JP2019114668A - Electroluminescent element, method for manufacturing electroluminescent element, and dispersion liquid - Google Patents

Electroluminescent element, method for manufacturing electroluminescent element, and dispersion liquid Download PDF

Info

Publication number
JP2019114668A
JP2019114668A JP2017247314A JP2017247314A JP2019114668A JP 2019114668 A JP2019114668 A JP 2019114668A JP 2017247314 A JP2017247314 A JP 2017247314A JP 2017247314 A JP2017247314 A JP 2017247314A JP 2019114668 A JP2019114668 A JP 2019114668A
Authority
JP
Japan
Prior art keywords
group
layer
substituted
injection layer
transport layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2017247314A
Other languages
Japanese (ja)
Inventor
二郎 千阪
Jiro Chisaka
二郎 千阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2017247314A priority Critical patent/JP2019114668A/en
Publication of JP2019114668A publication Critical patent/JP2019114668A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

To provide an electroluminescent element having a long life with good emission efficiency, high relative luminance, excellent emission efficiency and excellent heat resistance.SOLUTION: The electroluminescent element includes a pair of electrodes opposing to each other, a hole injection layer and/or a hole transport layer, an electron injection layer and/or an electron transport layer, and a light-emitting layer. The light-emitting layer contains a compound selected from the group consisting of RCOOH, RNHand the like, which is not coordinated on surfaces of semiconductor nanoparticles; or at least one layer selected from the group consisting of the hole injection layer, the hole transport layer, the electron injection layer and the electron transport layer contains the above compound; or the electroluminescent element further includes an intermediate layer containing the above compound at least at any position between the electrode and the hole transport layer, between the hole injection layer and the hole transport layer, between the electron injection layer and the electron transport layer, between the electrode and the electron injection layer, or between the electrode and the electron transport layer.SELECTED DRAWING: None

Description

本発明は、量子ドットを発光層に用いた電界発光素子、電界発光素子の製造方法、および分散液に関する   The present invention relates to an electroluminescent device using quantum dots in a light emitting layer, a method of manufacturing the electroluminescent device, and a dispersion liquid.

軽量・薄型で消費電力が少なく、かつ形状の自由度に優れた面発光型素子として、電界発光素子(EL、ElectroLuminescence)が注目されている。このような電界発光素子は、高輝度発光、高速応答、広視野角、薄型軽量、高解像度などの多くの優れた特徴を有し、フラットパネルディスプレイや照明への応用が検討されている。
近年、電界発光素子の1つとしていわゆる量子ドットの利用が注目されている。
Electroluminescent elements (EL, ElectroLuminescence) have attracted attention as surface-emitting elements that are lightweight, thin, have low power consumption, and have excellent shape freedom. Such an electroluminescent element has many excellent features such as high luminance light emission, high-speed response, wide viewing angle, thin and light weight, high resolution, etc., and its application to flat panel displays and illumination is being studied.
In recent years, the use of so-called quantum dots has attracted attention as one of the electroluminescent elements.

量子ドットは、ナノスケールの小さな粒子であり、原子又は分子的な挙動と巨視的固体(バルク形態)の挙動との中間的な挙動を示す。電荷キャリア及び励起子が3次元の全ての方向に閉じ込められたナノスケールの材料(半導体ナノ粒子)は、量子ドットと呼ばれ、サイズの減少にともない、有効なバンドギャップが増大する。即ち、量子ドットのサイズが小さくなると、その吸収と発光がより短波長側へ、言い換えれば赤色方向から青色方向へとシフトする。また、量子ドットの組成とサイズとを組み合わせて制御することにより、赤外領域から紫外領域までの広範囲のスペクトルを得ることができ、更にサイズ分布を制御することにより、半値幅の狭い、色純度に優れたスペクトルを得ることができる。
そこで、近年、これらの特性を生かして、発光材料として半導体ナノ結晶からなる量子ドットを用いた、量子ドット型の有機EL素子が提案されている。
Quantum dots are small particles in nanoscale, and exhibit an intermediate behavior between atomic or molecular behavior and behavior of macroscopic solid (bulk form). A nanoscale material (semiconductor nanoparticle) in which charge carriers and excitons are confined in all three dimensions is called a quantum dot, and the effective band gap increases as the size decreases. That is, as the size of the quantum dot decreases, its absorption and emission shift to shorter wavelengths, in other words, from the red direction to the blue direction. In addition, by controlling the composition and size of the quantum dot in combination, a wide spectrum from the infrared region to the ultraviolet region can be obtained, and by further controlling the size distribution, the color purity with a narrow half width Excellent spectrum can be obtained.
Therefore, in recent years, a quantum dot type organic EL element using quantum dots made of semiconductor nanocrystals as a light emitting material has been proposed by making use of these characteristics.

既に小型から大型のディスプレイとして実用化されている、芳香族有機化合物を発光材料とした電界発光素子である有機電界発光素子(有機EL)では、界面がその素子特性に重要な影響を与えることが知られている(非特許文献1)。   In an organic electroluminescent device (organic EL) which is an electroluminescent device using an aromatic organic compound as a light emitting material, which has been put into practical use as a small to large display, the interface has an important influence on the device characteristics It is known (nonpatent literature 1).

J.Vac.Soc.Jpn.,Vol.53,No.1,2010J. Vac. Soc. Jpn. , Vol. 53, no. 1, 2010

量子ドットを発光層に用いた電界発光素子の劣化メカニズムは明らかでは無く、連続点灯駆動における耐久性が不十分であり、加えて、発光効率や耐熱性などにも課題を抱えている。
本発明は、寿命が長く発光効率が良く、相対輝度の高く、発光効率に優れ、耐熱性に優れる電界発光素子を提供することである。
The degradation mechanism of the electroluminescent element using the quantum dot for the light emitting layer is not clear, and the durability in continuous lighting drive is insufficient, and additionally, there are problems in the luminous efficiency, heat resistance and the like.
An object of the present invention is to provide an electroluminescent device having a long life, good luminous efficiency, high relative luminance, excellent luminous efficiency, and excellent heat resistance.

本発明者は、前記課題を解決するために、鋭意検討した結果、量子ドットを発光層に用いた素子において、素子構造中に半導体ナノ粒子の表面に配位していない前記化合物を含むことで、寿命が長く発光効率が良く、相対輝度の高く、発光効率に優れ、耐熱性に優れる電界発光素子が実現可能であることを見出した。
即ち、本発明は、以下の[1]〜[6]に関する。
The inventors of the present invention conducted intensive studies to solve the above problems, and as a result, in the device using quantum dots in the light emitting layer, the device structure includes the compound which is not coordinated to the surface of the semiconductor nanoparticle. It has been found that an electroluminescent device having a long lifetime, good luminous efficiency, high relative luminance, excellent luminous efficiency, and excellent heat resistance can be realized.
That is, the present invention relates to the following [1] to [6].

[1] 対向する1対の電極と、前記1対の電極の間であって陽極側に位置する正孔注入層および/または正孔輸送層と、前記1対の電極の間であって陰極側に位置する電子注入層および/または電子輸送層と、前記正孔注入層および/または正孔輸送層と電子注入層および/または電子輸送層との間に位置する発光層とを有する電界発光素子であって、
前記発光層が、半導体ナノ粒子の表面を少なくとも一部に、RCOOH、RNH、RNH、RN、RSH、RHPO、RHPO、RPO、RHP、RHP、RP、ROH、RCOOR’、RPO(OH)、およびRPOOHからなる群より選ばれる化合物が配位してなる量子ドットと、半導体ナノ粒子の表面に配位していない前記化合物とを含有している、
電界発光素子。
前記式中、
R、R’は、それぞれ独立して、置換もしくは未置換の芳香族炭化水素基、置換もしくは未置換の芳香族複素環基、置換もしくは未置換の脂肪族炭化水素基、置換もしくは未置換の脂肪族複素環基、または、置換もしくは未置換のアルコキシ基である。一分子中に、複数のRを有する場合、それらは同一でも異なっていても良い。
[1] A pair of opposing electrodes, a hole injection layer and / or a hole transport layer located between the pair of electrodes and located on the anode side, and a pair of electrodes between the pair of electrodes Electroluminescence with an electron injection layer and / or electron transport layer located on the side and a light emitting layer located between the hole injection layer and / or hole transport layer and the electron injection layer and / or electron transport layer An element,
The light-emitting layer, at least a portion of the surface of the semiconductor nanoparticles, RCOOH, RNH 2, R 2 NH, R 3 N, RSH, RH 2 PO, R 2 HPO, R 3 PO, RH 2 P, R 2 HP , A compound selected from the group consisting of R 3 P, ROH, RCOOR ′, RPO (OH) 2 , and R 2 POOH, and the aforementioned compound which is not coordinated to the surface of the semiconductor nanoparticle And contains
Electroluminescent device.
In the above formula,
R and R ′ each independently represent a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, a substituted or unsubstituted aliphatic hydrocarbon group, a substituted or unsubstituted fat Group heterocyclic group or a substituted or unsubstituted alkoxy group. When one or more Rs are contained in one molecule, they may be the same or different.

[2] 対向する1対の電極と、前記1対の電極の間であって陽極側に位置する正孔注入層および/または正孔輸送層と、前記1対の電極の間であって陰極側に位置する電子注入層および/または電子輸送層と、前記正孔注入層および/または正孔輸送層と電子注入層および/または電子輸送層との間に位置する発光層とを有する電界発光素子であって、
前記発光層が、半導体ナノ粒子の表面の少なくとも一部に、RCOOH、RNH、RNH、RN、RSH、RHPO、RHPO、RPO、RHP、RHP、RP、ROH、RCOOR’、RPO(OH)、およびRPOOHからなる群より選ばれる化合物が配位してなる量子ドットを含有し、
正孔注入層、正孔輸送層、電子注入層、および電子輸送層からなる群より選ばれる少なくも一層が、前記化合物を含有する、
電界発光素子。
前記式中、R、R’は、それぞれ独立して、置換もしくは未置換の芳香族炭化水素基、置換もしくは未置換の芳香族複素環基、置換もしくは未置換の脂肪族炭化水素基、置換もしくは未置換の脂肪族複素環基、または、置換もしくは未置換のアルコキシ基である。一分子中に、複数のRを有する場合、それらは同一でも異なっていても良い。
[2] A pair of opposing electrodes, a hole injection layer and / or a hole transport layer located between the pair of electrodes and located on the anode side, and a pair of electrodes between the pair of electrodes Electroluminescence with an electron injection layer and / or electron transport layer located on the side and a light emitting layer located between the hole injection layer and / or hole transport layer and the electron injection layer and / or electron transport layer An element,
The light emitting layer is formed on at least a part of the surface of the semiconductor nanoparticle by RCOOH, RNH 2 , R 2 NH, R 3 N, RSH, RH 2 PO, R 2 HPO, R 3 PO, RH 2 P, R 2 HP And R 3 P, ROH, RCOOR ′, RPO (OH) 2 , and R 2 POOH containing a quantum dot formed by coordination of a compound selected from the group consisting of
At least one layer selected from the group consisting of a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer contains the compound.
Electroluminescent device.
In the above formulas, R and R ′ each independently represent a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, a substituted or unsubstituted aliphatic hydrocarbon group, or a substituted or unsubstituted aliphatic hydrocarbon group It is an unsubstituted aliphatic heterocyclic group or a substituted or unsubstituted alkoxy group. When one or more Rs are contained in one molecule, they may be the same or different.

[3] 対向する1対の電極と、前記1対の電極の間であって陽極側に位置する正孔注入層および/または正孔輸送層と、前記1対の電極の間であって陰極側に位置する電子注入層および/または電子輸送層と、前記正孔注入層および/または正孔輸送層と電子注入層および/または電子輸送層との間に位置する発光層とを有する電界発光素子であって、
前記発光層が、半導体ナノ粒子の表面の少なくとも一部に、RCOOH、RNH、RNH、RN、RSH、RHPO、RHPO、RPO、RHP、RHP、RP、ROH、RCOOR’、RPO(OH)、およびRPOOHからなる群より選ばれる化合物が配位してなる量子ドットを含有し、
電極と正孔注入層との間、電極と正孔輸送層との間、正孔注入層と正孔輸送層との間、電子注入層と電子輸送層との間、電極と電子注入層との間、または電極と電子輸送層との間の少なくともいずれかの位置に前記化合物を含有する中間層をさらに具備する、
電界発光素子。
前記式中、R、R’は、それぞれ独立して、置換もしくは未置換の芳香族炭化水素基、置換もしくは未置換の芳香族複素環基、置換もしくは未置換の脂肪族炭化水素基、置換もしくは未置換の脂肪族複素環基、または、置換もしくは未置換のアルコキシ基である。一分子中に、複数のRを有する場合、それらは同一でも異なっていても良い。
[3] A pair of opposing electrodes, a hole injection layer and / or a hole transport layer located between the pair of electrodes and located on the anode side, and a pair of electrodes between the pair of electrodes Electroluminescence with an electron injection layer and / or electron transport layer located on the side and a light emitting layer located between the hole injection layer and / or hole transport layer and the electron injection layer and / or electron transport layer An element,
The light emitting layer is formed on at least a part of the surface of the semiconductor nanoparticle by RCOOH, RNH 2 , R 2 NH, R 3 N, RSH, RH 2 PO, R 2 HPO, R 3 PO, RH 2 P, R 2 HP And R 3 P, ROH, RCOOR ′, RPO (OH) 2 , and R 2 POOH containing a quantum dot formed by coordination of a compound selected from the group consisting of
Between the electrode and the hole injection layer, between the electrode and the hole transport layer, between the hole injection layer and the hole transport layer, between the electron injection layer and the electron transport layer, and between the electrode and the electron injection layer Further comprising an intermediate layer containing the compound at least at any position between the electrode and the electron transport layer,
Electroluminescent device.
In the above formulas, R and R ′ each independently represent a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, a substituted or unsubstituted aliphatic hydrocarbon group, or a substituted or unsubstituted aliphatic hydrocarbon group It is an unsubstituted aliphatic heterocyclic group or a substituted or unsubstituted alkoxy group. When one or more Rs are contained in one molecule, they may be the same or different.

