JP2019129134A - Illumination cover for white led light source and production method - Google Patents

Illumination cover for white led light source and production method Download PDF

Info

Publication number
JP2019129134A
JP2019129134A JP2018021402A JP2018021402A JP2019129134A JP 2019129134 A JP2019129134 A JP 2019129134A JP 2018021402 A JP2018021402 A JP 2018021402A JP 2018021402 A JP2018021402 A JP 2018021402A JP 2019129134 A JP2019129134 A JP 2019129134A
Authority
JP
Japan
Prior art keywords
light
white
light source
wavelength
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018021402A
Other languages
Japanese (ja)
Other versions
JP6481987B1 (en
Inventor
禮三 阿部
Reizo Abe
禮三 阿部
武司 宮代
Takeshi Miyashiro
武司 宮代
高至 石川
Takashi Ishikawa
高至 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BESPACK KK
Original Assignee
BESPACK KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BESPACK KK filed Critical BESPACK KK
Priority to JP2018021402A priority Critical patent/JP6481987B1/en
Application granted granted Critical
Publication of JP6481987B1 publication Critical patent/JP6481987B1/en
Publication of JP2019129134A publication Critical patent/JP2019129134A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

To provide a technique for improvement to reduce blue light in an illumination cover, with respect to a straight tube type LED illumination using a white LED light source.SOLUTION: An illumination cover 1 contains, in a light diffusion grade polycarbonate resin, a perylene-based phosphor dye that absorbs light at a wavelength of 400 nm-500 nm and emits light at a wavelength of 450 nm-550 nm, by a weight ratio of 20 ppm-70 ppm. In the illumination cover, a spectral radiation illuminance value (W/m2/nm) of a blue light peak is set to be 60% or less relative to the blank (light diffusion grade polycarbonate resin).SELECTED DRAWING: Figure 1

Description

本発明はLED照明に使用されるポリカーボネート樹脂製の照明カバーに関する。
とりわけ、青色発光ダイオード光源と蛍光部に黄色蛍光体を有する白色LED光源に関する。
光源を均一拡散させるカバーは光拡散グレードポリカーボネート樹脂を異形溶融押出し成型によって製造された照明カバーの分野に関する。
技術分野としては光源の分光放射照度(W/m2/nm)を照明カバーの光学特性によって制御することに関する。
The present invention relates to a lighting cover made of polycarbonate resin used for LED lighting.
In particular, the present invention relates to a blue LED light source and a white LED light source having a yellow phosphor in a fluorescent part.
A cover that diffuses the light source uniformly relates to the field of lighting covers manufactured by melt extrusion of light diffusion grade polycarbonate resin.
The technical field relates to controlling the spectral irradiance (W / m 2 / nm) of a light source by the optical characteristics of a lighting cover.

LED照明は低消費電力と長寿命の性能から多様な照明空間で使用され、低消費電力化と長寿命が完全に定着している。更に、多様な空間のなかで、快適な生活環境、安全で効率的な業務作業環境を求める照明の役割が益々大きくなっている。
とりわけ、直管型LED照明は事務所、学校、病院など公共の空間を照らす白色LED光源としての利用が拡大している。
白色LED光源は青色LED光と黄色の蛍光体の組み合わせが圧倒的に多く、ブルーライトと定義される波長380nm〜495nmの短波長領域の青色光はそのピーク波長を450nm近辺に有する。
LED lighting is used in various lighting spaces because of its low power consumption and long life performance, and low power consumption and long life have been completely established. Furthermore, in diverse spaces, the role of lighting in search of a comfortable living environment and a safe and efficient work environment is increasing more and more.
In particular, straight tube LED lighting is expanding its use as a white LED light source for illuminating public spaces such as offices, schools and hospitals.
White LED light sources have an overwhelmingly large number of combinations of blue LED light and yellow phosphors, and blue light in a short wavelength region defined as blue light having a wavelength of 380 nm to 495 nm has a peak wavelength around 450 nm.

ブルーライトが生体に及ぼす影響は医学的な面から検証が進められており、社会問題化を呈している。 特に網膜に障害を与え易いことが一般的に知られる様になり、蛍光ランプなど、従来から使われている光源に比べて白色LED光源がブルーライトを多く含まれているという懸念が問題視されている。この技術背景から白色LED照明のブルーライトの低減するための技術が提案されている。The influence of blue light on the living body has been studied from the medical point of view and is becoming a social problem. In particular, it is generally known that the retina is easily damaged, and there is a concern that a white LED light source contains more blue light than conventional light sources such as fluorescent lamps. ing. From this technical background, a technique for reducing blue light of white LED illumination has been proposed.

これらの提案はLED白色光源を生み出す設計の変更、具体的には青色発光ダイオードを紫外線に切り替える方式が実用に具されている。
また光源の設計は変更せず、光拡散カバーにブルーライト低減機能を付与する技術手段としては、ブルーライトを低減できる樹脂、染料、色素などをカバーの樹脂に練りこむ、コーテイングする、またはこれらのフイルムを樹脂カバーにラミネートするなど多様な技術が提案されている。
These proposals are put to practical use in a design change that produces an LED white light source, specifically, a method of switching a blue light emitting diode to ultraviolet light.
Also, the design of the light source is not changed, and as a technical means for imparting a blue light reduction function to the light diffusion cover, resin, dye, pigment, etc. that can reduce blue light is kneaded into the cover resin, coated, or these Various techniques such as laminating a film on a resin cover have been proposed.

