料表面に均一にスプレーする。 Step F: Surface treatment of cement matrix material: Cement matrix material that has been cultivated, washed with water, removed surface ash dust, dried at 60 ° C for 6 hours, cooled to room temperature, and cement prepared with a spray gun The matrix material interfacial treating agent is sprayed uniformly on the cement matrix material surface.

ステップG:乳液が乾燥する前に、即座にセメントマトリックス材料を2%のビニルトリエトキシシランの中に浸漬し、3min後取り出して室温で自然に干す;その後0.8mol/Lのピロール水溶液の中に浸漬し、2min後取り出して、0.4mol/Lの塩化第二鉄溶液の中に入れて重合反応を行う。 Step G: Immediately before the emulsion dries, the cement matrix material is soaked in 2% vinyltriethoxysilane, removed after 3 min and allowed to dry naturally at room temperature; then in 0.8 mol / L pyrrole aqueous solution Immerse, take out after 2 min, and place in a 0.4 mol / L ferric chloride solution to conduct the polymerization reaction.

ステップH:しばらく反応した後でコンクリート試験ブロックを取り出して、まず脱イオン水で何回も洗浄し、また無水エタノールで洗浄し、風乾した後で重複して第二回、第三回重合反応を行い、洗浄風乾した後でポリピロール被膜酸化グラフェンセメント系複合材料を得る。 Step H: After reacting for a while, the concrete test block is taken out, first washed several times with deionized water, then washed with absolute ethanol, air-dried and then the second and third polymerization reactions are repeated. After performing cleaning and air drying, a polypyrrole-coated graphene oxide cementitious composite material is obtained.

前記の重複して第二回、第三回重合反応を行うとは重複してピロール水溶液と塩化第二鉄溶液に浸漬し、洗浄し、風乾することである。 Performing the second and third polymerization reactions in duplicate is to immerse, wash, and air dry in an aqueous pyrrole solution and a ferric chloride solution in duplicate.

普通のコンクリートサンプル番号はC0であり、酸化グラフェンを添加したサンプル番号はC1であり、上記方法により調製されたポリピロール被膜酸化グラフェンセメント系複合材料サンプル番号はC2であり、サンプルの厚さは3cmである。フランジ同軸装置により三種のサンプルの電気抵抗率と、300MHz-3GHzの範囲内の電磁シールド性とをそれぞれテストする。結果を表1及び図1に示す。 The normal concrete sample number is C0, the sample number with added graphene oxide is C1, the polypyrrole coated graphene oxide cementitious composite sample number prepared by the above method is C2, and the sample thickness is 3cm is there. Three types of samples are tested for electrical resistivity and electromagnetic shielding in the range of 300MHz-3GHz by flange coaxial device. The results are shown in Table 1 and FIG.

表1 C0-C2サンプルの電気抵抗率 Table 1 Electrical resistivity of C0-C2 sample

図1はサンプル0-3GHz(その中300MHz-GHzは有効シールドバンドである)全帯域シールド性曲線図であり、試験の結果から、ポリピロール-酸化グラフェンコンクリートは、普通のコンクリートと比べ、より強いシールド性を有するだけでなく、より広いシールド範囲を有するということが分かる。 Figure 1 is a full-band shielding curve diagram of sample 0-3GHz (of which 300MHz-GHz is an effective shield band). From the test results, polypyrrole-graphene oxide concrete has a stronger shield than ordinary concrete. It can be seen that it has a wider shielding range in addition to having a property.

上記実施例はただ本発明の比較的に良い実施方式で、本発明の実施方式は上記実施例に限定されるものではなく、本発明の要旨と原理を逸脱しない範囲で行う全ての変化、修整、代替、組合、省略は同等の入れ替え方式であり、本発明の保護範囲に含まれる。 The above embodiment is merely a relatively good implementation method of the present invention, and the implementation method of the present invention is not limited to the above embodiment, and all changes and modifications made without departing from the gist and principle of the present invention. Substitution, combination, and omission are equivalent replacement methods and are included in the protection scope of the present invention.