[4] 前記[1]〜[3]いずれかに記載の電界発光素子の製造方法であって、
半導体ナノ粒子の表面の少なくとも一部に前記化合物が配位してなる量子ドット、半導体ナノ粒子の表面に配位していない前記化合物、および液状分散媒を含む分散液を、
陽極側に位置する正孔注入層または正孔輸送層に塗布し、乾燥するか、
あるいは
陰極側に位置する電子注入層または電子輸送層に塗布し、乾燥し、
発光層を形成することを特徴とする、
電界発光素子の製造方法。
[4] A method of manufacturing an electroluminescent device according to any one of the above [1] to [3],
A dispersion liquid comprising a quantum dot formed by coordinating the compound to at least a part of the surface of the semiconductor nanoparticle, the compound not coordinated to the surface of the semiconductor nanoparticle, and a liquid dispersion medium,
Apply to the hole injection layer or hole transport layer located on the anode side and dry it,
Or apply to the electron injection layer or electron transport layer located on the cathode side and dry it,
Forming a light emitting layer,
Method of manufacturing an electroluminescent device

[5] 半導体ナノ粒子の表面の少なくとも一部にRCOOH、RNH、RNH、RN、RSH、RHPO、RHPO、RPO、RHP、RHP、RP、ROH、RCOOR’、RPO(OH)、およびRPOOHからなる群より選ばれる化合物が配位してなる量子ドット、半導体ナノ粒子の表面に配位していない前記化合物、および液状分散媒を含む分散液。
前記式中、R、R’は、それぞれ独立して、置換もしくは未置換の芳香族炭化水素基、置換もしくは未置換の芳香族複素環基、置換もしくは未置換の脂肪族炭化水素基、置換もしくは未置換の脂肪族複素環基、または、置換もしくは未置換のアルコキシ基である。一分子中に、複数のRを有する場合、それらは同一でも異なっていても良い。
[5] RCOOH at least a portion of a surface of a semiconductor nanoparticle, RNH 2, R 2 NH, R 3 N, RSH, RH 2 PO, R 2 HPO, R 3 PO, RH 2 P, R 2 HP, R 3 A quantum dot formed by coordination of a compound selected from the group consisting of P, ROH, RCOOR ′, RPO (OH) 2 , and R 2 POOH, the aforementioned compound not coordinated to the surface of a semiconductor nanoparticle, and a liquid dispersion Dispersion containing a medium.
In the above formulas, R and R ′ each independently represent a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, a substituted or unsubstituted aliphatic hydrocarbon group, or a substituted or unsubstituted aliphatic hydrocarbon group It is an unsubstituted aliphatic heterocyclic group or a substituted or unsubstituted alkoxy group. When one or more Rs are contained in one molecule, they may be the same or different.

本発明により、寿命が長く発光効率が良く、相対輝度の高く、発光効率に優れ、耐熱性に優れる電界発光素子を提供することができる。   According to the present invention, it is possible to provide an electroluminescent element having a long lifetime, good luminous efficiency, high relative luminance, excellent luminous efficiency, and excellent heat resistance.

本発明における量子ドットについて説明をする。
本発明における量子ドットは、半導体ナノ粒子の表面を少なくとも一部に、RCOOH、RNH、RNH、RN、RSH、RHPO、RHPO、RPO、RHP、RHP、RP、ROH、RCOOR’、RPO(OH)、およびRPOOHからなる群より選ばれる化合物が配位してなるものである。前記化合物を以下リガンドということもある。
The quantum dot in the present invention will be described.
In the present invention, the quantum dots in at least a part of the surface of the semiconductor nanoparticle are RCOOH, RNH 2 , R 2 NH, R 3 N, RSH, RH 2 PO, R 2 HPO, R 3 PO, RH 2 P, R A compound selected from the group consisting of 2 HP, R 3 P, ROH, RCOOR ′, RPO (OH) 2 , and R 2 POOH is formed by coordination. Hereinafter, the compound is also referred to as a ligand.

半導体ナノ粒子の材質としては、炭素(C)(不定形炭素、グラファイト、グラフェン、カーボンナノチューブ等)、ケイ素(Si)、ゲルマニウム(Ge)、錫(Sn)等の周期表第IV族元素の単体、
リン(P)(黒リン)等の周期表第V族元素の単体、
セレン(Se)、テルル(Te)等の周期表第VI族元素の単体、
酸化錫(IV)窒化ホウ素(BN)、リン化ホウ素(BP)、砒化ホウ素(BAs)、窒化アルミニウム(AlN)、リン化アルミニウム(AlP)、砒化アルミニウム(AlAs)、アンチモン化アルミニウム(AlSb)、窒化ガリウム(GaN)、リン化ガリウム(GaP)、砒化ガリウム(GaAs)、アンチモン化ガリウム(GaSb)、窒化インジウム(InN)、リン化インジウム(InP)、砒化インジウム(InAs)、アンチモン化インジウム(InSb)等の周期表第III族元素と周期表第V族元素との化合物、
硫化アルミニウム(Al)、セレン化アルミニウム(AlSe)、硫化ガリウム(Ga)、セレン化ガリウム(GaSe、GaSe)テルル化ガリウム(GaTe、GaTe)、酸化インジウム(In)、硫化インジウム(In、InS)、セレン化インジウム(InSe)、テルル化インジウム(InTe)等の周期表第III族元素と周期表第VI族元素との化合物、
酸化亜鉛(ZnO)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)、テルル化亜鉛(ZnTe)、酸化カドミウム(CdO)、硫化カドミウム(CdS)、セレン化カドミウム(CdSe)、テルル化カドミウム(CdTe)、硫化水銀(HgS)、セレン化水銀(HgSe)、テルル化水銀(HgTe)等の周期表第II族元素と周期表第VI族元素との化合物、
酸化銅(I)(CuO)等の周期表第I族元素と周期表第VI族元素との化合物、
塩化銅(I)(CuCl)、臭化銅(I)(CuBr)、ヨウ化銅(I)(CuI)、塩化銀(AgCl)、臭化銀(AgBr)等の周期表第I族元素と周期表第VII族元素との化合物などが挙げられ、必要によりこれらの2種以上を併用しても良い。
The material of the semiconductor nanoparticles includes carbon (C) (amorphous carbon, graphite, graphene, carbon nanotubes, etc.), silicon (Si), germanium (Ge), tin (Sn), etc. ,
A simple substance of a periodic table group V element such as phosphorus (P) (black phosphorus),
A simple substance of a periodic table group VI element such as selenium (Se) or tellurium (Te),
Tin (IV) boron nitride (BN), boron phosphide (BP), boron arsenide (BAs), aluminum nitride (AlN), aluminum phosphide (AlP), aluminum arsenide (AlAs), aluminum antimonide (AlSb), Gallium nitride (GaN), gallium phosphide (GaP), gallium arsenide (GaAs), gallium antimonide (GaSb), indium nitride (InN), indium phosphide (InP), indium arsenide (InAs), indium antimonide (InSb) Compounds of periodic table group III elements and periodic table group V elements such as
Aluminum sulfide (Al 2 S 3 ), aluminum selenide (Al 2 Se 3 ), gallium sulfide (Ga 2 S 3 ), gallium selenide (GaSe, Ga 2 Se 3 ), gallium telluride (GaTe, Ga 2 Te 3 ) , Periodic table group III elements such as indium oxide (In 2 O 3 ), indium sulfide (In 2 S 3 , InS), indium selenide (In 2 Se 3 ), indium telluride (In 2 Te 3 ), etc. Compounds with Group VI elements,
Zinc oxide (ZnO), zinc sulfide (ZnS), zinc selenide (ZnSe), zinc telluride (ZnTe), cadmium oxide (CdO), cadmium sulfide (CdS), cadmium selenide (CdSe), cadmium telluride (CdTe) A compound of a periodic table group II element and a periodic table group VI element such as mercury sulfide (HgS), mercury selenide (HgSe), mercury telluride (HgTe), etc.
Compound of periodic table group I element with periodic table group VI element such as copper (I) oxide (Cu 2 O),
Periodic group I elements such as copper (I) chloride (CuCl), copper (I) bromide (CuBr), copper iodide (I) (CuI), silver chloride (AgCl), silver bromide (AgBr) and the like Examples thereof include compounds with Group VII elements of the periodic table, and two or more of these may be used in combination, as necessary.

これらの半導体には、構成元素以外の元素が含有されていても構わない。
例えば、III−V族を例にとれば、INGaP、INGaNの様な合金系であってもよい。また上記材料中に、希土類元素あるいは遷移金属元素がドープされた半導体ナノ粒子も使われる。例えば、ZnS:Mn、ZnS:Tb、ZnS:Ce、LaPO:Ceなどが挙げられる。
この中でもケイ素(Si)、ゲルマニウム(Ge)、窒化ガリウム(GaN)、リン化ガリウム(GaP)、砒化ガリウム(GaAs)、窒化インジウム(InN)、リン化インジウム(InP)、砒化インジウム(InAs)、セレン化ガリウム(GaSe、Ga2Se3)、硫化インジウム(In、InS)、酸化亜鉛(ZnO)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)、テルル化亜鉛(ZnTe)、酸化カドミウム(CdO)、硫化カドミウム(CdS)、セレン化カドミウム(CdSe)、テルル化カドミウム(CdTe)、InGaP、InGaNなどの合金系が好ましく用いられ、特に、リン化インジウム(InP)、セレン化カドミウム(CdSe)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)が特に好ましく用いられる。
These semiconductors may contain elements other than the constituent elements.
For example, in the case of group III-V as an example, alloy systems such as INGaP and INGaN may be used. In addition, semiconductor nanoparticles doped with rare earth elements or transition metal elements are also used in the above-mentioned materials. For example, ZnS: Mn, ZnS: Tb, ZnS: Ce, LaPO 4 : Ce, etc. may be mentioned.
Among these, silicon (Si), germanium (Ge), gallium nitride (GaN), gallium phosphide (GaP), gallium arsenide (GaAs), indium nitride (InN), indium phosphide (InP), indium arsenide (InAs), gallium selenide (GaSe, Ga2Se3), indium sulfide (In 2 S 3, InS) , zinc oxide (ZnO), zinc sulfide (ZnS), zinc selenide (ZnSe), zinc telluride (ZnTe), cadmium oxide (CdO Alloy systems such as cadmium sulfide (CdS), cadmium selenide (CdSe), cadmium telluride (CdTe), InGaP, InGaN, etc. are preferably used, and in particular, indium phosphide (InP), cadmium selenide (CdSe), Zinc sulfide (ZnS), zinc selenide (ZnSe) in particular Used Mashiku.

さらに、半導体ナノ粒子の材質としては、ペロブスカイト結晶も特に好ましく用いることができる。本発名で言うペロブスカイト結晶は、下記式で表される組成を有し、3次元結晶構造を持つものである。
組成式:AQX
上記式において、Aはメチルアンモニウム(CHNH)、および、ホルムアミジニウム(NHCHNH)から選ばれる少なくとも1つであるアミン化合物の1価陽イオンであるか、または、ルビジウム(Rb)、セシウム(Ce)、および、フランシウ(Fr)から選ばれる少なくとも1つのアルカリ金属元素の1価陽イオンであり、Qは鉛(Pb)および錫(Sn)から選ばれる少なくとも1つである金属元素の2価陽イオンであり、Xはヨウ素(I)、臭素(Br)、および塩素(Cl)から選ばれる少なくとも1つのハロゲン元素の1価陰イオンである。
Furthermore, as a material of the semiconductor nanoparticles, a perovskite crystal can also be particularly preferably used. The perovskite crystal referred to in the present invention has a composition represented by the following formula and has a three-dimensional crystal structure.
Composition formula: AQX 3
In the above formula, A is a monovalent cation of an amine compound which is at least one selected from methyl ammonium (CH 3 NH 2 ) and formamidinium (NH 2 CHNH), or rubidium (Rb) A metallic element which is a monovalent cation of at least one alkali metal element selected from cesium (Ce) and franch (Fr), and Q is at least one selected from lead (Pb) and tin (Sn) And X is a monovalent anion of at least one halogen element selected from iodine (I), bromine (Br), and chlorine (Cl).