従来技術Prior art

LED照明は大きく電球型と直管型(蛍光管型)、シーリングライト(平板)に分けられる。
いずれの方式であってもプラスチックの拡散カバーが用いられているが、耐熱性、光学性能、安全耐久性、価格の点でポリカーボネート樹脂が最も多く使用されている。
LED lighting is roughly divided into a bulb type, a straight tube type (fluorescent tube type), and a ceiling light (flat plate).
In either method, a plastic diffusion cover is used, but polycarbonate resin is most frequently used in terms of heat resistance, optical performance, safety durability, and cost.

蛍光管の代替を目的とする直管型照明は白色LED光源が使われる。
光源は青色発光ダイオード光源と蛍光部に黄色蛍光体を組合した白色LED光源が最も多いので、ブルーライトの課題は社会問題化のリスクを秘めている。
A white LED light source is used for a straight tube type illumination intended to replace a fluorescent tube.
The problem with blue light has the potential to become a social problem, as the light source is most often a white LED light source combining a blue light emitting diode light source and a yellow phosphor in the fluorescent part.

ブルーライト低減対応技術として、青色光の代わりに紫外線と蛍光体の組み合わせ設計の白色光源が実用化されてきたが、寿命、生産コストの面でまだ課題があり、一般普及には至っていない。As a blue light reduction technology, a white light source which is a combination design of ultraviolet light and phosphor instead of blue light has been put into practical use, but there are still problems in terms of lifetime and production cost, and it has not yet spread widely.

光拡散カバーにブルーライトを低減させる機能を付与する技術が種々提案されている。
先行特許文献1には色素を含む樹脂粒子をポリカーボネート樹脂に0.5重量部(5000PPM)をシリコン系拡散材とともに溶融押出しすることで、市販カバー対比約20%ブルーライトを低減できるとしている。「0153 図2」
Various techniques for providing a light diffusion cover with a function of reducing blue light have been proposed.
Prior Patent Document 1 describes that blue light can be reduced by about 20% compared to a commercially available cover by melt-extruding 0.5 parts by weight (5000 PPM) of resin particles containing a pigment together with a silicon-based diffusing material into a polycarbonate resin. “0153 FIG. 2”

一方、本発明は光拡散グレードポリカーボネート樹脂にペリレン系蛍光性染料を重量比で20ppm〜70ppm含有することでブランクカバー対比40%以上のブルーライトを低減できる。さらに、極微量の添加量で低減効果を得るものである。On the other hand, the present invention can reduce blue light of 40% or more relative to the blank cover by containing 20 ppm to 70 ppm of a perylene fluorescent dye in a light diffusion grade polycarbonate resin. Furthermore, the reduction effect is obtained with a very small amount of addition.

本発明では蛍光顔料、金属錯塩染料についても比較実験を実施した結果、ペリレン系蛍光性染料との比較において、ブルーライト低減効果は8%であり、効果は不十分であった。In the present invention, as a result of comparison experiments with fluorescent pigments and metal complex dyes, the blue light reduction effect was 8% in comparison with perylene fluorescent dyes, and the effect was insufficient.

先行特許文献2はデイスプレイ用の防眩フイルムに関するもので、液晶バックライトの白色LED光源のブルーライトを低減する先行技術である。
色素を含む樹脂粒子をMMA樹脂に添加することでブルーライトを低減が可能であるとしている。
具体的な低減率の記載はないが、添加量は重量部で0.01〜1が好ましく、0.005重量部(50ppm)以下は効果ないと記載されている。
「0031」
本発明はペリレン系蛍光性染料を重量部20ppm〜70ppm添加することでブルーライトを低減効果が発揮できる。
Prior art Patent Document 2 relates to an antiglare film for a display, and is a prior art for reducing the blue light of a white LED light source of a liquid crystal backlight.
It is said that blue light can be reduced by adding resin particles containing a dye to the MMA resin.
Although the specific reduction rate is not described, the addition amount is preferably 0.01 to 1 by weight, and 0.005 or less (50 ppm) or less is stated to be ineffective.
"0031"
In the present invention, the effect of reducing blue light can be exhibited by adding 20 parts by weight to 70 ppm by weight of a perylene fluorescent dye.

先行特許文献3は染料を1mm厚みのポリカーボネート樹脂に0.002重量部(20PPM)添加すると、波長470nmに於ける発光強度のピーク値を30〜60%減少させると記載している。
しかしながらブルーライトの定義は波長380nm〜495nmの短波長の領域で青色光ピーク波長が450nm近辺なるのが一般的であり、本文献は波長範囲で20nm長波長側にずれている。
Prior Patent Document 3 describes that when 0.002 parts by weight (20 PPM) of a dye is added to a 1 mm thick polycarbonate resin, the peak value of emission intensity at a wavelength of 470 nm is reduced by 30 to 60%.
However, the definition of blue light is generally such that the blue light peak wavelength is around 450 nm in the short wavelength range of 380 nm to 495 nm, and this document is shifted to the longer wavelength side by 20 nm in the wavelength range.

