JP2019123821A - Resin molding and method for producing resin molding - Google Patents

Resin molding and method for producing resin molding Download PDF

Info

Publication number
JP2019123821A
JP2019123821A JP2018006297A JP2018006297A JP2019123821A JP 2019123821 A JP2019123821 A JP 2019123821A JP 2018006297 A JP2018006297 A JP 2018006297A JP 2018006297 A JP2018006297 A JP 2018006297A JP 2019123821 A JP2019123821 A JP 2019123821A
Authority
JP
Japan
Prior art keywords
resin molded
molded product
support
meth
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018006297A
Other languages
Japanese (ja)
Other versions
JP7298112B2 (en
Inventor
西川 洋平
Yohei Nishikawa
洋平 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2018006297A priority Critical patent/JP7298112B2/en
Publication of JP2019123821A publication Critical patent/JP2019123821A/en
Application granted granted Critical
Publication of JP7298112B2 publication Critical patent/JP7298112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

To provide a resin molding used as a film member and a transparent base material, and has high heat resistance while maintaining flexibility.SOLUTION: A resin molding has a photocurable composition at least containing: two or more different urethane (meth) acrylates, each of which has a urethane skeleton and two or more (meth) acryloyl groups; and a photocuring initiator. The resin molding has a thickness of 20 μm or more and 100 μm or less, in which a peak top value of loss tangent tanδ at frequency 1.0 Hz by dynamic viscoelastic measurement is 1.0 or less.SELECTED DRAWING: Figure 1

Description

本発明は、光硬化性組成物およびウェットコーティング法を用いて、支持体上に当該光硬化性組成物からなる硬化膜を形成して得られる樹脂成形体およびその製造方法に関する。   The present invention relates to a resin molded product obtained by forming a cured film comprising the photocurable composition on a support using a photocurable composition and a wet coating method, and a method for producing the same.

紫外線や電子線のような活性エネルギー線照射による架橋反応を経て硬化する樹脂、いわゆる光硬化性樹脂を主成分として形成される樹脂成形体は、プラスチックフィルムや光学表示装置用の透明基材などの用途に幅広く利用されている。   Resins that are cured through a crosslinking reaction by irradiation with active energy rays such as ultraviolet rays and electron beams, so-called resin molded articles formed with a photocurable resin as a main component, such as plastic films and transparent substrates for optical display devices Widely used for applications.

なかでも、フィルム部材や透明基材として用いられる樹脂成形体は、他部材と組合せる際の取扱いやすさや、全体としての層構成の制約などにより、厚さ数十μm程度の単独膜として利用されることが多い。   Among them, a resin molded product used as a film member or a transparent base material is used as a single film having a thickness of about several tens of μm due to ease of handling when combined with other members and restrictions on the layer configuration as a whole. Often.

また、前記樹脂成形体は、用途に応じてさまざまな材料が用いられているが、いずれの用途においてもその耐久性が求められている。なかでも、耐熱性は、樹脂成形体の後加工の有無、用途に限らず必須である。   Moreover, although various materials are used for the said resin molding according to a use, the durability is calculated | required also in any use. Above all, the heat resistance is essential not only for the presence of post-processing of the resin molded product, but also for the application.

光硬化性組成物は、その主成分である光硬化性樹脂の材料種が豊富であり特性の選択性が高いことなどから、プラスチックフィルム、光学表示装置用部材などに活用することが可能であり、その耐熱性を向上する方法として、紫外線照射量を増やすことにより硬化度を上げる方法が知られている。(例えば、特許文献1参照)   Since the photocurable composition is rich in material types of the photocurable resin that is the main component thereof and has high selectivity of characteristics, it can be used for plastic films, members for optical display devices, etc. As a method of improving the heat resistance, there is known a method of increasing the degree of curing by increasing the ultraviolet irradiation amount. (For example, refer to patent document 1)

しかし、厚さ数十μmの樹脂成形体は、主に紫外線照射量を増やして光硬化度を高めることで耐熱性を向上させるため、一般的に耐熱性の向上に伴い形成する樹脂成形体の柔軟性を損なってしまい、加工性を低下させることになる。   However, a resin molded product having a thickness of several tens of μm is generally a resin molded product that is formed along with the improvement of heat resistance because heat resistance is improved mainly by increasing the amount of ultraviolet irradiation to increase the degree of photocuring. The flexibility is lost and the processability is reduced.

特開2017−24227号公報Unexamined-Japanese-Patent No. 2017-24227 国際公開第2016/039129号International Publication No. 2016/039129

上記の問題を鑑みて、本発明の課題とするところは、光硬化性組成物からなる厚さ数十μmの樹脂成形体の単独膜において、柔軟性を維持したまま耐熱性の高い樹脂成形体を提供することにある。   In view of the above problems, in the place of the present invention, in a single film of a resin molded article with a thickness of several tens of μm made of a photocurable composition, a resin molded article having high heat resistance while maintaining flexibility. To provide.

上記の課題を解決するために、本発明は、
ウレタン骨格と2個以上の(メタ)アクリロイル基を有するウレタン(メタ)アクリレートであって2種類以上の異なるウレタン(メタ)アクリレートと、光硬化開始剤とを少なくとも含む光硬化性組成物からなる樹脂成形体であって、
厚さ20μm以上100μm以下であり、動的粘弾性測定における周波数1.0Hzでの損失正接tanδのピークトップ値が1.0以下であることを特徴とする樹脂成形体である。
In order to solve the above problems, the present invention is
Resin which is a urethane (meth) acrylate having a urethane skeleton and two or more (meth) acryloyl groups, and which comprises a photocurable composition containing at least two or more different urethane (meth) acrylates and a photocuring initiator A molded body,
A resin molded product having a thickness of 20 μm or more and 100 μm or less, and a peak top value of loss tangent tan δ at a frequency of 1.0 Hz in dynamic viscoelasticity measurement is 1.0 or less.

なお、本発明において「(メタ)アクリロイル基」とは「アクリロイル基」と「メタクリロイル基」の両方を示している。また、「(メタ)アクリレート」とは「アクリレート」と「メタクリレート」の両方を示している。   In the present invention, "(meth) acryloyl group" indicates both "acryloyl group" and "methacryloyl group". Also, "(meth) acrylate" indicates both "acrylate" and "methacrylate".

また本発明は、前記樹脂成形体のガラス転移温度Tgにおいて、同一の光硬化性組成物から赤外線未照射で形成された樹脂成形体のTgに対する、赤外線照射して形成された樹脂成形体のTgの上昇率が3%以上であることを特徴とする樹脂成形体である。   Further, according to the present invention, at the glass transition temperature Tg of the resin molded product, the Tg of the resin molded product formed by the infrared irradiation with respect to the Tg of the resin molded product formed from the same photocurable composition without irradiation with infrared light. The rate of increase of is 3% or more.

また本発明は、前記樹脂成形体の製造方法であって、
ウレタン骨格と2個以上の(メタ)アクリロイル基を有するウレタン(メタ)アクリレートであって2種類以上の異なるウレタン(メタ)アクリレートと、光硬化開始剤とを少なくとも含む光硬化性組成物を支持体に塗布して塗布膜を形成する工程と、
前記塗布膜へ紫外線を照射する工程と、
前記紫外線照射の前または後の少なくとも一方に赤外線を照射する工程とを含むことを特徴とする樹脂成形体の製造方法である。
Moreover, the present invention is a method for producing the resin molded product, wherein
A support is a photocurable composition which is a urethane (meth) acrylate having a urethane skeleton and two or more (meth) acryloyl groups, and at least two or more different urethane (meth) acrylates and a photocuring initiator Coating on the substrate to form a coating film;
Irradiating the coating film with ultraviolet light;
Irradiating at least one of before or after the ultraviolet irradiation with infrared radiation.

また本発明は、前記支持体上に形成した樹脂成形体を支持体から剥離する工程をさらに含むことを特徴とする樹脂成形体の製造方法である。   Further, the present invention is the method for producing a resin molded product, further including the step of peeling the resin molded product formed on the support from the support.

また本発明は、前記支持体に前記光硬化性組成物を塗布して塗布膜を形成する工程の後に、さらに前記塗布膜を乾燥させる工程を含むことを特徴とする樹脂成形体の製造方法である。   The present invention further relates to a method for producing a resin molded product, comprising the step of drying the coating film after the step of applying the photocurable composition to the support to form a coating film. is there.

また本発明は、前記支持体が可撓性基材であることを特徴とする樹脂成形体の製造方法である。   The present invention is also a method of producing a resin molded product, wherein the support is a flexible base.