Claims (1)

ポリピロール被膜酸化グラフェンセメント系複合材料の調製方法は、下記のステップA〜Hを含む:
前記ステップA:試料を準備する:主要材料は:ビスフェノールA型エポキシ樹脂、エチレングリコールモノブチルエーテル、n ―ブタノール、水性アクリル樹脂、トリエタノールアミン、ポリ酢酸ビニル、ビニルトリエトキシシラン、純ピロール、塩化第二鉄、テトラシロキサン四級アンモニウムクロライド塩(Si4ACl)、ジメチルシリコーンオイル、酸化グラフェン粉末、ポルトランドセメント、無水エタノール、脱イオン水である;
前記ステップB:酸化グラフェン分散剤を調製する:配合質量比は:テトラシロキサン四級アンモニウムクロライド塩(Si4ACl):ジメチルシリコーンオイル:脱イオン水=5:1:15である;テトラシロキサン四級アンモニウムクロライド塩(Si4ACl)とジメチルシリコーンオイルをガラスビーカーの中に入れ、2〜2.5min攪拌し、テトラシロキサン四級アンモニウムクロライド塩(Si4ACl)とジメチルシリコーンオイルとを均一相にさせる;その後徐々に水を入れ、継続して15〜18min攪拌し、混合物を乳化機に置いて3000〜3500r/minの回転速度で15〜18min乳化させ、酸化グラフェン分散剤を得る;
前記ステップC:酸化グラフェンを分散する:酸化グラフェンと酸化グラフェン分散剤を1:1.4〜1.6の体積比で混合し、15〜18min攪拌し、酸化グラフェン懸濁液に調製する;
前記ステップD:ポルトランドセメント:水:酸化グラフェン懸濁液=1:0.4:0.1〜0.15の質量比でセメントマトリックス材料を調製し、ポルトランドセメントと水を混合し、セメントペースト攪拌機の中で2〜3min攪拌し、酸化グラフェン懸濁液を入れて2〜3min攪拌する;金型に注入し、温度20℃、湿度98%の条件で12h養成した後で離型し、離型後の部材を継続してこの条件で28d養成し、セメントマトリックス材料を獲得する;
前記ステップE:セメントマトリックス材料界面処理剤:エチレングリコールモノブチルエーテルとn ―プロパノールを2:3〜3.2の比例で混合溶剤に調製する;ビスフェノールA型エポキシ樹脂を1:1〜1.2の比例で混合溶剤の中に溶け、水性アクリル樹脂と、トリエタノールアミンと、ポリ酢酸ビニルとを1:1:1.5の比例で十分に溶解させ、1:1〜1.2の比例で溶解完了のビスフェノールA型エポキシ樹脂を入れ、混合物を乳化機に置いて3000〜3500r/minの回転速度で30〜35min乳化させ、セメントマトリックス材料界面処理剤を得る;
前記ステップF:セメントマトリックス材料の表面処理:養成完了のセメントマトリックス材料を、水洗し、表面の灰塵を取り除き、60〜70℃の中で6〜8h乾燥して取り出し、室温まで冷却し、スプレーガンで調製されたセメントマトリックス材料界面処理剤をセメントマトリックス材料表面に均一にスプレーする;
前記ステップG:乳液が乾燥する前に、即座にセメントマトリックス材料を2〜2.2%のビニルトリエトキシシランの中に浸漬し、3〜4min後取り出して室温で自然に干す;その後0.7〜0.9mol/Lのピロール水溶液の中に浸漬し、2〜3min後取り出して、0.35〜0.45mol/Lの塩化第二鉄溶液の中に入れて重合反応を行う;
前記ステップH:しばらく反応した後でコンクリート試験ブロックを取り出して、まず脱イオン水で何回も洗浄し、また無水エタノールで洗浄し、風乾した後で重複して第二回、第三回重合反応を行い、洗浄風乾した後でポリピロール被膜酸化グラフェンセメント系複合材料を得る;
前記ステップHの中、前記の重複して第二回、第三回重合反応を行うとは重複してピロール水溶液と塩化第二鉄溶液に浸漬し、洗浄し、風乾することである;
前記ステップBの中、
前記の攪拌の時間は2minである;
前記の継続して攪拌する時間は15minである;
前記の乳化の条件は3000r/minの回転速度で15min乳化することである;
前記ステップCの中、
前記の酸化グラフェンと酸化グラフェン分散剤を混合する体積比は1:1.5である;
前記の攪拌の時間は15minである;
前記ステップDの中、
ポルトランドセメント:水:酸化グラフェン懸濁液=1:0.4:0.1の質量比でセメントマトリックス材料を調製する;
前記のポルトランドセメントと水を混合した後で攪拌する時間は2minである;
前記の酸化グラフェン懸濁液を入れて攪拌する時間は2minである;
前記ステップEの中、
前記のエチレングリコールモノブチルエーテルとn ―プロパノールを混合溶剤に調製する比例は2:3である;
前記のビスフェノールA型エポキシ樹脂を混合溶剤の中に溶ける比例は1:1である;
溶解完了のビスフェノールA型エポキシ樹脂を入れる比例は1:1である;
前記ステップEの中、前記の乳化の条件は3000r/minの回転速度で30min乳化することである;
前記ステップFの中、前記の乾燥の条件は60℃の中で6h乾燥することである;
前記ステップGの中、セメントマトリックス材料を2%のビニルトリエトキシシランの中に浸漬し、3min後取り出して室温で自然に干す。
前記ステップGの中、0.8mol/Lのピロール水溶液の中に浸漬し、2min後取り出して、0.4mol/Lの塩化第二鉄溶液の中に入れて重合反応を行うということを特徴とするポリピロール被膜酸化グラフェンセメント系複合材料の調製方法。
The method for preparing a polypyrrole-coated graphene oxide cementitious composite includes the following steps A to H:
