JP2019120417A - Control device of air conditioner, control method of air conditioner, air conditioner and control program - Google Patents

Control device of air conditioner, control method of air conditioner, air conditioner and control program Download PDF

Info

Publication number
JP2019120417A
JP2019120417A JP2017253221A JP2017253221A JP2019120417A JP 2019120417 A JP2019120417 A JP 2019120417A JP 2017253221 A JP2017253221 A JP 2017253221A JP 2017253221 A JP2017253221 A JP 2017253221A JP 2019120417 A JP2019120417 A JP 2019120417A
Authority
JP
Japan
Prior art keywords
operation mode
defrost operation
cycle defrost
temperature
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017253221A
Other languages
Japanese (ja)
Other versions
JP6980520B2 (en
Inventor
国広 東浦
Kunihiro Higashiura
国広 東浦
神原 裕志
Hiroshi Kanbara
裕志 神原
岡村 和美
Kazumi Okamura
和美 岡村
道明 中西
Michiaki Nakanishi
道明 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2017253221A priority Critical patent/JP6980520B2/en
Priority to AU2018274982A priority patent/AU2018274982B2/en
Priority to EP18211427.2A priority patent/EP3505850A1/en
Publication of JP2019120417A publication Critical patent/JP2019120417A/en
Application granted granted Critical
Publication of JP6980520B2 publication Critical patent/JP6980520B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0292Control issues related to reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/23Time delays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

To provide a control device for an air conditioner carrying out a high user comfort without lowering an interior temperature.SOLUTION: A control device of an air conditioner comprises a surrounding air temperature acquisition part 41 for getting a surrounding air temperature of an outdoor unit; an outdoor heat exchanging temperature acquisition part 42 for taking an outdoor heat exchanging temperature of an outdoor unit and an operation execution part 43 for executing several operation modes. The operation execution part 43 enables a positive cycle defrosting operation mode and an inverse cycle defrosting operation mode to be carried out. Then, the operation execution part 43 executes one defrosting operation mode of the positive cycle defrosting operation mode and the inverse cycle defrosting operation mode in the case that it satisfies a starting condition for the one defrosting operation mode within a prohibiting time of the other defrosting mode.SELECTED DRAWING: Figure 2

Description

本発明は、空気調和機の制御装置、空気調和機の制御方法、空気調和機及び制御プログラムに関する。   The present invention relates to an air conditioner control device, an air conditioner control method, an air conditioner, and a control program.

空気調和機は、圧縮機と、室内熱交換器と、膨張装置と、室外熱交換器とを含む種々の装置が冷媒配管によって接続された冷媒回路を有している。暖房運転時には、圧縮機が送出する高温高圧の冷媒ガスを室内熱交換器に送り込むように冷媒を循環させ、室内に暖気を送風する。このとき、室外熱交換器の外気側の表面は冷媒が熱を吸収するため、とくに冬季では、氷点下温度域まで冷却される場合がある。このように冷却された室外熱交換器の表面には霜が発生、積層する。これにより、室外熱交換器の熱伝導が妨げられ、熱交換の効率が低下する。
この霜を取り除くために、二種類の除霜運転(デフロスト運転)が知られている。即ち、正サイクルデフロスト運転(バイパスサイクルデフロスト運転(Positive (Bypass) Cycle Defrost Operation)とも言う。以下DfPとする)及び逆サイクルデフロスト運転(リバースサイクルデフロスト運転(Reverse Cycle Defrost Operation)ともいう。以下DfR)である。DfPは、暖房運転時に圧縮機からの吐出冷媒ガスの一部を直接該室外熱交換器へと送るバイパス管路を経由させて冷媒を循環させることで、該熱交換器の除霜を行う除霜運転である。一方、DfRは、暖房運転とは逆に冷媒回路を循環させることで、圧縮機からの吐出冷媒ガスの全部を直接該室外熱交換器へと送ることで除霜を行う除霜運転である。つまりDfRは室内熱交換器に送風を行わない点を除いて、冷房運転と実質的に同一の冷媒循環を行う除霜運転となる。
上記二つの除霜運転の切り替えについては、空気調和機の使用状況の想定の違いによって種々の方式が知られている。例えば温度又は湿度から室外環境や除霜量を感知し、感知した情報に応じて上記の除霜運転の実施及びその切り替えを行う技術が知られている。
The air conditioner has a refrigerant circuit in which various devices including a compressor, an indoor heat exchanger, an expansion device, and an outdoor heat exchanger are connected by refrigerant pipes. During the heating operation, the refrigerant is circulated so that the high-temperature and high-pressure refrigerant gas delivered by the compressor is fed to the indoor heat exchanger, and the warm air is blown into the room. At this time, since the refrigerant absorbs heat in the surface on the outdoor air side of the outdoor heat exchanger, it may be cooled to a temperature below the freezing point particularly in winter. The frost is generated and stacked on the surface of the outdoor heat exchanger thus cooled. Thereby, the heat conduction of the outdoor heat exchanger is hindered, and the efficiency of heat exchange is reduced.
In order to remove this frost, two types of defrost operation (Defrost operation) are known. That is, it is also referred to as forward cycle defrost operation (also referred to as positive (Bypass) Cycle Defrost Operation), hereinafter referred to as DfP, and reverse cycle defrost operation (also referred to as Reverse Cycle Defrost Operation). It is. DfP removes the defrosting of the heat exchanger by circulating the refrigerant through a bypass pipe line which directly sends a part of the refrigerant gas discharged from the compressor to the outdoor heat exchanger during heating operation. It is a frost operation. On the other hand, DfR is a defrosting operation in which defrosting is performed by circulating all of the refrigerant gas discharged from the compressor directly to the outdoor heat exchanger by circulating the refrigerant circuit contrary to the heating operation. That is, DfR is a defrosting operation in which the refrigerant circulation is substantially the same as the cooling operation except that air blowing is not performed to the indoor heat exchanger.
Various methods are known for switching between the two defrosting operations, depending on the difference in the usage condition of the air conditioner. For example, there is known a technique for sensing the outdoor environment and the amount of defrosting from temperature or humidity, and performing and switching the above-described defrosting operation according to the sensed information.

特開2001−133088号公報JP 2001-133088 A

ところで、DfPは暖房運転を継続させながら除霜を行うことができるが、冷媒の熱が除霜に一部消費されるため、暖房効率が低下する。また、暖房運転を継続させながらの除霜となるため、完全に除霜するまでに時間がかかる。一方、DfR時は暖房効率がゼロに等しくなるが、冷媒の持つ熱の大部分を除霜に利用できるため、迅速な除霜が可能である。このように、除霜運転時は暖房効率(効果)が低下する、若しくは、ゼロとなるため、室温の低下やユーザー快適性の低下が懸念される。   By the way, although DfP can perform defrosting while continuing heating operation, since the heat | fever of a refrigerant | coolant is partially consumed by defrost, heating efficiency falls. Moreover, since it becomes a defrost while continuing heating operation, it takes time until it defrosts completely. On the other hand, at the time of DfR, although the heating efficiency becomes equal to zero, most of the heat possessed by the refrigerant can be used for defrosting, so that rapid defrosting is possible. As described above, during the defrosting operation, the heating efficiency (effect) decreases or becomes zero, which may cause a decrease in room temperature or a decrease in user comfort.

上記特許文献1に記載された空気調和機の場合、一定の室外環境下においては、長時間にわたり除霜運転が継続することとなり、室内温度の低下やユーザー快適性が長期間にわたり低下する可能性があった。   In the case of the air conditioner described in Patent Document 1 above, the defrosting operation will continue for a long time under a constant outdoor environment, and the room temperature may decrease and the user's comfort may decrease for a long time. was there.

本発明はこのような課題に鑑みてなされたものであって、室内温度を低下させず、ユーザー快適性の高い制御を行う空気調和機の制御装置、空気調和機の制御方法、空気調和機及び制御プログラムを提供する。   The present invention has been made in view of such problems, and is a control device of an air conditioner that performs control with high user comfort without lowering the room temperature, a control method of the air conditioner, an air conditioner, and Provide a control program.

本発明の第1の態様によれば、空気調和機の制御装置は、室外機の外気温度を取得する外気温度取得部と、前記室外機の熱交換器の温度である室外熱交温度を取得する室外熱交温度取得部と、複数の運転モードを実行する運転実行部と、を備える。前記運転実行部は、暖房運転を維持しながら前記室外機の除霜を行う正サイクルデフロスト運転モードと、暖房運転を停止して前記室外機の除霜を行う逆サイクルデフロスト運転モードと、を実行可能とし、前記正サイクルデフロスト運転モード及び前記逆サイクルデフロスト運転モードのうち一方のデフロスト運転モードの禁止時間内において、他方のデフロスト運転モードの入条件を満たした場合に、当該他方のデフロスト運転モードを実行する。   According to the first aspect of the present invention, the control device of the air conditioner acquires the outdoor heat exchange temperature that is the temperature of the heat exchanger of the outdoor unit and the outdoor air temperature acquisition unit that acquires the outdoor air temperature of the outdoor unit. And an operation execution unit that executes a plurality of operation modes. The operation execution unit executes a forward cycle defrost operation mode in which the outdoor unit is defrosted while maintaining the heating operation, and a reverse cycle defrost operation mode in which the heating operation is stopped and the outdoor unit is defrosted. If the other defrost operation mode input condition is satisfied within the inhibit time of one of the forward cycle defrost operation mode and the reverse cycle defrost operation mode, the other defrost operation mode is selected. Run.