また本発明は、前記支持体として用いた可撓性基材をロール・ツー・ロールで搬送することを特徴とする樹脂成形体の製造方法である。   The present invention is also a method for producing a resin molded product characterized in that the flexible substrate used as the support is transported by roll-to-roll.

本発明の樹脂成形体及びその製造方法によれば、光硬化性組成物により厚さ数十μmの樹脂成形体を製造する際に赤外線照射を用いることで、耐熱性が高く且つ柔軟性を損なわない樹脂成形体を得ることが可能となる。   According to the resin molded product of the present invention and the method for producing the same, heat resistance is high and the flexibility is impaired by using infrared radiation when producing a resin molded product having a thickness of several tens of μm from the photocurable composition. It is possible to obtain a resin molded body that is not

本発明の樹脂成形体の一例を示す概略図である。It is the schematic which shows an example of the resin molding of this invention. 本発明の樹脂成形体を支持体から剥離する工程を示す概略図である。It is the schematic which shows the process of peeling the resin molding of this invention from a support body. 本発明の実施形態に係る樹脂成形体の製造装置の一例を示す概略図である。It is the schematic which shows an example of the manufacturing apparatus of the resin molding concerning embodiment of this invention. 実施例1〜2、比較例1で得られた樹脂成形体の動的粘弾性測定により得られた貯蔵弾性率E’を示したグラフ。The graph which showed storage-elastic-modulus E 'obtained by dynamic-viscoelasticity measurement of the resin molding obtained by Examples 1-2 and Comparative Example 1. FIG. 実施例1〜2、比較例1で得られた樹脂成形体の動的粘弾性測定により得られた損失弾性率E”を示したグラフ。The graph which showed loss elastic modulus E "obtained by the dynamic-viscoelasticity measurement of the resin molding obtained by Examples 1-2 and Comparative Example 1. FIG. 実施例1〜2、比較例1で得られた樹脂成形体の動的粘弾性測定により得られた損失正接tanδを示したグラフ。The graph which showed the loss tangent tan-delta obtained by dynamic-viscoelasticity measurement of the resin molding obtained by Examples 1-2 and Comparative Example 1. FIG.

以下に、本発明による樹脂成形体およびその製造方法の一例について図を参照して説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although an example of a resin molding according to the present invention and a method for producing the same will be described with reference to the drawings, the present invention is not limited thereto.

本発明における一実施形態の樹脂成形体は、図1に示すように、支持体20の上に設け
た光硬化性組成物の塗布膜を硬化させることにより、樹脂成形体10として得られる。
The resin molded product of one embodiment in the present invention is obtained as a resin molded product 10 by curing a coating film of a photocurable composition provided on a support 20, as shown in FIG.

図1で得られた樹脂成形体は、図2に示すように、支持体20から剥離することで、単独膜としての樹脂成形体10としても用いることができる。   The resin molded product obtained in FIG. 1 can be used also as the resin molded product 10 as a single film by peeling it from the support 20 as shown in FIG.

(光硬化性組成物)
次に、樹脂成形体を製造するための光硬化性組成物について説明する。
(Photo-curable composition)
Next, the photocurable composition for manufacturing a resin molding is demonstrated.

本発明で使用される光硬化性組成物には、紫外線や電子線のような活性エネルギー線照射により架橋反応を経て硬化する樹脂、すなわち光硬化性樹脂を用いることができる。   For the photocurable composition used in the present invention, a resin that is cured through a crosslinking reaction by irradiation of active energy rays such as ultraviolet rays and electron beams, that is, a photocurable resin can be used.

本発明で使用される光硬化性樹脂として、ウレタン骨格と2個以上の(メタ)アクリロイル基とを有するウレタン(メタ)アクリレートを用いることができる。
これには既知のものを用いることができるが、例えば、ジイソシアネートをはじめとするポリイソシアネートとポリオールとを反応させてウレタン結合を形成した後、(メタ)アクリル酸のヒドロキシエステルなどを反応させて得られるウレタン(メタ)アクリレートを用いることができる。
As a photocurable resin used by this invention, the urethane (meth) acrylate which has a urethane frame and 2 or more (meth) acryloyl groups can be used.
For this, although known compounds can be used, for example, they are obtained by reacting a polyisocyanate such as diisocyanate with a polyol to form a urethane bond, and then reacting a hydroxy ester of (meth) acrylic acid or the like. Urethane (meth) acrylates can be used.

上記ポリオールとしては、例えば、ポリエステルポリオール、ポリカーボネートポリオール、ポリエーテルポリオールなどを用いることができる。   As said polyol, polyester polyol, polycarbonate polyol, polyether polyol etc. can be used, for example.

ポリイソシアネートとして、例えば、ヘキサメチレンジイソシアネート(HMDI)、イソホロンジイソシアネート(IPDI)、ジフェニルメタンジイソシアネート(MDI)、ジシクロヘキシルメタンジイソシアネートなどを用いることができる。   As a polyisocyanate, hexamethylene diisocyanate (HMDI), isophorone diisocyanate (IPDI), diphenylmethane diisocyanate (MDI), dicyclohexylmethane diisocyanate etc. can be used, for example.

これらの方法により得られたウレタン(メタ)アクリレートは、モノマー、または一部が重合したオリゴマーとして得られたものを用いることができる。その分子量は、光硬化性組成物として調製したものが均一に塗布膜を形成できれば限定されるものではないが、1000000以下が好ましく、500000以下がさらに好ましい。   As the urethane (meth) acrylate obtained by these methods, one obtained as a monomer or an oligomer partially polymerized can be used. The molecular weight is not limited as long as one prepared as a photocurable composition can form a coating film uniformly, but it is preferably 1,000,000 or less, more preferably 500,000 or less.

さらに、2個以上の(メタ)アクリロイル基を有するウレタン(メタ)アクリレートとして、市販されているものを用いることができる。例えば、紫光UV−3520(日本合成化学工業)、紫光UV−7000(日本合成化学工業)、UF−8001G(共栄社化学)などを用いることができる。   Furthermore, what is marketed can be used as urethane (meth) acrylate which has a 2 or more (meth) acryloyl group. For example, purple light UV-3520 (Nippon Synthetic Chemical Industry), purple light UV-7000 (Nippon Synthetic Chemical Industry), UF-8001G (Kyoeisha Chemical) etc. can be used.

また、芳香環もしくは脂環構造を有するウレタン(メタ)アクリレートは比較的機械的特性が高く、例えば、UA−306I(共栄社化学)、AH−600(共栄社化学)などを用いることができる。   In addition, urethane (meth) acrylates having an aromatic ring or alicyclic structure have relatively high mechanical properties, and, for example, UA-306I (Kyoeisha Chemical), AH-600 (Kyoeisha Chemical) and the like can be used.

これらのウレタン(メタ)アクリレートの中から2種類以上を組み合わせて用いることができる。その際、機械的特性の異なるものどうしを組み合わせることにより、用途に合わせた特性をもつ樹脂成形体を得ることができる。   Two or more of these urethane (meth) acrylates can be used in combination. At that time, by combining those having different mechanical properties, it is possible to obtain a resin molded body having properties suited to the application.

また本発明では、上記以外の光硬化性樹脂を添加することもできる。例えば、イソシアヌル酸骨格を有する多官能(メタ)アクリレートを用いれば機械的強度の高い樹脂成形体を製造することが可能であり、例えば、イソシアヌル酸変性ジ及びトリ(メタ)アクリレート、イソシアヌル酸変性(メタ)トリアクリレート、イソシアヌル酸エチレンオキシド変性ジ及びトリ(メタ)アクリレート、ε−カプロラクトン変性トリス((メタ)アクリロキシエチル)イソシアヌレートなどを用いることができる。   In the present invention, photocurable resins other than those described above can also be added. For example, if a polyfunctional (meth) acrylate having an isocyanuric acid skeleton is used, it is possible to produce a resin molded product having high mechanical strength. For example, isocyanuric acid-modified di- and tri (meth) acrylates, isocyanuric acid-modified ( It is possible to use meta) triacrylate, isocyanuric acid ethylene oxide modified di and tri (meth) acrylates, ε-caprolactone modified tris ((meth) acryloxyethyl) isocyanurate and the like.

さらに、イソシアヌル酸骨格を有する多官能(メタ)アクリレートとして、M−215(東亞合成)、M−315(東亞合成)、A−9300(新中村化学工業)、A−9300−1CL(新中村化学工業)などを用いることができる。   Furthermore, as a polyfunctional (meth) acrylate having an isocyanuric acid skeleton, M-215 (Tougat synthesis), M-315 (Totsuya synthesis), A-9300 (Shin-Nakamura Chemical Co., Ltd.), A-9300-1CL (Shin-Nakamura Chemical) Industrial) can be used.

