JP2019121420A - リチウムイオン二次電池の正極板 - Google Patents

リチウムイオン二次電池の正極板 Download PDF

Info

Publication number
JP2019121420A
JP2019121420A JP2017253076A JP2017253076A JP2019121420A JP 2019121420 A JP2019121420 A JP 2019121420A JP 2017253076 A JP2017253076 A JP 2017253076A JP 2017253076 A JP2017253076 A JP 2017253076A JP 2019121420 A JP2019121420 A JP 2019121420A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
particles
battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017253076A
Other languages
English (en)
Other versions
JP6973062B2 (ja
Inventor
有梨 田畑
Yuri Tabata
有梨 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017253076A priority Critical patent/JP6973062B2/ja
Publication of JP2019121420A publication Critical patent/JP2019121420A/ja
Application granted granted Critical
Publication of JP6973062B2 publication Critical patent/JP6973062B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】大気中の水分及び二酸化炭素との接触に起因して、電池を形成したときに電池の反応抵抗が高くなるのを抑制できるリチウムイオン二次電池の正極板を提供すること。【解決手段】電池1の正極板31は、集電箔32と第1正極活物質粒子41を含む第1活物質層33,34とその上に形成された第2正極活物質粒子49を含む第2活物質層35,36とを備える。第1正極活物質粒子41は、1gの第1正極活物質粒子41を50gの水に分散させた分散液のpHがpH=11.3以上となる特性を有し、第2正極活物質粒子49は、1gの第2正極活物質粒子49を50gの水に分散させた分散液のpHがpH=11.0以下となる特性を有し、第2活物質層35,36は、吸湿剤粒子47を含む。【選択図】図4