半導体ナノ粒子は、コアシェル構造を有するものであることが好ましい。コアシェル型の半導体ナノ粒子はコアを形成する材質と異なる成分からなる材質でコア構造を被覆された構造となる。シェルがバントギャップの大きい半導体をすることで、光励起によって生成された励起子(電子−正孔対)はコア内に閉じ込められる。その結果、粒子表面での無輻射遷移の確率が減少し、発光の量子収率および蛍光特性の安定性が向上する。また、シェルは複数層あっても良い。さらに、コアとシェル、および、あるシェルと他のシェルの境界は明確であっても濃度勾配を設けて徐々に接合されたグラージェント構造で合っても良い。   The semiconductor nanoparticles are preferably those having a core-shell structure. The core-shell type semiconductor nanoparticles have a structure in which the core structure is covered with a material comprising a component different from the material forming the core. By making the shell a semiconductor with a large band gap, excitons (electron-hole pairs) generated by light excitation are confined in the core. As a result, the probability of non-radiative transition on the particle surface is reduced, and the quantum yield of light emission and the stability of the fluorescence characteristics are improved. Also, there may be multiple layers of shells. Furthermore, the boundaries between the core and the shell and between one shell and the other shell may be defined as well as in a gradually joined gradient structure with a concentration gradient.

本発明におけるリガンドについて説明する。
量子ドットは、半導体ナノ粒子1の表面の少なくとも一部にリガンドが配位、換言すると半導体ナノ粒子1の表面の少なくとも一部がリガンドで覆われているものであって、平均粒子径が100nm以下のものである。量子ドットは、半導体ナノ粒子表面に対し、リガンドが、化学吸着、物理吸着、または、化学結合しているものである。
半導体ナノ粒子1の表面の少なくとも一部をリガンドで覆う方法としては、例えば、
リガンドの存在下に半導体ナノ粒子を生成し、リガンドが吸着してなる量子ドットを作成する方法、
半導体ナノ粒子とリガンドとを液相中で撹拌することで、半導体ナノ粒子の表面にリガンドが吸着した量子ドットを得る方法、
半導ナノ微粒子を含む分散液から遠心沈降などで液相(分散媒)をおおよそ取り除いた後、リガンドを含む液相(分散媒)に半導体ナノ粒子を再分散させる際にリガンドが吸着してなる量子ドットを作成する方法などを例としてあげられる。
The ligand in the present invention is described.
In the quantum dot, the ligand is coordinated to at least a part of the surface of the semiconductor nanoparticle 1, in other words, at least a part of the surface of the semiconductor nanoparticle 1 is covered with the ligand, and the average particle diameter is 100 nm or less belongs to. A quantum dot is one in which a ligand is chemisorbed, physically adsorbed, or chemically bonded to the surface of a semiconductor nanoparticle.
As a method of covering at least a part of the surface of the semiconductor nanoparticle 1 with a ligand, for example,
A method of producing a semiconductor nanoparticle in the presence of a ligand and creating a quantum dot on which the ligand is adsorbed,
A method of obtaining a quantum dot in which a ligand is adsorbed on the surface of a semiconductor nanoparticle by stirring the semiconductor nanoparticle and the ligand in a liquid phase,
The ligand is adsorbed when the semiconductor nanoparticles are re-dispersed in the liquid phase (dispersion medium) containing the ligand after approximately removing the liquid phase (dispersion medium) from the dispersion liquid containing the semiconductor nanoparticulates by centrifugal sedimentation or the like An example is a method of creating quantum dots.

本発明におけるリガンドについて説明する。
リガンドは、RCOOH、RNH、RNH、RN、RSH、RHPO、RHPO、RPO、RHP、RHP、RP、ROH、RCOOR’、RPO(OH)、RPOOHから選ばれる少なくとも一種である。
ここで、R、R’は、それぞれ独立して、置換もしくは未置換の芳香族炭化水素基、置換もしくは未置換の芳香族複素環基、置換もしくは未置換の脂肪族炭化水素基、置換もしくは未置換の脂肪族複素環基、または、置換もしくは未置換のアルコキシ基、である。一分子中に、複数のRを有する場合、それらは同一でも異なっていても良い。
The ligand in the present invention is described.
Ligand, RCOOH, RNH 2, R 2 NH, R 3 N, RSH, RH 2 PO, R 2 HPO, R 3 PO, RH 2 P, R 2 HP, R 3 P, ROH, RCOOR ', RPO (OH 2 ) at least one selected from R 2 POOH;
Here, R and R ′ each independently represent a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, a substituted or unsubstituted aliphatic hydrocarbon group, or a substituted or unsubstituted aliphatic hydrocarbon group. It is a substituted aliphatic heterocyclic group or a substituted or unsubstituted alkoxy group. When one or more Rs are contained in one molecule, they may be the same or different.

ここで、置換もしくは未置換の芳香族炭化水素基としては、単環、縮合環、環集合炭化水素基が挙げられる。   Here, examples of the substituted or unsubstituted aromatic hydrocarbon group include a single ring, a condensed ring, and a ring-aggregated hydrocarbon group.

単環の芳香族炭化水素基としては、フェニル基、o−トリル基、m−トリル基、p−トリル基、2,4−キシリル基、p−クメニル基、メシチル基等の炭素数6〜18の単環芳香族炭化水素基が挙げられる。   The monocyclic aromatic hydrocarbon group has a carbon number of 6 to 18 such as phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 2,4-xylyl group, p-cumenyl group and mesityl group And monocyclic aromatic hydrocarbon groups of

また、縮合環の炭化水素基としては、1−ナフチル基、2−ナフチル基、1−アンスリル基、2−アンスリル基、5−アンスリル基、1−フェナンスリル基、9−フェナンスリル基、1−アセナフチル基、2−アズレニル基、1−ピレニル基、2−ピレニル基、4−ピレニル基、2−トリフェニレル基等の炭素数10〜18の縮合環炭化水素基が挙げられる。   Moreover, as a hydrocarbon group of a condensed ring, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 5-anthryl group, 1-phenanthryl group, 9-phenanthryl group, 1-acenaphthyl group And C 10 -C 18 fused ring hydrocarbon groups such as 2-azulenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 2-triphenylyl group and the like.

また、環集合の炭化水素基としては、o−ビフェニリル基、m−ビフェニリル基、p−ビフェニリル基、9,9H−フルオレイン−2−イル基、9H−フルオレイン−9−イル基、等の炭素数12〜18の環集合炭化水素基が挙げられる。   Moreover, as a hydrocarbon group of ring assembly, o-biphenylyl group, m-biphenylyl group, p-biphenylyl group, 9,9H-fluorin-2-yl group, 9H-fluorein-9-yl group, etc. A C12-C18 ring assembly hydrocarbon group is mentioned.

R、R’のうちの置換もしくは未置換の芳香族複素環基としては、トリアゾリル基、3−オキサジアゾリル基、2−フラニル基、3−フラニル基、2−フリル基、3−フリル基、2−チエニル基、3−チエニル基、1−ピロ−リル基、2−ピロ−リル基、3−ピロ−リル基、2−ピリジル基、3−ピリジル基、4−ピリジル基、2−ピラジル基、2−オキサゾリル基、3−イソオキサゾリル基、2−チアゾリル基、3−イソチアゾリル基、2−イミダゾリル基、3−ピラゾリル基、2−キノリル基、3−キノリル基、4−キノリル基、5−キノリル基、6−キノリル基、7−キノリル基、8−キノリル基、1−イソキノリル基、2−キノキサリニル基、2−ベンゾフリル基、2−ベンゾチエニル基、N−インドリル基、N−カルバゾリル基、N−アクリジニル基、2−チオフェニル基、3−チオフェニル基、ビピリジル基、フェナントロリル基といった炭素数2〜18の芳香族複素環基が挙げられる。   As the substituted or unsubstituted aromatic heterocyclic group of R and R ′, triazolyl group, 3-oxadiazolyl group, 2-furanyl group, 3-furanyl group, 2-furyl group, 3-furyl group, 2-furyl group Thienyl group, 3-thienyl group, 1-pyrrolyl group, 2-pyrrolyl group, 3-pyrrolyl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-pyrazyl group, 2 -Oxazolyl group, 3-isoxazolyl group, 2-thiazolyl group, 3-isothiazolyl group, 2-imidazolyl group, 3-pyrazolyl group, 2-quinolyl group, 3-quinolyl group, 4-quinolyl group, 5-quinolyl group, 6 -Quinolyl group, 7-quinolyl group, 8-quinolyl group, 1-isoquinolyl group, 2-quinoxalinyl group, 2-benzofuryl group, 2-benzothienyl group, N-indolyl group, N-carbazolyl group, - acridinyl group, 2-thiophenyl group, 3-thiophenyl group, a bipyridyl group, an aromatic heterocyclic group having 2 to 18 carbon atoms such phenanthrolyl group.

R、R’のうちの置換もしくは未置換の脂肪族炭化水素基としては、炭素数1〜18の脂肪族炭化水素基を指し、そのようなものとしては、アルキル基、アルケニル基、アルキニル基、シクロアルキル基が挙げられる。   The substituted or unsubstituted aliphatic hydrocarbon group of R and R ′ refers to an aliphatic hydrocarbon group having 1 to 18 carbon atoms, and as such, an alkyl group, an alkenyl group, an alkynyl group, and the like A cycloalkyl group is mentioned.

アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、ペンタデシル基、オクタデシル基といった炭素数1〜18のアルキル基が挙げられる。   As the alkyl group, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, hexyl group, heptyl group, octyl group, decyl group And alkyl groups having 1 to 18 carbon atoms such as dodecyl, pentadecyl and octadecyl.

アルケニル基としては、ビニル基、1−プロペニル基、2−プロペニル基、イソプロペニル基、1−ブテニル基、2−ブテニル基、3−ブテニル基、1−オクテニル基、1−デセニル基、1−オクタデセニル基といった炭素数2〜18のアルケニル基が挙げられる。   As an alkenyl group, a vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-octenyl group, 1-decenyl group, 1-octadecenyl group C2-C18 alkenyl groups, such as a group, are mentioned.

また、アルキニル基としては、エチニル基、1−プロピニル基、2−プロピニル基、1−ブチニル基、2−ブチニル基、3−ブチニル基、1−オクチニル基、1−デシニル基、1−オクタデシニル基といった炭素数2〜18のアルキニル基が挙げられる。   Moreover, as an alkynyl group, an ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group, 3-butynyl group, 1-octynyl group, 1-decynyl group, 1-octadecynyl group, etc. The C2-C18 alkynyl group is mentioned.

また、シクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロオクタデシル基、1−アダマンチル基、2−アダマンチル基いった炭素数3〜18のシクロアルキル基が挙げられる。   Moreover, as a cycloalkyl group, it has 3 to 18 carbon atoms such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclooctadecyl group, 1-adamantyl group and 2-adamantyl group. A cycloalkyl group is mentioned.

R、R’のうちの置換もしくは未置換の脂肪族複素環基としては、2−ピラゾリノ基、ピペリジノ基、モルホリノ基、2−モルホリニル基といった炭素数3〜18の脂肪族複素環基が挙げられる。   Examples of the substituted or unsubstituted aliphatic heterocyclic group of R and R ′ include aliphatic heterocyclic groups having 3 to 18 carbon atoms, such as 2-pyrazolino, piperidino, morpholino and 2-morpholinyl. .

R、R’のうちの置換もしくは未置換のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、2−エチルヘキシルオキシ基、ステアリルオキシ基、トリフロロメトキシ基等が挙げられる。   As a substituted or unsubstituted alkoxy group of R and R ′, a methoxy group, an ethoxy group, a propoxy group, an n-butoxy group, a sec-butoxy group, a tert-butoxy group, a pentyloxy group, a hexyloxy group, 2 -Ethylhexyl oxy group, stearyloxy group, trifluoro methoxy group etc. are mentioned.