(光硬化開始剤)
本発明に用いる光硬化性組成物に含まれる光硬化開始剤としては、特に限定されないが、透明樹脂の硬化で、特に着色の少ないものであればよい。例えば、表面硬化系の光硬化開始剤としては、1−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−〔4−(2−ヒドロキシエトキシ)フェニル〕−2−ヒドロキシ−2−メチル−1−プロパン−1−オンなどのα−ヒドロキシケトンや、2−メチル−1−(4−メチルチオフェニル)−2−モルフォリノプロパン−1−オンなどのα−アミノケトンを用いることができる。
(Photo-curing initiator)
Although it does not specifically limit as a photocuring initiator contained in the photocurable composition used for this invention, What is especially preferable is a thing with few colorings by hardening of transparent resin. For example, as a photocuring initiator of a surface curing system, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) phenyl] Α-hydroxy ketones such as -2-hydroxy-2-methyl-1-propan-1-one, and α- such as 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one Amino ketones can be used.

また、内部硬化系の光硬化開始剤としては、ジフェニル(2,4,6−トリメチルベンゾイル)ホスフィンオキシドなどのアシルフォスフィンオキサイドや、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1などを用いることができる。   In addition, as an internal curing system photocuring initiator, an acylphosphine oxide such as diphenyl (2,4,6-trimethyl benzoyl) phosphine oxide, 2-benzyl-2-dimethylamino-1- (4-morpholino) Phenyl) -butanone-1 etc. can be used.

また、上記に示されるもの以外にも、例えば、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類など表面硬化系、内部硬化系の特徴を有する光硬化開始剤であれば適宜選択して用いることができる。   In addition to those described above, for example, photocuring initiators having characteristics of surface curing systems such as acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, and internal curing systems. If it is, it can select suitably and can use.

また、これらの光硬化開始剤は単独、もしくは2種類以上を混合して用いることができる。   Moreover, these photocuring initiators can be used individually or in mixture of 2 or more types.

また、光硬化開始剤の添加量は、光硬化性組成物中のすべての光硬化性樹脂の合計100質量%に対して0.1質量%以上10質量%以下程度であることが好ましく、1質量%以上7質量%以下程度であることがより好ましい。この範囲より多くても少なくても、得られる樹脂成形体の硬化度は低くなる傾向にある。特に、多すぎる場合には、樹脂成形体が着色する可能性がある。   In addition, the addition amount of the photo-curing initiator is preferably about 0.1% by mass to 10% by mass with respect to a total of 100% by mass of all the photocurable resins in the photocurable composition, and 1 It is more preferable that the content is about 7% by mass or more. The degree of curing of the resulting resin molded product tends to be low, if it is more or less than this range. In particular, when the amount is too large, the resin molded body may be colored.

(溶剤)
本発明に用いる光硬化性組成物に含まれる溶剤は、光硬化性樹脂や光硬化開始剤を溶解するものであれば特に限定されるものではない。例えば、ジブチルエーテル、ジメトキシメタン、ジメトキシエタン、ジエトキシエタン、プロピレンオキシド、1,4−ジオキサン、1,3−ジオキソラン、1,3,5−トリオキサン、テトラヒドロフラン、アニソールおよびフェネトールなどのエーテル類、またアセトン、メチルエチルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン、およびメチルシクロヘキサノンなどのケトン類、また蟻酸エチル、蟻酸プロピル、蟻酸n−ペンチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン醸エチル、酢酸n−ペンチル、およびγ−ブチロラクトンなどのエステル類、さらにメチルセロソルブ、セロソルブ、ブチルセロソルブ、およびセロソルブアセテートなどのセロソルブ類、また炭酸ジメチルなどを用いることができる。これらの溶剤は単独、もしくは2種類以上を混合して用いることができる。
(solvent)
The solvent contained in the photocurable composition used in the present invention is not particularly limited as long as it dissolves the photocurable resin and the photocurable initiator. For example, ethers such as dibutyl ether, dimethoxymethane, dimethoxyethane, diethoxyethane, propylene oxide, 1,4-dioxane, 1,3-dioxolane, 1,3,5-trioxane, tetrahydrofuran, anisole and phenetole, and acetone , Ketones such as methyl ethyl ketone, diethyl ketone, dipropyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, cyclohexanone, methylcyclohexanone and methylcyclohexanone; ethyl formate, propyl formate, n-pentyl formate, methyl acetate, ethyl acetate, propionic acid Esters such as methyl, propionylic acid ethyl, n-pentyl acetate, and γ-butyrolactone, as well as methyl cellosolve, cellosolve, butyl cellosolve and cellosol Cellosolves such as acetate, also including dimethyl carbonate can be used. These solvents may be used alone or in combination of two or more.

溶剤の配合比率は、光硬化開始剤など光硬化性組成物中の固形分を均一に溶解できれば、後述の塗布方法に応じて適した粘度範囲となるように適宜調整すればよく、光硬化性組成物全体量に対して1質量%以上50質量%以下であることが好ましい。溶剤の配合比率が1質量%より少ない場合、溶剤による効果的な粘度低下が起こらずに塗布膜厚が不均一になる可能性があり、50質量%より多い場合、乾燥工程において溶剤を完全に除去することができず樹脂成形体中の残留溶剤が特性に影響する可能性がある。   The mixing ratio of the solvent may be appropriately adjusted to be a viscosity range suitable for the application method described later, as long as solid content in the photocurable composition such as a photocuring initiator can be uniformly dissolved, and photocuring It is preferable that it is 1 to 50 mass% with respect to the composition whole quantity. If the blending ratio of the solvent is less than 1% by mass, there is a possibility that the applied film thickness becomes nonuniform without an effective viscosity reduction due to the solvent, and if it is more than 50% by mass, the solvent is completely removed in the drying step. Residual solvent in the resin molded product can not be removed, which may affect the characteristics.

また、光硬化性組成物による塗布膜の面性を良化させるためには、比較的沸点の高い溶剤の方がレベリング性(均一塗布性)が向上するため好ましい。一方、塗布膜厚が厚い場合、膜中に溶剤が残りやすくなるため、できるだけ溶剤の沸点は低いほうがよく、前者と後者のバランスを考慮して溶剤を決定すればよい。   Moreover, in order to improve the surface property of the coating film by a photocurable composition, the solvent with a comparatively high boiling point is preferable in order to improve leveling property (uniform coating property). On the other hand, when the coating thickness is large, the solvent tends to remain in the film, so the boiling point of the solvent should be as low as possible, and the solvent may be determined in consideration of the balance between the former and the latter.

また、本発明に用いる光硬化性組成物は、添加剤として高分子系可塑剤、防汚剤、表面調整剤、レベリング剤、屈折率調整剤、硬化剤、光増感剤、導電材料などを用いることができる。作製する樹脂成形体の用途に応じて適宜選べばよい。   The photocurable composition used in the present invention may contain, as additives, polymer plasticizers, antifouling agents, surface conditioners, leveling agents, refractive index regulators, curing agents, photosensitizers, conductive materials, etc. It can be used. It may be appropriately selected according to the application of the resin molded body to be produced.

(支持体)
次いで、本発明に用いる光硬化性組成物の支持体への塗布工程について説明する。
(Support)
Next, the step of applying the photocurable composition used in the present invention to a support will be described.

上記成分を含有する光硬化性組成物は、支持体に塗布し、紫外線照射の前または後の少なくとも一方に赤外線照射を含み紫外線照射することにより、樹脂成形体となる硬化膜を形成することができる。   The photocurable composition containing the above-mentioned components is applied to a support, and at least one of before or after ultraviolet irradiation contains infrared radiation and forms ultraviolet rays to form a cured film to be a resin molded product. it can.

本発明に使用する支持体としては、光硬化性組成物中に含まれる各成分に溶解せず、光硬化性組成物を塗布した後、紫外線照射、赤外線照射などの各工程において支持体が変形することがなければ、一般的な材料を用いることができる。   The support used in the present invention is not dissolved in the components contained in the photocurable composition, and after the photocurable composition is applied, the support is deformed in each step such as ultraviolet irradiation and infrared irradiation. If it does not do, common materials can be used.