Description

本発明は、リチウム酸化物からなる正極活物質粒子を含む活物質層が集電箔上に形成された、リチウムイオン二次電池の正極板に関する。
リチウムイオン二次電池(以下、単に「電池」ともいう)に用いられる正極板として、リチウム酸化物からなる正極活物質粒子を含む活物質層が集電箔上に形成された正極板が知られている。また、リチウム酸化物からなる正極活物質粒子として、リチウムニッケルコバルトアルミニウム複合酸化物粒子や、リチウムニッケルコバルトマンガン複合酸化物粒子、オリビン型リン酸鉄リチウム粒子、スピネル型リチウムマンガン酸化物粒子などが知られている。例えば特許文献1には、正極活物質粒子として、リチウムニッケルコバルトアルミニウム複合酸化物粒子が開示されている(特許文献1の特許請求の範囲等を参照)。
特開2016−88776号公報
しかしながら、リチウム酸化物からなる正極活物質粒子は、大気中の水分に触れると、その粒子表面で水(H2O)と反応して水酸化リチウム(LiOH)を生じる(Li2O+H2O→2LiOH)。更に、この水酸化リチウムは大気中の二酸化炭素(CO2)と反応して炭酸リチウム(Li2CO3)を生じる(2LiOH+CO2→Li2CO3+H2O)。正極活物質粒子の粒子表面で生じた炭酸リチウムは抵抗体である。また、正極活物質粒子が水と反応し正極活物質粒子からリチウムイオンが抜けると、正極活物質粒子の結晶構造が変化し、正極活物質粒子におけるリチウムイオンの挿入離脱がし難くなる。このため、この正極板を用いた電池では、反応抵抗が高くなる。
本発明は、かかる現状に鑑みてなされたものであって、大気中の水分及び二酸化炭素との接触に起因して、電池を形成したときに電池の反応抵抗が高くなるのを抑制できるリチウムイオン二次電池の正極板を提供することを目的とする。
上記課題を解決するための本発明の一態様は、集電箔と、上記集電箔上に形成され、リチウム酸化物からなる第1正極活物質粒子を含む第1活物質層と、上記第1活物質層上に形成され、第2正極活物質粒子を含む第2活物質層と、を備えるリチウムイオン二次電池の正極板であって、上記第1正極活物質粒子は、1gの上記第1正極活物質粒子を50gの水に分散させた分散液のpHがpH=11.3以上となる特性を有し、上記第2正極活物質粒子は、1gの上記第2正極活物質粒子を50gの水に分散させた分散液のpHがpH=11.0以下となる特性を有し、上記第2活物質層は、吸湿剤粒子を含むリチウムイオン二次電池の正極板である。
第1活物質層に含める第1正極活物質粒子として、上記分散液のpHがpH=11.3以上となる特性の正極活物質粒子を用いたい場合がある。しかし、このような正極活物質粒子は、特に、水及び二酸化炭素と反応して水酸化リチウム及び炭酸リチウムを生じ易いため、前述のように、この正極板を用いた電池で反応抵抗が高くなる。
これに対し、上述の正極板では、第1活物質層の上に第2活物質層を設けたので、正極板の取り扱い時などに、第1活物質層中の第1正極活物質粒子に、大気中の水分及び二酸化炭素が接触し難くなる。このため、水分及び二酸化炭素との接触に起因して、第1活物質層中の第1正極活物質粒子の粒子表面に水酸化リチウム、更には炭酸リチウムを生じること、及び、粒子表面で結晶構造が変化することを抑制できる。
一方で、第2活物質層に含まれる第2正極活物質粒子は、上記分散液のpHがpH=11.0以下となる特性を有する。即ち、第2正極活物質粒子は、第1正極活物質粒子に比べて水及び二酸化炭素との反応が穏やかである。このため、第1活物質層と第2活物質層とを合わせた活物質層全体で見たとき、活物質層全体が第1活物質層のみからなる場合に比べて、水分及び二酸化炭素との接触に起因して、正極活物質粒子の粒子表面に水酸化リチウム、更には炭酸リチウムを生じること、及び、粒子表面で結晶構造が変化することを抑制できる。
加えて、第2活物質層は吸湿剤粒子を含むため、正極板が大気中の水分に触れても、この水分は第2活物質層中の吸湿剤粒子によって吸湿されるので、水分が第2活物質層中の第2正極活物質粒子と反応することを抑制できる。また、水分が第2活物質層の下の第1活物質層まで届くのをより効果的に抑制できる。
これらにより、この正極板を用いた電池において、第1活物質層上に第2活物質層を有しない正極板を用いた電池に比べて、電池の反応抵抗を抑制した正極板とすることができる。
また、第2活物質層は、正極活物質粒子(第2正極活物質粒子)を含むため、第2活物質層を正極活物質粒子を含まない単なる保護層とする場合に比べて、正極板に含まれる正極活物質粒子の総量を多くして、電池容量を大きくできる。
なお、「吸湿剤粒子」としては、例えば、シリカゲル、石膏、モレキュラーシーブ(登録商標)(MS)等のゼオライト、酸化アルミニウム、ベーマイト、酸化カルシウム、塩化カルシウム、五酸化二リンなどの粒子が挙げられる。