Step A: Prepare a sample: Main materials are: bisphenol A type epoxy resin, ethylene glycol monobutyl ether, n-butanol, aqueous acrylic resin, triethanolamine, polyvinyl acetate, vinyltriethoxysilane, pure pyrrole, chloride Diiron, tetrasiloxane quaternary ammonium chloride salt (Si4ACl), dimethyl silicone oil, graphene oxide powder, Portland cement, absolute ethanol, deionized water;
Step B: Preparation of graphene oxide dispersant: blending mass ratio: tetrasiloxane quaternary ammonium chloride salt (Si4ACl): dimethyl silicone oil: deionized water = 5: 1: 15; tetrasiloxane quaternary ammonium chloride Put the salt (Si4ACl) and dimethyl silicone oil in a glass beaker and stir for 2-2.5 min to make the tetrasiloxane quaternary ammonium chloride salt (Si4ACl) and dimethyl silicone oil uniform phase; then gradually add water , Continuously stirring for 15 to 18 minutes, and the mixture is placed in an emulsifier and emulsified for 15 to 18 minutes at a rotational speed of 3000 to 3500 r / min to obtain a graphene oxide dispersant;
Step C: Disperse graphene oxide: Graphene oxide and graphene oxide dispersant are mixed at a volume ratio of 1: 1.4 to 1.6 and stirred for 15 to 18 minutes to prepare a graphene oxide suspension;
Step D: Portland cement: water: graphene oxide suspension = 1: 0.4: Cement matrix material is prepared at a mass ratio of 0.1-0.15, Portland cement and water are mixed, and 2-3 minutes in a cement paste stirrer Stir, add graphene oxide suspension and stir for 2 to 3 min; pour into mold, mold for 12 h at 20 ° C. and 98% humidity, and continue the part after release Cultivate 28d under this condition and obtain cement matrix material;
Step E: Cement matrix material interfacial treatment agent: ethylene glycol monobutyl ether and n-propanol are prepared in a mixed solvent in a ratio of 2: 3 to 3.2; bisphenol A type epoxy resin is mixed in a ratio of 1: 1 to 1.2 Dissolve bisphenol A type epoxy resin, which is dissolved in water, fully dissolves water-based acrylic resin, triethanolamine, and polyvinyl acetate in a ratio of 1: 1: 1.5, and in a ratio of 1: 1-1.2. And the mixture is placed in an emulsifier and emulsified at a rotational speed of 3000 to 3500 r / min for 30 to 35 min to obtain a cement matrix material interfacial treatment agent;
Step F: Surface treatment of cement matrix material: Cultivation completed cement matrix material is washed with water to remove ash on the surface, dried at 60-70 ° C for 6-8h, cooled to room temperature, spray gun Spraying the cement matrix material surface treatment agent prepared in step 1 uniformly on the surface of the cement matrix material;
Step G: Immediately before the emulsion dries, the cement matrix material is immersed in 2-2.2% vinyltriethoxysilane, removed after 3-4 min and allowed to dry at room temperature; then 0.7-0.9 mol / Immerse in L pyrrole aqueous solution, take out after 2-3 min, put in 0.35-0.45 mol / L ferric chloride solution to conduct polymerization reaction;
Step H: After reacting for a while, the concrete test block is taken out, first washed several times with deionized water, then washed with absolute ethanol, air-dried and then the second and third polymerization reaction. To obtain a polypyrrole-coated graphene oxide cementitious composite after washing and air drying;
In the step H, the second and third polymerization reactions are performed by immersing in a pyrrole aqueous solution and a ferric chloride solution, washing, and air drying;
In step B,
Said stirring time is 2 min;
Said continuous stirring time is 15 min;
The condition of the emulsification is to emulsify for 15 minutes at a rotational speed of 3000 r / min;
In step C,
The volume ratio of mixing the graphene oxide and the graphene oxide dispersant is 1: 1.5;
Said stirring time is 15 min;
In step D,
Preparing a cement matrix material with a mass ratio of Portland cement: water: graphene oxide suspension = 1: 0.4: 0.1;
The stirring time after mixing the Portland cement and water is 2 min;
Time for adding and stirring the graphene oxide suspension is 2 min;
In step E,
The ratio of preparing ethylene glycol monobutyl ether and n-propanol as a mixed solvent is 2: 3;
The ratio of dissolving the bisphenol A type epoxy resin in the mixed solvent is 1: 1;
The ratio of adding the completely dissolved bisphenol A type epoxy resin is 1: 1;
In step E, the emulsification condition is to emulsify for 30 min at a rotational speed of 3000 r / min;
In step F, the drying condition is to dry at 60 ° C. for 6 hours;
In step G, the cement matrix material is immersed in 2% vinyltriethoxysilane, removed after 3 min and allowed to dry at room temperature.
In Step G, the polypyrrole is immersed in a 0.8 mol / L pyrrole aqueous solution, taken out after 2 minutes, and placed in a 0.4 mol / L ferric chloride solution to perform a polymerization reaction. A method for preparing a coated graphene oxide cement composite material.
JP2018243821A 2018-01-31 2018-12-26 Polypyrrole film graphene oxide cement-based composite material and its preparation method Active JP6915887B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810098334.5A CN108358541B (en) 2018-01-31 2018-01-31 Polypyrrole-coated graphene oxide cement-based composite material and preparation method thereof
CN201810098334.5 2018-01-31