なかでも、平滑性、耐熱性を備え、機械的強度に優れたものが好ましい。例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリアクリレート、ポリメタクリレート、ポリカーボネート、ポリアミド、ポリプロピレン、ポリビニルアセタール、ポリエーテルケトンなどの各種樹脂からなるフィルム状の可撓性基材、もしくはロール状の金属体などを挙げることができる。   Among them, those having smoothness, heat resistance and excellent mechanical strength are preferable. For example, a film-like flexible substrate made of various resins such as polyethylene terephthalate, polyethylene naphthalate, polymethyl acrylate, polymethyl methacrylate, polyacrylate, poly methacrylate, polycarbonate, polyamide, polypropylene, polyvinyl acetal, polyether ketone, Or a roll-shaped metal body etc. can be mentioned.

可撓性基材を支持体としてロール・ツー・ロールで搬送して樹脂成形体を作製する場合、可撓性基材は基材搬送装置により連続的に搬送できる厚さがあれば良い。厚さは、25μm以上200μm以下程度であることが好ましく、さらには40μm以上100μm以下が好ましい。25μmより薄い場合、可撓性基材にかかる張力により破断する可能性があり、また200μmより厚い場合、硬化膜の形成工程において熱や光を減衰させる要因となる可能性がある。ただし、可撓性基材の厚さは上記範囲に限定されるものではない。   When a flexible base material is conveyed by roll-to-roll as a support to produce a resin molded product, the flexible base material may have a thickness that can be continuously conveyed by the base material conveyance device. The thickness is preferably about 25 μm to 200 μm, and more preferably 40 μm to 100 μm. If it is thinner than 25 μm, it may break due to the tension applied to the flexible substrate, and if it is thicker than 200 μm, it may become a factor to attenuate heat and light in the step of forming a cured film. However, the thickness of the flexible substrate is not limited to the above range.

(塗布方法)
支持体上に光硬化性組成物を塗布する方法としては、厚さ20〜100μmの樹脂成形体を均一な膜厚で製造できれば特に限定されるものではないが、適宜公知の塗布方法の中からウェットコーティング法と総称される方法を用いることができる。例えば、ディップコーティング法、スピンコーティング法、フローコーティング法、スプレーコーティング法、ロールコーティング法、グラビアロールコーティング法、エアドクターコーティング法、プレードコーティング法、ワイヤードクターコーティング法、ナイフコーティング法、リバースコーティング法、トランスファロールコーティング法、マイクログラビアコーティング法、キスコーティング法、キャストコーティング法、スロットオリフィスコーティング法、カレンダーコーティング法、ダイコーティング法、キャップコーティング法、アプリケータコーティング法、バーコーティング法などを用いることができる。中でも、ダイコーティング法、キャップコーティング法、ロールコーティング法などの塗布方法では、広い範囲の粘度の光硬化性組成物について均一な塗布膜を形成できる。
(Coating method)
The method for applying the photocurable composition on the support is not particularly limited as long as a resin molded product with a thickness of 20 to 100 μm can be produced with a uniform film thickness. A method collectively referred to as a wet coating method can be used. For example, dip coating method, spin coating method, flow coating method, spray coating method, roll coating method, gravure roll coating method, air doctor coating method, blade coating method, wire doctor coating method, knife coating method, knife coating method, reverse coating method, transfer Roll coating, microgravure coating, kiss coating, cast coating, slot orifice coating, calendar coating, die coating, cap coating, applicator coating, bar coating, etc. can be used. Among them, a coating method such as a die coating method, a cap coating method, or a roll coating method can form a uniform coating film on a photocurable composition having a wide range of viscosity.

光硬化性組成物中に溶剤を含む場合、塗布膜から溶剤を除去するために乾燥工程を含んでもよい。その場合、乾燥工程には、適宜公知の乾燥手段を用いることができる。例えば、加熱、送風、熱風などを用いることができる。   When the photocurable composition contains a solvent, a drying step may be included to remove the solvent from the coating film. In that case, a well-known drying means can be used suitably for a drying process. For example, heating, blowing, hot air or the like can be used.

(紫外線照射および赤外線照射)
支持体上に形成した塗布膜を硬化して樹脂成形体を得る方法としては、適宜公知の紫外線照射方法を用いることができる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、カーボンアーク灯、キセノンランプ、無電極放電管などの光源を採用できる。照射条件として、紫外線照射量は100〜2000mJ/cmに設定することができる。これ以下の照射量では樹脂が十分に硬化せず強度不足となる可能性があり、これ以上の照射量では開始剤などの分解による着色が起こる可能性がある。
(UV radiation and infrared radiation)
As a method of hardening the coating film formed on the support body and obtaining a resin molding, a well-known ultraviolet irradiation method can be used suitably. For example, light sources such as low pressure mercury lamps, medium pressure mercury lamps, high pressure mercury lamps, super high pressure mercury lamps, metal halide lamps, carbon arc lamps, xenon lamps, and electrodeless discharge tubes can be employed. As irradiation conditions, an ultraviolet irradiation amount can be set to 100 to 2000 mJ / cm 2 . If the dose is less than this range, the resin may not be cured sufficiently and the strength may be insufficient. If the dose is more than this range, coloring due to decomposition of an initiator or the like may occur.

また、紫外線照射の前または後の少なくとも一方で赤外線を照射する方法としては、適宜公知の紫外線照射方法を用いることができる。例えば、短波長赤外線ヒーター、中波長赤外線ヒーター、カーボンヒーターなど、ヒーターの最大エネルギー波長が1.2〜2.7μmのものを用いることができる。   Moreover, as a method of irradiating an infrared ray at least one side before or after ultraviolet irradiation, a well-known ultraviolet irradiation method can be used suitably. For example, a thing with a maximum energy wavelength of 1.2-2.7 micrometers, such as a short wavelength infrared heater, a medium wavelength infrared heater, a carbon heater, can be used.

赤外線照射量は、60〜150kW/mに設定することができ、塗布膜や支持体の過度の加熱による荒れや波打ちなどのダメージが起こらない範囲であれば限定されるものではない。 The infrared irradiation amount can be set to 60 to 150 kW / m 2 , and is not limited as long as damage such as roughening or waving due to excessive heating of the coating film or the support does not occur.

赤外線照射ユニットは、紫外線露光装置内の紫外線光源ユニットと併設することができる。紫外線光源ユニットの前後に併設することにより、紫外線照射工程と一括して赤外線照射を行うことができる。   The infrared irradiation unit can be juxtaposed to the ultraviolet light source unit in the ultraviolet exposure device. By arranging the ultraviolet light source unit in front of and behind the ultraviolet light source unit, infrared irradiation can be performed together with the ultraviolet light irradiation process.

硬化後の塗布膜厚は、塗布精度、取扱いの観点から20μm以上100μm以下の範囲であることが好ましい。20μm未満では機械的強度が低いため取り扱い難い。また、100μmより厚い場合、巻き取りや光硬化性組成物の均一な塗布が困難となる。   The coating film thickness after curing is preferably in the range of 20 μm to 100 μm from the viewpoint of coating accuracy and handling. If it is less than 20 μm, it is difficult to handle because the mechanical strength is low. When the thickness is more than 100 μm, it is difficult to take up the film or to uniformly apply the photocurable composition.

(剥離工程)
また、支持体上に形成した樹脂成形体は、支持体から剥離して単独膜の樹脂成形体として得ることができる。
(Peeling process)
Further, the resin molded product formed on the support can be peeled off from the support to obtain a resin molded product of a single film.

そのため、形成した樹脂成形体を支持体から剥離する工程を含んでもよい。支持体からの剥離は、適宜公知の方法を用いることができる。例えば、ロール・トゥー・ロールで搬送する場合は支持体をロール状に巻取り、得られた樹脂成形体もロール状に巻き取って回収することができる。その際、支持体からの剥離による帯電が生じる場合は、剥離部にイオナイザーなどの除電設備を敷設することにより防止することができる。   Therefore, the process of peeling the formed resin molding from a support body may be included. For peeling from the support, known methods can be appropriately used. For example, in the case of roll-to-roll conveyance, the support can be wound into a roll, and the obtained resin molded product can also be wound into a roll and recovered. At this time, if charging due to peeling from the support occurs, it can be prevented by laying a charge removing equipment such as an ionizer at the peeling portion.