更に、上記のリチウムイオン二次電池の正極板であって、前記吸湿剤粒子は、酸化アルミニウム粒子及びベーマイト粒子の少なくともいずれかであるリチウムイオン二次電池の正極板とするのが好ましい。
酸化アルミニウム(Al23)粒子及びベーマイト(AlCOOH)粒子は、安価で、取り扱いが容易であるため、吸湿剤粒子として上述の正極板に用いるのが特に好ましい。
更に、上記のリチウムイオン二次電池の正極板であって、酸化アルミニウム粒子及びベーマイト粒子の平均粒径は2.0μm以下であるリチウムイオン二次電池の正極板とするのが好ましい。
酸化アルミニウム粒子及びベーマイト粒子の平均粒径が小さいほど、これらの比表面積が大きくなるため、水分が酸化アルミニウム粒子及びベーマイト粒子に吸着され易くなる(吸湿効果が大きくなる)。特に、酸化アルミニウム粒子及びベーマイト粒子の平均粒径を2.0μm以下とすることにより吸湿効果が大きくなるため、水分が第1正極活物質粒子及び第2正極活物質粒子に接触するのを効果的に抑制できる。
なお、酸化アルミニウム粒子及びベーマイト粒子の平均粒径は、これらの粒子の製造面やコスト面から、0.2μm以上とするのが好ましい。
また、他の態様は、リチウムイオン二次電池であって、上記のいずれかに記載の正極板と、負極板とを含む電極体を備えるリチウムイオン二次電池である。
上述のリチウムイオン二次電池に用いる正極板は、第1活物質層上に第2活物質層を設けている。このため、この電池では、第1活物質層上に第2活物質層を有しない正極板を用いた電池に比べて、前述のように電池の反応抵抗を抑制できている。
実施形態に係る電池の斜視図である。 実施形態に係る電池の断面図である。 実施形態に係る正極板の斜視図である。 実施形態に係る正極板の断面図である。 実施形態に係る電池の製造方法のフローチャートである。 吸湿剤粒子の添加量と電池の反応抵抗比との関係を示すグラフである。 第2活物質層の層厚みと電池の反応抵抗比との関係を示すグラフである。 吸湿剤粒子の平均粒径と電池の反応抵抗比との関係を示すグラフである。
以下、本発明の実施形態を、図面を参照しつつ説明する。図1及び図2に、本実施形態に係るリチウムイオン二次電池(以下、単に「電池」ともいう)1の斜視図及び断面図を示す。また、図3及び図4に、電池1の正極板31の斜視図及び断面図を示す。なお、以下では、電池1の電池縦方向BH、電池横方向CH及び電池厚み方向DHを、図1及び図2に示す方向と定めて説明する。また、正極板31の長手方向EH、幅方向FH及び厚み方向GHを、図3及び図4に示す方向と定めて説明する。
電池1は、ハイブリッドカーやプラグインハイブリッドカー、電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池である。この電池1は、電池ケース10と、この内部に収容された電極体20と、電池ケース10に支持された正極端子部材70及び負極端子部材80等から構成される。また、電池ケース10内には、電解液17が収容されており、その一部は電極体20内に含浸されている。この電解液17は、溶質としてヘキサフルオロリン酸リチウム(LiPF6)を含む。
このうち電池ケース10は、直方体箱状で金属(本実施形態ではアルミニウム)からなる。この電池ケース10は、上側のみが開口した有底角筒状のケース本体部材11と、このケース本体部材11の開口を閉塞する形態で溶接された矩形板状のケース蓋部材13とから構成される。ケース蓋部材13には、アルミニウムからなる正極端子部材70がケース蓋部材13と絶縁された状態で固設されている。この正極端子部材70は、電池ケース10内で電極体20の正極板31の正極露出部31mに接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。また、ケース蓋部材13には、銅からなる負極端子部材80がケース蓋部材13と絶縁された状態で固設されている。この負極端子部材80は、電池ケース10内で電極体20の負極板51の負極露出部51mに接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。
電極体20は、扁平状をなし、横倒しにした状態で電池ケース10内に収容されている。電極体20と電池ケース10との間には、絶縁フィルムからなる袋状の絶縁フィルム包囲体19が配置されている。この電極体20は、帯状の正極板31及び帯状の負極板51を、帯状で樹脂製の多孔質膜からなる一対のセパレータ61,61を介して互いに重ね、軸線周りに扁平状に捲回されてなる。
正極板31(図3及び図4も参照)は、帯状のアルミニウム箔からなる正極集電箔32を有する。この正極集電箔32の一方の主面32aのうち、正極板31の幅方向FHの一部でかつ長手方向EHに延びる領域上には、層厚みt1=140μmの第1活物質層33が帯状に形成されている。また、正極集電箔32の他方の主面32bのうち、正極板31の幅方向FHの一部でかつ長手方向EHに延びる領域上にも、同様に層厚みt1=140μmの第1活物質層34が帯状に形成されている。