本発明はピーク波長を450nm近辺として、波長400nm〜500nmを吸収して波長450nm〜550nmで発光するペリレン系蛍光性染料に特定して、蛍光体の励起吸収波長と発光波長の範囲を確定して、ブルーライトのピーク波長の分光放射照度が60%以下にできるものであり、ピーク波長が異なる。The present invention specifies a perylene-based fluorescent dye that absorbs a wavelength of 400 nm to 500 nm and emits light at a wavelength of 450 nm to 550 nm with a peak wavelength of around 450 nm, and determines the excitation absorption wavelength and emission wavelength range of the phosphor. The spectral irradiance at the peak wavelength of blue light can be reduced to 60% or less, and the peak wavelengths are different.

先行特許文献4には黄色と紫の色素を均等にPS樹脂に添加することで波長が400nm〜500nmの光線透過率を60%以下にできると記載されている。
ピーク波長については記載がなく、ブルーライトのピーク波長の分光放射照度がどの程度の低減率かが重要であるとした本発明とは評価方法が異なる。
It is described in the patent document 4 that the light transmittance of a wavelength of 400 nm to 500 nm can be reduced to 60% or less by uniformly adding yellow and violet dyes to the PS resin.
There is no description about the peak wavelength, and the evaluation method is different from that of the present invention in which it is important to what extent the spectral irradiance of the blue light peak wavelength is reduced.

先行特許文献5は液晶デイスプレイ前面を保護する保護フイルムに関する。
ベースフイルムにはPETフイルムを使い、シリコン粘着剤中に樹脂粒子を添加して界面で起こる光散乱現象によってブルーライトを低減すると記載されている。
製品化には直管型照明カバーに本フイルムを積層する加工工程が必要であり、カバー樹脂中にペリレン系蛍光性染料が含まれる構造の本願とは物が異なるものである。
Prior patent document 5 relates to a protective film for protecting the front surface of a liquid crystal display.
It is described that a PET film is used as a base film, and resin particles are added to a silicone adhesive to reduce blue light by a light scattering phenomenon that occurs at the interface.
The production process requires a process step of laminating the present film on a straight tube type illumination cover, which is different from the present application of the structure in which the perylene fluorescent dye is contained in the cover resin.

屋内照明に広く利用されている白色蛍光灯は相関色温度3500K(温白色)、4200K(白色)5000K(昼白色)の3段階に分類されており、このうち、ブルーライトを多く含むのは4000K〜5000Kが顕著である。White fluorescent lamps widely used for indoor lighting are classified into three levels of correlated color temperature 3500K (warm white) and 4200K (white) 5000K (day white), and among these, 4000K including many blue lights ~ 5000 K is remarkable.

一方、昼間の太陽光に近い6500K(昼光色)が高演色性が求められる生産工場等で使用されるが、さらに青色エネルギーが強く、ブルーライト低減には本発明が有効であると見られる。On the other hand, although 6500K (daylight color) close to daytime sunlight is used in production factories and the like that require high color rendering properties, the blue energy is stronger and the present invention is considered effective for reducing blue light.

従来技術の範囲で本願で述べているブルーライトのピーク波長の特定と、分光放射照度、相関色温度、照度、平均演色評価数など照明器具としての基本光学特性を記載した光拡散グレードポリカーボネート樹脂カバーの先行文献は見当たらなかった。Light diffusion grade polycarbonate resin cover that describes the basic optical characteristics of lighting fixtures such as spectral irradiance, correlated color temperature, illuminance, average color rendering index, etc. There was no prior literature of.

先行特許文献Prior patent documents

再公表 WO2015−046222号公報Re-publication WO2015-046222 gazette 特許第 6062968号公報Patent 602968 gazette 特開 2014−170082号公報JP, 2014-170082, A 特許第 6204726号公報Patent No. 6204726 再公表 WO2015−151312号公報Republished WO2015-151312

本発明は相関色温度が4000〜5000Kである直管型白色発光ダイオード素子(LED素子)を有する照明装置であって、当該照明カバーにブルーライト低減の機能を付与する発明に関する。
しかしながら、プラスチックカバーにブルーライト低減加工を施すと、明るさ(照度)が低下するという技術課題がある。
本発明は明るさ(照度)を犠牲にする事なく、高演色性を維持して450nm近辺のブルーライトピーク波長の分光放射照度をブランクカバー対比60%以下にすることが可能になった。
The present invention relates to an illumination device having a straight tube type white light emitting diode (LED) having a correlated color temperature of 4000 to 5000 K, and relates to an invention for providing a function of reducing blue light to the illumination cover.
However, when the blue light reduction process is performed on the plastic cover, there is a technical problem that the brightness (illuminance) decreases.
According to the present invention, it is possible to maintain the high color rendering without sacrificing the brightness (illuminance) and to reduce the spectral irradiance of the blue light peak wavelength around 450 nm to 60% or less compared to the blank cover.

本発明は上記課解決するために鋭意題を検討した結果、照明カバーを拡散グレードポリカーボネート樹脂に限定して、波長400nm〜500nmを吸収して波長450nm〜550nmで発光するペリレン系蛍光性染料を添加することが有効であることが分かった。As a result of studying the present invention in order to solve the above problems, the lighting cover is limited to a diffusion grade polycarbonate resin, and a perylene-based fluorescent dye that absorbs a wavelength of 400 nm to 500 nm and emits light at a wavelength of 450 nm to 550 nm is added. It turned out that it was effective.