さらに、形成した樹脂成形体を剥離可能な支持体を用いることができ、支持体上に得られた樹脂成形体の剥離性を良くするために、支持体の光硬化性組成物の塗布面に離型性を付与することができる。離型性を付与する方法としては、支持体の表面にシリコーンオイル、シリコーンワニスに代表される離型剤を塗っても良いし、あるいはシリコーンゴムの薄膜層を形成してもよい。また同じ目的でフッ素系樹脂、フッ素系ゴムも利用されうるし、フッ素樹脂微粉末をシリコーンゴムあるいは、普通のゴムに混ぜて剥離性を出すなどの使い方をしてもよい。支持体への光硬化性組成物の均一な塗布、硬化膜の形成が可能であれば、いずれの方法を用いてもよい。   Furthermore, a support that can release the formed resin molded product can be used, and in order to improve the releasability of the resin molded product obtained on the support, the coated surface of the support with the photocurable composition can be used. Releasability can be imparted. As a method for imparting mold releasability, a silicone oil, a mold release agent typified by a silicone varnish may be coated on the surface of the support, or a thin film layer of silicone rubber may be formed. For the same purpose, fluorine resin and fluorine rubber may be used, and fine powder of fluorine resin may be mixed with silicone rubber or ordinary rubber to obtain releasability. Any method may be used as long as uniform application of the photocurable composition to a support and formation of a cured film are possible.

また、支持体として可撓性基材を用いる場合、樹脂成形体の剥離性をよくするために、予め表層に離型層が構成されている汎用の離型フィルムを用いることができる。   Moreover, when using a flexible base material as a support body, in order to improve the peelability of a resin molding, the general purpose release film in which the release layer is previously comprised by surface layer can be used.

(製造装置)
支持体をロール・トゥー・ロールで搬送する場合の、本発明の樹脂成形体の製造装置の一例を図3に示す。支持体巻出し部31より搬送された支持体20の上に樹脂成形体を形成するために、光硬化性組成物を塗布する塗布部41、樹脂成形体の硬化ユニット50に加えて、必要に応じて乾燥部42を設けることができる。
(manufacturing device)
An example of the manufacturing apparatus of the resin molding of this invention in the case of conveying a support body by roll to roll is shown in FIG. In order to form a resin molded body on the support 20 transported from the support unwinding portion 31, in addition to the application portion 41 for applying the photocurable composition and the curing unit 50 of the resin molded body, it is necessary Accordingly, the drying unit 42 can be provided.

樹脂成形体の硬化ユニット50を構成する要素として、紫外線照射部51、赤外線照射部52を設けることができる。赤外線照射部52は、紫外線照射部の前後に設けることができ、紫外線照射前に設ける赤外線照射部52aと、紫外線照射後に設ける赤外線照射部52bとのいずれか一方だけを設けてもよいし、併設して必要に応じて使い分けてもよいし、製造条件ごとに赤外線照射部52の配置を変更した樹脂成形体の硬化ユニット50を用いてもよい。   The ultraviolet irradiation part 51 and the infrared irradiation part 52 can be provided as an element which comprises the hardening unit 50 of a resin molding. The infrared irradiation unit 52 can be provided before or after the ultraviolet irradiation unit, and only one of the infrared irradiation unit 52a provided before ultraviolet irradiation and the infrared irradiation unit 52b provided after ultraviolet irradiation may be provided. It may be used properly according to need, or a curing unit 50 of a resin molded product in which the arrangement of the infrared irradiation unit 52 is changed for each manufacturing condition may be used.

樹脂成形体の硬化ユニット50により塗布膜を硬化させて形成した樹脂成形体10は、支持体巻取り部32により支持体を剥離し、樹脂成形体単独として巻取り部33により巻き取られた形態で得ることができる。   The resin molded body 10 formed by curing the coating film by the curing unit 50 of the resin molded body is a form in which the support is peeled by the support winding portion 32 and wound by the winding portion 33 as the resin molded body alone. Can be obtained by

(微粒子)
以上のようにして得た樹脂成形体には、ブロッキング防止や硬度付与、防眩性、帯電防止性能付与、または屈折率調整のために無機あるいは有機化合物の微粒子を含ませることができる。
(Particles)
The resin molded product obtained as described above can contain fine particles of an inorganic or organic compound for blocking prevention, hardness imparting, antiglare property, antistatic property imparting, or refractive index adjustment.

上記無機あるいは有機化合物の微粒子は、光硬化性組成物に混合できるものであれば特に限定されず、光硬化性組成物に混合して支持体に塗布することにより樹脂成形体に含ませることができる。   The fine particles of the inorganic or organic compound are not particularly limited as long as they can be mixed with the photocurable composition, and may be contained in a resin molded product by mixing with the photocurable composition and applying it to a support. it can.

樹脂成形体に含ませる無機微粒子としては、酸化珪素、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム、酸化スズ、五酸化アンチモンといった酸化物やアンチモンドープ酸化スズ、リンドープ酸化スズ等複合酸化物などを用いることができる。その他では、炭酸カルシウム、タルク、クレイ、カオリン、ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウムなども使用することができる。   As the inorganic fine particles to be contained in the resin molded product, oxides such as silicon oxide, titanium oxide, aluminum oxide, zirconium oxide, magnesium oxide, tin oxide, antimony pentoxide, complex oxides such as antimony-doped tin oxide, phosphorus-doped tin oxide, etc. It can be used. In addition, calcium carbonate, talc, clay, kaolin, calcium silicate, aluminum silicate, magnesium silicate, calcium phosphate and the like can also be used.

また、有機微粒子としては、ポリメタクリル酸メチルアクリレート樹脂粉末、アクリル−スチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン樹脂粉末、ポリスチレン系粉末、ポリカーボネート粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末などを用いることができる。   Further, as the organic fine particles, polymethacrylic acid methyl acrylate resin powder, acrylic-styrene resin powder, polymethyl methacrylate resin powder, silicon resin powder, polystyrene powder, polycarbonate powder, melamine resin powder, polyolefin resin powder, etc. It can be used.

これらの微粒子粉末の平均粒径としては、5nm〜20μmが好ましく、10nm〜10μmがより好ましい。また、これらの微粒子は2種類以上を複合して用いることもできる。ただし、微粒子径は作製する樹脂成形体の膜厚の範囲内で選択する。   As an average particle diameter of these fine particle powder, 5 nm-20 micrometers are preferable, and 10 nm-10 micrometers are more preferable. Moreover, these microparticles | fine-particles can also be used in combination of 2 or more types. However, the particle diameter is selected within the range of the film thickness of the resin molding to be produced.

本発明で得られる樹脂成形体は、必要に応じて、反射防止性能、帯電防止性能、防汚性能、防眩性能、電磁波シールド性能、赤外線吸収性能、紫外線吸収性能、又は色補正性能などを有する機能層を積層させてもよい。なお、これらの機能層は単層であってもかまわないし、複数の層であってもかまわない。例えば、反射防止層にあっては、低屈折率層単層から構成されても構わないし、低屈折率層と高屈折率層の繰り返しによる複数層から構成されていても構わない。また、機能層は、防汚性能を有する反射防止層というように、1層で複数の機能を有していても構わない。   The resin molded product obtained by the present invention has antireflective performance, antistatic performance, antifouling performance, antiglare performance, electromagnetic wave shielding performance, infrared absorption performance, ultraviolet absorption performance, color correction performance, etc. as necessary. The functional layer may be laminated. These functional layers may be a single layer or a plurality of layers. For example, the antireflection layer may be composed of a single layer of low refractive index layer, or may be composed of a plurality of layers formed by repeating a low refractive index layer and a high refractive index layer. In addition, the functional layer may have a plurality of functions in one layer, such as an antireflective layer having antifouling performance.

以下に、実施例について説明する。ただし、本発明は以下の実施例により限定されるものではない。   Examples will be described below. However, the present invention is not limited by the following examples.

樹脂成形体を作製するにあたり、ウレタンアクリレートの製造方法については特開2013−159691号公報を参考にした。   In producing a resin molded product, JP-A-2013-159691 was referred to for a method of producing urethane acrylate.

[ウレタンアクリレート1の製造]
冷却管、攪拌装置および温度計を取り付けた反応容器中で、「イソホロンジイソシアネート(IPDI)」31.5質量部と、ジブチル錫ジラウレート0.1質量部とを混合し、50℃にて「ε−カプロラクトン1mol変性2−ヒドロキシエチルアクリレート」68.4質量部を1時間かけて滴下した後、90℃で10時間攪拌した。
この反応液中の残存イソシアネート量をFT−IRを使用して測定したところ、ウレタン化反応が定量的に行われ、最終的にはイソシアネートがなくなり、多官能ウレタンアクリレート(以下、ウレタンアクリレート1)99.9質量部を得た。
[Production of Urethane Acrylate 1]
In a reaction vessel equipped with a condenser, a stirrer and a thermometer, 31.5 parts by mass of "isophorone diisocyanate (IPDI)" and 0.1 parts by mass of dibutyltin dilaurate are mixed, and After 68.4 parts by mass of 1 mol of caprolactone modified 2-hydroxyethyl acrylate was dropped over 1 hour, the mixture was stirred at 90 ° C. for 10 hours.
The amount of residual isocyanate in this reaction solution is measured using FT-IR, and the urethanation reaction is quantitatively performed, and finally the isocyanate is eliminated, and a polyfunctional urethane acrylate (hereinafter, urethane acrylate 1) 99 9 parts by mass were obtained.