これらの第1活物質層33,34は、リチウム酸化物からなる第1正極活物質粒子41、導電材42及び結着剤43を含む。本実施形態では、リチウム酸化物からなる第1正極活物質粒子41として、層状岩塩構造を有するリチウムニッケルコバルトアルミニウム複合酸化物、具体的には、平均粒径が10μmのLiNixCoyAl1-x-y2(NCA)の粒子を用いている。なお、x=0.75〜0.95、y=0.05〜0.25、1−x−y=0.01〜0.1である。この第1正極活物質粒子41は、1gの第1正極活物質粒子41を50gの水に分散させた分散液のpHがpH=11.3以上となる特性を有する。
また、本実施形態では、導電材42としてアセチレンブラック(AB)を、結着剤43としてポリフッ化ビニリデン(PVDF)を用いている。第1正極活物質粒子41と導電材42と結着剤43との重量配合比は、93:6:1である。
また、一方の第1活物質層33の上には、その全面にわたり、第1活物質層33の層厚みt1=140μmよりも薄い層厚みt2=10μm(t2<t1)の第2活物質層35が形成されている。また、他方の第1活物質層34の上にも、その全面にわたり、第1活物質層34の層厚みt1=140μmよりも薄い層厚みt2=10μm(t2<t1)の第2活物質層36が形成されている。これらの第2活物質層35,36は、第2正極活物質粒子49、導電材45、結着剤46及び吸湿剤粒子47を含む。
本実施形態では、第2正極活物質粒子49として、層状岩塩構造を有するリチウムニッケルコバルトマンガン複合酸化物、具体的には、平均粒径が10μmのLi1.02(Ni0.33Co0.33Mn0.33)O2 の粒子を用いている。この第2正極活物質粒子49は、1gの第2正極活物質粒子49を50gの水に分散させた分散液のpHがpH=11.0以下となる特性を有する。また、吸湿剤粒子47として、平均粒径0.5μmの酸化アルミニウム粒子を用いている。また、導電材45として第1活物質層33,34の導電材42と同じくABを、結着剤46として第1活物質層33,34の結着剤43と同じくPVDFを用いている。第2正極活物質粒子49と導電材45と結着剤46と吸湿剤粒子47との重量配合比は、91:8:1:1.5である。
なお、本実施形態では、第2活物質層35,36における導電材45の割合(7.9wt%)を、第1活物質層33,34における導電材42の割合(6.0wt%)よりも多くしている。このため、第2活物質層35,36が厚くなり正極板31が厚くなっても、正極板31内の導通を高く保つことができる。
なお、正極板31のうち幅方向FHの片方の端部は、厚み方向GHに第1活物質層33,34及び第2活物質層35,36が存在せず、正極集電箔32が厚み方向GHに露出した正極露出部31mとなっている。この正極露出部31mには、前述の正極端子部材70が溶接されている。
負極板51は、帯状の銅箔からなる負極集電箔52を有する。この負極集電箔52の一方の主面のうち、負極板51の幅方向の一部でかつ長手方向に延びる領域上には、負極活物質層(不図示)が帯状に形成されている。また、負極集電箔52の他方の主面のうち、負極板51の幅方向の一部でかつ長手方向に延びる領域上にも、負極活物質層(不図示)が帯状に形成されている。これらの負極活物質層には、負極活物質粒子、結着剤及び増粘剤からなる。本実施形態では、負極活物質粒子として黒鉛粒子を、結着剤としてスチレンブタジエンゴム(SBR)を、増粘剤としてカルボキシメチルセルロース(CMC)を用いている。
以上で説明したように、第1正極活物質粒子41は、前述の分散液のpHがpH=11.3以上となる特性の正極活物質粒子であり、特に、水及び二酸化炭素と反応して水酸化リチウム及び炭酸リチウムを生じ易い。このため、電池1の反応抵抗が高くなり易い。これに対し、本実施形態の正極板31は、第1活物質層33,34の上に第2活物質層35,36を設けたので、正極板31の取り扱い時などに、第1活物質層33,34中の第1正極活物質粒子41に、大気中の水分及び二酸化炭素が接触し難くなる。このため、水分及び二酸化炭素との接触に起因して、第1活物質層33,34中の第1正極活物質粒子41の粒子表面に水酸化リチウム、更には炭酸リチウムを生じること、及び、粒子表面で結晶構造が変化することを抑制できる。
一方で、第2活物質層35,36に含まれる第2正極活物質粒子49は、前述の分散液のpHがpH=11.0以下となる特性を有する。即ち、第2正極活物質粒子49は、第1正極活物質粒子41に比べて水及び二酸化炭素との反応が穏やかである。このため、第1活物質層33,34と第2活物質層35,36とを合わせた活物質層全体で見たとき、活物質層全体が第1活物質層33,34のみからなる場合に比べて、水分及び二酸化炭素との接触に起因して、正極活物質粒子(第1正極活物質粒子41及び第2正極活物質粒子49)の粒子表面に水酸化リチウム、更には炭酸リチウムを生じること、及び、粒子表面で結晶構造が変化することを抑制できる。