本発明は450nm近辺にブルーライトピークを有する4200K(白色)、5000K(昼白色)である2種類の白色LED光源について、光源点灯時のブルーライトピーク波長の分光放射照度値(W/m2/nm)がブランク対比60%以下(低減率40%以下)にすることが可能であることが分かった。In the present invention, the spectral irradiance value (W / m2 / nm) of the blue light peak wavelength when the light source is lit for two types of white LED light sources of 4200 K (white) and 5000 K (day white) having blue light peaks around 450 nm. ) Was found to be able to be 60% or less relative to the blank (reduction rate 40% or less).

蛍光剤添加量は極微量として、ポリカーボネート樹脂重量比で20ppm〜70ppm、さらに好ましくは30ppm〜60ppm条件でブルーライト低減機能が発揮され、かつ照度は約10%増加した。
演色性は平均演色評価数Raが白色、昼白色と高演色性領域である90以上であった。
The addition amount of the fluorescent agent was extremely small, and the blue light reducing function was exhibited under the conditions of 20 ppm to 70 ppm, more preferably 30 ppm to 60 ppm by weight of the polycarbonate resin, and the illuminance increased by about 10%.
The color rendering properties were an average color rendering index Ra of 90 or more, which is white, day white, and a high color rendering region.

ポリカーボネート樹脂は光拡散剤、紫外線吸収剤が練り込まれたタイプが好ましく、溶融押出し成型が可能であるグレードが好ましい。
さらに色目が白色で拡散光透過率が60%以上、長期耐熱性(UL−746B)RIT(RTI=Relative Thermal Index)が125℃以上であるものが好ましい。
The polycarbonate resin is preferably of a type in which a light diffusing agent and an ultraviolet light absorber are kneaded, and a grade capable of melt extrusion molding is preferable.
Further, it is preferable that the color is white, the diffused light transmittance is 60% or more, and the long-term heat resistance (UL-746B) RIT (RTI = Relative Thermal Index) is 125 ° C. or more.

ペリレン系蛍光性染料を光拡散グレードポリカーボネート樹脂ペレット表面に均一に分散付着させ、容器等の内壁に粉末が付着しない様にするかは混錬方法に工夫を要する。
本発明は混錬前のペレットの乾燥条件(温度、時間)さらに蛍光剤との混錬後の温度の適正範囲を見出した。
It is necessary to devise a kneading method as to whether the perylene fluorescent dye is uniformly dispersed and adhered to the surface of the light diffusion grade polycarbonate resin pellet so that the powder does not adhere to the inner wall of a container or the like.
The present invention has found an appropriate range of the drying conditions (temperature, time) of the pellets before kneading and the temperature after kneading with the fluorescent agent.

ポリカーボネート樹脂ペレット(白色)をポリエチレン袋に入れて、120℃x6時間乾燥後、ペリレン系蛍光性染料(粉末)を加えて袋ごとタンブラー型均一混錬装置に移して毎分4〜5回x30分間回転混錬を実施する。
終了時に60℃〜80℃、好ましくは65℃〜75℃の温度状態であれば蛍光性染料はペレットに均一に付着する。
ペレット表面は白色から淡黄色になる。
The polycarbonate resin pellet (white) is put in a polyethylene bag, dried at 120 ° C. for 6 hours, then a perylene fluorescent dye (powder) is added, and the bag is transferred to the tumbler type uniform kneading apparatus to be 4-5 times per minute x 30 minutes Carry out rotary kneading.
If the temperature is 60 ° C. to 80 ° C., preferably 65 ° C. to 75 ° C. at the end, the fluorescent dye adheres uniformly to the pellet.
The pellet surface changes from white to light yellow.

混錬終了後、速やかに温度240℃〜250℃で異形押出しすると、乾燥後は全体積が淡緑色になる。
本蛍光剤は当然のことながら300℃を超える耐熱性を有する。
After completion of kneading, when the profile extrusion is carried out promptly at a temperature of 240 ° C. to 250 ° C., the whole volume becomes pale green after drying.
As a matter of course, the present fluorescent agent has a heat resistance exceeding 300 ° C.

本発明は照明カバーを拡散グレードポリカーボネート樹脂に限定して、波長400nm〜500nmを吸収して波長450nm〜550nmで発光するペリレン系蛍光性染料が有効であることが分かった。
比較例3に示す様に黄色の金属錯塩染料をコーテイングによって積層したが、吸収波長が存在しないため、ブルーライト低減効果は不十分であった。吸収波長が存在する蛍光剤であっても吸収波長が紫外波長域ではブルーライト低減の効果は認められなかった。
In the present invention, it has been found that a perylene fluorescent dye that limits the illumination cover to a diffusion grade polycarbonate resin and absorbs a wavelength of 400 nm to 500 nm and emits light at a wavelength of 450 nm to 550 nm is effective.
As shown in Comparative Example 3, a yellow metal complex dye was laminated by coating, but the blue light reduction effect was insufficient because there was no absorption wavelength. Even in the case of a fluorescent agent having an absorption wavelength, the blue light reduction effect was not observed in the ultraviolet wavelength region.