ここで、R、および、R’がそれぞれ独立に有していても良い置換基としては、置換もしくは未置換の芳香族炭化水素基、置換もしくは未置換の芳香族複素環基、置換もしくは未置換の脂肪族炭化水素基、置換もしくは未置換の脂肪族複素環基、置換もしくは未置換のアルコキシ基、および、ハロゲン元素が挙げられる。置換もしくは未置換の芳香族炭化水素基、置換未置換の芳香族複素環基、置換もしくは未置換の脂肪族炭化水素基、置換もしくは未置換の脂肪族複素環基、および、置換もしくは未置換のアルコキシ基としては前述のものが挙げられ、ハロゲン元素としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。   Here, as a substituent which R and R ′ may independently have, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, a substituted or unsubstituted group Aliphatic hydrocarbon groups, substituted or unsubstituted aliphatic heterocyclic groups, substituted or unsubstituted alkoxy groups, and halogen elements. A substituted or unsubstituted aromatic hydrocarbon group, a substituted unsubstituted aromatic heterocyclic group, a substituted or unsubstituted aliphatic hydrocarbon group, a substituted or unsubstituted aliphatic heterocyclic group, and a substituted or unsubstituted aliphatic hydrocarbon group The above-mentioned thing is mentioned as an alkoxy group, A fluorine atom, a chlorine atom, a bromine atom, an iodine atom is mentioned as a halogen element.

本発明のリガンドの具体例を以下に説明するが、それらは発明を限定するものではない。
具体的な例としては、メタンチオール、エタンチオール、プロパンチオール、ブタンチオール、ペンタンチオール、ヘキサンチオール、オクタンチオール、ドデカンチオール、ヘキサデカンチオール、オクタデカンチオール、ベンジルチオール;メタンアミン、エタンアミン、プロパンアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、オクチルアミン、ドデシルアミン、ヘキサデシルアミン、オクタデシルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン;メタン酸、エタン酸、プロパン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ドデカン酸、ヘキサデカン酸、オクタデカン酸、オレイン酸、安息香酸;置換又は非置換のメチルホスフィン(例:トリメチルホスフィン、メチルジフェニルホスフィンなど)、置換又は非置換のエチルホスフィン(例:トリエチルホスフィン、エチルジフェニルホスフィンなど)、置換又は非置換のプロピルホスフィン、置換又は非置換のブチルホスフィン、置換又は非置換のペンチルホスフィン、置換又は非置換のオクチルホスフィン(例:トリオクチルホスフィン(TOP))などのホスフィン;置換又は非置換のメチルホスフィンオキシド(例:トリメチルホスフィンオキシド、メチルジフェニルホスフィンオキシドなど)、置換又は非置換のエチルホスフィンオキシド(例:トリエチルホスフィンオキシド、エチルジフェニルホスフィンオキシドなど)、置換又は非置換のプロピルホスフィンオキシド、置換又は非置換のブチルホスフィンオキシド、置換又は非置換のオクチルホスフィン(例:トリオクチルホスフィンオキシド(TOPO)などのホスフィンオキシド;ジフェニルホスフィン、トリフェニルホスフィン化合物、又はそのオキシド化合物;ホスホン酸(phosphonic acid)などが挙げられる。
Specific examples of the ligand of the present invention are described below, but they do not limit the invention.
Specific examples include methanethiol, ethanethiol, propanethiol, butanethiol, pentanethiol, hexanethiol, octanethiol, dodecanethiol, hexadecanethiol, octadecanethiol, benzylthiol; methaneamine, ethaneamine, propaneamine, butylamine, pentyl Amine, hexylamine, octylamine, dodecylamine, hexadecylamine, octadecylamine, dimethylamine, diethylamine, dipropylamine; methane acid, ethanoic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid, heptane acid, octanoic acid , Dodecanoic acid, hexadecanoic acid, octadecanoic acid, oleic acid, benzoic acid; substituted or unsubstituted methyl phosphine (eg, trimethyl phosphine, methyl diphenyl pho And the like), substituted or unsubstituted ethyl phosphine (eg, triethyl phosphine, ethyl diphenyl phosphine, etc.), substituted or unsubstituted propyl phosphine, substituted or unsubstituted butyl phosphine, substituted or unsubstituted pentyl phosphine, substituted or unsubstituted Phosphines such as substituted octyl phosphines (eg: trioctyl phosphine (TOP)); substituted or unsubstituted methyl phosphine oxides (eg: trimethyl phosphine oxide, methyl diphenyl phosphine oxide etc.), substituted or unsubstituted ethyl phosphine oxides (eg : Triethyl phosphine oxide, ethyl diphenyl phosphine oxide, etc., substituted or unsubstituted propyl phosphine oxide, substituted or unsubstituted butyl phosphine oxide, substituted or unsubstituted octyl phosphine ( : Phosphine oxides such as trioctylphosphine oxide (TOPO); diphenylphosphine, triphenyl phosphine compound or its oxide compounds; and phosphonate (phosphonic acid) and the like.

半導体ナノ粒子および量子ドットの平均粒子径は100nm以下であり、好ましくは1〜50nmであり、更に好ましくは、1〜15nmである。   The average particle size of the semiconductor nanoparticles and the quantum dots is 100 nm or less, preferably 1 to 50 nm, and more preferably 1 to 15 nm.

ここで言う平均粒子径とは、半導体ナノ粒子および量子ドットを透過型電子顕微鏡で観察し、無作為に30個のサイズを計測してその平均値を採用した値を指す。この際、量子ドットは前述のリガンドを伴うため、エネルギー分散型X線分析が付帯した走査型透過電子顕微鏡を用いることで、半導体材質部を特定した上で、透過型電子顕微鏡像において電子密度の違いから後述のリガンドに対し半導体ナノ粒子部分は暗く撮像されることを利用し粒径を計測する。   The average particle size referred to herein is a value obtained by observing semiconductor nanoparticles and quantum dots with a transmission electron microscope, randomly measuring the size of 30 particles, and adopting the average value. Under the present circumstances, since a quantum dot is accompanied by the above-mentioned ligand, after specifying a semiconductor material part by using the scanning transmission electron microscope attached to energy dispersive X ray analysis, in the transmission electron microscope image of the electron density From the difference, the particle diameter is measured by utilizing the fact that the semiconductor nanoparticle portion is imaged dark relative to the ligand described later.

半導体ナノ粒子および量子ドットの形状は、球状に限らず、棒状、円盤状、そのほかの形状であっても良い。   The shape of the semiconductor nanoparticles and the quantum dots is not limited to the spherical shape, and may be a rod shape, a disk shape, or any other shape.

次に、本発明の、すくなくとも、リガンドで表面処理された半導体ナノ粒子と、半導体ナノ粒子に表面処理されていないリガンドと、液状分散媒とを含む分散液(以下、本発明の分散液)について説明する。
本発明の分散液は、半導体ナノ粒子の少なくとも一部が前述のリガンドで覆われていることで、量子ドットの耐性や分散安定性を確保している。
本発明の分散液は、半導体ナノ粒子に配位していないフリーなリガンド相当の化合物を含むことによって、分散液中での量子ドットの分散性が向上するため、分散が安定化し、結果として、量子収率などの発光特性や高温環境での分散安定性に優れる。
このようなフリーなリガンド相当の化合物は、意図的に添加してもよいし、量子ドットの合成時の残留物や、表面処理操作の残留物として、本発明の分散液に含まれていても良い。
半導体ナノ粒子に配位していないフリーリガンド相当の化合物の存在を確認する方法として、量子ドットと親和性が低い液状分散媒を加えた後に遠心分離した上澄み液をGC−MSで分析することで検出する方法などが挙げられる。
Next, a dispersion containing at least semiconductor nanoparticles surface-treated with a ligand, a ligand not surface-treated with semiconductor nanoparticles, and a liquid dispersion medium of the present invention (hereinafter, the dispersion liquid of the present invention) explain.
The dispersion liquid of the present invention secures the resistance and dispersion stability of the quantum dot by covering at least a part of the semiconductor nanoparticles with the above-mentioned ligand.
In the dispersion liquid of the present invention, the dispersion of the quantum dots in the dispersion liquid is improved by containing the compound corresponding to the free ligand not coordinated to the semiconductor nanoparticles, so that the dispersion is stabilized, and as a result, It is excellent in luminescence characteristics such as quantum yield and dispersion stability in a high temperature environment.
Such a compound corresponding to a free ligand may be intentionally added, or may be included in the dispersion of the present invention as a residue during synthesis of quantum dots or as a residue of surface treatment operation. good.
As a method of confirming the presence of the compound corresponding to the free ligand not coordinated to the semiconductor nanoparticle, the supernatant obtained by adding a liquid dispersion medium having low affinity to the quantum dot and then centrifuging is analyzed by GC-MS. The method of detecting etc. are mentioned.

上記液状分散媒としては種々の溶剤が適用可能であり、特に限定されない。例えば、トルエン、o−キシレン、m−キシレン、p−キシレン、メチシレン、シクロヘキシルベンゼン、テトラリン等の芳香族炭化水素;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素;1,2−ジメトキシベンゼン、1,3−ジメトキシベンゼン、アニソール、フェネトール、2−メトキシトルエン、3−メトキシトルエン、4−メトキシトルエン、2,3−ジメチルアニソール、2,4−ジメチルアニソール等の芳香族エーテル;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n−ブチル等の芳香族エステル;シクロヘキサノン、シクロオクタノン等の脂環を有するケトン;メチルエチルケトン、ジブチルケトン等の脂肪族ケトン;メチルエチルケトン、シクロヘキサノール、シクロオクタノール等の脂環を有するアルコール;ブタノール、ヘキサノール等の脂肪族アルコール;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール−1−モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル;酢酸エチル、酢酸n−ブチル、乳酸エチル、乳酸n−ブチル等の脂肪族エステル;n−ヘキサン、2−メチルペンタン、3−メチルペンタン、2,2−ジメチルブタン、2,3−ジメチルブタン、n−ヘプタン、n−デカン、2,2,4−トリメチルペンタン、シクロヘキサン、メチルシクロヘキサン、ミネラルスピリット等の脂肪族炭化水素;等が挙げられる。   Various solvents can be applied as the liquid dispersion medium, and there is no particular limitation. For example, aromatic hydrocarbons such as toluene, o-xylene, m-xylene, p-xylene, methycylene, cyclohexylbenzene and tetralin; halogenated aromatic hydrocarbons such as chlorobenzene, dichlorobenzene and trichlorobenzene; Aromatic ethers such as benzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole; phenyl acetate, Aromatic esters such as phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, n-butyl benzoate; alicyclic ketones such as cyclohexanone and cyclooctanone; aliphatic ketones such as methyl ethyl ketone and dibutyl ketone; Me Alicyclic alcohols such as ethyl ethyl ketone, cyclohexanol and cyclooctanol; aliphatic alcohols such as butanol and hexanol; aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol 1-monomethyl ether acetate (PGMEA) Aliphatic esters such as ethyl acetate, n-butyl acetate, ethyl lactate and n-butyl lactate; n-hexane, 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, Aliphatic hydrocarbons such as n-heptane, n-decane, 2,2,4-trimethylpentane, cyclohexane, methylcyclohexane, mineral spirits, and the like.

これらのうち、水の溶解度が低い点、容易には変質しない点で、トルエン、キシレン、メチシレン、シクロヘキシルベンゼン、テトラリン等の芳香族炭化水素が好ましい。
電界発光素子には、水分により著しく劣化する材料が陰極等に多く使用されているため、素子の特性発現の点から、乾燥後の膜中に水分が残留しにくいように、用いる液状分散媒も疎水性に富むものを選択することが好ましい。
Among these, aromatic hydrocarbons such as toluene, xylene, methycylene, cyclohexylbenzene and tetralin are preferable in that they have low water solubility and do not easily deteriorate.
Since many materials that are significantly degraded by moisture are used in the electroluminescent element for the cathode etc., the liquid dispersion medium used is also such that moisture is unlikely to remain in the film after drying from the point of view of element characteristics. It is preferable to select one that is rich in hydrophobicity.

また、これらの液状分散媒は単独で使用しても複数混合して用いてもよい。尚、使用可能な液状分散媒はこれらに限定されるものではない。   These liquid dispersion media may be used alone or in combination of two or more. The usable liquid dispersion medium is not limited to these.

本発明の分散液は、主に、発光層を形成するために用いられるが、正孔輸送層などの他の層に用いてもよい。   The dispersion of the present invention is mainly used to form a light emitting layer, but may be used in other layers such as a hole transport layer.

本発明の分散液に、本発明の目的が損なわれない範囲で、後述する他の公知の発光材料を含有させても良い。   The dispersion liquid of the present invention may contain other known light emitting materials described later as long as the object of the present invention is not impaired.

本発明の分散液には、必要に応じて公知の添加剤を添加してもよい。公知の添加剤としては、消泡剤、レベリング剤、および、増粘剤、等が挙げられるが何ら限定されるものではない。   Known additives may be added to the dispersion of the present invention as required. Examples of known additives include, but are not limited to, antifoaming agents, leveling agents, and thickeners.