加えて、第2活物質層35,36は吸湿剤粒子47を含むため、正極板31が大気中の水分に触れても、この水分は第2活物質層35,36中の吸湿剤粒子47によって吸湿されるので、水分が第2活物質層35,36中の第2正極活物質粒子49と反応することを抑制できる。また、水分が第2活物質層35,36の下の第1活物質層33,34まで届くのをより効果的に抑制できる。
これらにより、この正極板31を用いた電池1において、第1活物質層33,34上に第2活物質層35,36を有しない正極板を用いた電池に比べて、電池1の反応抵抗を抑制した正極板31とすることができる。
また、第2活物質層35,36は、正極活物質粒子(第2正極活物質粒子49)を含むため、第2活物質層35,36を正極活物質粒子を含まない単なる保護層とする場合に比べて、正極板31に含まれる正極活物質粒子(第1正極活物質粒子41及び第2正極活物質粒子49)の総量を多くして、電池容量を大きくできる。
また、本実施形態では、吸湿剤粒子47として、酸化アルミニウム粒子を用いている。酸化アルミニウム粒子は、安価で、取り扱いが容易であるため、吸湿剤粒子47として正極板31に用いるのが特に好ましい。
更に、この酸化アルミニウムの平均粒径を2.0μm以下(本実施形態では0.5μm)としている。平均粒径が小さいほど比表面積が大きくなるため、水分が酸化アルミニウム粒子に吸着され易くなる(吸湿効果が大きくなる)。特に、平均粒径を2.0μm以下とすることにより吸湿効果が大きくなるため、水分が第1正極活物質粒子41及び第2正極活物質粒子49に接触するのを効果的に抑制できる。一方、酸化アルミニウム粒子の製造面及びコスト面から、酸化アルミニウム粒子の平均粒径を0.2μm以上(本実施形態では0.5μm)とするのが好ましい。
また、本実施形態の電池1に用いる正極板31は、第1活物質層33,34上に第2活物質層35,36を設けている。このため、この電池1では、第1活物質層33,34上に第2活物質層35,36を有しない正極板を用いた電池に比べて、前述のように電池1の反応抵抗を抑制できている。
次いで、正極板31の製造方法を含む電池1の製造方法について説明する(図5参照)。なお、本実施形態では、「正極板製造工程S1」及び「負極板製造工程S2」から「電池組立工程S4」までの各工程を25℃、湿度60%、露点温度16℃DPの環境下で行った。
まず「正極板製造工程S1」を行って、正極板31を製造する。予め第1活物質層33,34の形成に用いる第1ペーストと、第2活物質層35,36の形成に用いる第2ペーストとをそれぞれ用意しておく。
具体的には、リチウム酸化物からなる第1正極活物質粒子41(本実施形態ではリチウムニッケルコバルトアルミニウム複合酸化物粒子)、導電材42(本実施形態ではAB)及び結着剤43(本実施形態ではPVDF)を、分散媒(本実施形態ではN−メチル−2−ピロリドン(NMP))と共に混練して、第1ペーストを得る。第1正極活物質粒子41と導電材42と結着剤43との混合比は、重量比で93:6:1とした。また、第1ペーストの固形分率を75wt%(NMPの割合を25wt%)とした。
また、第2正極活物質粒子49(本実施形態ではリチウムニッケルコバルトマンガン複合酸化物)、導電材45(本実施形態ではAB)、結着剤46(本実施形態ではPVDF)及び吸湿剤粒子47(本実施形態では酸化アルミニウム粒子)を、分散媒(本実施形態ではNMP)と共に混練して、第2ペーストを得る。第2正極活物質粒子49と導電材45と結着剤46と吸湿剤粒子47との混合比は、重量比で91:8:1:1.5とした。また、第2ペーストの固形分率を65wt%(NMPの割合を35wt%)とした。
そして、ダイ塗工により、第1ペーストを正極集電箔32の一方の主面32a上に塗布して未乾燥第1活物質層(不図示)を形成し、続いて、グラビア塗工により、第2ペーストを塗布して未乾燥第2活物質層(不図示)を形成する。その後、これらを加熱乾燥させて、第1活物質層33及び第2活物質層35を同時に形成する。
同様に、正極集電箔32の他方の主面32a上にも第1ペーストを塗布して未乾燥第1活物質層(不図示)を形成し、続いて、第2ペーストを塗布して未乾燥第2活物質層(不図示)を形成する。その後、これらを加熱乾燥させて、第1活物質層34及び第2活物質層36を形成する。
その後、この正極板をプレスして、第1活物質層33,34及び第2活物質層35,36の密度をそれぞれ高める。かくして、正極板31が製造される。