[実施例1]
上記条件で製造した「ウレタンアクリレート1」80重量部と、多官能ウレタンアクリレート「UV−7000B(日本合成化学工業)34.3重量部と、光硬化開始剤「イルガキュア184(1−ヒドロキシシクロヘキシルフェニルケトン)」(BASF)5.7重量部と、溶剤「メチルエチルケトン」80重量部とを混合、攪拌し、光硬化性組成物を調製した。
Example 1
80 parts by weight of “urethane acrylate 1” manufactured under the above conditions, 34.3 parts by weight of polyfunctional urethane acrylate “UV-7000B (Nippon Synthetic Chemical Industry), and light curing initiator“ IRGACURE 184 (1-hydroxycyclohexyl phenyl ketone) ) (BASF) and 80 parts by weight of a solvent "methyl ethyl ketone" were mixed and stirred to prepare a photocurable composition.

調製した光硬化性組成物を、透明ポリエチレンテレフタレート(PET)フィルム(「ルミラー75T60」:東レ)を支持体として、アプリケータを用いて硬化後の樹脂成形体の膜厚が50μm程度となるように塗布し、100℃のオーブンにて3分間乾燥させ、赤外線照射手段として中波長カーボンヒーター(最大エネルギー波長1.7μm)照射、紫外線照射手段としてメタルハライドランプ(500mJ/cm)照射、の順に塗布膜への照射を行い、樹脂成形体を得た。なお本実施例の樹脂成形体の膜厚は、下記表1に記載した。 The prepared photocurable composition was prepared using a transparent polyethylene terephthalate (PET) film ("Lumirror 75T60": Toray) as a support so that the film thickness of the resin molded product after curing using an applicator would be about 50 μm. The coating is applied and dried in an oven at 100 ° C. for 3 minutes, followed by irradiation with a medium wavelength carbon heater (maximum energy wavelength of 1.7 μm) as infrared irradiation means and metal halide lamp (500 mJ / cm 2 ) irradiation as ultraviolet irradiation means. Irradiation was performed to obtain a resin molded product. In addition, the film thickness of the resin molding of a present Example was described in following Table 1.

[実施例2]
支持体上に形成した塗布膜への紫外線照射と赤外線照射の順序を逆にした(紫外線照射した後に赤外線照射)ことを除き、実施例1と同様の方法にて樹脂成形体を得た。
Example 2
A resin molded product was obtained in the same manner as in Example 1 except that the order of ultraviolet irradiation and infrared irradiation on the coating film formed on the support was reversed (infrared irradiation and then infrared irradiation).

[実施例3]
光硬化開始剤として「ジフェニル(2,4,6−トリメチルベンゾイル)ホスフィンオキシド」(BASF)を用いたことを除き、実施例1と同様の方法にて樹脂成形体を得た。
[Example 3]
A resin molded product was obtained in the same manner as in Example 1, except that “diphenyl (2,4,6-trimethyl benzoyl) phosphine oxide” (BASF) was used as a photocuring initiator.

[実施例4]
光硬化開始剤として「ジフェニル(2,4,6−トリメチルベンゾイル)ホスフィンオキシド」(BASF)を用いたことを除き、実施例2と同様の方法にて樹脂成形体を得た。
Example 4
A resin molded product was obtained in the same manner as in Example 2 except that “diphenyl (2,4,6-trimethyl benzoyl) phosphine oxide” (BASF) was used as a photocuring initiator.

[実施例5]
光硬化開始剤として「ESACURE ONE」(DKSHジャパン)を用いたことを除き、実施例1と同様の方法にて樹脂成形体を得た。
[Example 5]
A resin molded product was obtained in the same manner as in Example 1 except that “ESACURE ONE” (DKSH Japan) was used as a photocuring initiator.

[実施例6]
光硬化開始剤として「ESACURE ONE」(DKSHジャパン)を用いたことを除き、実施例2と同様の方法にて樹脂成形体を得た。
[Example 6]
A resin molded product was obtained in the same manner as in Example 2 except that “ESACURE ONE” (DKSH Japan) was used as a photocuring initiator.

[実施例7]
光硬化性組成物の塗布工程において、硬化後の樹脂成形体の膜厚が20μm程度となるようにしたことを除き、実施例5と同様の方法にて樹脂成形体を得た。
[Example 7]
A resin molded product was obtained by the same method as Example 5, except that in the coating step of the photocurable composition, the film thickness of the resin molded product after curing was about 20 μm.

[実施例8]
「ウレタンアクリレート1」93.3重量部と、多官能ウレタンアクリレート「UV−7000B(日本合成化学工業)40重量部と、光硬化開始剤「ESACURE ONE」(DKSHジャパン)6.7重量部と、溶剤「メチルエチルケトン」60重量部とを混合、攪拌し、光硬化性組成物を調製した。
[Example 8]
93.3 parts by weight of "urethane acrylate 1", 40 parts by weight of polyfunctional urethane acrylate "UV-7000B (Nippon Synthetic Chemical Industry), and 6.7 parts by weight of photocuring initiator" ESACURE ONE "(DKSH Japan), The photocurable composition was prepared by mixing and stirring 60 parts by weight of a solvent "methyl ethyl ketone".

調製した光硬化性組成物を、透明ポリエチレンテレフタレート(PET)フィルム(「ルミラー75T60」:東レ)を支持体として、アプリケータを用いて硬化後の樹脂成形体の膜厚が100μm程度となるように塗布し、100℃のオーブンにて5分間乾燥させ、中波長カーボンヒーター(最大エネルギー波長1.7μm)照射、メタルハライドランプ(500mJ/cm)照射の順に塗布膜への照射を行い、樹脂成形体を得た。 The prepared photocurable composition was prepared using a transparent polyethylene terephthalate (PET) film ("Lumirror 75T60": Toray) as a support so that the film thickness of the resin molded product after curing using an applicator would be about 100 μm. The coating is applied, dried in an oven at 100 ° C. for 5 minutes, irradiated with a medium wavelength carbon heater (maximum energy wavelength of 1.7 μm), and irradiated with a metal halide lamp (500 mJ / cm 2 ) in that order, and a resin molded body I got

[比較例1]
支持体上に形成した塗布膜に対し紫外線のみを照射して硬化させたことを除き、実施例1と同様の方法にて樹脂成形体を得た。
Comparative Example 1
A resin molded product was obtained in the same manner as in Example 1, except that the coating film formed on the support was cured by irradiation with only ultraviolet light.

[比較例2]
光硬化開始剤として「ジフェニル(2,4,6−トリメチルベンゾイル)ホスフィンオキシド」(BASF)を用いたことを除き、比較例1と同様の方法にて樹脂成形体を得た。
Comparative Example 2
A resin molded product was obtained in the same manner as in Comparative Example 1 except that “diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide” (BASF) was used as a photocuring initiator.

[比較例3]
光硬化開始剤として「ESACURE ONE」(DKSHジャパン)を用いたことを除き、比較例1と同様の方法にて樹脂成形体を得た。
Comparative Example 3
A resin molded product was obtained in the same manner as in Comparative Example 1 except that “ESACURE ONE” (DKSH Japan) was used as a photocuring initiator.

上記により作製した樹脂成形体を支持体から剥離し、次に示す方法で動的粘弾性測定、引張試験測定を行った。測定結果を表1に示す。   The resin molded product produced as described above was peeled off from the support, and dynamic viscoelasticity measurement and tensile test measurement were performed by the methods described below. The measurement results are shown in Table 1.

[動的粘弾性測定]
作製した樹脂成形体は、支持体から剥離した後、日立ハイテクサイエンス社製の動的粘弾性測定装置を用いて測定した。引張りモード、周波数1.0Hzにおいて測定した貯蔵弾性率E’、損失弾性率E”の比(=E”/E’)である損失正接tanδの最大値(ピークトップ値)を求めた。また、損失正接tanδが最大値となる温度をガラス転移温度(Tg)として求めた。
[Dynamic viscoelasticity measurement]
The produced resin molded product was peeled from the support, and then measured using a dynamic viscoelasticity measuring device manufactured by Hitachi High-Tech Science. The maximum value (peak top value) of loss tangent tan δ, which is the ratio (= E ′ ′ / E ′) of the storage elastic modulus E ′ measured at a frequency of 1.0 Hz and the loss elastic modulus E ′ ′ in tension mode, was determined. Further, the temperature at which the loss tangent tan δ became the maximum value was determined as the glass transition temperature (Tg).