本発明の分散液は、公知の湿式成膜法、例えば、塗布法、インクジェット法、ディップコート法、ダイコート法、スプレーコート法、スピンコート法、ロールコーター法、湿漬塗布法、スクリーン印刷法、フレキソ印刷、スクリーン印刷法、LB法等により成膜できる。   The dispersion of the present invention can be prepared by known wet film forming methods such as coating method, ink jet method, dip coating method, die coating method, spray coating method, spin coating method, roll coater method, wet coating method, screen printing method, Film formation can be performed by flexographic printing, screen printing, LB method or the like.

次に、陽極と陰極との間に発光層を具備する電界発光素子について詳細に説明する。
電界発光素子のうち、一層型電界発光素子とは、陽極と陰極との間に発光層のみからなる素子を指す。
一方、多層型電界発光素子とは、発光層の他に、発光層への正孔や電子の注入を容易にしたり、発光層内での正孔と電子との再結合を円滑に行わせたりすることを目的として、正孔注入層、正孔輸送層、正孔阻止層、電子注入層などを積層させたものを指す。
さらに、発光層と陽極との間で発光層に隣接して存在し、発光層と陽極、又は発光層と、正孔注入層若しくは正孔輸送層とを隔離する役割をもつ層であるインターレイヤー層を挿入しても良い。
Next, an electroluminescent device having a light emitting layer between the anode and the cathode will be described in detail.
Among the electroluminescent elements, the single-layer type electroluminescent element refers to an element comprising only a light emitting layer between an anode and a cathode.
On the other hand, in the multi-layered electroluminescent element, in addition to the light emitting layer, injection of holes and electrons into the light emitting layer is facilitated, and recombination of holes and electrons in the light emitting layer is smoothly performed. It refers to what laminated | stacked the positive hole injection layer, the positive hole transport layer, the positive hole blocking layer, the electron injection layer etc. for the purpose of.
Furthermore, an interlayer which is adjacent to the light emitting layer between the light emitting layer and the anode and has a function of separating the light emitting layer from the anode or the light emitting layer and the hole injection layer or the hole transport layer Layers may be inserted.

したがって、多層型電界発光素子の代表的な素子構成としては、(1)陽極/正孔注入層/発光層/陰極、(2)陽極/正孔注入層/正孔輸送層/発光層/陰極、(3)陽極/正孔注入層/発光層/電子注入層/陰極、(4)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極、(5)陽極/正孔注入層/発光層/正孔阻止層/電子注入層/陰極、(6)陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子注入層/陰極、(7)陽極/発光層/正孔阻止層/電子注入層/陰極、(8)陽極/発光層/電子注入層/陰極(9)陽極/正孔注入層/正孔輸送層/インターレイヤー層/発光層/陰極、(10)陽極/正孔注入層/インターレイヤー層/発光層/電子注入層/陰極、(11)陽極/正孔注入層/正孔輸送層/インターレイヤー層/発光層/電子注入層/陰極、等の多層構成で積層した素子構成が考えられる。   Therefore, typical device configurations of multilayer electroluminescent devices are (1) anode / hole injection layer / light emitting layer / cathode, (2) anode / hole injection layer / hole transport layer / light emitting layer / cathode , (3) anode / hole injection layer / light emitting layer / electron injection layer / cathode, (4) anode / hole injection layer / hole transport layer / light emitting layer / electron injection layer / cathode, (5) anode / positive Hole injection layer / light emitting layer / hole blocking layer / electron injection layer / cathode, (6) anode / hole injection layer / hole transporting layer / light emitting layer / hole blocking layer / electron injection layer / cathode, (7) Anode / light emitting layer / hole blocking layer / electron injection layer / cathode, (8) anode / light emitting layer / electron injection layer / cathode (9) anode / hole injection layer / hole transport layer / interlayer / light emitting layer / Cathode, (10) anode / hole injection layer / interlayer layer / light emitting layer / electron injection layer / cathode, (11) anode / hole injection layer / hole transport layer / inter layer Layer / light emitting layer / electron injection layer / cathode, an element formed by laminating a multilayer structure etc. can be considered.

また、上述した各有機層は、それぞれ二層以上の層構成により形成されても良く、いくつかの層が繰り返し積層されていても良い。そのような例として、近年、光取り出し効率の向上を目的に、上述の多層型電界発光の一部の層を多層化する「マルチ・フォトン・エミッション」と呼ばれる素子構成が提案されている。これは例えば、ガラス基板/陽極/正孔輸送層/電子輸送性発光層/電子注入層/電荷発生層/発光ユニット/陰極から構成される電界発光素子に於いて、電荷発生層と発光ユニットの部分を複数層積層するといった方法が挙げられる。   Each organic layer mentioned above may be formed by layer composition of two or more layers, respectively, and several layers may be repeatedly laminated. As such an example, in recent years, for the purpose of improving the light extraction efficiency, a device configuration called “multi-photon emission” has been proposed in which some layers of the above-described multi-layered electroluminescence are multilayered. This corresponds to, for example, the charge generation layer and the light emission unit in an electroluminescent device comprising glass substrate / anode / hole transport layer / electron transport light emission layer / electron injection layer / charge generation layer / light emission unit / cathode There is a method of laminating a plurality of portions.

本発明の電界発光素子の3つの態様について説明する。
第1の態様は、発光層が、量子ドットと半導体ナノ粒子の表面に配位していないリガンド相当の化合物とを含有する態様である。
Three aspects of the electroluminescent device of the present invention will be described.
The first aspect is an aspect in which the light emitting layer contains a quantum dot and a compound corresponding to a ligand that is not coordinated to the surface of the semiconductor nanoparticle.

第2の態様は、正孔注入層、正孔輸送層、電子注入層、および電子輸送層からなる群より選ばれる少なくも一層が、リガンド相当の化合物を含有する態様である。第2の態様の場合、発光層が、半導体ナノ粒子の表面に配位していないリガンド相当の化合物をさらに含有することもできる。   The second aspect is an aspect in which at least one layer selected from the group consisting of a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer contains a compound corresponding to a ligand. In the case of the second aspect, the light emitting layer can further contain a compound corresponding to a ligand not coordinated to the surface of the semiconductor nanoparticle.

第3の態様は、電極と正孔注入層との間、電極と正孔輸送層との間、正孔注入層と正孔輸送層との間、電子注入層と電子輸送層との間、電極と電子注入層との間、または電極と電子輸送層との間の少なくともいずれかの位置に、リガンド相当の化合物を含有する中間層をさらに具備する態様である。第3の態様の場合、発光層が、半導体ナノ粒子の表面に配位していないリガンド相当の化合物をさらに含有したり、正孔注入層、正孔輸送層、電子注入層、および電子輸送層からなる群より選ばれる少なくも一層が、リガンド相当の化合物を含有することもできる。   In the third aspect, between the electrode and the hole injection layer, between the electrode and the hole transport layer, between the hole injection layer and the hole transport layer, between the electron injection layer and the electron transport layer, In this embodiment, an intermediate layer containing a compound corresponding to a ligand is further provided at least at any position between the electrode and the electron injection layer or between the electrode and the electron transport layer. In the case of the third aspect, the light emitting layer further contains a compound corresponding to a ligand not coordinated to the surface of the semiconductor nanoparticle, or a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer At least one layer selected from the group consisting of can also contain a compound corresponding to a ligand.

上述の態様の電界発光素子を製造する方法として、すくなくとも、量子ドットと、半導体ナノ粒子に配位していないリガンド相当の化合物と、液状分散媒とを含む分散液を、電極に塗布し、乾燥することで発光層を形成する製造方法が挙げられる。   As a method of manufacturing the electroluminescent device according to the above aspect, a dispersion containing at least a quantum dot, a compound equivalent to a ligand not coordinated to a semiconductor nanoparticle, and a liquid dispersion medium is applied to an electrode and dried. The manufacturing method which forms a light emitting layer by doing is mentioned.

上記の発光層の形成方法を用いると、半導体ナノ粒子に配位していないリガンド相当の化合物が量子ドットと混合された状態で発光層が形成される、および/あるいは、半導体ナノ粒子に表面処理されていないリガンドが発光層の下層へ浸透・拡散しつつ発光層が形成されるため、本発明の電界発光素子が製造できる。   When the method of forming a light emitting layer described above is used, the light emitting layer is formed in a state where a compound corresponding to a ligand not coordinated to the semiconductor nanoparticle is mixed with the quantum dot, and / or the surface treatment of the semiconductor nanoparticle Since the light emitting layer is formed while penetrating and diffusing the unintended ligand into the lower layer of the light emitting layer, the electroluminescent device of the present invention can be manufactured.

正孔注入層には、発光層に対して優れた正孔注入効果を示し、かつ陽極界面との密着性と薄膜形成性に優れた正孔注入層を形成できる正孔注入材料が用いられる。また、このような材料を多層積層させ、正孔注入効果の高い材料と正孔輸送効果の高い材料とを多層積層させた場合、それぞれに用いる材料を正孔注入材料、正孔輸送材料と呼ぶことがある。本発明の有機EL素子用材料は、正孔注入材料、正孔輸送材料いずれにも好適に使用することができる。これら正孔注入材料や正孔輸送材料は、正孔移動度が大きく、イオン化エネルギーが通常5.5eV以下と小さい必要がある。このような正孔注入層としては、より低い電界強度で正孔を発光層に輸送する材料が好ましく、さらに正孔の移動度が、例えば10〜10V/cmの電界印加時に、少なくとも10−6cm/V・秒であるものが好ましい。本発明の有機EL素子用材料と混合して使用することができる、他の正孔注入材料および正孔輸送材料としては、上記の好ましい性質を有するものであれば特に制限はなく、従来、光導伝材料において正孔の電荷輸送材料として慣用されているものや、有機EL素子の正孔注入層に使用されている公知のものの中から任意のものを選択して用いることができる。 For the hole injection layer, a hole injection material is used which exhibits an excellent hole injection effect on the light emitting layer and can form a hole injection layer excellent in adhesion to the anode interface and thin film formation. In addition, when such a material is laminated in multiple layers, and a material with a high hole injection effect and a material with a high hole transport effect are laminated, the materials used for each are called a hole injection material and a hole transport material. Sometimes. The material for an organic EL device of the present invention can be suitably used as either a hole injecting material or a hole transporting material. These hole injecting materials and hole transporting materials are required to have a high hole mobility and a small ionization energy of usually 5.5 eV or less. As such a hole injection layer, a material which transports holes to the light emitting layer with lower electric field strength is preferable, and further, the hole mobility is at least at the time of electric field application of 10 4 to 10 6 V / cm, for example. What is 10 <-6 > cm < 2 > / V * second is preferable. Other hole injecting materials and hole transporting materials that can be used by mixing with the material for an organic EL device of the present invention are not particularly limited as long as they have the above-mentioned preferable properties, and In the transport material, any one can be selected and used from those commonly used as a charge transport material of holes and known materials used in a hole injection layer of an organic EL device.