また別途、「負極板製造工程S2」を行って、負極板51を製造する。予め負極活物質粒子(本実施形態では黒鉛粒子)、結着剤(本実施形態ではSBR)及び増粘剤(本実施形態ではCMC)を、分散媒(本実施形態では水)と共に混練した負極ペーストを用意しておく。そして、この負極ペーストをダイ塗工により負極集電箔52の一方の主面上に塗布して未乾燥負極活物質層(不図示)を形成し、その後、これを加熱乾燥させて負極活物質層(不図示)を形成する。同様に、負極集電箔52の他方の主面上にも負極ペーストを塗布して未乾燥負極活物質層(不図示)を形成し、その後、これを加熱乾燥させて負極活物質層(不図示)を形成する。その後、この負極板をプレスして、負極活物質層の密度をそれぞれ高める。かくして、負極板51が製造される。
次に、「電極体形成工程S3」において、電極体20を形成する。具体的には、帯状の正極板31及び帯状の負極板51を2枚の帯状のセパレータ61,61を介して互いに重ね、巻き芯を用いて軸線周りに捲回する。更に、これを扁平状に圧縮して扁平状捲回型の電極体20を形成する(図2参照)。
次に、「電池組立工程S4」において、電池1を組み立てる。即ち、ケース蓋部材13を用意し、これに正極端子部材70及び負極端子部材80を固設する(図1及び図2参照)。その後、正極端子部材70及び負極端子部材80を、電極体20の正極板31の正極露出部31m及び負極板51の負極露出部51mにそれぞれ溶接する。次に、電極体20に絶縁フィルム包囲体19を被せて、これらをケース本体部材11内に挿入すると共に、ケース本体部材11の開口をケース蓋部材13で塞ぐ。そして、ケース本体部材11とケース蓋部材13とを溶接して電池ケース10を形成する。
次に、「注液工程S5」において、電解液17を、注液孔13hから電池ケース10内に注液して電極体20内に含浸させる。その後、封止部材15で注液孔13hを封止する。なお、この注液工程S5は、前述の正極板製造工程S1〜電池組立工程S4の各工程とは異なり、25℃、露点温度−30℃DP以下のドライ環境下で行う。
次に、「初充電工程S6」において、この電池1を初充電する。この初充電工程S6は、正極板製造工程S1〜電池組立工程S4の各工程と同じく、25℃、湿度60%、露点温度16℃DPの環境下で行う。その後、この電池1について各種の検査を行う。かくして、電池1が完成する。
(試験結果)
次いで、本発明の効果を検証するために行った試験の結果について説明する(図6〜図8参照)。まず、第2活物質層35,36に含める吸湿剤粒子47の添加量と、電池の反応抵抗Rとの関係について調査した。表1に示すように、第2活物質層35,36に含める吸湿剤粒子47として、酸化アルミニウム粒子(平均粒径1.0μm)及びベーマイト粒子(平均粒径2.0μm)を用意し、吸湿剤粒子47の添加量を0〜2.5wt%に変更して、それ以外は実施形態と同様に正極板31を製造し、更に電池1を製造した。なお、吸湿剤粒子47の添加量(wt%)は、第2正極活物質粒子49、導電材45及び結着剤46の合計配合量を基準(=100wt%)としたときの添加量である。
Figure 2019121420
そして、各電池について、電池の反応抵抗Rをそれぞれ測定した。具体的には、SOC60%に調整した各電池について、環境温度25℃において、0.3C、1C、3C、5Cでの放電から初期IV抵抗を算出した。更に、吸湿剤粒子47の添加量=0wt%としたときの各電池の反応抵抗Rを基準(=100%)として、その他の電池の反応抵抗比をそれぞれ求めた。その結果を表1及び図6に示す。
表1及び図6から明らかなように、第2活物質層35,36に吸湿剤粒子47を含めると、吸湿剤粒子47として酸化アルミニウム粒子及びベーマイト粒子のいずれを用いた場合でも、第2活物質層35,36に吸湿剤粒子47を含めない場合(吸湿剤粒子47の添加量=0wt%)に比べて、電池の反応抵抗比が低く(反応抵抗Rが低く)なることが判る。特に、吸湿剤粒子47として酸化アルミニウム粒子を用いた場合には、添加量を1.0〜2.0wt%とすると、電池の反応抵抗比が特に低くなった。また、吸湿剤粒子47としてベーマイト粒子を用いた場合には、添加量を1.5〜2.5wt%とすると、電池の反応抵抗比が特に低くなった。このような結果となった理由は、以下であると考えられる。
即ち、第1正極活物質粒子41及び第2正極活物質粒子49は、大気中の水分に触れると、粒子表面で水と反応して水酸化リチウムを生じる(Li2O+H2O→2LiOH)。更に、この水酸化リチウムは大気中の二酸化炭素(CO2)と反応して炭酸リチウムを生じる(2LiOH+CO2→Li2CO3+H2O)。粒子表面で生じた炭酸リチウムは抵抗体である。また、第1正極活物質粒子41及び第2正極活物質粒子49が水と反応し、第1正極活物質粒子41及び第2正極活物質粒子49からリチウムイオンが抜けると、第1正極活物質粒子41及び第2正極活物質粒子49の結晶構造が変化し、第1正極活物質粒子41及び第2正極活物質粒子49におけるリチウムイオンの挿入離脱がし難くなる。このため、この正極板を用いた電池では、反応抵抗比が高く(反応抵抗Rが高く)なる。