本発明の対象は直管型LED照明用カバーとしているが、平板状のベースライト用LED照明カバーにつても効果的であり、さらにLED照明モジュールの配置は直下型方式、或いはエッジライト方式の何れにも有効である。Although the object of the present invention is a straight tube type LED lighting cover, it is also effective for a flat plate type LED lighting cover for base light, and the arrangement of the LED lighting module is either a direct type or an edge light type. It is also effective.

本発明の直管型LED照明用カバーは単純な構造で優れた白色LED出射光のブルーライトを大幅に低減が可能であり、さらに明るさ(照度)を向上することができる。The straight tube type LED illumination cover of the present invention has a simple structure and can greatly reduce the blue light of the excellent white LED emission light, and can further improve the brightness (illuminance).

以下、実施例を挙げて、本発明を更に具体的に説明する。本発明はこれにより何ら限定を受けるものではない。
図1に示す様に、光拡散性ポリカーボネート樹脂を溶融異形押出法にて外径26mmφ寸法の金型で肉厚1mmの筒型カバーを押出し、冷却工程を経て、カッターにて所定の長さに切断する異形押出しラインを使用した。
機種名: IKG製 PMS50−28 口径50mmφ押出機
Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited thereby.
As shown in FIG. 1, a cylindrical cover having a wall thickness of 1 mm is extruded with a metal mold having an outer diameter of 26 mmφ by a melt profile extrusion method using a light diffusing polycarbonate resin. A profile extrusion line to cut was used.
Model name: IKG PMS50-28 caliber 50mmφ extruder

本発明の蛍光性染料の添加は異形押し出し工程で混錬する方法である。
比較のために、切断した筒形カバーの両面に黄色染料を溶剤コーテイングする方法も試作した。
蛍光性染料の色目は青色の補色が好ましく、黄色を選択した。
The addition of the fluorescent dye of the present invention is a method of kneading in a modified extrusion process.
For comparison, we also prototyped a method of solvent coating a yellow dye on both sides of a cut cylindrical cover.
The color of the fluorescent dye is preferably a blue complementary color, and yellow is selected.

ポリカーボネート樹脂カバーへのLEDモジュール3の挿入はアルミニウム架台2(#6063純アル分:99.35%)をスライド爪4に挿入して、架台平面部にLEDモジュールテープを糊で固定した。LEDモジュールテープは基板幅9mm、SMD型3528 LED120チップ/メートル 12ボルト,消費電力9.6ワット市販品を色温度4200K(白色)と色温度5000K(昼白色)の2水準を使用した。The LED module 3 was inserted into the polycarbonate resin cover by inserting the aluminum gantry 2 (# 6063 pure Al content: 99.35%) into the slide claw 4 and fixing the LED module tape to the gantry plane portion with glue. The LED module tape was a commercial product with a substrate width of 9 mm, an SMD type 3528 LED of 120 chips / meter of 12 volts, and a power consumption of 9.6 watts. Two levels of a color temperature of 4200 K (white) and a color temperature of 5000 K (day white) were used.

外部環境の光を無視できる暗室で、色温度4200K(白色)と色温度5000K(昼白色)の2種類のLED光源を別々に点灯して、直管カバーから垂直距離1メートルの位置で光学性能の測定を各々実施した。Optical performance at a vertical distance of 1 meter from the straight tube cover in a dark room where the light of the external environment can be ignored, with two types of LED light sources of color temperature 4200K (white) and color temperature 5000K (lunch white) separately lit. Of each were carried out.

表1に白色LED光源(4200K)点灯時の分光放射照度の測定値と光学性能を記載した。
表2には昼白色光源(5000K)点灯時の分光放射照度の測定値と光学性能を記載した。
いずれもカバーを使わない裸で測定器がLED光源を直接受光した場合を比較に入れた。
詳細について、実施例1〜2、比較例1〜5に詳しく記載する。
Table 1 shows the measured values and optical performance of the spectral irradiance when the white LED light source (4200K) is turned on.
Table 2 shows the measured values and optical performance of the spectral irradiance when the daylight white light source (5000K) is turned on.
In each case, the measurement device directly received the LED light source without using a cover.
Details will be described in Examples 1-2 and Comparative Examples 1-5 in detail.

光拡散性ポリカーボネート樹脂(帝人(株)製 ML−6105ZHP MVR=2.5cm/10min、白色ペレット)10Kgを120℃x6時間乾燥し、ペリレン系蛍光性染料(BASF社モノゲンF Yellow83)粉末0.5gを図2に示す特殊タンブラー混錬装置にてペレットの表面に散布した。ペリレン系蛍光性染料の添加量はポリカーボネート樹脂重量比で50PPMとなった。
混錬直後の着色ペレットの温度は約70℃であり、表面の色目は淡黄色に変わった。
Light diffusing polycarbonate resin (manufactured by Teijin (Ltd.) ML-6105ZHP MVR = 2.5cm 3 / 10min, the white pellet) a 10Kg dried 120 ° C. x6 hours, perylene fluorescent dye (BASF Corp. Monogen F Yellow83) powder 0. 5g was spread | dispersed on the surface of the pellet with the special tumbler kneading apparatus shown in FIG. The amount of the perylene fluorescent dye added was 50 PPM in terms of the weight ratio of the polycarbonate resin.
The temperature of the colored pellets immediately after kneading was about 70 ° C., and the surface color changed to pale yellow.