このような正孔注入材料や正孔輸送材料としては、具体的には、例えばトリアゾール誘導体(米国特許3,112,197号明細書等参照)、オキサジアゾール誘導体(米国特許3,189,447号明細書等参照)、イミダゾール誘導体(特公昭37−16096号公報等参照)、ポリアリールアルカン誘導体(米国特許3,615,402号明細書、同第3,820,989号明細書、同第3,542,544号明細書、特公昭45−555号公報、同51−10983号公報、特開昭51−93224号公報、同55−17105号公報、同56−4148号公報、同55−108667号公報、同55−156953号公報、同56−36656号公報等参照)、ピラゾリン誘導体およびピラゾロン誘導体(米国特許第3,180,729号明細書、同第4,278,746号明細書、特開昭55−88064号公報、同55−88065号公報、同49−105537号公報、同55−51086号公報、同56−80051号公報、同56−88141号公報、同57−45545号公報、同54−112637号公報、同55−74546号公報等参照)、フェニレンジアミン誘導体(米国特許第3,615,404号明細書、特公昭51−10105号公報、同46−3712号公報、同47−25336号公報、特開昭54−53435号公報、同54−110536号公報、同54−119925号公報等参照)、アリールアミン誘導体(米国特許第3,567,450号明細書、同第3,180,703号明細書、同第3,240,597号明細書、同第3,658,520号明細書、同第4,232,103号明細書、同第4,175,961号明細書、同第4,012,376号明細書、特公昭49−35702号公報、同39−27577号公報、特開昭55−144250号公報、同56−119132号公報、同56−22437号公報、***特許第1,110,518号明細書等参照)、アミノ置換カルコン誘導体(米国特許第3,526,501号明細書等参照)、オキサゾール誘導体(米国特許第3,257,203号明細書等に開示のもの)、スチリルアントラセン誘導体(特開昭56−46234号公報等参照)、フルオレノン誘導体(特開昭54−110837号公報等参照)、ヒドラゾン誘導体(米国特許第3,717,462号明細書、特開昭54−59143号公報、同55−52063号公報、同55−52064号公報、同55−46760号公報、同55−85495号公報、同57−11350号公報、同57−148749号公報、特開平2−311591号公報等参照)、スチルベン誘導体(特開昭61−210363号公報、同第61−228451号公報、同61−14642号公報、同61−72255号公報、同62−47646号公報、同62−36674号公報、同62−10652号公報、同62−30255号公報、同60−93455号公報、同60−94462号公報、同60−174749号公報、同60−175052号公報等参照)、シラザン誘導体(米国特許第4,950,950号明細書)、ポリシラン系(特開平2−204996号公報)、アニリン系共重合体(特開平2−282263号公報)、特開平1−211399号公報に開示されている導電性高分子オリゴマー(特にチオフェンオリゴマー)等をあげることができる。   Specific examples of such hole injecting materials and hole transporting materials include triazole derivatives (see, eg, US Pat. No. 3,112,197) and oxadiazole derivatives (US Pat. No. 3,189,447). No. 3, etc., imidazole derivatives (see Japanese Patent Publication No. 37-16096 etc.), polyarylalkane derivatives (US Pat. Nos. 3,615,402 and 3,820,989) No. 3,542,544, JP-B-45-555, JP-A-51-10983, JP-A-51-93224, JP-A-55-17105, JP-A-56-4148, JP-A-55- 108667, 55-156953, 56-36656, etc.), pyrazoline derivatives and pyrazolone derivatives (US Pat. No. 3,180, No. 29, No. 4, 278, 746, JP-A No. 55-88064, No. 55-88065, No. 49-105537, No. 55-51086, and No. 56-80051. Nos. 56-88141, 57-45545, 54-112637, 55-74546 and the like), phenylenediamine derivatives (US Pat. No. 3,615,404, and the like). JP-B-51-10105, JP-A-46-3712, JP-A-47-25336, JP-A-54-53435, JP-A-54-110536, JP-A-54-119925, etc., arylamines Derivatives (US Pat. Nos. 3,567,450, 3,180,703, 3,240,597, and 3) No. 658,520, No. 4,232,103, No. 4,175,961, No. 4,012,376, Japanese Patent Publication No. 49-35702, No. 39 See, for example, JP-27577, JP-A-55-144250, JP-A-56-119132, JP-A-56-22437, West German Patent No. 1,110,518, etc., amino-substituted chalcone derivatives (US Patent No. 3,526,501), oxazole derivatives (as disclosed in US Pat. No. 3,257,203), styrylanthracene derivatives (see JP-A-56-46234), Fluorinone derivatives (see JP-A-54-110837 etc.), hydrazone derivatives (US Pat. No. 3,717,462, JP-A-54-59143), 55-52063, 55-52064, 55-46760, 55-85495, 57-11350, 57-148749, JP-A 2-311591, etc. See stilbene derivatives (JP 61-210363, JP 61-228451, JP 61-14642, JP 61-72255, JP 62-47646, JP 62-36674) 62-10652, 62-30255, 60-93455, 60-94462, 60-174749, 60-175052, etc., silazane derivatives (US Patent No. 4,950,950), polysilane system (Japanese Patent Application Laid-Open No. 2-204996), aniline type copolymerization (JP-A-2-282263), an electroconductive oligomer (particularly a thiophene oligomer) disclosed in JP-A-1-211399 and the like.

正孔注入材料や正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物(特開昭63−2956965号公報)、芳香族第三級アミン化合物およびスチリルアミン化合物(米国特許第4,127,412号明細書、特開昭53−27033号公報、同54−58445号公報、同54−149634号公報、同54−64299号公報、同55−79450号公報、同55−144250号公報、同56−119132号公報、同61−295558号公報、同61−98353号公報、同63−295695号公報等参照)を用いることもできる。例えば、米国特許第5,061,569号に記載されている2個の縮合芳香族環を分子内に有する4,4’−ビス(N−(1−ナフチル)−N−フェニルアミノ)ビフェニル等や、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4’,4”−トリス(N−(3−メチルフェニル)−N−フェニルアミノ)トリフェニルアミン等をあげることができる。また、正孔注入材料として銅フタロシアニンや水素フタロシアニン等のフタロシアニン誘導体も挙げられる。さらに、その他、芳香族ジメチリデン系化合物、p型Si、p型SiC等の無機化合物も正孔注入材料や正孔輸送材料として使用することができる。   As the hole injecting material and the hole transporting material, those described above can be used, but porphyrin compounds (JP-A-63-2956965), aromatic tertiary amine compounds and styrylamine compounds (US Pat. U.S. Pat. No. 4,127,412, JP-A-53-27033, JP-A-54-58445, JP-A-54-149634, JP-A-54-64299, JP-A-55-79450, and JP-A-55-144250. Nos. 56-119132, 61-295558, 61-98353 and 63-295695) can also be used. For example, 4,4′-bis (N- (1-naphthyl) -N-phenylamino) biphenyl having two fused aromatic rings in the molecule described in US Pat. No. 5,061,569, etc. And 4,4 ′, 4 ′ ′-tris (N- (3-methylphenyl) -N-phenyl in which three triphenylamine units are linked in a star-burst form as described in JP-A-4-308688. (Amino) triphenylamine etc. Moreover, as a hole injection material, phthalocyanine derivatives such as copper phthalocyanine and hydrogen phthalocyanine can also be mentioned Furthermore, aromatic dimethylidene compounds, p-type Si, p-type SiC etc. Inorganic compounds of the above can also be used as hole injecting materials and hole transporting materials.

さらに、正孔注入層に使用できる材料としては、酸化モリブデン(MnO)、酸化バナジウム(VO)、酸化ルテニウム(RuO)、酸化銅(CuO)、酸化タングステン(WO)、酸化イリジウム(IrO)などの無機酸化物およびそれらのドープ体もあげられる。 Furthermore, as materials that can be used for the hole injection layer, molybdenum oxide (MnO x ), vanadium oxide (VO x ), ruthenium oxide (RuO x ), copper oxide (CuO x ), tungsten oxide (WO x ), iridium oxide Also included are inorganic oxides such as (IrO x ) and their dopants.

芳香族三級アミン誘導体の具体例としては、例えば、N,N’−ジフェニル−N,N’−(3−メチルフェニル)−1,1’−ビフェニル−4,4’−ジアミン、N,N,N’,N’−(4−メチルフェニル)−1,1’−フェニル−4,4’−ジアミン、N,N,N’,N’−(4−メチルフェニル)−1,1’−ビフェニル−4,4’−ジアミン、N,N’−ジフェニル−N,N’−ジナフチル−1,1’−ビフェニル−4,4’−ジアミン、N,N’−(メチルフェニル)−N,N’−(4−n−ブチルフェニル)−フェナントレン−9,10−ジアミン、N,N−ビス(4−ジ−4−トリルアミノフェニル)−4−フェニル−シクロヘキサン、N,N’−ビス(4’−ジフェニルアミノ−4−ビフェニリル)−N,N’−ジフェニルベンジジン、N,N’−ビス(4’−ジフェニルアミノ−4−フェニル)−N,N’−ジフェニルベンジジン、N,N’−ビス(4’−ジフェニルアミノ−4−フェニル)−N,N’−ジ(1−ナフチル)ベンジジン、N,N’−ビス(4’−フェニル(1−ナフチル)アミノ−4−フェニル)−N,N’−ジフェニルベンジジン、N,N’−ビス(4’−フェニル(1−ナフチル)アミノ−4−フェニル)−N,N’−ジ(1−ナフチル)ベンジジン等があげられ、これらは正孔注入材料、正孔輸送材料いずれにも使用することができる。   Specific examples of the aromatic tertiary amine derivative include, for example, N, N′-diphenyl-N, N ′-(3-methylphenyl) -1,1′-biphenyl-4,4′-diamine, N, N , N ', N'-(4-methylphenyl) -1,1'-phenyl-4,4'-diamine, N, N, N ', N'-(4-methylphenyl) -1,1'- Biphenyl-4,4'-diamine, N, N'-diphenyl-N, N'-dinaphthyl-1,1'-biphenyl-4,4'-diamine, N, N '-(methylphenyl) -N, N '-(4-n-Butylphenyl) -phenanthrene-9,10-diamine, N, N-bis (4-di-4-tolylaminophenyl) -4-phenyl-cyclohexane, N, N'-bis (4) '-Diphenylamino-4-biphenylyl) -N, N'-diphenyl Indidine, N, N'-bis (4'-diphenylamino-4-phenyl) -N, N'-diphenylbenzidine, N, N'-bis (4'-diphenylamino-4-phenyl) -N, N ' -Di (1-naphthyl) benzidine, N, N'-bis (4'-phenyl (1-naphthyl) amino-4-phenyl) -N, N'-diphenylbenzidine, N, N'-bis (4'-) Phenyl (1-naphthyl) amino-4-phenyl) -N, N'-di (1-naphthyl) benzidine and the like can be mentioned, and these can be used as both the hole injecting material and the hole transporting material.

正孔注入材料として、特に好ましい例を表1に示す。
Particularly preferable examples of the hole injection material are shown in Table 1.




また、本発明の化合物(有機EL素子用材料)と共に用いることが出来る正孔輸送材料としては、下記表2に示す化合物も挙げられる。
Moreover, as a hole transport material which can be used with the compound (material for organic EL elements) of this invention, the compound shown in following Table 2 is also mentioned.

上に説明した正孔注入層を形成するには、上述の化合物を、例えば真空蒸着法、スピンコート法、キャスト法、LB法等の公知の方法により薄膜化する。正孔注入層の膜厚は、特に制限はないが、通常は5nm〜5μmである。   In order to form the hole injection layer described above, the above-mentioned compound is thinned by a known method such as, for example, a vacuum evaporation method, a spin coating method, a casting method, or an LB method. The thickness of the hole injection layer is not particularly limited, but is usually 5 nm to 5 μm.

インターレイヤー層に用いる材料として、ポリビニルカルバゾール及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリアリーレン誘導体、アリールアミン誘導体、トリフェニルジアミン誘導体等の芳香族アミンを含むポリマーが例示される。また、インターレイヤー層の成膜方法は、高分子量の材料を用いる場合には、溶液からの成膜による方法が例示される。   Examples of materials used for the interlayer layer include polyvinyl carbazole and derivatives thereof, and polymers containing aromatic amines such as polyarylene derivatives having aromatic amines in the side chain or main chain, arylamine derivatives, triphenyldiamine derivatives and the like. Moreover, the film-forming method of an interlayer layer is a method by film-forming from a solution, when using high molecular weight material.

溶液からのインターレイヤー層の成膜には、公知の湿式成膜法、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法、キャピラリ−コート法、ノズルコート法等の塗布法を用いることができる。   For forming an interlayer layer from a solution, known wet film forming methods such as spin coating, casting, microgravure coating, gravure coating, bar coating, roll coating, wire bar coating, Coating methods such as dip coating method, spray coating method, screen printing method, flexographic printing method, offset printing method, ink jet printing method, capillary coating method, nozzle coating method and the like can be used.

インターレイヤー層の厚さは、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよく、通常、1nm〜1μmであり、好ましくは2〜500nmであり、より好ましくは5〜200nmである。   The thickness of the interlayer may be selected to be an optimum value depending on the material to be used, and may be selected so that the driving voltage and the light emission efficiency become appropriate values, usually 1 nm to 1 μm, preferably 2 to 500 nm, More preferably, it is 5-200 nm.

一方、電子注入層には、発光層に対して優れた電子注入効果を示し、かつ陰極界面との密着性と薄膜形成性に優れた電子注入層を形成できる電子注入材料が用いられる。そのような電子注入材料の例としては、金属錯体化合物、含窒素五員環誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、ジフェノキノン誘導体、チオピランジオキシド誘導体、ペリレンテトラカルボン酸誘導体、フレオレニリデンメタン誘導体、アントロン誘導体、シロール誘導体、トリアリールホスフィンオキシド誘導体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、カルシウムアセチルアセトナート、酢酸ナトリウムなどが挙げられる。また、セシウム等の金属をバソフェナントロリンにドープした無機/有機複合材料(高分子学会予稿集,第50巻,4号,660頁,2001年発行)や、第50回応用物理学関連連合講演会講演予稿集、No.3、1402頁、2003年発行記載のBCP、TPP、T5MPyTZ等も電子注入材料の例として挙げられるが、素子作成に必要な薄膜を形成し、陰極からの電子を注入できて、電子を輸送できる材料であれば、特にこれらに限定されるものではない。   On the other hand, for the electron injection layer, an electron injection material is used which exhibits an excellent electron injection effect on the light emitting layer and can form an electron injection layer excellent in adhesion to the cathode interface and thin film formation. Examples of such electron injection materials include metal complex compounds, nitrogen-containing five-membered ring derivatives, fluorenone derivatives, anthraquinodimethane derivatives, diphenoquinone derivatives, thiopyrandioxide derivatives, perylene tetracarboxylic acid derivatives, fluorenylidene methane Derivatives, anthrone derivatives, silole derivatives, triaryl phosphine oxide derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, polyfluorene and its derivatives, calcium acetylacetonate, sodium acetate and the like. In addition, inorganic / organic composite materials in which metals such as cesium are doped to bathophenanthroline (Proceeds of the Polymer Society of Japan, Vol. 50, No. 4, p. 660, published 2001) and the 50th Conference on Applied Physics Proceedings of the lecture No. BCP, TPP, T5MPyTZ, etc. described on page 3, 1402 in 2003 can also be mentioned as an example of the electron injecting material, but a thin film necessary for device preparation can be formed, electrons from the cathode can be injected, and electrons can be transported. The material is not particularly limited as long as it is a material.