これに対し、第2活物質層35,36に吸湿剤粒子47を含めると、正極板31が大気中の水分に触れても、この水分は第2活物質層35,36中の吸湿剤粒子47によって吸湿される。このため、水分が第2活物質層35,36中の第2正極活物質粒子49と反応することを抑制できる。また、水分が第2活物質層35,36の下の第1活物質層33,34まで届くのを抑制できる。その結果、第2活物質層35,36に吸湿剤粒子47を含めると、電池の反応抵抗比が低く(反応抵抗Rが低く)なったと考えられる。
なお、吸湿剤粒子47として酸化アルミニウム粒子を用いて添加量を2.5wt%に増やした場合に、かえって電池の反応抵抗比が高く(92%)なった理由は、以下であると考えられる。酸化アルミニウム粒子などの吸湿剤粒子47は、本来電池反応に不要な材料であるため、吸湿剤粒子47の添加量を増やし過ぎると、第2活物質層35,36内の導電パスを阻害し、電池の反応抵抗Rが高くなると考えられる。
次に、第2活物質層35,36の層厚みt2と、電池の反応抵抗Rとの関係について調査した。表2に示すように、第2活物質層35,36に含める吸湿剤粒子47として、酸化アルミニウム粒子(平均粒径1.0μm)及びベーマイト粒子(平均粒径2.0μm)を用意し、第2活物質層35,36の層厚みt2を5〜30μmに変更して正極板31を製造し、更に電池1を製造した。そして、前述のようにして各電池の反応抵抗Rをそれぞれ測定し、表1における吸湿剤粒子47の添加量=0wt%としたときの各電池の反応抵抗Rを基準(=100%)として、各電池の反応抵抗比をそれぞれ求めた。その結果を表2及び図7に示す。
Figure 2019121420
表2及び図7から明らかなように、吸湿剤粒子47として酸化アルミニウム粒子及びベーマイト粒子のいずれを用いた場合でも、第2活物質層35,36の層厚みt2を厚くすると、電池の反応抵抗比が低く(反応抵抗Rが低く)なる。但し、第2活物質層35,36の層厚みt2を厚くし過ぎると、かえって電池の反応抵抗比が高く(反応抵抗Rが高く)なることが判る。その理由は、以下であると考えられる。
即ち、第2活物質層35,36の層厚みt2が厚いほど、水分が第2活物質層35,36を通過して、その下の第1活物質層33,34まで届くのを抑制できるため、水分が第1活物質層33,34中の第1正極活物質粒子41と反応することを抑制できる。その結果、第2活物質層35,36の層厚みt2を厚くするほど、電池の反応抵抗比が低く(反応抵抗Rが低く)なったと考えられる。
しかし、第2活物質層35,36の層厚みt2を厚くし過ぎると、第2活物質層35,36とその下の第1活物質層33,34との間で割れが発生したり、第2活物質層35,36が厚くなり過ぎたことにより、電解液17の浸透性が低下して、第1活物質層33,34で電池反応が効率良く行えなくなったために、電池の反応抵抗比が高く(反応抵抗Rが高く)なったと考えられる。
次に、吸湿剤粒子47の平均粒径と電池の反応抵抗Rとの関係について調査した。表3及び表4に示すように、第2活物質層35,36に含める吸湿剤粒子47として、平均粒径が異なる酸化アルミニウム粒子及びベーマイト粒子を用意し、これらを用いて正極板31を製造し、更に電池1を製造した。そして、前述のようにして各電池の反応抵抗Rをそれぞれ測定し、表1における吸湿剤粒子47の添加量=0wt%としたときの各電池の反応抵抗Rを基準(=100%)として、各電池の反応抵抗比をそれぞれ求めた。その結果を表3、表4及び図8に示す。
Figure 2019121420
Figure 2019121420
表3、表4及び図8から明らかなように、吸湿剤粒子47として酸化アルミニウム粒子及びベーマイト粒子のいずれを用いた場合でも、平均粒径を小さくするほど、電池の反応抵抗比が低く(反応抵抗Rが低く)なることが判る。吸湿剤粒子47の平均粒径が小さいほど、比表面積が大きくなるため、水分が吸湿剤粒子47に吸着され易くなる。このため、水分が第1正極活物質粒子41及び第2正極活物質粒子49と反応することを抑制できる。その結果、吸湿剤粒子47の平均粒径を小さくするほど、電池の反応抵抗比が低く(反応抵抗Rが低く)なったと考えられる。
以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
1 リチウムイオン二次電池
17 電解液
20 電極体
31 正極板
32 正極集電箔
33,34 第1活物質層
35,36 第2活物質層
41 第1正極活物質粒子
42 (第1活物質層の)導電材
43 (第1活物質層の)結着剤
45 (第2活物質層の)導電材
46 (第2活物質層の)結着剤
47 (第2活物質層の)吸湿剤粒子
49 第2正極活物質粒子
t1 (第1活物質層の)層厚み
t2 (第2活物質層の)層厚み