次いで速やかに、当該ペレットを外径26mmφ寸法の金型で溶融温度240℃〜250℃条件下で肉厚1mmの筒型カバーを押出し、冷却後、長さを1200mm長に切断した。
製品カバーの色目は淡緑色に替わった。
Then, immediately, the pellet was extruded with a mold having an outer diameter of 26 mmφ under a melting temperature of 240 ° C. to 250 ° C., a 1 mm thick cylindrical cover was extruded, and after cooling, the length was cut to 1200 mm.
The color of the product cover has changed to light green.

色温度4200K(白色)LED光源モジュールを本カバーに挿入して点灯、青色のピーク波長の分光放射照度を測定した結果は0.005 W/m2/nmであった。
ブランクカバー分光放射照度を100とした低減効果は54となり、図3に示す通り、波長450nm近辺のブルーライト低減効果は十分認められた。
照度はブランクカバー対比約10%増加し、点灯時の相関色温度は3970Kであった。
A color temperature of 4200 K (white color) LED light source module was inserted into the cover and lighted. The result of measuring the spectral irradiance at the peak wavelength of blue was 0.005 W / m 2 / nm.
The reduction effect when the blank cover spectral irradiance was 100 was 54, and as shown in FIG. 3, the blue light reduction effect near a wavelength of 450 nm was sufficiently recognized.
The illuminance increased by about 10% compared to the blank cover, and the correlated color temperature during lighting was 3970K.

比較例1Comparative Example 1

実施例1にて蛍光剤を全く含まない光拡散性ポリカーボネート樹脂ペレット(ブランク)を同一押し出し条件にて製品カバーを作成した。
製品カバーの色目は白色であった。
色温度4200K(白色)LED光源モジュールを本カバーに挿入して点灯、青色のピーク波長の分光放射照度を測定した結果は0.0095W/m2/nmであった。
点灯時の相関色温度は4160Kであった。
A product cover was prepared under the same extrusion conditions as in Example 1 for the light diffusing polycarbonate resin pellet (blank) containing no fluorescent agent at all.
The color of the product cover was white.
The color temperature 4200 K (white) LED light source module was inserted into this cover and lighted, and the result of measuring the spectral irradiance at the peak wavelength of blue was 0.0095 W / m 2 / nm.
The correlated color temperature at the time of lighting was 4160K.

比較例2Comparative Example 2

実施例1にてカバーを使用せず色温度4200K(白色)LED光源モジュールを直接青色のピーク波長の分光放射照度を測定した結果は0.014W/m2/nmであった。
点灯時の相関色温度は4310Kであった。
As a result of measuring the spectral irradiance of the peak wavelength of the blue wavelength directly with a color temperature of 4200 K (white) LED light source module without using a cover in Example 1, the result was 0.014 W / m 2 / nm.
The correlated color temperature at the time of lighting was 4310K.

比較例3Comparative example 3

コルコート(株)会社社製 商品名PC301(屈折率1.47の有機コーテイング剤)をイソプロピルアルコール:ノルマルブタノール=1:1の中に希釈して、固形分割合を3.8%とした。
当該コーテイング液に保土谷化学工業社製金属錯塩染料アイゼンスピロンYellow GRLH Specialを固形分重量比で0.1%添加して撹拌分散させて、当該塗液を満たしたバスに直管カバーの内外両面をデイップ(浸漬)塗布した。
120℃x1分で乾燥して直管カバーの内外面に300nmの透明被膜を積層した。染料のポリカーボネート樹脂重量比で30PPMとなった。
製品カバーの色目は極淡黄色であった。
A product name PC301 (an organic coating agent having a refractive index of 1.47) manufactured by Colcoat Co., Ltd. was diluted in isopropyl alcohol: normal butanol = 1: 1 to obtain a solid content ratio of 3.8%.
0.1% by weight solid ratio by weight of metal complex salt dye Eizenspirone Yellow GRLH Special manufactured by Hodogaya Chemical Industry Co., Ltd. is added to the coating liquid and stirred and dispersed, and the inside and outside of the straight pipe cover are filled in the bath filled with the coating liquid Both sides were dip coated.
It dried at 120 degreeC x 1 minute, and laminated | stacked the 300-nm transparent film on the inner and outer surface of a straight pipe cover. The weight ratio of the polycarbonate resin to the dye was 30 PPM.
The color of the product cover was extremely light yellow.

色温度4200K(白色)LED光源モジュールを本カバーに挿入して点灯、青色のピーク波長の分光放射照度を測定した結果は0.0087 W/m2/nmであった。
ブランクカバー分光放射照度を100とした低減効果は92となり、低減効果は不十分であった。
点灯時の相関色温度は4090Kであった。
A color temperature of 4200 K (white color) LED light source module was inserted into the cover and lighted. The result of measuring the spectral irradiance at the peak wavelength of blue was 0.0087 W / m 2 / nm.
The reduction effect with the blank cover spectral irradiance being 100 was 92, which was insufficient.
The correlated color temperature at the time of lighting was 4090K.