上記電子注入材料の中で好ましいものとしては、金属錯体化合物、含窒素五員環誘導体、シロール誘導体、トリアリールホスフィンオキシド誘導体が挙げられる。本発明に使用可能な好ましい金属錯体化合物としては、8−ヒドロキシキノリンまたはその誘導体の金属錯体が好適である。8−ヒドロキシキノリンまたはその誘導体の金属錯体の具体例としては、トリス(8−ヒドロキシキノリナート)アルミニウム、トリス(2−メチル−8−ヒドロキシキノリナート)アルミニウム、トリス(4−メチル−8−ヒドロキシキノリナート)アルミニウム、トリス(5−メチル−8−ヒドロキシキノリナート)アルミニウム、トリス(5−フェニル−8−ヒドロキシキノリナート)アルミニウム、ビス(8−ヒドロキシキノリナート)(1−ナフトラート)アルミニウム、ビス(8−ヒドロキシキノリナート)(2−ナフトラート)アルミニウム、ビス(8−ヒドロキシキノリナート)(フェノラート)アルミニウム、ビス(8−ヒドロキシキノリナート)(4−シアノ−1−ナフトラート)アルミニウム、ビス(4−メチル−8−ヒドロキシキノリナート)(1−ナフトラート)アルミニウム、ビス(5−メチル−8−ヒドロキシキノリナート)(2−ナフトラート)アルミニウム、ビス(5−フェニル−8−ヒドロキシキノリナート)(フェノラート)アルミニウム、ビス(5−シアノ−8−ヒドロキシキノリナート)(4−シアノ−1−ナフトラート)アルミニウム、ビス(8−ヒドロキシキノリナート)クロロアルミニウム、ビス(8−ヒドロキシキノリナート)(o−クレゾラート)アルミニウム等のアルミニウム錯体化合物、トリス(8−ヒドロキシキノリナート)ガリウム、トリス(2−メチル−8−ヒドロキシキノリナート)ガリウム、トリス(4−メチル−8−ヒドロキシキノリナート)ガリウム、トリス(5−メチル−8−ヒドロキシキノリナート)ガリウム、トリス(2−メチル−5−フェニル−8−ヒドロキシキノリナート)ガリウム、ビス(2−メチル−8−ヒドロキシキノリナート)(1−ナフトラート)ガリウム、ビス(2−メチル−8−ヒドロキシキノリナート)(2−ナフトラート)ガリウム、ビス(2−メチル−8−ヒドロキシキノリナート)(フェノラート)ガリウム、ビス(2−メチル−8−ヒドロキシキノリナート)(4−シアノ−1−ナフトラート)ガリウム、ビス(2、4−ジメチル−8−ヒドロキシキノリナート)(1−ナフトラート)ガリウム、ビス(2、5−ジメチル−8−ヒドロキシキノリナート)(2−ナフトラート)ガリウム、ビス(2−メチル−5−フェニル−8−ヒドロキシキノリナート)(フェノラート)ガリウム、ビス(2−メチル−5−シアノ−8−ヒドロキシキノリナート)(4−シアノ−1−ナフトラート)ガリウム、ビス(2−メチル−8−ヒドロキシキノリナート)クロロガリウム、ビス(2−メチル−8−ヒドロキシキノリナート)(o−クレゾラート)ガリウム等のガリウム錯体化合物の他、8−ヒドロキシキノリナートリチウム、ビス(8−ヒドロキシキノリナート)銅、ビス(8−ヒドロキシキノリナート)マンガン、ビス(10−ヒドロキシベンゾ[h]キノリナート)ベリリウム、ビス(8−ヒドロキシキノリナート)亜鉛、ビス(10−ヒドロキシベンゾ[h]キノリナート)亜鉛等の金属錯体化合物が挙げられる。   Among the above-mentioned electron injecting materials, metal complex compounds, nitrogen-containing five-membered ring derivatives, silole derivatives and triarylphosphine oxide derivatives can be mentioned. Preferred metal complex compounds usable in the present invention are metal complexes of 8-hydroxyquinoline or derivatives thereof. Specific examples of metal complexes of 8-hydroxyquinoline or derivatives thereof include tris (8-hydroxyquinolinate) aluminum, tris (2-methyl-8-hydroxyquinolinate) aluminum, tris (4-methyl-8-) Hydroxyquinolinate) aluminum, tris (5-methyl-8-hydroxyquinolinate) aluminum, tris (5-phenyl-8-hydroxyquinolinate) aluminum, bis (8-hydroxyquinolinate) (1-naphtholate) ) Aluminum, bis (8-hydroxyquinolinate) (2-naphtholate) aluminum, bis (8-hydroxyquinolinate) (phenolate) aluminum, bis (8-hydroxyquinolinate) (4-cyano-1-naphtholate) ) Aluminum, bis (4-methyl-8) Hydroxyquinolinate) (1-naphtholato) aluminum, bis (5-methyl-8-hydroxyquinolinate) (2-naphtholate) aluminum, bis (5-phenyl-8-hydroxyquinolinate) (phenolate) aluminum, Bis (5-cyano-8-hydroxyquinolinate) (4-cyano-1-naphtholate) aluminum, bis (8-hydroxyquinolinate) chloroaluminum, bis (8-hydroxyquinolinate) (o-cresolate) Aluminum complex compounds such as aluminum, tris (8-hydroxyquinolinate) gallium, tris (2-methyl-8-hydroxyquinolinate) gallium, tris (4-methyl-8-hydroxyquinolinate) gallium, tris 5-Methyl-8-hydroxyquinolinate Gallium, tris (2-methyl-5-phenyl-8-hydroxyquinolinate) gallium, bis (2-methyl-8-hydroxyquinolinate) (1-naphtholate) gallium, bis (2-methyl-8-hydroxy) Quinolinate) (2-naphtholate) gallium, bis (2-methyl-8-hydroxyquinolinate) (phenolate) gallium, bis (2-methyl-8-hydroxyquinolinate) (4-cyano-1-naphtholate) ) Gallium, bis (2,4-dimethyl-8-hydroxyquinolinate) (1-naphtholate) gallium, bis (2,5-dimethyl-8-hydroxyquinolinate) (2-naphtholate) gallium, bis (2 -Methyl-5-phenyl-8-hydroxyquinolinate) (phenolate) gallium, bis (2-methyl-5-) Cyano-8-hydroxyquinolinate) (4-cyano-1-naphtholate) gallium, bis (2-methyl-8-hydroxyquinolinate) chlorogallium, bis (2-methyl-8-hydroxyquinolinate) ( 8-hydroxyquinolinate lithium, bis (8-hydroxyquinolinate) copper, bis (8-hydroxyquinolinate) manganese, bis (10-hydroxybenzo [h, in addition to gallium complex compounds such as o-cresolato) gallium And metal complexes such as beryllium, beryllium, bis (8-hydroxyquinolinate) zinc, and bis (10-hydroxybenzo [h] quinolinate) zinc.

また、本発明に使用可能な電子注入材料の内、好ましい含窒素五員環誘導体としては、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体があげられ、具体的には、2,5−ビス(1−フェニル)−1,3,4−オキサゾール、2,5−ビス(1−フェニル)−1,3,4−チアゾール、2,5−ビス(1−フェニル)−1,3,4−オキサジアゾール、2−(4’−tert−ブチルフェニル)−5−(4”−ビフェニル)1,3,4−オキサジアゾール、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール、1,4−ビス[2−(5 −フェニルオキサジアゾリル)]ベンゼン、1,4−ビス[2−(5−フェニルオキサジアゾリル)−4−tert−ブチルベンゼン]、2−(4’−tert− ブチルフェニル)−5−(4”−ビフェニル)−1,3,4−チアジアゾーvル、2,5−ビス(1−ナフチル)−1,3,4−チアジアゾール、1,4−ビス[2−(5−フェニルチアジアゾリル)]ベンゼン、2−(4’−tert−ブチルフェニル)−5−(4”−ビフェニル)−1,3,4−トリアゾール、2,5−ビス(1−ナフチル)−1,3,4−トリアゾール、1,4−ビス[2−(5−フェニルトリアゾリル)]ベンゼン等が挙げられる。   Among the electron injecting materials usable in the present invention, preferable nitrogen-containing five-membered ring derivatives include oxazole derivatives, thiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, and triazole derivatives. Specifically, 2 5-bis (1-phenyl) -1,3,4-oxazole, 2,5-bis (1-phenyl) -1,3,4-thiazole, 2,5-bis (1-phenyl) -1, 3,4-oxadiazole, 2- (4'-tert-butylphenyl) -5- (4 "-biphenyl) 1,3,4-oxadiazole, 2,5-bis (1-naphthyl) -1 , 3,4-oxadiazole, 1,4-bis [2- (5-phenyloxadiazolyl)] benzene, 1,4-bis [2- (5-phenyloxadiazolyl) -4-tert-butyl benzene], 2- (4'-tert-butylphenyl) -5- (4 "-biphenyl) -1,3,4-thiadiazole, 2,5-bis (1-naphthyl) -1,3,4-thiadiazole, 1,4-bis [2- (5-phenylthiadiazolyl)] benzene, 2- (4′-tert-butylphenyl) -5- (4 ′ ′-biphenyl) -1,3,4-triazole, 2, 5-bis (1-naphthyl) -1,3,4-triazole, 1,4-bis [2- (5-phenyltriazolyl)] benzene and the like can be mentioned.

さらに、電子注入層に使用できる材料としては、酸化亜鉛(ZnO)、酸化チタン(TiO)、などの無機酸化物およびそれらのドープ体もあげられる。 Furthermore, as materials that can be used for the electron injection layer, inorganic oxides such as zinc oxide (ZnO x ), titanium oxide (TiO x ), and the like, and doped materials thereof can also be mentioned.

また、本発明に使用可能な電子注入材料の内、特に好ましいオキサジアゾール誘導体の具体例を表3に示す。   Among the electron injecting materials usable in the present invention, specific examples of particularly preferred oxadiazole derivatives are shown in Table 3.

また、本発明に使用可能な電子注入材料の内、特に好ましいトリアゾール誘導体の具体例を表4に示す。表4中、Phは、フェニル基を表わす。  Among the electron injecting materials usable in the present invention, specific examples of particularly preferable triazole derivatives are shown in Table 4. In Table 4, Ph represents a phenyl group.

また、本発明に使用可能な電子注入材料の内、特に好ましいシロール誘導体としての具体例を、表5に示す。   Among the electron injecting materials usable in the present invention, specific examples as preferable silole derivatives are shown in Table 5.



さらに、正孔阻止層には、発光層を経由した正孔が電子注入層に達するのを防ぎ、薄膜形成性に優れた層を形成できる正孔阻止材料が用いられる。そのような正孔阻止材料の例としては、ビス(8−ヒドロキシキノリナート)(4−フェニルフェノラート)アルミニウム等のアルミニウム錯体化合物や、ビス(2−メチル−8−ヒドロキシキノリナート)(4−フェニルフェノラート)ガリウム等のガリウム錯体化合物、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP)等の含窒素縮合芳香族化合物が挙げられる。   Furthermore, for the hole blocking layer, a hole blocking material that can prevent holes that have passed through the light emitting layer from reaching the electron injecting layer and that can form a layer excellent in thin film formability is used. Examples of such hole blocking materials include aluminum complex compounds such as bis (8-hydroxyquinolinate) (4-phenylphenolate) aluminum, and bis (2-methyl-8-hydroxyquinolinate) ( Examples include gallium complex compounds such as 4-phenylphenolate) gallium, and nitrogen-containing condensed aromatic compounds such as 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).

本発明の電界発光素子の発光層としては、以下の機能を併せ持つものが好適である。
注入機能;電界印加時に陽極または正孔注入層より正孔を注入することができ、陰極または電子注入層より電子を注入することができる機能
輸送機能;注入した電荷(電子と正孔)を電界の力で移動させる機能
発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能
ただし、正孔の注入されやすさと電子の注入されやすさには、違いがあってもよく、また正孔と電子の移動度で表される輸送能に大小があってもよい。
As a light emitting layer of the electroluminescent element of the present invention, one having the following functions is preferable.
Injection function; Function capable of injecting holes from the anode or hole injection layer when applying an electric field and capable of injecting electrons from the cathode or electron injection layer; Electric charge injected (electrons and holes) into the electric field Function to move by force; function to provide a field of electron and hole recombination and connect it to light emission; however, there is a difference between the ease of hole injection and the ease of electron injection. Also, the transport ability represented by the mobility of holes and electrons may be large or small.