Publications (2)

Publication Number Publication Date
JP2019131456A true JP2019131456A (en) 2019-08-08
JP6915887B2 JP6915887B2 (en) 2021-08-04

Family

ID=63007749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018243821A Active JP6915887B2 (en) 2018-01-31 2018-12-26 Polypyrrole film graphene oxide cement-based composite material and its preparation method

Country Status (2)

Country Link
JP (1) JP6915887B2 (en)
CN (1) CN108358541B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111848031A (en) * 2020-07-13 2020-10-30 深圳市展旺新材料科技有限公司 Graphene cement-based conductive composite material and preparation method thereof
CN112292015A (en) * 2020-11-10 2021-01-29 上海海事大学 MXene/PPy composite wave absorbing agent and preparation method thereof
CN113077919A (en) * 2021-03-25 2021-07-06 徐州医科大学 Metal Pd-loaded graphene/polypyrrole composite material and preparation method and application thereof
CN113277784A (en) * 2020-07-14 2021-08-20 李焕醒 Pumice concrete with electromagnetic wave absorption function
CN113372064A (en) * 2021-06-23 2021-09-10 重庆烯达科技有限公司 Graphene oxide modified cement concrete and preparation method thereof
CN114686138A (en) * 2022-05-07 2022-07-01 河北工业大学 Magnesium phosphate cement-based electromagnetic wave-absorbing concrete canvas
CN114702716A (en) * 2022-04-20 2022-07-05 浙江理工大学 Preparation method of double-layer flexible composite film with strong microwave absorption performance
CN114892394A (en) * 2022-06-08 2022-08-12 深圳市乐清合兴电子有限公司 Multilayer conductive cloth and manufacturing method thereof
CN115259367A (en) * 2022-07-26 2022-11-01 上海净豚环保科技有限公司 Method for proliferating and culturing anaerobic granular sludge for food wastewater
CN116239333A (en) * 2023-05-11 2023-06-09 湖南高翔新材料有限公司 Production process of antifreeze concrete additive
CN117238680A (en) * 2023-11-10 2023-12-15 江西五十铃汽车有限公司 Graphene oxide/polypyrrole composite electrode material and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109912971B (en) * 2019-02-25 2021-08-06 上海大学 Method for preparing nano polypyrrole-reduced graphene oxide composite material by double emulsion method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298771C (en) * 2005-07-12 2007-02-07 天津大学 Chemical method for preparing film of poly pyrrole in high conductivity on surface of insulating material
US8357858B2 (en) * 2008-11-12 2013-01-22 Simon Fraser University Electrically conductive, thermosetting elastomeric material and uses therefor
CN103130436B (en) * 2013-03-25 2015-03-18 中国科学院上海硅酸盐研究所 Oxidized graphene and graphene reinforced cement based composite material and preparation method thereof
CN106082837A (en) * 2016-06-03 2016-11-09 广州大学 A kind of graphene conductive concrete
CN106278019B (en) * 2016-08-04 2018-06-22 青岛理工大学 Water-based polypyrrole cement based conductive composite material, preparation method and application
CN106587758B (en) * 2016-11-15 2019-02-01 同济大学 Based on emulsion modified graphene-cement-base composite material and its preparation and application

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111848031A (en) * 2020-07-13 2020-10-30 深圳市展旺新材料科技有限公司 Graphene cement-based conductive composite material and preparation method thereof
CN113277784A (en) * 2020-07-14 2021-08-20 李焕醒 Pumice concrete with electromagnetic wave absorption function
CN113277784B (en) * 2020-07-14 2023-04-14 苏州鱼得水电气科技有限公司 Pumice concrete with electromagnetic wave absorption function
CN112292015B (en) * 2020-11-10 2022-10-25 上海海事大学 MXene/PPy composite wave absorbing agent and preparation method thereof
CN112292015A (en) * 2020-11-10 2021-01-29 上海海事大学 MXene/PPy composite wave absorbing agent and preparation method thereof
CN113077919A (en) * 2021-03-25 2021-07-06 徐州医科大学 Metal Pd-loaded graphene/polypyrrole composite material and preparation method and application thereof
CN113372064A (en) * 2021-06-23 2021-09-10 重庆烯达科技有限公司 Graphene oxide modified cement concrete and preparation method thereof
CN114702716A (en) * 2022-04-20 2022-07-05 浙江理工大学 Preparation method of double-layer flexible composite film with strong microwave absorption performance
CN114686138A (en) * 2022-05-07 2022-07-01 河北工业大学 Magnesium phosphate cement-based electromagnetic wave-absorbing concrete canvas
CN114892394A (en) * 2022-06-08 2022-08-12 深圳市乐清合兴电子有限公司 Multilayer conductive cloth and manufacturing method thereof
CN114892394B (en) * 2022-06-08 2023-09-22 深圳市乐清合兴电子有限公司 Multilayer conductive cloth and manufacturing method thereof
CN115259367A (en) * 2022-07-26 2022-11-01 上海净豚环保科技有限公司 Method for proliferating and culturing anaerobic granular sludge for food wastewater
CN115259367B (en) * 2022-07-26 2023-11-17 上海净豚环保科技有限公司 Proliferation and bacteria cultivation method of anaerobic granular sludge for food wastewater
CN116239333A (en) * 2023-05-11 2023-06-09 湖南高翔新材料有限公司 Production process of antifreeze concrete additive
CN116239333B (en) * 2023-05-11 2023-07-07 湖南高翔新材料有限公司 Production process of antifreeze concrete additive
CN117238680A (en) * 2023-11-10 2023-12-15 江西五十铃汽车有限公司 Graphene oxide/polypyrrole composite electrode material and preparation method and application thereof
CN117238680B (en) * 2023-11-10 2024-04-09 江西五十铃汽车有限公司 Graphene oxide/polypyrrole composite electrode material and preparation method and application thereof