光源を色温度5000K(昼白色)にした以外は全て実施例1に準ずる。
色温度5000K(昼白色)光源モジュールを本カバーに挿入して点灯、青色のピーク波長の分光放射照度を測定した結果は0.005 W/m2/nmであった。
ブランクカバー分光放射照度を100とした低減効果は54となり、図4に示す通り、波長450nm近辺のブルーライト低減効果は十分認められた。
点灯時の相関色温度は4480Kであった。
Except for the light source having a color temperature of 5000 K (day white), everything is in accordance with Example 1.
The light source module with a color temperature of 5000 K (day white) was inserted into the cover and lighted. The result of measuring the spectral irradiance at the peak wavelength of blue was 0.005 W / m 2 / nm.
The reduction effect when the blank cover spectral irradiance was 100 was 54, and as shown in FIG. 4, the blue light reduction effect near a wavelength of 450 nm was sufficiently recognized.
The correlated color temperature at the time of lighting was 4480K.

比較例4Comparative example 4

実施例2にて蛍光剤を全く含まない光拡散性ポリカーボネート樹脂ペレット(ブランク)を同一押し出し条件にて製品カバーを作成した。
製品カバーの色目は白色であった。
色温度5000K(昼白色)LED光源モジュールを本カバーに挿入して点灯、青色のピーク波長の分光放射照度を測定した結果は0.095 W/m2/nmであった。
点灯時の相関色温度は4920Kであった。
A product cover was prepared under the same extrusion conditions as in Example 2 for the light diffusing polycarbonate resin pellet (blank) containing no fluorescent agent at all.
The color of the product cover was white.
A color temperature of 5000 K (daylight white) LED light source module was inserted into this cover and turned on, and the result of measuring the spectral irradiance at the peak wavelength of blue was 0.095 W / m 2 / nm.
The correlated color temperature at the time of lighting was 4920K.

比較例5Comparative example 5

実施例2にてカバーを使用せず色温度4200K(白色)LED光源モジュールを直接測定した青色のピーク波長の分光放射照度を測定した結果は0.017 W/m2/nmであった。
色目を表す点灯時の相関色温度は5050Kであった。
In Example 2, the spectral irradiance of the blue peak wavelength obtained by directly measuring the LED light source module having a color temperature of 4200 K (white) without using a cover was 0.017 W / m 2 / nm.
The correlated color temperature at the time of lighting representing the color eyes was 5050K.

Figure 2019129134
Figure 2019129134
Figure 2019129134
Figure 2019129134

本文及び実施例に記載の光学特性の測定方法について記載する
(1)屈折率
株式会社アタゴ製 アッベ屈折計NAR−2T」測定波長:550nmで測定した。
(2)照度、演色評価数、相関色温度、ピーク波長、分光放射照度値
コニカミノルタ社 演色照度計 CL−A500で測定した。
It describes about the measuring method of the optical characteristic as described in a text and an example. (1) Refractive index It manufactured by Atago Co., Ltd. Abbe refractometer NAR-2T "measurement wavelength: It measured by 550 nm.
(2) Illuminance, color rendering index, correlated color temperature, peak wavelength, spectral irradiance value It was measured by Konica Minolta Co., Ltd. Color rendering luminometer CL-A500.

直管型LED照明において多様化する光学特性ニーズに対応できるプラスチックカバーに関する。The present invention relates to a plastic cover that can meet the diversifying optical property needs in straight tube LED lighting.

ポリカーボネート樹脂からなる照明カバーを通して出射光が発せられる白色LED素子を有する照明装置であって、青色光(ブルーライト)ピーク波長の分光放射照度値(W/m2/nm)をブランク(光拡散グレードポリカーボネート樹脂)対比60%以下にすることが出来る。An illumination device having a white LED element that emits emitted light through an illumination cover made of polycarbonate resin, and having a spectral irradiance value (W / m 2 / nm) of a blue light (blue light) peak wavelength blank (light diffusion grade polycarbonate) 60% less than resin).

LED照明モジュールを配置した断面図Sectional view in which the LED lighting module is arranged ペレットと蛍光粉末を均一混練する装置概略図Equipment schematic for uniform mixing of pellet and fluorescent powder 白色LED光源4200K点灯時の直管カバーの分光放射照度グラフSpectral irradiance graph of straight tube cover when white LED light source 4200K is lit 昼白色LED光源5000K点灯時の直間カバー分光放射照度グラフSpectral irradiance graph of direct cover when daylight white LED light source 5000K is lit

1.ポリカーボネート樹脂カバー
2.アルミニウム架台
3.LEDモジュール
4.スライド爪部
1. 1. Polycarbonate resin cover 2. Aluminum mount LED module4. Slide claw

Claims (3)