また、本発明の第2の態様によれば、前記運転実行部は、一方のデフロスト運転モードの禁止時間内であって、かつ、一方のデフロスト運転モードの運転終了後、所定の安定待機時間を経過した後において、他方のデフロスト運転モードの入条件を満たした場合に、当該他方のデフロスト運転モードを実行する。   Further, according to the second aspect of the present invention, the operation execution unit is within the prohibited time of one of the defrost operation modes, and after the operation of one of the defrost operation modes is finished, the predetermined stable standby time is After the lapse, when the input condition of the other defrost operation mode is satisfied, the other defrost operation mode is executed.

また、本発明の第3の態様によれば、前記運転実行部は、前記禁止時間内において、他方のデフロスト運転モードを実行する回数を1回とする。   Moreover, according to the 3rd aspect of this invention, the said driving | operation execution part makes the frequency | count of performing the other defrost operation mode once in the said prohibition time.

また、本発明の第4の態様によれば、前記運転実行部は、前記正サイクルデフロスト入条件及び前記逆サイクルデフロスト入条件の両方を満たしていた場合には、逆サイクルデフロスト運転モードを実行する。   Further, according to the fourth aspect of the present invention, the operation execution unit executes the reverse cycle defrost operation mode when both the forward cycle defrost input condition and the reverse cycle defrost input condition are satisfied. .

また、本発明の第5の態様によれば、前記運転実行部は、前記正サイクルデフロスト運転モードの入条件として、外気温度と室外熱交温度との温度差が所定の正サイクルデフロスト閾値を超えた場合に前記正サイクルデフロスト運転モードを実行する。   Further, according to the fifth aspect of the present invention, the temperature difference between the outside air temperature and the outdoor heat exchange temperature exceeds a predetermined positive cycle defrost threshold value as the on condition of the positive cycle defrost operation mode. If so, the positive cycle defrost operation mode is executed.

また、本発明の第6の態様によれば、前記運転実行部は、前記逆サイクルデフロスト運転モードの入条件として、外気温度と室外熱交温度との温度差が所定の逆サイクルデフロスト閾値を超えた場合に前記逆サイクルデフロスト運転モードを実行する。ここで、前記逆サイクルデフロスト閾値は、前記正サイクルデフロスト閾値よりも大きい値とされている。   Further, according to the sixth aspect of the present invention, the temperature difference between the outside air temperature and the outdoor heat exchange temperature exceeds a predetermined reverse cycle defrost threshold as the entry condition of the reverse cycle defrost operation mode. The reverse cycle defrost operation mode is executed in the case where Here, the reverse cycle defrost threshold is a value larger than the forward cycle defrost threshold.

また、本発明の第7の態様によれば、空気調和機は、上述の空気調和機の制御装置と、前記外気温度及び前記室外熱交温度を検知可能な温度センサを有する前記室外機と、を備える。   Further, according to a seventh aspect of the present invention, an air conditioner includes the control device for an air conditioner described above, and the outdoor unit having a temperature sensor capable of detecting the outside air temperature and the outdoor heat exchange temperature. Equipped with

また、本発明の第8の態様によれば、空気調和機の制御方法は、室外機の外気温度を取得するステップと、前記室外機の熱交換器の温度である室外熱交温度を取得するステップと、複数の運転モードを実行するステップと、を有する。前記複数の運転モードを実行するステップは、暖房運転を維持しながら前記室外機の除霜を行う正サイクルデフロスト運転モードと、暖房運転を停止して前記室外機の除霜を行う逆サイクルデフロスト運転モードと、を実行可能とし、前記正サイクルデフロスト運転モード及び前記逆サイクルデフロスト運転モードのうち一方のデフロスト運転モードの禁止時間内において、他方のデフロスト運転モードの入条件を満たした場合に、当該他方のデフロスト運転モードを実行する。   Further, according to the eighth aspect of the present invention, a control method of an air conditioner acquires an outdoor heat exchange temperature which is a temperature of a heat exchanger of the outdoor unit and a step of acquiring an outside air temperature of the outdoor unit. The method comprises the steps of: performing a plurality of operating modes. The step of executing the plurality of operation modes includes a forward cycle defrost operation mode in which the outdoor unit is defrosted while maintaining the heating operation, and a reverse cycle defrost operation in which the heating operation is stopped and the outdoor unit is defrosted. The mode can be executed, and the input condition of the other defrost operation mode is satisfied within the prohibited time of the defrost operation mode of one of the forward cycle defrost operation mode and the reverse cycle defrost operation mode, the other one of the other operation modes Execute the defrost operation mode of.

また、本発明の第9の態様によれば、制御プログラムは、空気調和機のコンピュータを、室外機の外気温度を取得する外気温度取得部、前記室外機の熱交換器の温度である室外熱交温度を取得する室外熱交温度取得部、複数の運転モードを実行する運転実行部として機能させる。前記運転実行部は、暖房運転を維持しながら前記室外機の除霜を行う正サイクルデフロスト運転モードと、暖房運転を停止して前記室外機の除霜を行う逆サイクルデフロスト運転モードと、を実行可能とし、前記正サイクルデフロスト運転モード及び前記逆サイクルデフロスト運転モードのうち一方のデフロスト運転モードの禁止時間内において、他方のデフロスト運転モードの入条件を満たした場合に、当該他方のデフロスト運転モードを実行する。   Further, according to the ninth aspect of the present invention, the control program includes the computer of the air conditioner, an outside air temperature acquiring unit for acquiring the outside air temperature of the outdoor unit, and the outdoor heat which is the temperature of the heat exchanger of the outdoor unit It functions as an outdoor heat exchange temperature acquisition unit that acquires an exchange temperature, and an operation execution unit that executes a plurality of operation modes. The operation execution unit executes a forward cycle defrost operation mode in which the outdoor unit is defrosted while maintaining the heating operation, and a reverse cycle defrost operation mode in which the heating operation is stopped and the outdoor unit is defrosted. If the other defrost operation mode input condition is satisfied within the inhibit time of one of the forward cycle defrost operation mode and the reverse cycle defrost operation mode, the other defrost operation mode is selected. Run.

上述の空気調和機の制御装置、空気調和機の制御方法、空気調和機及び制御プログラムによれば、室内温度を低下させず、ユーザー快適性の高い制御を行うことができる。   According to the control device of the air conditioner described above, the control method of the air conditioner, the air conditioner, and the control program, it is possible to perform control with high user comfort without lowering the room temperature.

第一実施形態に係る空気調和機の全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the air conditioner concerning 1st embodiment. 第一実施形態に係る空気調和機の制御装置の機能構成を示す図である。It is a figure which shows the function structure of the control apparatus of the air conditioner concerning 1st embodiment. 第一実施形態に係る空気調和機の制御装置の処理フローを示す図である。It is a figure which shows the processing flow of the control apparatus of the air conditioner concerning 1st embodiment. 第一実施形態に係る空気調和機の制御装置が行う制御を説明するための図である。It is a figure for demonstrating the control which the control apparatus of the air conditioner concerning 1st embodiment performs. 第二実施形態に係る空気調和機の制御装置が行う制御のフロー図である。It is a flowchart of the control which the control device of the air conditioner concerning a second embodiment performs. 第三実施形態に係る空気調和機の制御装置が行う制御のフロー図である。It is a flowchart of the control which the control device of the air conditioner concerning a third embodiment performs.

[第一実施形態]
以下、第一実施形態に係る空気調和機の制御装置について図面を参照して詳細に説明する。
First Embodiment
Hereinafter, the control device of the air conditioner according to the first embodiment will be described in detail with reference to the drawings.

(空気調和機の全体構成)
図1は、第一実施形態に係る空気調和機の全体構成図である。
第一実施形態に係る空気調和機1の構成について、図1を参照しながら説明する。
(Overall configuration of air conditioner)
FIG. 1 is an entire configuration diagram of an air conditioner according to a first embodiment.
The configuration of the air conditioner 1 according to the first embodiment will be described with reference to FIG.

第一実施形態に係る空気調和機1は、冷媒回路10を有する。冷媒回路10は、圧縮機2と、室内熱交換器3と、膨張弁4と、室外熱交換器5と、二方弁6と、四方弁7とを有する。圧縮機2、室内熱交換器3、膨張弁4、室外熱交換器5、二方弁6及び四方弁7は、冷媒を循環可能な冷媒配管20に接続されている。
冷媒回路10は、暖房運転時、正サイクルデフロスト運転時、及び、逆サイクルデフロスト運転時に使用される主回路100と、正サイクルデフロスト運転時にのみ使用されるバイパス配管200と、を有する。
The air conditioner 1 according to the first embodiment has a refrigerant circuit 10. The refrigerant circuit 10 includes a compressor 2, an indoor heat exchanger 3, an expansion valve 4, an outdoor heat exchanger 5, a two-way valve 6, and a four-way valve 7. The compressor 2, the indoor heat exchanger 3, the expansion valve 4, the outdoor heat exchanger 5, the two-way valve 6, and the four-way valve 7 are connected to a refrigerant pipe 20 capable of circulating a refrigerant.
The refrigerant circuit 10 has a main circuit 100 used during heating operation, forward cycle defrost operation, and reverse cycle defrost operation, and a bypass pipe 200 used only during forward cycle defrost operation.

主回路100は、四方弁7を起点とした場合、四方弁7の端子のうち第一の端子7Aと第二の端子7Bとに接続される熱交換器側主回路110と、四方弁7の端子のうち第三の端子7Cと第四の端子7Dとに接続される圧縮機側主回路120とを有する。換言すれば、熱交換器側主回路110と圧縮機側主回路120とは、四方弁7を介して互いに接続されている。
熱交換器側主回路110には、室内熱交換器3と、膨張弁4と、室外熱交換器5とが設けられている。圧縮機側主回路120には、圧縮機2が設けられている。
When the main circuit 100 starts from the four-way valve 7, the heat exchanger side main circuit 110 connected to the first terminal 7A and the second terminal 7B among the terminals of the four-way valve 7 and the four-way valve 7 It has the compressor side main circuit 120 connected to the 3rd terminal 7C and the 4th terminal 7D among terminals. In other words, the heat exchanger side main circuit 110 and the compressor side main circuit 120 are connected to each other through the four-way valve 7.
The heat exchanger side main circuit 110 is provided with an indoor heat exchanger 3, an expansion valve 4, and an outdoor heat exchanger 5. The compressor 2 is provided in the compressor-side main circuit 120.

四方弁7は、各端子に接続された4つの管路を2つずつ二組のペアで接続することができ、またそのペアを切り替えることができる。具体的には、四方弁7は、第一の端子7Aと第四の端子7Dとのペア、及び、第二の端子7Bと第三の端子7Cとのペアを接続することができる。また、四方弁7は、第一の端子7Aと第三の端子7Cとのペア、及び、第二の端子7Bと第四の端子7Dとのペアを接続することができる。
これにより、熱交換器側主回路110と圧縮機側主回路120との接続関係を切り替えることができる。圧縮機2から吐出された冷媒が通る冷媒配管20を四方弁7の第三の端子7Cに接続した場合、圧縮機2が吐出した高温高圧の冷媒は、第二の端子7Bから室外熱交換器5へと向かう経路(冷房経路)と、第一の端子7Aから室内熱交換器3へと向かう経路(暖房経路)との二種類の経路のうちのいずれか一方を流通する。
The four-way valve 7 can connect four lines connected to each terminal in two pairs of two, and can switch the pair. Specifically, the four-way valve 7 can connect the pair of the first terminal 7A and the fourth terminal 7D, and the pair of the second terminal 7B and the third terminal 7C. Further, the four-way valve 7 can connect the pair of the first terminal 7A and the third terminal 7C and the pair of the second terminal 7B and the fourth terminal 7D.
Thereby, the connection relation between the heat exchanger side main circuit 110 and the compressor side main circuit 120 can be switched. When the refrigerant pipe 20 through which the refrigerant discharged from the compressor 2 passes is connected to the third terminal 7C of the four-way valve 7, the high temperature / high pressure refrigerant discharged by the compressor 2 is an outdoor heat exchanger from the second terminal 7B. One of two types of paths, that is, a path (cooling path) to 5 and a path (heating path) from the first terminal 7A to the indoor heat exchanger 3 is circulated.

第一実施形態における空気調和機1の冷媒回路10には、上述のように、バイパス配管200がさらに設けられている。バイパス配管200は、圧縮機側主回路120のうち圧縮機2の吐出側において、当該圧縮機2と四方弁7との間(バイパス始点20A)から、熱交換器側主回路110のうち膨張装置4と室外熱交換器5との間に設けられたバイパス終点20Bまでを接続する冷媒配管である。このバイパス配管200には、二方弁6が設けられており、これにより当該バイパス配管200の開閉を行うことができる。なお、通常の暖房運転時、冷房運転時、及び、逆サイクルデフロスト運転時においては、二方弁6は閉じられている。   As described above, the bypass pipe 200 is further provided in the refrigerant circuit 10 of the air conditioner 1 in the first embodiment. The bypass piping 200 is an expansion device in the heat exchanger side main circuit 110 from between the compressor 2 and the four-way valve 7 (bypass start point 20A) on the discharge side of the compressor 2 in the compressor side main circuit 120. It is refrigerant piping which connects to 4 and the bypass end point 20B provided between the outdoor heat exchangers 5. The bypass piping 200 is provided with a two-way valve 6, which allows the bypass piping 200 to be opened and closed. During normal heating operation, cooling operation, and reverse cycle defrost operation, the two-way valve 6 is closed.

暖房運転時の冷媒の循環について説明する。暖房運転時、四方弁7は暖房経路の接続関係とされている。冷媒は圧縮機2により圧縮されて高温高圧とされた後、四方弁7の第三の端子7Cから入り、第一の端子7Aから室内熱交換器3へと向かう。室内熱交換器3内では、熱交換を行うことで冷媒は冷却されて凝縮し、代わりに室内熱交換器3外部の室内空気に熱を与える。室内空気は室内側送付機13によって送風される。凝縮した冷媒は、膨張弁4へ流入し、低温かつ低圧となる。膨張弁4を出た冷媒は室外熱交換器5に流入し、室外空気により加熱され室外熱交換器5内で蒸発し気化する。気化した冷媒は四方弁7の第二の端子7B及び第四の端子7Dを通じて、圧縮機2に戻される。上記のサイクルを持続的に繰り返すことで空気調和機1は暖房運転を行う。   The circulation of the refrigerant during the heating operation will be described. During the heating operation, the four-way valve 7 is connected in the heating path. The refrigerant is compressed by the compressor 2 to have a high temperature and a high pressure, and then enters from the third terminal 7C of the four-way valve 7 and travels from the first terminal 7A to the indoor heat exchanger 3. In the indoor heat exchanger 3, the refrigerant is cooled and condensed by performing heat exchange, and instead, heat is given to room air outside the indoor heat exchanger 3. The indoor air is blown by the indoor transmitter 13. The condensed refrigerant flows into the expansion valve 4 and becomes low temperature and low pressure. The refrigerant leaving the expansion valve 4 flows into the outdoor heat exchanger 5, is heated by the outdoor air, and is evaporated and vaporized in the outdoor heat exchanger 5. The vaporized refrigerant is returned to the compressor 2 through the second terminal 7B and the fourth terminal 7D of the four-way valve 7. The air conditioner 1 performs heating operation by continuously repeating the above cycle.

暖房運転時は上記のように、室外熱交換器5の外部の空気は冷媒に熱を奪われることでさらに低温となるため、室内熱交換器3の表面が氷点下温度域まで低下し、霜が発生、積層することがある。これにより、熱交換器の熱伝導が妨げられ、熱交換の効率が低下することが懸念される。
この霜を取り除くために、二種類の除霜運転(デフロスト運転)が知られている。即ち、正サイクルデフロスト運転(バイパスサイクルデフロスト運転、以下DfP)及び逆サイクルデフロスト運転(リバースサイクルデフロスト運転、以下DfR)である。
During the heating operation, as described above, the air outside the outdoor heat exchanger 5 is further lowered in temperature by the heat being taken away by the refrigerant, so the surface of the indoor heat exchanger 3 falls to a temperature below the freezing point and frost May occur and stack up. As a result, the heat conduction of the heat exchanger may be impeded and the efficiency of heat exchange may be reduced.
In order to remove this frost, two types of defrost operation (Defrost operation) are known. That is, a forward cycle defrost operation (bypass cycle defrost operation, hereinafter DfP) and a reverse cycle defrost operation (reverse cycle defrost operation, hereinafter DfR).

DfPは、暖房運転時に圧縮機2からの吐出冷媒ガスの一部を室外熱交換器5へと送るバイパス配管200を経由させて冷媒を循環させることで、室外熱交換器5の除霜を行う除霜運転である。二方弁6を開とすることで、DfPは実施される。
DfP時の冷媒の循環について説明する。DfP時は、四方弁7において暖房経路の接続関係が維持され、したがって、上述の暖房運転時の冷媒循環が保たれる。これに加え、二方弁6が開放され、バイパス配管200にも冷媒が流れることで、圧縮機2から吐出された高温高圧の冷媒の一部が、室内熱交換器3を経由せずに室外熱交換器5に送られる。これにより、室外熱交換器5に熱が与えられ、除霜が行われる。
なお、DfPは、本来、室内熱交換器3に送るべき高温高圧の冷媒の一部を室外熱交換器5に送るため、除霜を行いつつ暖房運転を継続できるものの、その暖房能力は、通常の暖房運転に比べて3分の1程度に低下する。また、室外熱交換器5に送られる冷媒の量が全冷媒の一部であるため、後述するDfRに比べ、除霜能力は低いものとなる。
DfP performs defrosting of the outdoor heat exchanger 5 by circulating the refrigerant through a bypass pipe 200 that sends part of the refrigerant gas discharged from the compressor 2 to the outdoor heat exchanger 5 during heating operation. It is a defrosting operation. By opening the two-way valve 6, DfP is performed.
The circulation of the refrigerant at the time of DfP will be described. At the time of DfP, the connection of the heating path is maintained in the four-way valve 7, and therefore, the refrigerant circulation during the above-described heating operation is maintained. In addition to this, the two-way valve 6 is opened, and the refrigerant also flows through the bypass pipe 200, so that a part of the high-temperature and high-pressure refrigerant discharged from the compressor 2 does not go through the indoor heat exchanger 3 outside the room. It is sent to the heat exchanger 5. Thereby, heat is given to the outdoor heat exchanger 5, and defrosting is performed.
In addition, DfP sends a part of the high-temperature high-pressure refrigerant that should be sent to the indoor heat exchanger 3 to the outdoor heat exchanger 5. Therefore, although heating can be continued while performing defrosting, its heating capacity is usually It decreases to about one third compared to the heating operation. Moreover, since the quantity of the refrigerant | coolant sent to the outdoor heat exchanger 5 is a part of all the refrigerant | coolants, defrost capacity becomes low compared with DfR mentioned later.

一方、DfRは、熱交換器側主回路110における冷媒を、暖房運転とは逆に循環させることで除霜を行う除霜運転である。暖房運転とは逆に循環させることで、圧縮機2からの吐出冷媒ガスの全部が室外熱交換器5へ送られる。これにより、DfRではDfPに比べてより強力に霜を溶かすことができる。ただし、DfRでは、四方弁7を冷房経路の接続関係へと切り替えて運転を行うため、室内熱交換器3に送風を行わない点を除いて、冷房運転と実質的に同一の冷媒循環を行う。そのため、DfR中は、暖房運転が停止するとともに、室内の熱が奪われて室温が低下する。
DfR時の冷媒の循環について説明する。冷媒は、圧縮機2により圧縮されて高温高圧とされた後、四方弁7の第三の端子7Cから入り、第二の端子7Bから室外熱交換器5へと向かう。室外熱交換器5内では、熱交換を行うことで冷媒は冷却されて凝縮し、代わりに熱を室外熱交換器5外部の室外空気に与える。このため、凝縮した冷媒は、膨張装置4へ流入し、低温かつ低圧となる。膨張装置4を出た冷媒は室内熱交換器3に流入し、室内空気により加熱され室内熱交換器3内で蒸発し気化する。このとき、熱を室内熱交換器3外部の室内空気から奪う。冷房運転であれば、低温となった室内空気は室内側送付機13によって送風され室内の冷却に供されるが、DfRでは送風は行わない。気化した冷媒は、四方弁7の第一の端子7Aから入り第四の端子7Dから抜けて、圧縮機2に戻される。上記のサイクルは持続的に繰り返される。
On the other hand, DfR is a defrosting operation in which defrosting is performed by circulating the refrigerant in the heat exchanger side main circuit 110 in the reverse direction to the heating operation. By circulating the gas in the reverse direction to the heating operation, all of the refrigerant gas discharged from the compressor 2 is sent to the outdoor heat exchanger 5. Thereby, frost can be melted more strongly in DfR than in DfP. However, in DfR, since the four-way valve 7 is switched to the connection relationship of the cooling path to perform the operation, the refrigerant circulation substantially the same as the cooling operation is performed except that the indoor heat exchanger 3 is not ventilated. . Therefore, during the DfR, the heating operation is stopped, the room heat is taken away, and the room temperature decreases.
The circulation of the refrigerant at DfR will be described. The refrigerant is compressed by the compressor 2 to have a high temperature and a high pressure, and then enters from the third terminal 7C of the four-way valve 7 and travels from the second terminal 7B to the outdoor heat exchanger 5. In the outdoor heat exchanger 5, the refrigerant is cooled and condensed by performing heat exchange, and instead, heat is given to the outdoor air outside the outdoor heat exchanger 5. For this reason, the condensed refrigerant flows into the expansion device 4 and becomes low temperature and low pressure. The refrigerant leaving the expansion device 4 flows into the indoor heat exchanger 3, is heated by the indoor air, and is evaporated and vaporized in the indoor heat exchanger 3. At this time, heat is taken away from indoor air outside the indoor heat exchanger 3. In the case of the cooling operation, the room air, which has become low in temperature, is blown by the indoor-side sending machine 13 and is used to cool the room, but is not blown by DfR. The vaporized refrigerant enters from the first terminal 7A of the four-way valve 7, passes through the fourth terminal 7D, and is returned to the compressor 2. The above cycle is repeated continuously.

ここで、本実施形態における空気調和機1は、外気温度センサ25と、熱交換器温度センサ35がさらに設けられ、上記の暖房運転、DfP、DfRの三者の運転モードを切り替えるための制御装置201をさらに備えている。   Here, the air conditioner 1 in the present embodiment is further provided with an outside air temperature sensor 25 and a heat exchanger temperature sensor 35, and is a control device for switching the operation mode of the heating operation, DfP, and DfR. 201 is further provided.

(空気調和機の制御装置の機能構成)
図2は、第一実施形態に係る空気調和機の制御装置の機能構成を示す図である。
以下、第一実施形態における空気調和機の制御装置について、図1〜図2を参照しながら説明する。
(Functional configuration of air conditioner control device)
FIG. 2 is a diagram showing a functional configuration of the control device of the air conditioner according to the first embodiment.
Hereinafter, the control device of the air conditioner according to the first embodiment will be described with reference to FIGS.

図2に示すように、室外機1Aは、制御装置201を備えている。図2に示す制御装置201は、所定のプログラムに基づいて動作することで、外気温度取得部41、室外熱交温度取得部42、及び、運転実行部43としての機能を発揮する。   As shown in FIG. 2, the outdoor unit 1 </ b> A includes a control device 201. The control device 201 illustrated in FIG. 2 operates based on a predetermined program to exhibit functions as the outdoor air temperature acquisition unit 41, the outdoor heat exchange temperature acquisition unit 42, and the operation execution unit 43.

外気温度取得部41は、外気温度センサ25を通じて、室外機1Aの外気温度を取得する。
室外熱交温度取得部42は、熱交換器温度センサ35を通じて、室外機1Aの室外熱交換器5の温度(以下、「室外熱交温度」とも表記する。)を取得する。
運転実行部43は、外気温度及び室外熱交温度に基づく所定の条件に基づいて、空気調和機1の運転モードを切り替える。運転実行部43は、主に、二方弁6、四方弁7を制御することで運転モードを切り替える。
The outside air temperature acquisition unit 41 acquires the outside air temperature of the outdoor unit 1A through the outside air temperature sensor 25.
The outdoor heat exchange temperature acquiring unit 42 acquires the temperature of the outdoor heat exchanger 5 of the outdoor unit 1A (hereinafter, also referred to as "outdoor heat exchange temperature") through the heat exchanger temperature sensor 35.
The operation execution unit 43 switches the operation mode of the air conditioner 1 based on predetermined conditions based on the outside air temperature and the outdoor heat exchange temperature. The operation execution unit 43 mainly switches the operation mode by controlling the two-way valve 6 and the four-way valve 7.

(空気調和機の制御装置の処理フロー)
図3は、第一実施形態に係る空気調和機の制御装置の処理フローを示す図である。
図4は、第一実施形態に係る空気調和機の制御装置が行う制御を説明するための図である。
以下、図3及び図4を参照しながら、第一実施形態に係る制御装置201が行う処理フローについて説明する。
(Process flow of control device of air conditioner)
FIG. 3 is a diagram showing a process flow of the control device of the air conditioner according to the first embodiment.
FIG. 4 is a diagram for explaining control performed by the control device of the air conditioner according to the first embodiment.
The process flow performed by the control device 201 according to the first embodiment will be described below with reference to FIGS. 3 and 4.

まず、ユーザーが暖房の使用を開始すると、制御装置201は、暖房運転を開始する(ステップS1A)。具体的には、運転実行部43は、圧縮機2の吐出冷媒ガスが暖房経路(第一の端子7Aから室内熱交換器3へと向かう経路)を循環するように四方弁7を制御し、かつ、二方弁6を閉塞する。
運転実行部43は、ステップS1Aで暖房運転を開始してから所定のDfP禁止時間t1(例えば、35分)を経過したか否か(暖房運転の経過時間tがDfP禁止時間t1を上回ったか否か)を判定する(ステップS2A)。
暖房運転を開始してから所定のDfP禁止時間t1を経過していない場合(ステップS2A:NO)、運転実行部43は、引き続き暖房運転を継続すべく、ステップS1Aの処理に戻る。
暖房運転を開始してから所定のDfP禁止時間t1を経過した場合(ステップS2A:YES)、運転実行部43は、外気温度ThA及び室外熱交温度ThRが、所定の正サイクルデフロスト入条件を満たすか否かを判定する。
First, when the user starts using the heating, the control device 201 starts the heating operation (step S1A). Specifically, the operation execution unit 43 controls the four-way valve 7 so that the refrigerant gas discharged from the compressor 2 circulates in the heating path (the path from the first terminal 7A to the indoor heat exchanger 3), Also, the two-way valve 6 is closed.
The operation execution unit 43 determines whether a predetermined DfP prohibition time t1 (for example, 35 minutes) has elapsed since the heating operation was started in step S1A (the elapsed time t of the heating operation has exceeded the DfP prohibition time t1). ) Is determined (step S2A).
If the predetermined DfP prohibition time t1 has not elapsed since the start of the heating operation (step S2A: NO), the operation execution unit 43 returns to the process of step S1A to continue the heating operation.
When a predetermined DfP prohibition time t1 has elapsed since the start of the heating operation (step S2A: YES), the operation execution unit 43 indicates that the outside air temperature ThA and the outdoor heat exchange temperature ThR satisfy the predetermined positive cycle defrost entry condition It is determined whether or not.

具体的には、運転実行部43は、外気温度ThAと室外熱交温度ThRとの温度差(ThA−ThR)が正サイクルデフロスト閾値Th1(例えば、20℃)を超えたか否かを判定する(ステップS3A)。
温度差(ThA−ThR)が正サイクルデフロスト閾値Th1を超えていない場合(ステップS3A:NO)、運転実行部43は、引き続き暖房運転を継続すべく、ステップS1Aの処理に戻る。
温度差(ThA−ThR)が正サイクルデフロスト閾値Th1を超えた場合(ステップS3A:YES)、運転実行部43は、室外熱交換器5が着霜していると判断し、正サイクルデフロスト運転モードを実行する(ステップS4A)。ここで、運転実行部43は、四方弁7の接続状態を維持したまま(冷媒が暖房経路を循環することを維持したまま)、二方弁6を開放する。これにより、吐出冷媒ガスの一部がバイパス配管200を流通して室外熱交換器5に送られて、除霜が行われる。
Specifically, the operation execution unit 43 determines whether the temperature difference (ThA−ThR) between the outside air temperature ThA and the outdoor heat exchange temperature ThR exceeds the positive cycle defrost threshold Th1 (for example, 20 ° C.) Step S3A).
If the temperature difference (ThA-ThR) does not exceed the positive cycle defrost threshold Th1 (step S3A: NO), the operation execution unit 43 returns to the process of step S1A to continue the heating operation.
If the temperature difference (ThA-ThR) exceeds the positive cycle defrost threshold Th1 (step S3A: YES), the operation execution unit 43 determines that the outdoor heat exchanger 5 is frosted, and the positive cycle defrost operation mode is Are executed (step S4A). Here, the operation execution unit 43 opens the two-way valve 6 while maintaining the connection state of the four-way valve 7 (while maintaining that the refrigerant circulates through the heating path). As a result, a part of the discharged refrigerant gas flows through the bypass pipe 200 and is sent to the outdoor heat exchanger 5 to perform defrosting.

次に、運転実行部43は、正サイクルデフロスト運転モードの実行により、室外熱交換器5の除霜が達成されたか否かを判定する。具体的には、運転実行部43は、温度差(ThA−ThR)が所定のデフロスト解除閾値ThC以下となったか否かを判定する(ステップS5A)。ここで、デフロスト解除閾値ThCは、正サイクルデフロスト閾値Th1よりも小さい値とされる。
温度差(ThA−ThR)が所定のデフロスト解除閾値ThC以下となっていない場合(ステップS5A:NO)、運転実行部43は、室外熱交換器5の除霜が達成されていないとの判断に基づき、ステップS4Aに戻り、引き続き、正サイクルデフロスト運転モードを実行する。
他方、温度差(ThA−ThR)が所定のデフロスト解除閾値ThC以下となった場合(ステップS5A:YES)、運転実行部43は、室外熱交換器5の除霜が達成されたとの判断に基づき、正サイクルデフロスト運転モードを終了し、再度、暖房運転を開始する(ステップS6A)。
ただし、後述するように、温度差(ThA−ThR)がデフロスト解除閾値ThC以下となった場合であっても、室外熱交換器5が完全に除霜されているとは限らない。即ち、環境条件等によっては、室外熱交換器5に霜の溶け残りが存在していることも想定される。
Next, the operation execution unit 43 determines whether defrosting of the outdoor heat exchanger 5 has been achieved by execution of the positive cycle defrost operation mode. Specifically, the operation execution unit 43 determines whether the temperature difference (ThA-ThR) has become equal to or less than a predetermined defrost cancellation threshold ThC (step S5A). Here, the defrosting cancellation threshold ThC is set to a value smaller than the positive cycle defrosting threshold Th1.
If the temperature difference (ThA-ThR) is not less than or equal to the predetermined defrost release threshold ThC (step S5A: NO), the operation execution unit 43 determines that defrosting of the outdoor heat exchanger 5 is not achieved. Then, the process returns to step S4A, and subsequently, the positive cycle defrost operation mode is executed.
On the other hand, when the temperature difference (ThA-ThR) becomes equal to or less than the predetermined defrost release threshold ThC (step S5A: YES), the operation execution unit 43 determines that defrosting of the outdoor heat exchanger 5 has been achieved. The positive cycle defrost operation mode is ended, and the heating operation is started again (step S6A).
However, as described later, even when the temperature difference (ThA-ThR) becomes equal to or less than the defrosting release threshold ThC, the outdoor heat exchanger 5 is not necessarily completely defrosted. That is, depending on environmental conditions etc., it is also assumed that the undissolved matter of frost exists in the outdoor heat exchanger 5.

次に、運転実行部43は、ステップS6Aで暖房運転を実行しながら、暖房運転を開始してから所定のDfR禁止時間t2(t2>t1。例えば、45分)を経過したか否かを判定する(ステップS7A)。暖房運転を開始してから所定のDfR禁止時間t2が経過していない場合(ステップS7A:NO)、運転実行部43は、引き続き暖房運転を継続すべく、ステップS6Aの処理に戻る。   Next, while executing the heating operation in step S6A, the operation execution unit 43 determines whether or not a predetermined DfR prohibition time t2 (t2> t1, for example, 45 minutes) has elapsed since the heating operation was started. (Step S7A). If the predetermined DfR prohibition time t2 has not elapsed since the start of the heating operation (step S7A: NO), the operation execution unit 43 returns to the process of step S6A to continue the heating operation.

暖房運転を開始してから所定のDfR禁止時間t2を超えた場合(ステップS7A:YES)、続いて、運転実行部43は、正サイクルデフロスト運転モード(ステップS4A)の運転終了から所定の安定待機時間(例えば5分)を経過したか否かを判定する(ステップS8A)。
正サイクルデフロスト運転モードの運転終了から所定の安定待機時間を経過していない場合(ステップS8A:NO)、暖房運転が再開(ステップS6A)してから室外熱交温度ThR等が安定していないとの判断より、ステップS6Aに戻り、引き続き、暖房運転を継続する。
他方、正サイクルデフロスト運転モードの運転終了から所定の安定待機時間を経過した場合(ステップS8A:YES)、更に、運転実行部43は、正サイクルデフロスト運転モードの運転終了からDfP禁止時間t1を経過したか否かを判定する(ステップS9A)。
正サイクルデフロスト運転モードの運転終了からDfP禁止時間t1を経過した場合(ステップS9A:YES)、運転実行部43は、以降において、正サイクルデフロスト入条件を満たした場合には、直ちに、正サイクルデフロスト運転モードを実行することができる。したがって、運転実行部43は、ステップS3Aに戻り、正サイクルデフロスト入条件を満たすか否かに応じて、正サイクルデフロスト運転モードを実行、又は、暖房運転を継続する。
If the predetermined DfR prohibition time t2 is exceeded after the heating operation is started (step S7A: YES), the operation execution unit 43 subsequently waits for a predetermined stable time from the end of the operation in the positive cycle defrost operation mode (step S4A). It is determined whether a time (for example, 5 minutes) has passed (step S8A).
If the predetermined stable standby time has not elapsed from the end of the normal cycle defrost operation mode (step S8A: NO), the outdoor heat exchange temperature ThR or the like is not stable after the heating operation is resumed (step S6A) Based on the determination of step S6, the process returns to step S6A to continue heating operation.
On the other hand, when the predetermined stable standby time has elapsed from the end of the operation in the positive cycle defrost operation mode (step S8A: YES), the operation execution unit 43 further elapses the DfP prohibition time t1 from the end of the operation in the positive cycle defrost operation mode. It is determined whether or not it has been (step S9A).
If the DfP inhibition time t1 has elapsed from the end of the operation in the positive cycle defrost operation mode (step S9A: YES), the operation execution unit 43 immediately corrects the positive cycle defrost when the positive cycle defrost input condition is satisfied thereafter. The operation mode can be performed. Therefore, the operation execution unit 43 returns to step S3A, and executes the positive cycle defrost operation mode or continues the heating operation depending on whether or not the positive cycle defrost input condition is satisfied.

他方、正サイクルデフロスト運転モードの運転終了からDfP禁止時間t1を経過していない場合(ステップS9A:NO)、運転実行部43は、DfP禁止時間t1を経過するまでは再び正サイクルデフロスト運転モードを実行することはできない。
ここで、仮に、最初に実行した(ステップS4Aで実行した)正サイクルデフロスト運転による除霜が十分でなかった(霜の溶け残しがあった)とすると、その時点から更にDfP禁止時間t1を経過したときには霜が大幅に成長しており、再度実行する正サイクルデフロスト運転によって除霜が完了するまでに多大な時間がかかることが想定される。そうすると、正サイクルデフロスト運転期間(即ち、暖房能力が十分でない期間)が長く続くことになり、ユーザー快適性が損なわれる。
そこで、正サイクルデフロスト運転モードの運転終了からDfP禁止時間t1を経過していない間、運転実行部43は、ステップS4Aで行った正サイクルデフロスト運転で除霜が十分に行われていたか否か(霜の溶け残しがないか否か)を判断する。具体的には、運転実行部43は、外気温度ThA及び室外熱交温度ThRが、所定の逆サイクルデフロスト入条件を満たすか否かを判定する。
On the other hand, when the DfP inhibition time t1 has not elapsed from the end of the operation in the positive cycle defrost operation mode (step S9A: NO), the operation execution unit 43 repeats the positive cycle defrost operation mode again until the DfP inhibition time t1 elapses. It can not be done.
Here, assuming that the defrosting by the positive cycle defrosting operation (executed in step S4A) which was initially performed was not sufficient (the frost remained unmelted), the DfP inhibition time t1 further elapsed from that point. It is assumed that the frost has grown significantly and it takes a long time to complete the defrosting by the positive cycle defrost operation which is performed again. As a result, the positive cycle defrost operation period (i.e., the period in which the heating capacity is not sufficient) continues for a long time, and the user comfort is impaired.
Therefore, while the DfP inhibition time t1 has not elapsed from the end of the operation in the positive cycle defrost operation mode, the operation execution unit 43 determines whether defrosting has been sufficiently performed in the positive cycle defrost operation performed in step S4A ( Judge if there is any remaining unmelted frost). Specifically, the operation execution unit 43 determines whether the outside air temperature ThA and the outdoor heat exchange temperature ThR satisfy the predetermined reverse cycle defrost entrance condition.

即ち、運転実行部43は、温度差(ThA−ThR)が逆サイクルデフロスト閾値Th2(Th1<Th2)を超えたか否かを判定する(ステップS10A)。
温度差(ThA−ThR)が逆サイクルデフロスト閾値Th2(Th1<Th2)を超えていない場合(ステップS10A)、運転実行部43は、除霜が十分に行われていたとの判断に基づき、ステップS6Aに戻って暖房運転を継続する。
他方、温度差(ThA−ThR)が逆サイクルデフロスト閾値Th2(Th1<Th2)を超えていた場合、正サイクルデフロスト運転終了後、除霜が十分に行われてなかったために温度差(ThA−ThR)が短時間で室外熱交温度が急激に低下したものと考えられる。そこで、運転実行部43は、直ちに、逆サイクルデフロスト運転モードを実行する(ステップS11A)。
ここで、運転実行部43は、四方弁7を冷房経路の接続関係へと切り替えて運転を行う。
That is, the operation execution unit 43 determines whether the temperature difference (ThA-ThR) exceeds the reverse cycle defrost threshold Th2 (Th1 <Th2) (step S10A).
If the temperature difference (ThA−ThR) does not exceed the reverse cycle defrost threshold Th2 (Th1 <Th2) (step S10A), the operation execution unit 43 performs step S6A based on the determination that defrosting has been sufficiently performed. Return to and continue heating operation.
On the other hand, if the temperature difference (ThA-ThR) exceeds the reverse cycle defrost threshold Th2 (Th1 <Th2), the temperature difference (ThA-ThR) may not be sufficient after the end of the forward cycle defrost operation, as defrosting is not sufficiently performed. It is considered that the outdoor heat exchange temperature dropped rapidly in a short time). Therefore, the operation execution unit 43 immediately executes the reverse cycle defrost operation mode (step S11A).
Here, the operation execution unit 43 operates by switching the four-way valve 7 to the connection relationship of the cooling path.

次に、運転実行部43は、逆サイクルデフロスト運転モードの実行により、室外熱交換器5の除霜が達成されたか否かを判定する。具体的には、運転実行部43は、温度差(ThA−ThR)が所定のデフロスト解除閾値ThC(ThC>Th2)以下となったか否かを判定する(ステップS12A)。
温度差(ThA−ThR)が所定のデフロスト解除閾値ThC以下となっていない場合(ステップS12A:NO)、運転実行部43は、ステップS12Aに戻り、引き続き、逆サイクルデフロスト運転モードを実行する。
他方、温度差(ThA−ThR)が所定のデフロスト解除閾値ThC以下となった場合(ステップS12A:YES)、運転実行部43は、室外熱交換器5の除霜が達成されたとの判断に基づき、逆サイクルデフロスト運転モードを終了し、再度、暖房運転を開始する(ステップS13A)。
運転実行部43は、逆サイクルデフロスト運転モードを終了し、再度、暖房運転を開始するタイミングで経過時間をリセットし(ステップS14A)、ステップS2Aの処理に戻る。
Next, the operation execution unit 43 determines whether defrosting of the outdoor heat exchanger 5 has been achieved by execution of the reverse cycle defrost operation mode. Specifically, the operation execution unit 43 determines whether the temperature difference (ThA−ThR) is less than or equal to a predetermined defrost cancellation threshold ThC (ThC> Th2) (step S12A).
If the temperature difference (ThA−ThR) is not less than or equal to the predetermined defrost release threshold ThC (step S12A: NO), the operation execution unit 43 returns to step S12A and continues to execute the reverse cycle defrost operation mode.
On the other hand, when the temperature difference (ThA-ThR) becomes equal to or less than the predetermined defrost release threshold ThC (step S12A: YES), the operation execution unit 43 determines that defrosting of the outdoor heat exchanger 5 has been achieved. The reverse cycle defrost operation mode is ended, and the heating operation is started again (step S13A).
The operation execution unit 43 ends the reverse cycle defrost operation mode, resets the elapsed time again at the timing of starting the heating operation (step S14A), and returns to the process of step S2A.

(作用、効果)
以上に説明したとおり、第1の実施形態に係る運転実行部43は、暖房運転を維持しながら室外機1Aの除霜を行う正サイクルデフロスト運転モードと、暖房運転を停止して室外機1Aの除霜を行う逆サイクルデフロスト運転モードとの両方を実行可能とする。そして、運転実行部43は、正サイクルデフロスト運転モードの禁止時間内において、逆サイクルデフロスト運転モードの入条件(逆サイクルデフロスト入条件)を満たした場合に、当該逆サイクルデフロスト運転モードを実行する。
(Action, effect)
As described above, the operation execution unit 43 according to the first embodiment performs the defrosting in the positive cycle defrosting mode in which the outdoor unit 1A is defrosted while maintaining the heating operation, and the heating operation is stopped in the outdoor unit 1A. Both the reverse cycle defrost operation mode for performing defrosting can be performed. Then, the operation execution unit 43 executes the reverse cycle defrost operation mode when the reverse cycle defrost operation mode entry condition (reverse cycle defrost input condition) is satisfied within the prohibition time of the forward cycle defrost operation mode.

このようにすることで、初回の正サイクルデフロスト運転による除霜が不十分であったとしても、当該正サイクルデフロスト運転の禁止時間内に逆サイクルデフロスト入条件を満たしたことをもって、追加のデフロスト運転(逆サイクルデフロスト運転)が実行され、完全に除霜される。これにより、禁止時間の経過後、次回の正サイクルデフロスト運転が開始されたとしても、当該正サイクルデフロスト期間(即ち、暖房能力が低い期間)が長期間継続されることはない(短期間で除霜が完了する)。
他方、初回の正サイクルデフロスト運転による除霜がもともと十分であった場合には、禁止時間内に追加のデフロスト運転(逆サイクルデフロスト運転)が実行されることもない。したがって、この場合は、正サイクルデフロスト運転期間を含め、常に、ユーザーに暖房運転を提供することができる。
以上より、室内温度を低下させず、ユーザー快適性の高い制御を行うことができる。
In this way, even if the defrosting by the first forward cycle defrost operation is insufficient, the additional defrost operation is satisfied when the reverse cycle defrost input condition is satisfied within the forward cycle defrost operation prohibited time. (Reverse cycle defrost operation) is performed and defrosted completely. As a result, even if the next positive cycle defrost operation is started after the lapse of the prohibition time, the positive cycle defrost period (that is, the period in which the heating capacity is low) is not continued for a long period of time The frost is complete).
On the other hand, when the defrosting by the first forward cycle defrost operation is originally sufficient, the additional defrost operation (reverse cycle defrost operation) is not performed within the prohibition time. Therefore, in this case, the heating operation can always be provided to the user, including the positive cycle defrost operation period.
From the above, it is possible to perform control with high user comfort without lowering the room temperature.

また、第一実施形態に係る運転実行部43は、正サイクルデフロスト運転モードの禁止時間内であって、かつ、当該正サイクルデフロスト運転モードの運転終了後、所定の安定待機時間(例えば、5分)を経過した後において、逆サイクルデフロスト入条件を満たした場合に、当該逆サイクルデフロスト運転モードを実行する。
このように、正サイクルデフロスト運転終了後に安定待機時間を設けることで、正サイクルデフロスト運転終了後、室外熱交温度ThRの変動(オーバーシュート)を安定させた後に、追加の逆サイクルデフロスト運転を行うか否かの判定を行うことができる。
In addition, the operation execution unit 43 according to the first embodiment is within the prohibition time of the positive cycle defrost operation mode and after the end of the normal cycle defrost operation mode, a predetermined stable standby time (for example, 5 minutes). The reverse cycle defrost operation mode is executed when the reverse cycle defrost input condition is satisfied after e.
Thus, by providing a stable standby time after the end of the forward cycle defrost operation, after the end of the forward cycle defrost operation, after stabilizing the fluctuation (overshoot) of the outdoor heat exchange temperature ThR, an additional reverse cycle defrost operation is performed. It can be determined whether or not.

[第二実施形態]
次に、第二実施形態について図5を参照して説明する。第二実施形態では第一実施形態と同様の構成要素には同一の符号を付して詳細な説明を省略する。
第二実施形態は、第一実施形態と比較して、実施される手順及び運転モードに係るすべてのDfP禁止時間t1とDfR禁止時間t2、DfPとDfR、正サイクルデフロスト閾値Th1と逆サイクルデフロスト閾値Th2が互いに置き換えられている。即ち、第二実施形態では、第一実施形態におけるDfPの実施条件判定及びその実施が行われる手順が、DfRの実施条件判定及びその実施に置換されるとともに、第一実施形態におけるDfRの実施条件判定及びその実施が行われる手順が、DfPの実施条件判定及びその実施に置換されている。
Second Embodiment
Next, a second embodiment will be described with reference to FIG. In the second embodiment, the same components as those of the first embodiment are denoted by the same reference numerals and the detailed description thereof is omitted.
In the second embodiment, compared to the first embodiment, all DfP prohibition time t1 and DfR prohibition time t2, DfP and DfR, forward cycle defrost threshold Th1 and reverse cycle defrost threshold according to the procedure and operation mode to be implemented Th2 has been replaced by each other. That is, in the second embodiment, the execution condition determination of DfP in the first embodiment and the procedure for performing the execution are replaced with the execution condition determination of DfR and the execution thereof, and the execution condition for DfR in the first embodiment The procedure under which the determination and its implementation are performed is replaced by the implementation condition determination of DfP and its implementation.

上記の空気調和機の制御装置201及びこれを備える空気調和機1では、DfPよりもDfRが優先して行われることとなる。そのため、除霜が必要となる場合で比較的外気温が低温であるときに、迅速な除霜を行うことで、結果的に暖房効果の継続時間をより長く確保した制御を行うことができる。   In the control device 201 of the air conditioner described above and the air conditioner 1 including the same, DfR is performed with priority over DfP. Therefore, when defrosting is required and the outside temperature is relatively low, by performing quick defrosting, control can be performed as a result to ensure a longer duration of the heating effect.

[第三実施形態]
次に第三実施形態について図6を参照して説明する。第三実施形態では第一実施形態と同様の構成要素には同一の符号を付して詳細な説明を省略する。
第三実施形態に係る運転実行部43は、外気温度ThAが所定の判定閾値Th3よりも大きいか否かを判定する手段を有している点で、第一実施形態と異なる。
また、手順としては、ステップS1AからS14A及びステップS1BからS14Bまでは、第一及び第二実施形態と同一のものを有しており、ステップS1AおよびS1Bの前のステップとしてステップS1Cを有している。ステップS1Cは、外気温度ThAがThA>Th3を満たすか否かを判定する手順であり、判定閾値Th3は第一実施形態の制御を行うべきか第二実施形態の制御を行うべきかのどちらかを判定するための閾値である。さらに、ステップS14A又はステップS14Bを経た場合は、ステップS1Cに戻される。
Third Embodiment
Next, a third embodiment will be described with reference to FIG. In the third embodiment, the same components as those of the first embodiment are denoted by the same reference numerals and the detailed description thereof is omitted.
The operation execution unit 43 according to the third embodiment differs from the first embodiment in that it has means for determining whether the outside air temperature ThA is larger than a predetermined determination threshold Th3.
As a procedure, steps S1A to S14A and steps S1B to S14B have the same ones as the first and second embodiments, and have step S1C as a step before steps S1A and S1B. There is. Step S1C is a procedure for determining whether the outside air temperature ThA satisfies ThA> Th3. The determination threshold Th3 is either to perform the control of the first embodiment or to perform the control of the second embodiment. Is a threshold for determining Furthermore, when the process passes through step S14A or step S14B, the process returns to step S1C.

上記の空気調和機の制御装置201及びこれを備える空気調和機1では、DfPを優先する制御とDfRを優先する制御を、外気温の変化に合わせて自動で切り替えることができる。これにより、例えば一日のうちで外気温が著しく変化する場合であっても、暖房時間を確保しつつ除霜必要量に応じた適切なデフロスト運転を行うことができる。   In the control device 201 of the air conditioner described above and the air conditioner 1 including the same, the control giving priority to DfP and the control giving priority to DfR can be switched automatically according to the change in the outside air temperature. As a result, even if the outside air temperature changes significantly, for example, during a day, it is possible to perform the appropriate defrost operation according to the necessary amount of defrosting while securing the heating time.

また、他の実施形態に係る空気調和機の制御装置201(運転実行部43)は、正サイクルデフロスト運転モード又は逆サイクルデフロスト運転モードのうち一方の禁止時間内において、他方のデフロスト運転モードを実行する回数を1回に制限してもよい。
このようにすることで、一方のデフロスト運転の禁止時間内において、他方のデフロスト運転が何度も実行されてしまい、かえってユーザー快適性が損なわれることを防止することができる。
In addition, the control device 201 (operation execution unit 43) of the air conditioner according to the other embodiment executes the other defrost operation mode within one prohibited time of the forward cycle defrost operation mode or the reverse cycle defrost operation mode. The number of times may be limited to one.
In this way, it is possible to prevent the other defrost operation from being performed many times in the inhibit time of the one defrost operation, and the user's comfort is impaired.

以上、本発明の第一、第二、第三実施形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。   The first, second, and third embodiments of the present invention have been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and the scope without departing from the scope of the present invention And design changes etc. are also included.

1 空気調和機
1A 室外機
201 制御装置
2 圧縮機
3 室内熱交換器
4 膨張弁
5 室外熱交換器
6 二方弁
7 四方弁
7A 第一の端子
7B 第二の端子
7C 第三の端子
7D 第四の端子
10 冷媒回路
20 冷媒配管
20A バイパス始点
20B バイパス終点
200 バイパス配管
100 主回路
110 熱交換器側主回路
120 圧縮機側主回路
41 外気温度取得部
42 室外熱交温度取得部
43 運転実行部
REFERENCE SIGNS LIST 1 air conditioner 1A outdoor unit 201 control device 2 compressor 3 indoor heat exchanger 4 expansion valve 5 outdoor heat exchanger 6 two-way valve 7 four-way valve 7A first terminal 7B second terminal 7C third terminal 7D third 4 terminals 10 refrigerant circuit 20 refrigerant piping 20A bypass start point 20B bypass end point 200 bypass piping 100 main circuit 110 heat exchanger side main circuit 120 compressor side main circuit 41 outside air temperature acquisition unit 42 outdoor heat exchange temperature acquisition unit 43 operation execution unit

Claims (9)

室外機の外気温度を取得する外気温度取得部と、
前記室外機の熱交換器の温度である室外熱交温度を取得する室外熱交温度取得部と、
複数の運転モードを実行する運転実行部と、を備え、
前記運転実行部は、
暖房運転を維持しながら前記室外機の除霜を行う正サイクルデフロスト運転モードと、暖房運転を停止して前記室外機の除霜を行う逆サイクルデフロスト運転モードと、を実行可能とし、
前記正サイクルデフロスト運転モード及び前記逆サイクルデフロスト運転モードのうち一方のデフロスト運転モードの禁止時間内において、他方のデフロスト運転モードの入条件を満たした場合に、当該他方のデフロスト運転モードを実行する
空気調和機の制御装置。
An outside air temperature acquisition unit for acquiring the outside air temperature of the outdoor unit,
An outdoor heat exchange temperature acquisition unit that acquires an outdoor heat exchange temperature that is a temperature of a heat exchanger of the outdoor unit;
And an operation execution unit that executes a plurality of operation modes,
The operation execution unit
A forward cycle defrost operation mode in which the outdoor unit is defrosted while maintaining the heating operation, and a reverse cycle defrost operation mode in which the heating operation is stopped and the outdoor unit is defrosted are enabled.
The other defrost operation mode is executed when the input condition of the other defrost operation mode is satisfied within the inhibit time of one of the forward cycle defrost operation mode and the reverse cycle defrost operation mode. Controller control unit.
前記運転実行部は、
一方のデフロスト運転モードの禁止時間内であって、かつ、一方のデフロスト運転モードの運転終了後、所定の安定待機時間を経過した後において、他方のデフロスト運転モードの入条件を満たした場合に、当該他方のデフロスト運転モードを実行する
請求項1に記載の空気調和機の制御装置。
The operation execution unit
Within the prohibition time of one defrost operation mode and after the predetermined stable standby time has elapsed after the end of operation of one defrost operation mode, when the entry condition of the other defrost operation mode is satisfied, The control device of an air conditioner according to claim 1, wherein the other defrost operation mode is executed.
前記運転実行部は、
前記禁止時間内において、他方のデフロスト運転モードを実行する回数を1回とする
請求項2に記載の空気調和機の制御装置。
The operation execution unit
The control device of an air conditioner according to claim 2, wherein the number of times of executing the other defrost operation mode is one within the prohibition time.
前記運転実行部は、
前記正サイクルデフロスト入条件及び前記逆サイクルデフロスト入条件の両方を満たしていた場合には、前記逆サイクルデフロスト運転モードを実行する
請求項1から請求項3の何れか一項に記載の空気調和機の制御装置。
The operation execution unit
The air conditioner according to any one of claims 1 to 3, wherein the reverse cycle defrost operation mode is executed when both the forward cycle defrost input condition and the reverse cycle defrost input condition are satisfied. Control device.
前記運転実行部は、
前記正サイクルデフロスト運転モードの入条件として、外気温度と室外熱交温度との温度差が所定の正サイクルデフロスト閾値を超えた場合に、前記正サイクルデフロスト運転モードを実行する
請求項1から請求項4の何れか一項に記載の空気調和機の制御装置。
The operation execution unit
The positive cycle defrost operation mode is executed when the temperature difference between the outside air temperature and the outdoor heat exchange temperature exceeds a predetermined positive cycle defrost threshold as the input condition of the positive cycle defrost operation mode. The control device of the air conditioner according to any one of 4.
前記運転実行部は、
前記逆サイクルデフロスト運転モードの入条件として、外気温度と室外熱交温度との温度差が所定の逆サイクルデフロスト閾値を超えた場合に、前記逆サイクルデフロスト運転モードを実行し、
前記逆サイクルデフロスト閾値は、前記正サイクルデフロスト閾値よりも大きい値とされている
請求項5に記載の空気調和機の制御装置。
The operation execution unit
The reverse cycle defrost operation mode is executed when the temperature difference between the outside air temperature and the outdoor heat exchange temperature exceeds a predetermined reverse cycle defrost threshold as an entry condition of the reverse cycle defrost operation mode,
The control device of the air conditioner according to claim 5, wherein the reverse cycle defrost threshold is a value larger than the forward cycle defrost threshold.
請求項1から請求項6の何れか一項に記載の空気調和機の制御装置と、
前記外気温度及び前記室外熱交温度を検知可能な温度センサを有する前記室外機と、
を備える空気調和機。
The control device of the air conditioner according to any one of claims 1 to 6.
The outdoor unit having a temperature sensor capable of detecting the outside air temperature and the outdoor heat exchange temperature;
An air conditioner equipped with
室外機の外気温度を取得するステップと、
前記室外機の熱交換器の温度である室外熱交温度を取得するステップと、
複数の運転モードを実行するステップと、を有し、
前記複数の運転モードを実行するステップは、
暖房運転を維持しながら前記室外機の除霜を行う正サイクルデフロスト運転モードと、暖房運転を停止して前記室外機の除霜を行う逆サイクルデフロスト運転モードと、を実行可能とし、
前記正サイクルデフロスト運転モード及び前記逆サイクルデフロスト運転モードのうち一方のデフロスト運転モードの禁止時間内において、他方のデフロスト運転モードの入条件を満たした場合に、当該他方のデフロスト運転モードを実行する
空気調和機の制御方法。
Obtaining the outside air temperature of the outdoor unit;
Acquiring an outdoor heat exchange temperature which is a temperature of the heat exchanger of the outdoor unit;
Performing a plurality of operation modes;
The step of executing the plurality of operation modes includes:
A forward cycle defrost operation mode in which the outdoor unit is defrosted while maintaining the heating operation, and a reverse cycle defrost operation mode in which the heating operation is stopped and the outdoor unit is defrosted are enabled.
The other defrost operation mode is executed when the input condition of the other defrost operation mode is satisfied within the inhibit time of one of the forward cycle defrost operation mode and the reverse cycle defrost operation mode. Control method of the conditioner.
空気調和機のコンピュータを、
室外機の外気温度を取得する外気温度取得部、
前記室外機の熱交換器の温度である室外熱交温度を取得する室外熱交温度取得部、
複数の運転モードを実行する運転実行部として機能させ、
前記運転実行部は、
暖房運転を維持しながら前記室外機の除霜を行う正サイクルデフロスト運転モードと、暖房運転を停止して前記室外機の除霜を行う逆サイクルデフロスト運転モードと、を実行可能とし、
前記正サイクルデフロスト運転モード及び前記逆サイクルデフロスト運転モードのうち一方のデフロスト運転モードの禁止時間内において、他方のデフロスト運転モードの入条件を満たした場合に、当該他方のデフロスト運転モードを実行する
制御プログラム。
Air conditioner computer,
An outside air temperature acquisition unit that acquires the outside air temperature of the outdoor unit,
An outdoor heat exchange temperature acquisition unit that acquires an outdoor heat exchange temperature that is a temperature of a heat exchanger of the outdoor unit,
Function as an operation execution unit that executes multiple operation modes,
The operation execution unit
A forward cycle defrost operation mode in which the outdoor unit is defrosted while maintaining the heating operation, and a reverse cycle defrost operation mode in which the heating operation is stopped and the outdoor unit is defrosted are enabled.
In the forward cycle defrost operation mode and the reverse cycle defrost operation mode, when the input condition of the other defrost operation mode is satisfied within the inhibit time of one of the defrost operation modes, the other defrost operation mode is executed. program.
JP2017253221A 2017-12-28 2017-12-28 Air conditioner control device, air conditioner control method, air conditioner and control program Active JP6980520B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017253221A JP6980520B2 (en) 2017-12-28 2017-12-28 Air conditioner control device, air conditioner control method, air conditioner and control program
AU2018274982A AU2018274982B2 (en) 2017-12-28 2018-12-07 Control device of air conditioner, method of controlling air conditioner, air conditioner, and control program
EP18211427.2A EP3505850A1 (en) 2017-12-28 2018-12-10 Control device of air conditioner, method of controlling air conditioner, air conditioner, and control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017253221A JP6980520B2 (en) 2017-12-28 2017-12-28 Air conditioner control device, air conditioner control method, air conditioner and control program

Publications (2)

Publication Number Publication Date
JP2019120417A true JP2019120417A (en) 2019-07-22
JP6980520B2 JP6980520B2 (en) 2021-12-15

Family

ID=64664202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017253221A Active JP6980520B2 (en) 2017-12-28 2017-12-28 Air conditioner control device, air conditioner control method, air conditioner and control program

Country Status (3)

Country Link
EP (1) EP3505850A1 (en)
JP (1) JP6980520B2 (en)
AU (1) AU2018274982B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110966727A (en) * 2019-11-05 2020-04-07 珠海格力电器股份有限公司 Air conditioner defrosting control method and system and air conditioner
CN112781287A (en) * 2020-07-28 2021-05-11 青岛海尔新能源电器有限公司 Defrosting method and water heater
CN113203182A (en) * 2021-04-26 2021-08-03 广东美的暖通设备有限公司 Defrosting control method and device for air conditioner, air conditioner and storage medium
CN115597187A (en) * 2022-10-18 2023-01-13 珠海格力电器股份有限公司(Cn) Intelligent defrosting air conditioner, intelligent defrosting method, intelligent defrosting device, intelligent defrosting equipment and intelligent defrosting medium

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112650315B (en) * 2020-09-09 2021-11-05 江苏振宁半导体研究院有限公司 Temperature control method of temperature controller
CN112556093B (en) * 2020-12-04 2022-03-08 广东积微科技有限公司 Method and device for calculating heating running time of fixed-frequency air conditioner and computer equipment
CN112797570B (en) * 2020-12-30 2022-08-23 宁波奥克斯电气股份有限公司 Defrosting control method, defrosting device and multi-connected air conditioning system
CN113819621B (en) * 2021-08-17 2023-04-18 青岛海尔空调器有限总公司 Method and device for controlling operation of air conditioner and air conditioner
CN113847708B (en) * 2021-08-31 2023-04-25 青岛海尔空调电子有限公司 Defrosting control method for air conditioner outdoor unit and air conditioner
US20230106953A1 (en) * 2021-10-06 2023-04-06 LGL France S.A.S. Proper deicing end detection and defrost cycle optimization
CN114279046B (en) * 2021-12-31 2022-10-25 珠海格力电器股份有限公司 Defrosting control method and controller suitable for modular multi-split air conditioning system and air conditioner
CN114659234B (en) * 2022-02-28 2024-02-23 青岛海尔空调电子有限公司 Method and device for defrosting air conditioner and air conditioner
CN114963451B (en) * 2022-05-30 2023-08-18 宁波奥克斯电气股份有限公司 Multi-module multi-split defrosting control method and device and air conditioner
CN115574557A (en) * 2022-09-30 2023-01-06 青岛海尔空调电子有限公司 Heat pump drying unit and defrosting control method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4313313A (en) * 1980-01-17 1982-02-02 Carrier Corporation Apparatus and method for defrosting a heat exchanger of a refrigeration circuit
JPS6030965A (en) * 1983-07-29 1985-02-16 シャープ株式会社 Method of defrosting air conditioner
JP2000035266A (en) * 1998-07-15 2000-02-02 Fujitsu General Ltd Control method of air conditioner
JP2007278536A (en) * 2006-04-03 2007-10-25 Matsushita Electric Ind Co Ltd Air conditioner
JP2008101819A (en) * 2006-10-18 2008-05-01 Hitachi Appliances Inc Air conditioner
JP2010085047A (en) * 2008-10-01 2010-04-15 Sharp Corp Air conditioner
WO2016113851A1 (en) * 2015-01-13 2016-07-21 三菱電機株式会社 Refrigeration cycle device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579732A (en) * 1991-09-20 1993-03-30 Daikin Ind Ltd Freezing device and defrosting operation control device therefor
JP3888403B2 (en) * 1997-12-18 2007-03-07 株式会社富士通ゼネラル Method and apparatus for controlling air conditioner
JP2001133088A (en) 1999-11-04 2001-05-18 Sharp Corp Air-conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4313313A (en) * 1980-01-17 1982-02-02 Carrier Corporation Apparatus and method for defrosting a heat exchanger of a refrigeration circuit
JPS6030965A (en) * 1983-07-29 1985-02-16 シャープ株式会社 Method of defrosting air conditioner
JP2000035266A (en) * 1998-07-15 2000-02-02 Fujitsu General Ltd Control method of air conditioner
JP2007278536A (en) * 2006-04-03 2007-10-25 Matsushita Electric Ind Co Ltd Air conditioner
JP2008101819A (en) * 2006-10-18 2008-05-01 Hitachi Appliances Inc Air conditioner
JP2010085047A (en) * 2008-10-01 2010-04-15 Sharp Corp Air conditioner
WO2016113851A1 (en) * 2015-01-13 2016-07-21 三菱電機株式会社 Refrigeration cycle device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110966727A (en) * 2019-11-05 2020-04-07 珠海格力电器股份有限公司 Air conditioner defrosting control method and system and air conditioner
CN112781287A (en) * 2020-07-28 2021-05-11 青岛海尔新能源电器有限公司 Defrosting method and water heater
CN113203182A (en) * 2021-04-26 2021-08-03 广东美的暖通设备有限公司 Defrosting control method and device for air conditioner, air conditioner and storage medium
CN113203182B (en) * 2021-04-26 2022-12-27 广东美的暖通设备有限公司 Defrosting control method and device for air conditioner, air conditioner and storage medium
CN115597187A (en) * 2022-10-18 2023-01-13 珠海格力电器股份有限公司(Cn) Intelligent defrosting air conditioner, intelligent defrosting method, intelligent defrosting device, intelligent defrosting equipment and intelligent defrosting medium
CN115597187B (en) * 2022-10-18 2024-05-28 珠海格力电器股份有限公司 Intelligent defrosting air conditioner, intelligent defrosting method, device, equipment and medium

Also Published As

Publication number Publication date
JP6980520B2 (en) 2021-12-15
AU2018274982B2 (en) 2020-07-23
EP3505850A1 (en) 2019-07-03
AU2018274982A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP6980520B2 (en) Air conditioner control device, air conditioner control method, air conditioner and control program
JP5590980B2 (en) Refrigeration air conditioner
JP5053430B2 (en) Air conditioner
JP6381812B2 (en) Air conditioner
JP2008101819A (en) Air conditioner
JP2013119954A (en) Heat pump hot water heater
JPWO2018042611A1 (en) Refrigeration air conditioning system and system controller
KR20140090792A (en) Alternation heat exchanger type hot gas defrosting heat-pump
EP2672204B1 (en) Binary refrigeration cycle device
JPWO2017026054A1 (en) Air conditioning system
JP7093236B2 (en) Air conditioner and control method
JP6570745B2 (en) Air conditioner
JP2011202845A (en) Air conditioner
JP2013130344A (en) Hot water supply/air conditioning system, and control method thereof
JP7246924B2 (en) Control device for air conditioner, air conditioner, defrosting control method for air conditioner, and defrosting control program for air conditioner
EP3130868A1 (en) Heat pump system
US11397035B2 (en) Controller of air conditioning apparatus, outdoor unit, relay unit, heat source unit, and air conditioning apparatus
JP2006189228A (en) Air conditioning system
JP2007333227A (en) Heat pump type water heater
JP2009186123A (en) Air conditioner
JP2006336949A (en) Heat storage type air conditioner
JP2013148266A (en) Heat pump system and control method of heat pump system
JP2008249268A (en) Air conditioner
CN204704926U (en) Aircondition
JP6203230B2 (en) Air conditioner, control method of air conditioner

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20201223

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211117

R150 Certificate of patent or registration of utility model

Ref document number: 6980520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150