Also Published As

Publication number Publication date
CN108358541A (en) 2018-08-03
CN108358541B (en) 2020-07-31
JP6915887B2 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
JP2019131456A (en) Polypyrrole film-coated graphene oxide cement-based composite material and preparation method thereof
CN105238179A (en) Waterborne electromagnetic shielding coating and preparation method thereof
Ma et al. Electromagnetic wave absorption performance of magnesium phosphate cement functionalized by nano-Fe3O4 magnetic fluid and hollow glass microspheres
CN111285671B (en) Low-frequency wave-absorbing material and preparation method thereof
CN105273186A (en) Preparation method of graphene oxide-polyaniline composite electromagnetic shielding material
Lu et al. Enhancement in electrical conductive property of polypyrrole‐coated cotton fabrics using cationic surfactant
CN108947376A (en) A kind of cement mortar and preparation method thereof
CN110248530A (en) A kind of wearable high electromagnetic wave shield film of ventilative automatically cleaning and preparation method thereof
CN109265728A (en) A kind of mandruka preparation method with electromagnetic shielding, absorbing property and sound absorbing performance
Yao et al. Effect of silica fume and colloidal graphite additions on the EMI shielding effectiveness of nickel fiber cement based composites
CN111386023A (en) Cellular composite wave-absorbing electromagnetic shielding material and preparation method thereof
CN106752242A (en) A kind of water-proof putty cream and preparation method thereof
CN109400958A (en) A kind of flexible soft magnetic ferrite composite material and preparation method for electromagnetic shielding
CN106498710A (en) There is fiber of electromaganic wave absorbing property and preparation method thereof
CN104212311B (en) A kind of emulsion paint having capability of electromagnetic shielding
CN110305316A (en) A kind of toroidal preparation method of polyaniline nano with absorbing property
CN109575340A (en) Flexible PET graphene coating electromagnetic shielding membrane material and preparation method thereof
CN109294501A (en) A kind of graphite oxide alkenyl waterproof insulation glue
CN108793934B (en) Novel superconducting wave-absorbing composite material and preparation method thereof
CN110769663A (en) Recyclable liquid metal slurry for electromagnetic shielding and preparation method and application thereof
CN112538296A (en) Graphene network conductive coating for flexible circuit and preparation method thereof
CN110734639B (en) Composite resistive film with adjustable and controllable dielectric constant and preparation method thereof
CN108484027B (en) A kind of concrete material and preparation method thereof having electromagnetic wave absorption performance
CN106866051A (en) A kind of construction material for having pyroelecthc properties, preparation method and building board
CN112281503A (en) Flexible graphene/barium ferrite composite fabric and preparation method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200414

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201026

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210324

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210708

R150 Certificate of patent or registration of utility model

Ref document number: 6915887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150