Claims (1)

  1. 集電箔と、
    上記集電箔上に形成され、リチウム酸化物からなる第1正極活物質粒子を含む第1活物質層と、
    上記第1活物質層上に形成され、第2正極活物質粒子を含む第2活物質層と、を備える
    リチウムイオン二次電池の正極板であって、
    上記第1正極活物質粒子は、1gの上記第1正極活物質粒子を50gの水に分散させた分散液のpHがpH=11.3以上となる特性を有し、
    上記第2正極活物質粒子は、1gの上記第2正極活物質粒子を50gの水に分散させた分散液のpHがpH=11.0以下となる特性を有し、
    上記第2活物質層は、吸湿剤粒子を含む
    リチウムイオン二次電池の正極板。
JP2017253076A 2017-12-28 2017-12-28 リチウムイオン二次電池の正極板 Active JP6973062B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017253076A JP6973062B2 (ja) 2017-12-28 2017-12-28 リチウムイオン二次電池の正極板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017253076A JP6973062B2 (ja) 2017-12-28 2017-12-28 リチウムイオン二次電池の正極板

Publications (2)

Publication Number Publication Date
JP2019121420A true JP2019121420A (ja) 2019-07-22
JP6973062B2 JP6973062B2 (ja) 2021-11-24

Family

ID=67307905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017253076A Active JP6973062B2 (ja) 2017-12-28 2017-12-28 リチウムイオン二次電池の正極板

Country Status (1)

Country Link
JP (1) JP6973062B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020021553A (ja) * 2018-07-30 2020-02-06 積水化学工業株式会社 リチウムイオン二次電池用電極、及びリチウムイオン二次電池
US11114664B2 (en) 2018-03-02 2021-09-07 Toyota Jidosha Kabushiki Kaisha Method for producing positive active material particle, method for producing positive electrode paste, method for manufacturing positive electrode sheet, and method for manufacturing lithium ion secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251265A (ja) * 2007-03-29 2008-10-16 Tdk Corp 電極及び電気化学デバイス
JP2015179662A (ja) * 2014-02-27 2015-10-08 パナソニック株式会社 非水電解質二次電池用正極及び非水電解質二次電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251265A (ja) * 2007-03-29 2008-10-16 Tdk Corp 電極及び電気化学デバイス
JP2015179662A (ja) * 2014-02-27 2015-10-08 パナソニック株式会社 非水電解質二次電池用正極及び非水電解質二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114664B2 (en) 2018-03-02 2021-09-07 Toyota Jidosha Kabushiki Kaisha Method for producing positive active material particle, method for producing positive electrode paste, method for manufacturing positive electrode sheet, and method for manufacturing lithium ion secondary battery
JP2020021553A (ja) * 2018-07-30 2020-02-06 積水化学工業株式会社 リチウムイオン二次電池用電極、及びリチウムイオン二次電池

Also Published As

Publication number Publication date
JP6973062B2 (ja) 2021-11-24

Similar Documents

Publication Publication Date Title
EP2937919B1 (en) Mixed electrode for nonaqueous electrolyte batteries and method for producing same
KR102176526B1 (ko) 정극 활물질 입자의 제조 방법, 정극 페이스트의 제조 방법, 정극판의 제조 방법 및 리튬 이온 이차 전지의 제조 방법
JP6323725B2 (ja) リチウムイオン二次電池に用いられる正極活物質
US20120177974A1 (en) Non-aqueous electrolyte battery
JP6756279B2 (ja) 正極活物質の製造方法
US20200119406A1 (en) Cylindrical nonaqueous electrolyte secondary battery
JP2008108649A (ja) 車両用リチウム二次電池正極の製造方法
WO2020135110A1 (zh) 负极活性材料、电池及装置
JP2013069432A (ja) リチウムイオン二次電池とその製造方法
JP2016213094A (ja) 二次電池用負極の製造方法
JP5585834B2 (ja) リチウムイオン二次電池
US11387448B2 (en) Positive electrode plate of lithium ion secondary battery, lithium ion secondary battery, and method of producing positive electrode plate of lithium ion secondary battery
BR102016000602B1 (pt) Bateria secundária de íon de lítio, e método para a fabricação de bateria secundária de íon de lítio
CN111052457B (zh) 非水电解质电池用正极及非水电解质电池
JP6973062B2 (ja) リチウムイオン二次電池の正極板
JP6295966B2 (ja) 全固体電池
JP6394987B2 (ja) 非水電解液二次電池
JP5862928B2 (ja) リチウムイオン二次電池用正極の製造方法
JP6493766B2 (ja) リチウムイオン二次電池
JP2012043658A (ja) リチウムイオン二次電池とその製造方法
JP2018098141A (ja) 非水電解液二次電池
JP6969239B2 (ja) 非水系電解質二次電池用正極活物質およびその製造方法
JP2016105359A (ja) 正極活物質及びそれを用いたリチウムイオン二次電池
JP5609748B2 (ja) 電池の製造方法
JP2023031127A (ja) 電池の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R151 Written notification of patent or utility model registration

Ref document number: 6973062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151