[引張試験測定]
作製した樹脂成形体を支持体から剥離した後、80mm×15mmの短冊状にサンプルを切り出し、島津製作所社製小型卓上試験機EZ−Lを用い、測定開始時のチャック間距離を50mmとし、引張り速度5mm/minにて試験をおこなった。
サンプルが破断するまでの間の最大応力を引張強度として求めた。また、引張伸びは下記式(i)を用いて算出した。
引張伸び={(破断時の長さ)−(引張り前の初期長さ)}/引張り前の初期長さ
・・・式(i)
[Tension test measurement]
After peeling the produced resin molded product from the support, cut out a sample in the shape of a strip of 80 mm × 15 mm, and using a small desktop tester EZ-L manufactured by Shimadzu Corporation, set the distance between chucks at the start of measurement to 50 mm. The test was performed at a speed of 5 mm / min.
The maximum stress until the sample broke was determined as the tensile strength. Moreover, tensile elongation was computed using the following formula (i).
Tensile elongation = {(length at break)-(initial length before tension)} / initial length before tension ... Formula (i)

また、実施例1〜2、比較例1の粘弾性測定結果より、貯蔵粘弾率E’のグラフを図4に示し、損失弾性率E”のグラフを図5に示し、損失正接tanδのグラフを図6に示す。
図6のグラフから、赤外線照射を行った実施例1及び2のピーク値が、赤外線照射を行わない比較例1に比べて小さくなり、ガラス転移温度Tgが高温側にシフトしていることがわかる。
ここで、同じ光硬化剤のグループ毎に、比較例のTg(即ち赤外線未照射の樹脂成形体のTg)をTg0とし、各実施例のTg(即ち赤外線を照射した樹脂成形体のTg)をTg1として、その変化率をTg上昇率と定義し、次式(1)を用いて算出して表1に記載した。
Tg上昇率(%)=(Tg1/Tg0)×100 ・・・(1)
これらの結果から、赤外線照射を行わない比較例に対し、赤外線照射を行った各実施例のTgがどの程度変化したかを確認できる。
Moreover, the graph of storage viscosity E 'is shown in FIG. 4, the graph of loss elastic modulus E''is shown in FIG. 5, and the graph of loss tangent tan-delta is shown from the viscoelastic measurement result of Examples 1-2 and Comparative Example 1. Is shown in FIG.
From the graph of FIG. 6, it can be seen that the peak values of Examples 1 and 2 in which infrared irradiation is performed are smaller than those in Comparative Example 1 in which infrared irradiation is not performed, and the glass transition temperature Tg is shifted to the high temperature side .
Here, the Tg of the comparative example (that is, the Tg of the non-irradiated resin molded article) of the comparative example is set to Tg0, and the Tg of each example (that is, the Tg of the resin molded article irradiated with infrared light) The rate of change was defined as the rate of increase in Tg as Tg1, calculated using the following equation (1), and listed in Table 1.
Tg increase rate (%) = (Tg1 / Tg0) × 100 (1)
From these results, it is possible to confirm how much the Tg of each example subjected to the infrared irradiation has changed relative to the comparative example in which the infrared irradiation is not performed.

Figure 2019123821
Figure 2019123821

表1より、作製した樹脂成形体は、支持体から剥離した単独膜として20μmから100μm程度の膜厚となり、いずれも膜厚は均一であった。   From Table 1, the produced resin molded product had a film thickness of about 20 μm to 100 μm as a single film peeled from the support, and the film thickness was uniform in all cases.

また、表1より、紫外線照射の前または後に赤外線照射を行った実施例1〜8では、樹脂成形体は、いずれも損失正接tanδは1.0以下であった。一方で、赤外線照射を行わずに樹脂成形体を製造した比較例1〜3では、損失正接tanδはいずれも1.0を超える値となった。   Further, from Table 1, in Examples 1 to 8 in which infrared irradiation was performed before or after ultraviolet irradiation, the loss tangent tan δ of each of the resin molded bodies was 1.0 or less. On the other hand, in Comparative Examples 1 to 3 in which the resin molded product was manufactured without performing the infrared irradiation, the loss tangent tan δ all had a value exceeding 1.0.

また、異なる光硬化開始剤を用いたいずれの場合も、紫外線照射のみの場合(比較例1〜3)と比べ、赤外線照射を行うことにより(実施例1〜8)、ガラス転移温度Tgが高くなり、適用温度範囲が広くなった。
Tg上昇率は、実施例1〜8において少なくとも3%以上の上昇率が得られた。
Further, in any case using different photo-curing initiators, the glass transition temperature Tg is high by performing infrared irradiation (Examples 1 to 8) as compared with the case of only ultraviolet irradiation (Comparative Examples 1 to 3) The application temperature range has been broadened.
The Tg increase rate was at least 3% or more in Examples 1 to 8.

実施例はいずれも比較例のように赤外線照射を行わない場合と比べて同等の引張強度、引張伸びを維持していた。上述のようにガラス転移温度Tgが上昇しても脆くなったり破断しやすくなることはなく、フィルム状の樹脂成形体としての柔軟性は維持されていた。   All of the examples maintained the same tensile strength and tensile elongation as compared with the case where infrared irradiation was not performed as in the comparative example. As described above, even if the glass transition temperature Tg is increased, it does not become brittle or easily break, and the flexibility as a film-like resin molded body is maintained.

本発明は、液晶表示装置、プラズマ表示装置、エレクトロクロミック表示装置、発光ダイオード表示装置、EL表示装置、タッチパネルなどの光学表示装置や包装材、建築部材などに用いられる機能性フィルムなどに利用することができる。   The present invention is used for functional films used for liquid crystal display devices, plasma display devices, electrochromic display devices, light emitting diode display devices, EL display devices, optical display devices such as touch panels, packaging materials, building members, etc. Can.

10・・・・・樹脂成形体
20・・・・・支持体
31・・・・・支持体巻き出し部
32・・・・・支持体巻取り部
33・・・・・樹脂成形体巻取り部
41・・・・・塗布部
42・・・・・乾燥部
50・・・・・樹脂成形体の硬化ユニット
51・・・・・紫外線照射部
52・・・・・赤外線照射部
52a・・・・・紫外線照射前の赤外線照射部
52b・・・・・紫外線照射後の赤外線照射部
10 ··· Resin molded body 20 ··· Support body 31 · · · Support body unwinding portion 32 ··· Support body winding portion 33 ··· Resin molded body winding Portion 41: Application portion 42: Drying portion 50: Curing unit of resin molded body 51: UV irradiation portion 52: Infrared irradiation portion 52a ··· Infrared irradiation unit 52b before ultraviolet irradiation ····· Infrared irradiation unit after ultraviolet irradiation

Claims (7)

ウレタン骨格と2個以上の(メタ)アクリロイル基を有するウレタン(メタ)アクリレートであって2種類以上の異なるウレタン(メタ)アクリレートと、光硬化開始剤とを少なくとも含む光硬化性組成物からなる樹脂成形体であって、
厚さ20μm以上100μm以下であり、動的粘弾性測定における周波数1.0Hzでの損失正接tanδのピークトップ値が1.0以下であることを特徴とする樹脂成形体。
Resin which is a urethane (meth) acrylate having a urethane skeleton and two or more (meth) acryloyl groups, and which comprises a photocurable composition containing at least two or more different urethane (meth) acrylates and a photocuring initiator A molded body,
A resin molded body having a thickness of 20 μm to 100 μm and a peak top value of loss tangent tan δ at a frequency of 1.0 Hz in dynamic viscoelasticity measurement being 1.0 or less.
前記樹脂成形体のガラス転移温度Tgにおいて、同一の光硬化性組成物から赤外線未照射で形成された樹脂成形体のTgに対する、赤外線照射して形成された樹脂成形体のTgの上昇率が3%以上であることを特徴とする請求項1に記載の樹脂成形体。   At the glass transition temperature Tg of the resin molded product, the rate of increase of the Tg of the resin molded product formed by infrared irradiation to the Tg of the resin molded product formed from the same photocurable composition without irradiation with infrared light is 3 It is% or more, The resin molding of Claim 1 characterized by the above-mentioned. 請求項1または2に記載の樹脂成形体の製造方法であって、
ウレタン骨格と2個以上の(メタ)アクリロイル基を有するウレタン(メタ)アクリレートであって2種類以上の異なるウレタン(メタ)アクリレートと、光硬化開始剤とを少なくとも含む光硬化性組成物を支持体に塗布して塗布膜を形成する工程と、
前記塗布膜へ紫外線を照射する工程と、
前記紫外線照射の前または後の少なくとも一方に赤外線を照射する工程とを含むことを特徴とする樹脂成形体の製造方法。
It is a manufacturing method of the resin molding of Claim 1 or 2, Comprising:
A support is a photocurable composition which is a urethane (meth) acrylate having a urethane skeleton and two or more (meth) acryloyl groups, and at least two or more different urethane (meth) acrylates and a photocuring initiator Coating on the substrate to form a coating film;
Irradiating the coating film with ultraviolet light;
Irradiating at least one side before or after the ultraviolet irradiation with an infrared ray.
前記支持体上に形成した樹脂成形体を、支持体から剥離する工程をさらに含むことを特徴とする請求項3に記載の樹脂成形体の製造方法。   The method for producing a resin molded product according to claim 3, further comprising the step of peeling the resin molded product formed on the support from the support. 前記支持体に前記光硬化性組成物を塗布して塗布膜を形成する工程の後に、さらに前記塗布膜を乾燥させる工程を含むことを特徴とする請求項3または4に記載の樹脂成形体の製造方法。   The resin molded product according to claim 3 or 4, further comprising a step of drying the coating film after the step of applying the photocurable composition to the support to form a coating film. Production method. 前記支持体が可撓性基材であることを特徴とする請求項3〜5のいずれかに記載の樹脂成形体の製造方法。   The method for producing a resin molded product according to any one of claims 3 to 5, wherein the support is a flexible base material. 前記支持体として用いた可撓性基材をロール・ツー・ロールで搬送することを特徴とする請求項6に記載の樹脂成形体の製造方法。   7. The method for producing a resin molded product according to claim 6, wherein the flexible substrate used as the support is transported by roll-to-roll.
JP2018006297A 2018-01-18 2018-01-18 RESIN MOLDED PRODUCT AND RESIN MOLDED PRODUCTION METHOD Active JP7298112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018006297A JP7298112B2 (en) 2018-01-18 2018-01-18 RESIN MOLDED PRODUCT AND RESIN MOLDED PRODUCTION METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018006297A JP7298112B2 (en) 2018-01-18 2018-01-18 RESIN MOLDED PRODUCT AND RESIN MOLDED PRODUCTION METHOD

Publications (2)

Publication Number Publication Date
JP2019123821A true JP2019123821A (en) 2019-07-25
JP7298112B2 JP7298112B2 (en) 2023-06-27

Family

ID=67398367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018006297A Active JP7298112B2 (en) 2018-01-18 2018-01-18 RESIN MOLDED PRODUCT AND RESIN MOLDED PRODUCTION METHOD

Country Status (1)

Country Link
JP (1) JP7298112B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62236867A (en) * 1986-04-09 1987-10-16 Dainichi Color & Chem Mfg Co Ltd Method for curing photo-curable resin paint composition
JP2001170561A (en) * 1999-12-17 2001-06-26 Toppan Forms Co Ltd Method for curing coating film of uv-curable pressure- sensitive adhesive
JP2002105310A (en) * 2000-09-27 2002-04-10 Shin Etsu Polymer Co Ltd Semiconductive belt made of acrylic resin
JP2007204736A (en) * 2006-01-05 2007-08-16 Nippon Synthetic Chem Ind Co Ltd:The Resin molded product, method for producing resin molded product and use thereof
JP2010272662A (en) * 2009-05-21 2010-12-02 Mitsubishi Gas Chemical Co Inc Light transmission electromagnetic wave shielding laminate exhibiting excellent bendability, and method of manufacturing the same
JP2016002764A (en) * 2014-06-19 2016-01-12 日本合成化学工業株式会社 Laminate, use thereof, and production method thereof
WO2016039129A1 (en) * 2014-09-11 2016-03-17 ヘレウス株式会社 Method and device for manufacturing cured light-curing resin composition
JP2016102154A (en) * 2014-11-28 2016-06-02 凸版印刷株式会社 Resin molded body and manufacturing method of resin molded body
JP2017111257A (en) * 2015-12-15 2017-06-22 大日本印刷株式会社 Method of manufacturing phase difference film and method of manufacturing phase difference layer transfer sheet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62236867A (en) * 1986-04-09 1987-10-16 Dainichi Color & Chem Mfg Co Ltd Method for curing photo-curable resin paint composition
JP2001170561A (en) * 1999-12-17 2001-06-26 Toppan Forms Co Ltd Method for curing coating film of uv-curable pressure- sensitive adhesive
JP2002105310A (en) * 2000-09-27 2002-04-10 Shin Etsu Polymer Co Ltd Semiconductive belt made of acrylic resin
JP2007204736A (en) * 2006-01-05 2007-08-16 Nippon Synthetic Chem Ind Co Ltd:The Resin molded product, method for producing resin molded product and use thereof
JP2010272662A (en) * 2009-05-21 2010-12-02 Mitsubishi Gas Chemical Co Inc Light transmission electromagnetic wave shielding laminate exhibiting excellent bendability, and method of manufacturing the same
JP2016002764A (en) * 2014-06-19 2016-01-12 日本合成化学工業株式会社 Laminate, use thereof, and production method thereof
WO2016039129A1 (en) * 2014-09-11 2016-03-17 ヘレウス株式会社 Method and device for manufacturing cured light-curing resin composition
JP2016102154A (en) * 2014-11-28 2016-06-02 凸版印刷株式会社 Resin molded body and manufacturing method of resin molded body
JP2017111257A (en) * 2015-12-15 2017-06-22 大日本印刷株式会社 Method of manufacturing phase difference film and method of manufacturing phase difference layer transfer sheet

Also Published As

Publication number Publication date
JP7298112B2 (en) 2023-06-27

Similar Documents

Publication Publication Date Title
JP4003800B2 (en) Active energy ray-curable resin composition for film protective layer and film using the same
KR100864349B1 (en) Actinic Radiation Curable Resin Composition For Film Protection Layer and Film and Optical Sheet Made by Using the Same
JP4001180B2 (en) Active energy ray-curable resin composition for film protective layer and film using the same
JP2013173871A (en) Composition, antistatic coating agent, and antistatic laminate
TW201239050A (en) Coating composition of hard coating for metal substrate and compact
JP6163568B2 (en) Manufacturing method of plastic film
JP2008231163A (en) Composition for forming hardcoat layer, and hardcoat film obtained using the same and its manufacturing method
JP2007169580A (en) Radiation-curable liquid resin composition for adhesive agent and bonding method
TW201742883A (en) Hard coating film and flexible display having the same
TWI817009B (en) Coating compositions, decorative films and decorative molded products
TW202237764A (en) Coating composition, semi-cured film, decorative molded article, and method of manufacturing decorative molded article wherein a ultraviolet curable coating composition can form a tack-free semi-cured film excellent in anti-adhesive property and having excellent heating ductility
JP2016102154A (en) Resin molded body and manufacturing method of resin molded body
JP7298112B2 (en) RESIN MOLDED PRODUCT AND RESIN MOLDED PRODUCTION METHOD
JP2022034529A (en) Curable resin composition and laminate film
JP2020193298A (en) Resin molding and manufacturing method of resin molding
JP7275533B2 (en) Method for manufacturing resin molding
JP7110754B2 (en) Active energy ray-curable resin composition, coating agent using the same, and sheet
JP6561446B2 (en) Method for producing photocurable resin molding
JP2020007393A (en) Resin molded body and manufacturing method of resin molded body
TWI750949B (en) Transparent conductive film, patterned transparent conductive film, optical member and electronic device
JPWO2019235206A1 (en) Active energy ray-curable composition and film using it
JP6651821B2 (en) Method of manufacturing hard coat film, method of manufacturing polarizing plate including hard coat film, method of manufacturing transmission type liquid crystal display including hard coat film
KR20150028117A (en) In-mold decoration hard coating film, manufacturing method thereof and injection moluding articles using the same
JP7370835B2 (en) Curable composition and cured film thereof
JP6519986B2 (en) Curable composition, surface layer film forming substrate using the same, method of producing surface layer film forming substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230529

R150 Certificate of patent or registration of utility model

Ref document number: 7298112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150