光拡散グレートポリカーボネート樹脂に波長400nm〜500nmを吸収して波長450nm〜550nmで発光するペリレン系蛍光性染料を重量比で20ppm〜70ppm含有する白色光源用直管型LED照明カバー。白色LED光源は青色発光ダイオード光源と蛍光部に黄色蛍光体を有する。A straight tube type LED lighting cover for a white light source containing 20 ppm to 70 ppm by weight of a perylene-based fluorescent dye that absorbs a wavelength of 400 nm to 500 nm and emits light at a wavelength of 450 nm to 550 nm in a light diffusing great polycarbonate resin. The white LED light source has a blue light emitting diode light source and a yellow phosphor in the fluorescent portion. 450nm近辺にピークを有する相関色温度がそれぞれ4200K(白色)、5000K(昼白色)である白色LED光源に対して、光源点灯時の青色光(ブルーライト)ピーク波長の分光放射照度値(W/m2/nm)がブランクカバー(光拡散グレードポリカーボネート樹脂単体)対比60%以下にすることが可能な請求項1に記載のLED照明カバー。Spectral irradiance value (W / W) of blue light (blue light) peak wavelength when the light source is lit for a white LED light source having a correlated color temperature of 4200K (white) and 5000K (lunch white) each having a peak near 450 nm. The LED lighting cover according to claim 1, wherein m2 / nm) can be 60% or less of the blank cover (light diffusion grade polycarbonate resin alone). 光拡散グレードポリカーボネート樹脂ペレットを120℃x6時間乾燥後、ポリエチレン袋に入れ、ペリレン系蛍光性染料(粉末)を重量比で20ppm〜70ppmをタンブラー型均一混錬装置にて毎分4〜5回転して30分の間混錬を実施して、ペレット表面に当該粉末を均一に付着後、異形溶融押出を実施する請求項1、請求項2に記載の直管型LED照明カバーの製造方法。The light diffusion grade polycarbonate resin pellets are dried at 120 ° C. for 6 hours and then placed in a polyethylene bag. The weight ratio of the perylene fluorescent dye (powder) is 20 ppm to 70 ppm with a tumbler type homogenous kneader at 4 to 5 revolutions per minute. The method for producing a straight tube type LED lighting cover according to claim 1, wherein kneading is carried out for 30 minutes, and the powder is uniformly attached to the pellet surface, and then the profile melt extrusion is performed.
JP2018021402A 2018-01-24 2018-01-24 Lighting cover for white LED light source and manufacturing method Expired - Fee Related JP6481987B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018021402A JP6481987B1 (en) 2018-01-24 2018-01-24 Lighting cover for white LED light source and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018021402A JP6481987B1 (en) 2018-01-24 2018-01-24 Lighting cover for white LED light source and manufacturing method

Publications (2)

Publication Number Publication Date
JP6481987B1 JP6481987B1 (en) 2019-03-13
JP2019129134A true JP2019129134A (en) 2019-08-01

Family

ID=65718263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018021402A Expired - Fee Related JP6481987B1 (en) 2018-01-24 2018-01-24 Lighting cover for white LED light source and manufacturing method

Country Status (1)

Country Link
JP (1) JP6481987B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014514684A (en) * 2011-02-24 2014-06-19 ビーエーエスエフ ソシエタス・ヨーロピア New lighting device
JP2015153517A (en) * 2014-02-12 2015-08-24 三菱電機株式会社 Illumination lamp, manufacturing method of translucent cover, and luminaire
JP2015530606A (en) * 2012-07-05 2015-10-15 コーニンクレッカ フィリップス エヌ ヴェ Stack of layers comprising a luminescent material, lamp, luminaire and method for manufacturing such a stack of layers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014514684A (en) * 2011-02-24 2014-06-19 ビーエーエスエフ ソシエタス・ヨーロピア New lighting device
JP2015530606A (en) * 2012-07-05 2015-10-15 コーニンクレッカ フィリップス エヌ ヴェ Stack of layers comprising a luminescent material, lamp, luminaire and method for manufacturing such a stack of layers
JP2015153517A (en) * 2014-02-12 2015-08-24 三菱電機株式会社 Illumination lamp, manufacturing method of translucent cover, and luminaire

Also Published As

Publication number Publication date
JP6481987B1 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
JP5032749B2 (en) Optical filter and lighting device
JP6079927B2 (en) Wavelength conversion member and light emitting device manufacturing method
JP6064205B2 (en) Lighting device
JP6727483B2 (en) Materials and color components for lighting equipment color filters
EP2940742A1 (en) Light emitting device
KR101731762B1 (en) Manufacturing technique of diffuser plate that use luminous powder
JP2017536674A (en) Method and article for emitting radiation from a surface
Smith Materials and systems for efficient lighting and delivery of daylight
CN105240692B (en) The synthetic method and application of the light of the imitative natural light of harmful blue light can be reduced
JP6481987B1 (en) Lighting cover for white LED light source and manufacturing method
JP2020087897A (en) Illumination cover for daylight color led light source
US9828525B2 (en) Color coating composition for LED lamp diffuser and color-coated glass article using the same
KR101335211B1 (en) Manufacturing composition for reflect sheet and reflect sheet prepared thereby
JP6245542B1 (en) Method for producing high color rendering cover for LED lighting
US20120154917A1 (en) Color-shifting reflector
JP2007109678A (en) Optical filter and illumination device using the same
Ying et al. Optical film design of low-glare LED panel light
CN105802178A (en) Subdued light board used for LED (Light Emitting Diode) and preparation method thereof
CN212005565U (en) LED illumination lamp structure with blue light harm prevention function
JP6712567B2 (en) LED lighting cover
CN207527312U (en) A kind of LED light
CN203743945U (en) Pipe-in-pipe lamp with temperature adjusting function
JP6745471B2 (en) Light emitting device and lighting device using the same
JP2011210551A (en) Globe of lighting apparatus, filter for lighting apparatus, and lighting apparatus
KR101477495B1 (en) a coating composition same and using for coated glass diffuser for LED light diffuser

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180302

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190204

R150 Certificate of patent or registration of utility model

Ref document number: 6481987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees