JP2019115918A - はんだ付け装置 - Google Patents

はんだ付け装置 Download PDF

Info

Publication number
JP2019115918A
JP2019115918A JP2017250797A JP2017250797A JP2019115918A JP 2019115918 A JP2019115918 A JP 2019115918A JP 2017250797 A JP2017250797 A JP 2017250797A JP 2017250797 A JP2017250797 A JP 2017250797A JP 2019115918 A JP2019115918 A JP 2019115918A
Authority
JP
Japan
Prior art keywords
control unit
unit
external force
acceleration
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017250797A
Other languages
English (en)
Other versions
JP6923273B2 (ja
Inventor
賢二 栗原
Kenji Kurihara
賢二 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2017250797A priority Critical patent/JP6923273B2/ja
Publication of JP2019115918A publication Critical patent/JP2019115918A/ja
Application granted granted Critical
Publication of JP6923273B2 publication Critical patent/JP6923273B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)
  • Feedback Control In General (AREA)

Abstract

【課題】可動部が急激に加減速された場合又は姿勢が変更された場合でも可動部に加わる外力を正しく検出し、当該外力に基づいてはんだ付け作業を行う。【解決手段】固定部11及び可動部12を有するアクチュエータ1と、固定部11に対する可動部12の位置を検出する位置検出部4と、固定部11の加速度を検出する加速度検出部5と、検出された位置と基準位置Prとの差分に対してゲインを調整し、当該調整結果である電流指令値Irp及び検出された加速度に基づいてアクチュエータ1に対する駆動電流Iaを出力するアクチュエータ制御部61と、電流指令値Irp、又は、検出された加速度及び出力された駆動電流Iaの電流値に基づいて、可動部12に加わる外力Fを検出する外力検出部62と、検出された外力F、及び検出された位置から得られた速度に基づいて、アクチュエータ制御部61を制御する作業制御部7とを備えた。【選択図】図1

Description

この発明は、はんだ付け作業を行うはんだ付け装置に関する。
従来から、組立て、押付け又は研磨等の作業を行う作業装置では、産業用ロボット(以下、ロボットと称す)等が多く用いられている。このロボットには、アームの先端にハンド等のエンドエフェクタが取付けられており、物体(部品又はワーク)を把持することで作業を行う。
一方、ロボットの動作は、一般的に、位置制御によりコントロールされる。そのため、物体の寸法誤差又は把持位置誤差等により、予めプログラムされた目標位置と実際の位置とが異なる場合、物体が他の物体と接触した際に大きな外力が発生し、物体に傷又は破損が発生する恐れがある。
その対策として、物体の位置誤差により発生する力を吸収する冶具(いわゆる「バッファ」)を別途設置する場合がある。しかしながら、このバッファは、物体の形状又は材料毎に要求される特性が異なるため、物体の種類の数だけ異なるバッファを用意する必要があり、都度設計となる。そのため、コストが増大し、且つ装置が大型化するという課題がある。
それに対し、ロボットとエンドエフェクタとの間に力センサを設置し、物体の接触時に過大な外力が発生しそうになると力センサの検出結果をロボットにフィードバックし、過大な外力が発生しないようにする方法もある。この場合には、バッファが不要となる。しかしながら、力センサは高価である。
また、力センサを用いた場合には、以下に述べる理由により、作業時間の短縮が難しいという課題がある。
すなわち、物体が他の物体と接触する位置に誤差がある場合、接触時に過大な外力が発生したことを検出して停止指令を出すが、可動部が大きくて重く且つ減速機構を有するロボットは急には止まれない。
また、接触時に発生する外力は、慣性による衝撃力と接触時にロボットが発生している力との和となる。ここで、慣性による衝撃力は、物体及びロボット可動部の質量と移動速度との積に比例する。しかしながら、ロボットは大きくて重い機構を有しているため、慣性による衝撃力を小さくするためには、接触直前の移動速度を遅くする必要がある。
また、過大な外力が発生したことを検出して停止指令を出してもロボットは急には止まれないため、停止指令が出た時点から急激に減速しても接触位置からずれた位置で停止し、物体を押し潰してしまう。そして、位置の行き過ぎ量は移動速度に比例するため、物体を他の物体に近づける速度を遅くせざるを得ない。
上記の理由により、物体が他の物体と接触する可能性のある領域では、ロボットの移動速度を十分落とす必要がある。しかしながら、サイクルタイムを短くするため、物体を移送する速度は速くする必要がある。その結果、接触領域の近傍で速度を急激に落とすことになる。
しかしながら、エンドエフェクタは力センサの先に取付けられている。そのため、ロボットが急激に減速した場合には、エンドエフェクタの質量による影響で、力センサには負方向の加速度に比例した力が発生する。
ところが、上記加速度に比例した力と物体の接触により発生する外力とを区別することは難しく、区別するためにはロボットの減速時間を大幅に長くせざるを得ない。
また、力センサを用いた場合には、以下に述べる理由により、重力による影響をリアルタイムに補償し難いという課題がある。
すなわち、組立て、押付け又は研磨等の作業を行う場合にロボットが取りうる姿勢は常に一定ではなく、作業の状態に応じて変化させる場合が多い。例えば、曲面をトレースしながら研磨を行う作業では、姿勢を連続して変化させる必要がある。
しかしながら、上記の通り、エンドエフェクタは力センサの先に取付けられているため、ロボットの姿勢が水平ではない場合、力センサには重力加速度による影響でロボットの姿勢とエンドエフェクタの質量に応じた力が発生する。
一方、重力加速度の影響を補償する重力補償手段として、例えば特許文献1に開示された方法が挙げられる。この特許文献1では、予めオフラインで姿勢に応じた重力の影響により力覚センサに発生する力を学習しておく。そして、実際の作業時に発生する力から学習した力を差し引くことで、作業力を算出している。しかしながら、この方法では、物体が変わる度に学習を行う必要がある。また、学習は物体との接触前に行う必要があり、ロボットが連続して姿勢を変えるような場合には重力補償はできない。
なお上記では、可動部に加わる外力として、物体と他の物体とが接触した際に発生する力を示したが、これに限らず、エンドエフェクタと物体とが接触した際に発生する力についても同様である。
特開2012−115912号公報
上記の通り、ロボットと力センサを用いて組立て等の作業を行う場合、作業時間が長くなる。一方、作業時間を短くしようとすると物体を傷付け、押し潰し、接触を正しく検出できなくなる。また、重力補償をリアルタイムで行うことも難しい。このように、力センサを用いた場合には、ロボットが急激に加減速した場合又は姿勢が変更した場合に、外力を正しく検出できないという課題がある。この課題は、はんだ付け作業を行うはんだ付け装置においても同様であり、改善が求められている。
この発明は、上記のような課題を解決するためになされたもので、可動部が急激に加減速された場合又は姿勢が変更された場合でも可動部に加わる外力を正しく検出でき、当該外力に基づいてはんだ付け作業を行うことができるはんだ付け装置を提供することを目的としている。
この発明に係るはんだ付け装置は、固定部、及び当該固定部に対して変位可能な可動部を有するアクチュエータと、固定部に対する可動部の位置を検出する位置検出部と、固定部の加速度を検出する加速度検出部と、位置検出部により検出された位置と基準位置との差分に対してゲインを調整し、当該調整結果である電流指令値及び加速度検出部により検出された加速度に基づいてアクチュエータに対する駆動電流を出力するアクチュエータ制御部と、アクチュエータ制御部において得られた電流指令値、又は、加速度検出部により検出された加速度及びアクチュエータ制御部により出力された駆動電流の電流値に基づいて、可動部に加わる外力を検出する外力検出部と、外力検出部により検出された外力、及び位置検出部により検出された位置から得られた速度に基づいて、アクチュエータ制御部を制御する作業制御部とを備えたことを特徴とする。
この発明によれば、上記のように構成したので、可動部が急激に加減速された場合又は姿勢が変更された場合でも可動部に加わる外力を正しく検出でき、当該外力に基づいてはんだ付け作業を行うことができる。
この発明の実施の形態1に係るはんだ付け装置の構成例を示す図である。 この発明の実施の形態1における外力検出制御部の構成例を示す図である。 この発明の実施の形態1におけるゲイン調整部の構成例を示す図である。 この発明の実施の形態1における作業制御部の構成例を示す図である。 この発明の実施の形態1に係るはんだ付け装置によるはんだ付け作業の一例を示すフローチャートである。 図6A〜図6Dは、この発明の実施の形態1に係るはんだ付け装置によるはんだ付け作業の一例を示す図である。 図7A、図7Bは、図6に示すはんだ付け装置によるはんだ付け作業での動作を説明する図であり、図7Aは外力Fを示す図であり、図7Bは可動部の速度を示す図である。
以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
図1はこの発明の実施の形態1に係るはんだ付け装置の構成例を示す図である。
はんだ付け装置は、はんだ付け対象である物体50に対してはんだ付け作業を行う装置である。このはんだ付け装置は、図1に示すように、アクチュエータ1、はんだごて2、移動部3、位置検出部4、加速度検出部5、外力検出制御部6及び作業制御部7を備えている。また、外力検出制御部6は、アクチュエータ制御部61及び外力検出部62から構成される。
アクチュエータ1は、固定部11、及び当該固定部11に対して変位可能な可動部12を有し、磁界に置かれたコイルに電流が供給されることで固定部11に対して可動部12を直動方向又は回転方向に変位可能とする。このアクチュエータ1は、移動部3に取付けられており、全体が移送され、また、姿勢が変更される。なお、可動部12が複数方向の自由度を持ち、アクチュエータ1全体の移送及び姿勢の変更が不要である場合、移動部3はなくてもよい。以下では、移動部3を使用する場合を記述する。
はんだごて2は、可動部12に取付けられ、物体50に対してはんだ付けを行うためのこてである。なお、物体50を移動する移動部があってもよい。
移動部3は、アクチュエータ1を移動(移送及び姿勢変更)する。図1では、移動部3として、先端にアクチュエータ1(固定部11)が取付けられ、アクチュエータ1を移動可能なロボットを示している。
位置検出部4は、アクチュエータ1に設けられ、固定部11に対する可動部12の位置(相対位置)を検出する。この位置検出部4により検出された位置を示す信号(位置信号)は、アクチュエータ制御部61に出力される。
加速度検出部5は、固定部11に設けられ、固定部11の加速度を検出する。この際、加速度検出部5は、固定部11の重力加速度αg及び移動加速度α1のうちの一方、又は両方が加算された加速度(αg+α1)を検出する。図2では、加速度検出部5が加速度(αg+α1)を検出する場合を示している。この加速度検出部5により検出された加速度を示す信号(加速度信号)は、アクチュエータ制御部61に出力される。
アクチュエータ制御部61は、位置検出部4により検出された位置と基準位置Prとの差分に対してゲイン(ループゲイン)を調整し、当該調整結果である電流指令値Irp及び加速度検出部5により検出された加速度に基づいてアクチュエータ1に対する駆動電流Iaを出力する。
外力検出部62は、アクチュエータ制御部61において得られた電流指令値Irp、又は、加速度検出部5により検出された加速度及びアクチュエータ制御部61により出力された駆動電流Iaの電流値に基づいて、可動部12に加わる外力(反力)Fを検出する。
アクチュエータ制御部61及び外力検出部62の構成例については後述する。
作業制御部7は、はんだ付け装置によるはんだ付け作業を実現する。この際、作業制御部7は、外力検出部62により検出された外力F、及び位置検出部4により検出された固定部11に対する可動部12の位置から得られた速度に基づいて、アクチュエータ制御部61及び移動部3を制御することで、はんだ付け作業を実現する。なお、作業制御部7は、基準位置Pr又はゲインの変更を行うことでアクチュエータ制御部61を制御する。また、作業制御部7は、外力F及び速度に加え、位置検出部4により検出された位置、加速度検出部5により検出された加速度、及び作業制御部7で管理している時間等も考慮して、上記はんだ付け作業を実現してもよい。この作業制御部7の構成例については後述する。
次に、外力検出制御部6の構成例について、図2を参照しながら説明する。なお図2では、アクチュエータ1、はんだごて2、位置検出部4及び加速度検出部5も図示している。
外力検出制御部6は、図2に示すように、位置速度変換部63、減算器64、ゲイン調整部65、質量推定部66、加速度補償部67、加減算器68、定電流制御部69、及び外力検出部62を有している。なお図2に示す外力検出制御部6において、外力検出部62を除く機能部(位置速度変換部63、減算器64、ゲイン調整部65、質量推定部66、加速度補償部67、加減算器68及び定電流制御部69)は、アクチュエータ制御部61を構成する。
位置速度変換部63は、位置検出部4により検出された位置を微分して速度に変換する。この速度は、固定部11に対する可動部12の速度(相対速度)を示す。この位置速度変換部63により変換された速度を示す信号(速度信号)は、加減算器68及び作業制御部7に出力される。
減算器64は、基準位置Prから位置検出部4により検出された位置を減算する。この減算器64による減算結果を示す信号は、ゲイン調整部65に出力される。
ゲイン調整部65は、減算器64による減算結果(位置偏差)に対してゲインを調整し、電流指令値Irpを出力する。ゲインは、アクチュエータ1におけるコンプライアンスの値であり、コンプライアンスは、バネ定数の逆数であり、固さ柔らかさを示す指標である。また、ゲイン調整部65において、上記位置偏差と電流指令値Irpとの関係を示す関数は線形でもよいし非線形でもよい。このゲイン調整部65は、図2,3に示すように、ループゲイン測定部651、ゲイン交点制御部652及び可変ゲイン調整部653を有している。
ループゲイン測定部651は、減算器64から出力された信号のゲインを測定する。この際、ループゲイン測定部651は、図3に示すように、減算器64から出力された信号に、発振器654によりゲインが1倍(0dB)となるべき基準となる周波数、すなわちゲイン交点に設定された基準となる周波数の正弦波を、加算器655を介して加算する。このループゲイン測定部651による正弦波の加算前後の信号は、ゲイン交点制御部652に出力される。
ゲイン交点制御部652は、図3に示すように、比較器656によりループゲイン測定部651による正弦波の加算前後の信号での振幅比を比較する。このゲイン交点制御部652による比較結果を示す信号は、可変ゲイン調整部653に出力される。
可変ゲイン調整部653は、ゲイン交点制御部652により比較された振幅比の倍率が1となるように、当該振幅比の倍率の逆数を調整値とし、減算器64から出力された信号のゲインを調整する。すなわち、可変ゲイン調整部653は、ループゲイン測定部651による正弦波の加算前の信号の振幅レベルEaに対して当該正弦波の加算後の信号の振幅レベルEbが高い場合(Ea<Eb)には調整値を大きくし、当該正弦波の加算前の信号の振幅レベルEaに対して当該正弦波の加算後の信号の振幅レベルEbが低い場合(Ea>Eb)には調整値を小さくすることで、ゲインが1倍となるように調整する。この可変ゲイン調整部653によりゲインが調整された信号は、加減算器68に電流指令値Irpとして出力される。また、可変ゲイン調整部653によるゲインの調整値を示す信号は、質量推定部66に出力される。
なお、発振器654でゲインが1倍となるべき基準となる周波数の正弦波を加算するのは、ゲインが1倍となる周波数においてEa/Eb=1となるため、Ea/Eb=1となるようにゲインを調整することで、ゲイン交点を常に1に維持できるためである。
また、減算器64及びゲイン調整部65は、位置検出部4により検出された位置と基準位置Prとの差分に基づく電流指令値Irpを出力する位置制御手段(位相制御ループ)を構成する。
質量推定部66は、可変ゲイン調整部653によるゲインの調整値から、可動部12側の質量を推定する。すなわち、質量推定部66は、ゲインの調整値の変化と質量の変化とが比例する原理を利用する。ここで、可動部12側の質量とは、可動部12の質量M1とはんだごて2の質量M2とが加算された質量(M1+M2)である。
例えば、可動部12側の質量が規定値の2倍になったとすると、ゲインはその逆数倍の1/2となっており、Ea/Eb=1/2となる。これに対して、ゲインを1倍とするため、可変ゲイン調整部653は2倍の調整値でゲインを調整する。そして、質量推定部66は、この可変ゲイン調整部653の調整値から、可動部12側の質量が規定値の2倍に変化したと推定できる。
この質量推定部66により推定された質量を示す信号は、加速度補償部67に出力される。
なお上記では、質量推定部66により可動部12側の質量を推定する場合を示したが、これに限らず、他の方法を用いて可動部12側の質量を取得してもよい。
加速度補償部67は、外乱トルクを補正するための加速度補償値Ircを出力する。この加速度補償部67は、乗算器671及び係数乗算部672を有している。
乗算器671は、加速度検出部5により検出された加速度と、質量推定部66により推定された質量とを乗算する。この乗算器671による乗算結果を示す信号は、係数乗算部672及び外力検出部62に出力される。
係数乗算部672は、乗算器671による乗算結果に係数(1/Kt)を乗算する。なお、Ktは、アクチュエータ1が発生する推力と駆動電流Iaとの比を表したトルク定数である。この係数乗算部672による乗算結果を示す信号は、加減算器68に加速度補償値Ircとして出力される。
加減算器68は、ゲイン調整部65から出力された電流指令値Irpに対し、加速度補償部67から出力された加速度補償値Ircを加算し、位置速度変換部63から出力された速度信号を減算する。この加減算器68による加減算結果を示す信号は、定電流制御部69に電流指令値Irとして出力される。
定電流制御部69は、アクチュエータ1を駆動する駆動電流Iaを電流指令値Irに一致させるように制御する。この定電流制御部69は、減算器691、駆動ドライバ692及び電流検出部693を有している。
減算器691は、加減算器68から出力された電流指令値Irから、電流検出部693により検出された駆動電流Iaの電流値を減算する。この減算器691による減算結果を示す信号は、駆動ドライバ692に出力される。
駆動ドライバ692は、減算器691による減算結果に応じた駆動電流Iaを発生する。この駆動ドライバ692により発生された駆動電流Iaは、電流検出部693を介してアクチュエータ1に出力される。
電流検出部693は、駆動ドライバ692により発生された駆動電流Iaの電流値を検出する。この電流検出部693により検出された電流値を示す信号は、減算器691に出力される。
外力検出部62は、アクチュエータ制御部61において得られた電流指令値Irp、又は、加速度検出部5により検出された加速度及びアクチュエータ制御部61により出力された駆動電流Iaの電流値に基づいて、可動部12に加わる外力Fを検出する。具体的には、外力検出部62は、電流指令値Irp、又は、駆動電流Iaの電流値から加速度補償値Ircを減算した結果に基づいて、可動部12に加わる外力Fを検出する。なお、可動部12に加わる外力Fとしては、はんだごて2が物体50と接触した際に発生する力が挙げられる。また図2では、外力検出部62が、加速度検出部5により検出された加速度及びアクチュエータ制御部61により出力された駆動電流Iaの電流値に基づいて可動部12に加わる外力Fを検出する場合を示している。図2に示す外力検出部62は、係数乗算部621、減算器622及び係数乗算部623を有している。
係数乗算部621は、加速度補償部67の乗算器671による乗算結果に係数(1/Kt)を乗算する。この係数乗算部621による乗算結果を示す信号は、減算器622に出力される。
減算器622は、定電流制御部69により発生された駆動電流Iaの電流値から、係数乗算部621による乗算結果を減算する。この減算器622による減算結果を示す信号は、係数乗算部623に出力される。
係数乗算部623は、減算器622による減算結果に係数(Kt)を乗算することで、外力Fを得る。この係数乗算部623により得られた外力Fを示す信号は、作業制御部7に出力される。
なお、外力検出部62が、アクチュエータ制御部61において得られた電流指令値Irpに基づいて可動部12に加わる外力Fを検出する場合には、係数乗算部を有する。この係数乗算部は、ゲイン調整部65から出力された電流指令値Irpに係数(Kt)を乗算することで、外力Fを得る。そして、この係数乗算部により得られた外力Fを示す信号は、作業制御部7に出力される。
次に、作業制御部7の構成例について、図4を参照しながら説明する。
作業制御部7は、図4に示すように、移動制御部71、接触制御部72、接触力制御部73及び離脱制御部74を有している。
移動制御部71は、はんだごて2が物体50に近づくように、はんだごて2を物体50の方向へ速度(第1の速度)V1で移動させる。なお、はんだごて2のこて先には、はんだが付けられている。
接触制御部72は、移動制御部71による処理後、はんだごて2が物体50に力(第1の力)F1で接触するまで、はんだごて2を物体50の方向へ速度(第2の速度)V2で移動させる。力F1は、はんだごて2が物体50に当接したことを認識可能な力であり、はんだごて2、物体50及び周辺機器を破損しない程度に十分に弱い力である。また、速度V2は、速度V1よりも遅い速度である。
接触力制御部73は、接触制御部72による処理後、可動部12に加わる外力Fに基づいて、はんだごて2の物体50への接触力を制御する。この際、接触力制御部73は、物体50へのはんだ付けを実施可能な力(第2の力)F2を維持するように制御を行う。
離脱制御部74は、接触力制御部73による処理後、はんだごて2を物体50から離すように、はんだごて2を速度(第3の速度)V3で移動させる。速度V3は、速度V1よりも遅い速度である。
次に、外力検出制御部6の動作原理について説明する。なお以下では、アクチュエータ1として、発生した推力がはんだごて2に直接伝わるダイレクトドライブ形式のリニアアクチュエータを用い、固定部11に対して可動部12を直動させるものとする。このアクチュエータ1は、定電流制御部69が電流指令値Irに応じて発生した駆動電流Iaにより駆動する。
一方、位置検出部4は、固定部11に対する可動部12の直動方向における位置を検出する。
また、位置速度変換部63は、位置検出部4により検出された位置を微分して速度に変換する。この速度は、固定部11に対する可動部12の速度を示す。
また、加速度検出部5は、固定部11の直動方向における加速度を検出する。以下では、加速度検出部5は、固定部11の直動方向成分における移動加速度α1と、固定部11の直動方向成分における重力加速度αgとが加算された加速度(α1+αg)を検出するものとする。
また、位置検出部4により検出された位置は、減算器64で基準位置Prと比較され、その差分がゲイン調整部65を介して電流指令値Irを構成する要素の一つである電流指令値Irpとして加減算器68に与えられる。
電流指令値Irは、電流指令値Irpの他、外乱トルクを補正するための加速度補償値Ircで構成され、次式(1)で表される。
Ir=Irp+Irc (1)
なお、位置を単純にフィードバックすると制御系が不安定となる。そのため、実際には、位置速度変換部63からの速度信号をマイナーループとして加減算器68のマイナス出力に加えて安定化を行っているが、以下では省略する。
また、ゲイン調整部65では、位置制御ループのゲインを変えることで、アクチュエータ1におけるコンプライアンスの値を変化させることができる。
ここで、駆動電流Iaに着目すると、外乱トルクがない場合には電流値は零になるが、外乱トルクがある場合にはそれに比例して電流値も変化する。
一般的な外乱トルクとしては、作業時にはんだごて2から受ける反力F、重力加速度αg及び移動加速度α1により発生する力、減速器のロストルク等が考えられる。ここで、アクチュエータ1はダイレクトドライブ形式のリニアアクチュエータであるため、減速器は持たず、ロストルクは考慮する必要は少ない。したがって、駆動電流Iaは、作業時にはんだごて2から受ける反力F、重力加速度αg及び移動加速度α1により発生する力に比例した値となる。なお、反力Fは、はんだごて2が物体50に接触した際に発生する力である。
ここで、アクチュエータ1の駆動電流Ia、作業時にはんだごて2から受ける反力F、固定部11の直動方向成分における移動加速度α1、固定部11の直動方向成分における重力加速度αg、可動部12の質量M1、及び、はんだごて2の質量M2から、次式(2)の関係が成り立つ。
F+(α1+αg)・(M1+M2)=Kt・Ir=Kt・(Irp+Irc)
(2)
なお、Ktはアクチュエータ1が発生する推力と駆動電流Iaとの比を表したトルク定数である。
また、式(2)において外乱トルクを補正するための加速度補償値Ircを次式(3)のように設定する。
(α1+αg)・(M1+M2)=Kt・Irc (3)
式(3)のように加速度補償値Ircを設定した場合、式(2)からα1,αg,M1,M2の項が消え、次式(4)のように整理される。
F=Kt・Irp (4)
このように、外乱トルクを補正するための加速度補償値Ircを式(3)のように設定すると、作業時にはんだごて2から受ける反力Fと電流指令値Irpは、比例関係になることがわかる。
これは、作業時にはんだごて2から受ける反力Fが零、つまりはんだごて2が物体50と接触していない場合、基準位置Prと実際の位置の差分に基づく電流指令値Irpも零、つまり位置が変位しないことを意味している。
そして、はんだごて2が物体50と接触した際に生じる反力Fは、電流指令値Irpを監視することで知ることができる。
そして、式(4)には、固定部11の直動方向成分における移動加速度α1、固定部11の直動方向成分における重力加速度αg、可動部12の質量M1、はんだごて2の質量M2の項目が含まれていない。
つまり、ロボットが急激に移動又は停止を行い移動加速度α1が発生した場合、及び、ロボットが連続して姿勢を変更し重力加速度αgが変化した場合でも、アクチュエータ1の可動部12はゆれることなく反力Fを正しく検出できる。
そして、コンプライアンスの値も自由に設定できる。
なお、上述したように、はんだごて2が物体50と急激に衝突する等して発生する反力Fは、電流指令値Irpを監視することで知ることができる。また、アクチュエータ1には、反力Fと拮抗するように誘導電流が発生するため、駆動電流Iaから反力Fを検出することもできる。
しかしながら、位置制御ループにおいて、反力Fに対する電流指令値Irpの応答は一般的に速くない。一方、反力Fに対する駆動電流Iaの応答は、可動部12が移動することにより発生する誘導電流によるものであるため、比較的速い。そこで、電流指令値Irpを直接監視するのではなく、駆動電流Iaを監視することで反力Fの検出を行う。
ここで、式(2)は以下の通りである。
F+(α1+αg)・(M1+M2)=Kt・Ir=Kt・(Irp+Irc)
(2)
一方、駆動電流Iaは次式(5)で表せる。
Ia=Ir=Irp+Irc (5)
よって、式(2),(5)から下式(6)が得られる。
F+(α1+αg)・(M1+M2)=Kt・Ia (6)
そして、式(6)の両辺から、式(3)の左辺である((α1+αg)・(M1+M2))を減算して整理すると、下式(7)が得られる。
F=Kt・(Ia−(α1+αg)・(M1+M2)/Kt) (7)
この式(7)に示されるように、駆動電流Iaから加速度補償値(α1+αg)・(M1+M2)/Ktを差し引いてトルク定数Ktをかけることで、反力Fを求めることができる。
次に、外力検出制御部6による効果について説明する。
ロボットの動作は、一般的に、位置制御によりコントロールされる。そのため、物体50の寸法誤差等により、予めプログラムされた目標位置と実際の位置が異なる場合、はんだごて2が物体50と接触した際に大きな力が発生し、はんだごて2又は物体50に傷又は破損が発生する恐れがある。
その対策として、ロボットとはんだごて2との間に力センサを設置し、はんだごて2と物体50との接触時に過大な外力Fが発生しそうになると力センサの検出結果をロボットにフィードバックし、過大な外力Fが発生しないようにする方法が考えられる。
しかしながら、過大な外力Fが発生したことを検出して停止指令を出してもロボットは急には止まれないため、停止指令が出た時点から急激に減速しても接触位置からずれた位置で停止してしまい、物体50を押し潰してしまう。そして、位置の行き過ぎ量は移動速度に比例するため、はんだごて2を物体50に近付ける速度を遅くせざるを得ない。
上記の理由により、はんだごて2が物体50と接触する可能性のある領域では、ロボットの移動速度を十分落とす必要がある。しかしながら、サイクルタイムを短くするため、はんだごて2を移動する速度は速くする必要がある。その結果、接触領域の近傍で速度を急激に落とすことになる。
一方、実施の形態1では、ロボット(移動部3)の先端にアクチュエータ1を取付け、また、外力検出制御部6は、アクチュエータ1が急激に移動又は停止されて移動加速度α1が発生した場合、及び、アクチュエータ1の姿勢が変更されて重力加速度αgが変化した場合でも、可動部12に加わる反力Fを正しく検出でき、また、コンプライアンス値を任意に変えられる。そのため、ロボットが急に止まれない点は同じだが、位置の行き過ぎにより物体50を押し潰してしまうことはない。よって、はんだごて2を物体50に近づける速度を極端に遅くする必要がなく、また、安全に作業できる。
また、ロボットとはんだごて2との間に力センサを設置した場合、ロボットが急激に減速すると、はんだごて2の質量M2による影響で、力センサには負方向の加速度に比例した力が発生する。
ところが、上記加速度に比例した力とはんだごて2の物体50との接触することにより発生する外力Fとを区別することは難しく、区別するためにはロボットの減速時間を大幅に長くせざるを得ない。
一方、外力検出制御部6では、アクチュエータ1が急激に加減速された場合でも正しく外力Fを検出でき、接触時にのみ外力Fを検出するため、アクチュエータ1の減速時間を長くする必要はない。
また、力センサを用いた場合には、重力による影響をリアルタイムに補償し難いという課題もある。
すなわち、はんだ付け作業を行う場合にロボットが取りうる姿勢は常に一定ではなく、作業の状態に応じて変化させる場合が多い。
しかしながら、ロボットとはんだごて2との間に力センサを設置した場合には、ロボットの姿勢が水平ではないと、力センサには重力加速度αgによる影響でロボットの姿勢とはんだごて2の質量M2に応じた力が発生する。
一方、外力検出制御部6では、アクチュエータ1の姿勢が変更されて重力加速度αgが変化した場合でも外力Fを正しく検出できるため、重力による影響をリアルタイムに補償できる。
次に、作業制御部7の動作例について、図5〜7を参照しながら説明する。以下では、はんだ付け装置が、基板51に対してはんだ付け作業を行う場合を示す。また、基板51は作業台等に固定されているものとする。
そして、作業制御部7は、外力検出部62により検出された外力F及び位置速度変換部63により得られた速度等に基づいて、アクチュエータ制御部61及び移動部3を制御することで、はんだ付け装置によるはんだ付け作業を実現する。なお、作業制御部7は、基準位置Pr又はゲインの変更を行うことでアクチュエータ制御部61を制御する。ここで、ゲイン調整部65は位置偏差に基づいて電流指令値Irpを出力しているが、上記ゲインの変更とは、上記位置偏差と電流指令値Irpとの関係を示す関数の変更を意味している。また、上記関数の変更には、関数の傾きの変更も含まれる。
また図7Aにおいて、横軸は時間を示し、縦軸は外力Fを示している。また図7Bにおいて、横軸は時間を示し、縦軸は可動部12の速度を示している。また、図7における符号aははんだごて2の押付けによる外力Fの発生を示し、符号bははんだごて2の基板51への接触検知を示し、符号cははんだごて2の基板51からの離脱を示している。
はんだ付け装置によるはんだ付け作業では、まず、図5、図6A,6Bに示すように、はんだごて2のこて先に糸はんだ52が接触されてはんだが所定量付けられた後、移動制御部71は、はんだごて2が基板51に近づくように、はんだごて2を基板51の方向へ速度V1で移動させる(ステップST1)。
次いで、図6Cに示すように、接触制御部72は、はんだごて2が基板51に力F1で接触するまで、はんだごて2を基板51の方向へ速度V2で移動させる(ステップST2)。図7Aに示すように、力F1は、はんだごて2が基板51に当接したことを認識可能な力であり、はんだごて2、基板51及び周辺機器を破損しない程度に十分に弱い力である。また、速度V2は、速度V1よりも遅い速度である。
ここで、はんだ付け作業は、温度条件等の微妙な変化によって、はんだの溶融量及び状態が微妙に変化する。また、基板51の板厚のばらつきは板厚に対して通常±10%程度であり、板厚0.8mmの場合には±0.17mm程度のばらつきとなる。よって、従来のはんだ付け装置における繰り返し動作では、上記のような微妙な変化及びばらつきに対応できず、不良及び不具合が発生してしまう。例えば、はんだごて2を基板51に当てる動作において、特定の条件で良好に調整された場合であっても、はんだの溶融量、状態、又は基板51の板厚が変わると、はんだごて2の接触不良によりはんだが溶けない、又は、はんだごて2の押付け過ぎにより基板51が損傷する等の不具合が生じる。
また、はんだ付け作業では、はんだごて2を基板51に当てる際に、その速度が速いと、はんだの飛び散りが生じる恐れがある。
そこで、実施の形態1に係るはんだ付け装置では、外力検出部62により外力Fの検出を行うことで、はんだごて2の基板51への接触検知を行う。また、はんだごて2を基板51の付近まで移動させる際には、速度をV1まで上げて素早く移動させ、はんだごて2を基板51付近から基板51に接触させる際には、速度をV2まで落として移動させる。
このように、外力検出及び速度制御を行うことで、はんだごて2を基板51に当てる動作をより適切な状態に管理可能となる。
次いで、接触力制御部73は、可動部12に加わる外力Fに基づいて、はんだごて2の基板51への接触力を制御する(ステップST3)。図7Aでは、力F2ではんだごて2の基板51への押付けを行い、はんだ付けを実施している。
次いで、一定時間経過後、図6Dに示すように、離脱制御部74は、はんだごて2を基板51から離すように、はんだごて2を速度V3で移動させる(ステップST4)。図7Aに示すように、速度V3は、速度V1よりも遅い速度である。このように速度制御を行うことで、はんだの飛び散りを抑制できる。
以上の動作により、基板51又はアクチュエータ1を壊さず、且つ作業速度を落とさずに、基板51に対するはんだ付け作業が実施できる。
なお上記では、可動部12を直動方向に変位可能とするアクチュエータ1を用いた場合を示した。しかしながら、これに限らず、加速度検出部5が角加速度を検出可能であれば、可動部12を回転方向に変位可能とするアクチュエータ1を用いることもできる。
また上記では、移動部3がロボットである場合を示した。しかしながら、これに限らず、移動部3として、直動機構又は回転機構を用いてもよい。
以上のように、この実施の形態1によれば、固定部11及び可動部12を有するアクチュエータ1と、固定部11に対する可動部12の位置を検出する位置検出部4と、固定部11の加速度を検出する加速度検出部5と、位置検出部4により検出された位置と基準位置Prとの差分に対してゲインを調整し、当該調整結果である電流指令値Irp及び加速度検出部5により検出された加速度に基づいてアクチュエータ1に対する駆動電流Iaを出力するアクチュエータ制御部61と、アクチュエータ制御部61において得られた電流指令値Irp、又は、加速度検出部5により検出された加速度及びアクチュエータ制御部61により出力された駆動電流Iaの電流値に基づいて、可動部12に加わる外力Fを検出する外力検出部62と、外力検出部62により検出された外力F、及び位置検出部4により検出された位置から得られた速度に基づいて、アクチュエータ制御部61を制御する作業制御部7とを備えたので、可動部12が急激に加減速された場合又は姿勢が変更された場合でも可動部12に加わる外力Fを正しく検出でき、当該外力Fに基づいてはんだ付け作業を行うことができる。また、はんだ付け作業を自動化しつつ、不良及び不具合の発生を低減可能となる。
なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
1 アクチュエータ
2 はんだごて
3 移動部
4 位置検出部
5 加速度検出部
6 外力検出制御部
7 作業制御部
11 固定部
12 可動部
61 アクチュエータ制御部
62 外力検出部
63 位置速度変換部
64 減算器
65 ゲイン調整部
66 質量推定部
67 加速度補償部
68 加減算器
69 定電流制御部
71 移動制御部
72 接触制御部
73 接触力制御部
74 離脱制御部
50 物体
51 基板
52 糸はんだ
621 係数乗算部
622 減算器
623 係数乗算部
651 ループゲイン測定部
652 ゲイン交点制御部
653 可変ゲイン調整部
654 発振器
655 加算器
656 比較器
671 乗算器
672 係数乗算部
691 減算器
692 駆動ドライバ
693 電流検出部

Claims (5)

  1. 固定部、及び当該固定部に対して変位可能な可動部を有するアクチュエータと、
    前記固定部に対する前記可動部の位置を検出する位置検出部と、
    前記固定部の加速度を検出する加速度検出部と、
    前記位置検出部により検出された位置と基準位置との差分に対してゲインを調整し、当該調整結果である電流指令値及び前記加速度検出部により検出された加速度に基づいて前記アクチュエータに対する駆動電流を出力するアクチュエータ制御部と、
    前記アクチュエータ制御部において得られた電流指令値、又は、前記加速度検出部により検出された加速度及び前記アクチュエータ制御部により出力された駆動電流の電流値に基づいて、前記可動部に加わる外力を検出する外力検出部と、
    前記外力検出部により検出された外力、及び前記位置検出部により検出された位置から得られた速度に基づいて、前記アクチュエータ制御部を制御する作業制御部と
    を備えたはんだ付け装置。
  2. 前記可動部に取付けられたはんだごてを備え、
    前記作業制御部は、
    前記はんだごてがはんだ付け対象である物体に近づくように、当該はんだごてを当該物体の方向へ第1の速度で移動させる移動制御部を有する
    ことを特徴とする請求項1記載のはんだ付け装置。
  3. 前記作業制御部は、
    前記移動制御部による処理後、前記はんだごてがはんだ付け対象である物体に第1の力で接触するまで、前記はんだごてを当該物体の方向へ、前記第1の速度より遅い第2の速度で移動させる接触制御部を有する
    ことを特徴とする請求項2記載のはんだ付け装置。
  4. 前記作業制御部は、
    前記接触制御部による処理後、前記可動部に加わる外力に基づいて、前記はんだごてのはんだ付け対象である物体への接触力を制御する接触力制御部を有する
    ことを特徴とする請求項3記載のはんだ付け装置。
  5. 前記作業制御部は、
    前記接触力制御部による処理後、前記はんだごてをはんだ付け対象である物体から離すように、当該はんだごてを前記第1の速度より遅い第3の速度で移動させる離脱制御部を有する
    ことを特徴とする請求項4記載のはんだ付け装置。
JP2017250797A 2017-12-27 2017-12-27 はんだ付け装置 Active JP6923273B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017250797A JP6923273B2 (ja) 2017-12-27 2017-12-27 はんだ付け装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017250797A JP6923273B2 (ja) 2017-12-27 2017-12-27 はんだ付け装置

Publications (2)

Publication Number Publication Date
JP2019115918A true JP2019115918A (ja) 2019-07-18
JP6923273B2 JP6923273B2 (ja) 2021-08-18

Family

ID=67303759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017250797A Active JP6923273B2 (ja) 2017-12-27 2017-12-27 はんだ付け装置

Country Status (1)

Country Link
JP (1) JP6923273B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021049553A1 (ja) * 2019-09-10 2021-03-18

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182084A (ja) * 2009-02-05 2010-08-19 Yamatake Corp パラメータ推定装置
JP2013188859A (ja) * 2012-03-15 2013-09-26 Azbil Corp アクチュエータの制御装置
JP2016083742A (ja) * 2014-10-28 2016-05-19 アズビル株式会社 接触制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182084A (ja) * 2009-02-05 2010-08-19 Yamatake Corp パラメータ推定装置
JP2013188859A (ja) * 2012-03-15 2013-09-26 Azbil Corp アクチュエータの制御装置
JP2016083742A (ja) * 2014-10-28 2016-05-19 アズビル株式会社 接触制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021049553A1 (ja) * 2019-09-10 2021-03-18
WO2021049553A1 (ja) * 2019-09-10 2021-03-18 白光株式会社 はんだ付け装置
CN114173977A (zh) * 2019-09-10 2022-03-11 白光株式会社 钎焊装置
DE112020004264T5 (de) 2019-09-10 2022-05-19 Hakko Corporation Lötmaschine
JP7158081B2 (ja) 2019-09-10 2022-10-21 白光株式会社 はんだ付け装置
CN114173977B (zh) * 2019-09-10 2023-06-13 白光株式会社 钎焊装置

Also Published As

Publication number Publication date
JP6923273B2 (ja) 2021-08-18

Similar Documents

Publication Publication Date Title
US9352464B2 (en) Robot, carriage device, and control method using inertia sensor
JP7314475B2 (ja) ロボット制御装置、及び、ロボット制御方法
JP5927259B2 (ja) 力制御を実行するロボットシステム
US10864632B2 (en) Direct teaching method of robot
US10173318B2 (en) Method and device for controlling a peripheral component of a robot system
JP2019136808A (ja) 作業ロボットシステム
US10220519B2 (en) Contact control device
JP2020116687A (ja) 追随ロボットおよび作業ロボットシステム
JP2019130646A (ja) 作業ロボットシステム
JP6923273B2 (ja) はんだ付け装置
US20190217466A1 (en) Robot system, method of controlling robot arm, recording medium, and method of manufacturing an article
JP6711536B2 (ja) 外力検出方法
JP2018192535A (ja) 部品嵌合方法及び部品嵌合装置
JP7002928B2 (ja) 位置決め装置
JP6912149B2 (ja) 接着装置
JP2013188859A (ja) アクチュエータの制御装置
JP2019188517A (ja) 曲面トレース装置
JP7042594B2 (ja) アクチュエータ動作切替え装置
JP2019115951A (ja) 組立装置
JP2019188519A (ja) ピン挿入装置
JP2019188518A (ja) 硬度計測装置
JP7448648B2 (ja) 追随ロボットおよび制御装置
JP2019093525A (ja) 仕分け装置
JP2019188520A (ja) 再現装置
WO2012020714A1 (ja) モータ制御装置およびモータ制御方法、制御システムおよびこの制御システムに用いる位置推定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200911

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210727

R150 Certificate of patent or registration of utility model

Ref document number: 6923273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150