本発明の電界発光素子を用いて、青色から緑色の発光を得るために、発光層の材料として、ベンゾチアゾール系、ベンゾイミダゾール系、ベンゾオキサゾール系等の蛍光増白剤、金属キレート化オキシノイド化合物、スチリルベンゼン系化合物を用いることができる。これら化合物の具体例としては、例えば特開昭59−194393号公報に開示されている化合物をあげることができる。さらに他の有用な化合物は、ケミストリー・オブ・シンセティック・ダイズ(1971)628〜637頁および640頁に列挙されている。   In order to obtain blue to green light emission using the electroluminescent device of the present invention, as a material of the light emitting layer, a brightening agent such as benzothiazole type, benzimidazole type, benzoxazole type, metal chelated oxinoid compound, Styryl benzene compounds can be used. As a specific example of these compounds, the compound currently indicated by Unexamined-Japanese-Patent No. 59-194393 can be mentioned, for example. Still other useful compounds are listed in Chemistry of Synthetic Soybean (1971) pages 628-637 and page 640.

前記金属キレート化オキシノイド化合物としては、例えば、特開昭63−295695号公報に開示されている化合物を用いることができる。その代表例としては、トリス(8−キノリノール)アルミニウム等の8−ヒドロキシキノリン系金属錯体や、ジリチウムエピントリジオン等が好適な化合物としてあげることができる。   As said metal chelated oxinoid compound, the compound currently disclosed by Unexamined-Japanese-Patent No. 63-295695 can be used, for example. As a typical example thereof, 8-hydroxyquinoline metal complexes such as tris (8-quinolinol) aluminum and the like, and dilithium epintridione can be mentioned as preferable compounds.

また、前記スチリルベンゼン系化合物としては、例えば、欧州特許第0319881号明細書や欧州特許第0373582号明細書に開示されているものを用いることができる。そして、特開平2−252793号公報に開示されているジスチリルピラジン誘導体も、発光層の材料として用いることができる。このほか、欧州特許第0387715号明細書に開示されているポリフェニル系化合物も発光層の材料として用いることができる。   Further, as the styrylbenzene-based compound, those disclosed in, for example, European Patent No. 0319881 and European Patent No. 0373582 can be used. And, a distyrylpyrazine derivative disclosed in JP-A-2-252793 can also be used as a material of the light emitting layer. Besides these, polyphenyl compounds disclosed in EP 0 387 715 can also be used as the material of the light emitting layer.

さらに、上述した蛍光増白剤、金属キレート化オキシノイド化合物およびスチリルベンゼン系化合物等以外に、例えば12−フタロペリノン(J. Appl. Phys.,第27巻,L713(1988年))、1,4−ジフェニル−1,3−ブタジエン、1,1,4,4−テトラフェニル−1,3−ブタジエン(以上Appl. Phys. Lett.,第56巻,L799(1990年))、ナフタルイミド誘導体(特開平2−305886号公報)、ペリレン誘導体(特開平2−189890号公報)、オキサジアゾール誘導体(特開平2−216791号公報、または第38回応用物理学関係連合講演会で浜田らによって開示されたオキサジアゾール誘導体)、アルダジン誘導体(特開平2−220393号公報)、ピラジリン誘導体(特開平2−220394号公報)、シクロペンタジエン誘導体(特開平2−289675号公報)、ピロロピロール誘導体(特開平2−296891号公報)、スチリルアミン誘導体(Appl. Phys. Lett., 第56巻,L799(1990年)、クマリン系化合物(特開平2−191694号公報)、国際特許公報WO90/13148やAppl. Phys. Lett.,vol58,18,P1982(1991)に記載されているような高分子化合物、9,9’,10,10’−テトラフェニル−2,2’−ビアントラセン、PPV(ポリパラフェニレンビニレン)誘導体、ポリフルオレン誘導体やそれら共重合体等、例えば、下記一般式[1]〜一般式[3]の構造をもつものが挙げられる。   Furthermore, in addition to the above-mentioned fluorescent whitening agents, metal chelated oxinoid compounds and styrylbenzene compounds, for example, 12-phthaloperinone (J. Appl. Phys., Vol. 27, L713 (1988)), 1,4- Diphenyl-1,3-butadiene, 1,1,4,4-tetraphenyl-1,3-butadiene (above Appl. Phys. Lett., Vol. 56, L 799 (1990)), Naphthalimide derivatives 2-305886), perylene derivatives (JP-A-2-189890), oxadiazole derivatives (JP-A-2-216791, or disclosed by Hamada et al. At the 38th Joint Conference on Applied Physics) Oxadiazole derivatives), aldazine derivatives (Japanese Patent Laid-Open No. 2-220393), pyrazirin Conductor (Japanese Patent Laid-Open No. 2-220394), cyclopentadiene derivative (Japanese Patent Laid-Open No. 2-289675), pyrrolopyrrole derivative (Japanese Patent Laid-open No. 2-296891), styrylamine derivative (Appl. Phys. Lett., 56) Volume, L799 (1990), coumarin compounds (Japanese Patent Application Laid-Open No. 2-191694), International Patent Publication WO 90/13148, and Appl. Phys. Lett., Vol 58, 18, P 1982 (1991). Polymer compounds, 9,9 ′, 10,10′-tetraphenyl-2,2′-bianthracene, PPV (polyparaphenylene vinylene) derivatives, polyfluorene derivatives, copolymers thereof and the like, for example, 1] to those having the structures of the general formula [3].


(式中[1]、Rx1およびRX2は、それぞれ独立に、1価の脂肪族炭化水素基を、n1は、3〜100の整数を表す。) (Wherein, [1], R x1 and R X2 each independently represent a monovalent aliphatic hydrocarbon group, and n 1 represents an integer of 3 to 100).

(式[2]中、Rx3およびRX4は、それぞれ独立に、1価の脂肪族炭化水素基を、n2およびn3は、それぞれ独立に、3〜100の整数を表す。) (In formula [2], R x3 and R X4 each independently represent a monovalent aliphatic hydrocarbon group, and n2 and n3 each independently represent an integer of 3 to 100.)

(式[3]中、RX5およびRX6は、それぞれ独立に、1価の脂肪族炭化水素基を、n4およびn5は、それぞれ独立に、3〜100の整数を表す。Phはフェニル基を表す。) (In formula [3], R X5 and R X6 each independently represent a monovalent aliphatic hydrocarbon group, and n4 and n5 each independently represent an integer of 3 to 100. Ph represents a phenyl group Represent)

また、特開平5−258862号公報等に記載されている一般式(Rs−Q)−Al−O−L3(式中、L3はフェニル部分を含んでなる炭素原子6〜24個の炭化水素であり、O−L3はフェノラート配位子であり、Qは置換8−キノリノラート配位子を示し、Rsはアルミニウム原子に置換8−キノリノラート配位子が2個を上回り結合するのを立体的に妨害するように選ばれた8−キノリノラート環置換基を示す〕で表される化合物も挙げられる。具体的には、ビス(2−メチル−8−キノリノラート)(パラ−フェニルフェノラート)アルミニウム(III)、ビス(2−メチル−8−キノリノラート)(1−ナフトラート)アルミニウム(III)等が挙げられる。 In addition, general formula (Rs-Q) 2- Al-O-L3 (wherein L3 is a hydrocarbon having 6 to 24 carbon atoms containing a phenyl moiety) described in JP-A-5-258862 and the like. , O-L3 is a phenolato ligand, Q is a substituted 8-quinolinolate ligand, Rs is sterically bound to the aluminum atom with more than two substituted 8-quinolinolate ligands Compounds having the 8-quinolinolate ring substituent selected to interfere are also specifically mentioned: bis (2-methyl-8-quinolinolate) (para-phenylphenolate) aluminum (III) And bis (2-methyl-8-quinolinolato) (1-naphtholate) aluminum (III) and the like.

白色の発光を得る場合の発光層としては特に制限はないが、下記のものを用いることができる。有機EL積層構造体の各層のエネルギー準位を規定し、トンネル注入を利用して発光させるもの(欧州特許第0390551号公報)。
同じくトンネル注入を利用する素子で実施例として白色発光素子が記載されているもの(特開平3−230584号公報)。二層構造の発光層が記載されているもの(特開平2−220390号公報および特開平2−216790号公報)。発光層を複数に分割してそれぞれ発光波長の異なる材料で構成されたもの(特開平4−51491号公報)。青色発光体(蛍光ピーク380〜480nm)と緑色発光体(480〜580nm)とを積層させ、さらに赤色蛍光体を含有させた構成のもの(特開平6−207170号公報)。青色発光層が青色蛍光色素を含有し、緑色発光層が赤色蛍光色素を含有した領域を有し、さらに緑色蛍光体を含有する構成のもの(特開平7−142169号公報)。
Although there is no restriction | limiting in particular as a light emitting layer in the case of obtaining white light emission, The following can be used. What defines the energy level of each layer of an organic electroluminescent laminated structure, and is made to light-emit using a tunnel injection (European patent 0390551).
Similarly, a device using a tunnel injection in which a white light emitting device is described as an example (Japanese Patent Application Laid-Open No. 3-230584). A light emitting layer having a two-layer structure is described (Japanese Patent Application Laid-Open Nos. 2-220390 and 2-216790). A light emitting layer is divided into a plurality of parts each made of materials having different light emission wavelengths (Japanese Patent Laid-Open No. 4-51491). The thing of the structure which laminated | stacked the blue light-emitting body (fluorescent peak 380-480 nm) and the green light-emitting body (480-580 nm), and was made to contain a red fluorescent substance (Unexamined-Japanese-Patent No. 6-207170). A structure in which the blue light emitting layer contains a blue fluorescent dye, the green light emitting layer has a region containing a red fluorescent dye, and further contains a green fluorescent substance (JP-A-7-142169).

さらに、本発明の電界発光素子の陽極に使用される材料は、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物またはこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、ITO、SnO、ZnO等の導電性材料が挙げられる。この陽極を形成するには、これらの電極物質を、蒸着法やスパッタリング法等の方法で薄膜を形成させることができる。この陽極は、上記発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率が10%より大きくなるような特性を有していることが望ましい。また、陽極のシート抵抗は、数百Ω/□以下としてあるものが好ましい。さらに、陽極の膜厚は、材料にもよるが通常10nm〜1μm、好ましくは10〜200nmの範囲で選択される。 Further, as the material used for the anode of the electroluminescent device of the present invention, a material having a high work function (4 eV or more) metal, an alloy, an electrically conductive compound or a mixture thereof is preferably used. Specific examples of such an electrode material include metals such as Au, and conductive materials such as CuI, ITO, SnO 2 , and ZnO. In order to form this anode, a thin film can be formed on these electrode materials by a method such as vapor deposition or sputtering. The anode desirably has a characteristic such that the transmittance of the anode to the light emission is greater than 10% when light emitted from the light emitting layer is taken out from the anode. The sheet resistance of the anode is preferably several hundreds Ω / sq or less. Furthermore, although the film thickness of an anode is based also on material, 10 nm-1 micrometer, Preferably it selects in 10-200 nm.

また、本発明の電界発光素子の陰極に使用される材料は、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物およびこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム・銀合金、アルミニウム/酸化アルミニウム、アルミニウム・リチウム合金、インジウム、希土類金属などが挙げられる。この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。ここで、発光層からの発光を陰極から取り出す場合、陰極の発光に対する透過率は10%より大きくすることが好ましい。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、さらに、膜厚は通常10nm〜1μm、好ましくは50〜200nmである。   Further, as the material used for the cathode of the electroluminescent device of the present invention, a material having a small work function (4 eV or less), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such an electrode material include sodium, sodium-potassium alloy, magnesium, lithium, magnesium-silver alloy, aluminum / aluminum oxide, aluminum-lithium alloy, indium, rare earth metals and the like. The cathode can be produced by forming a thin film of such an electrode material by a method such as vapor deposition or sputtering. Here, when light emission from the light emitting layer is taken out from the cathode, the transmittance of the cathode to the light emission is preferably greater than 10%. The sheet resistance as the cathode is preferably several hundred ohms / square or less, and the film thickness is usually 10 nm to 1 μm, preferably 50 to 200 nm.

本発明の電界発光素子を作製する方法については、上記の材料および方法により陽極、発光層、必要に応じて正孔注入層、および必要に応じて電子注入層を形成し、最後に陰極を形成すればよい。また、陰極から陽極へ、前記と逆の順序で電界発光素子を作製することもできる。   With regard to the method of producing the electroluminescent device of the present invention, the above materials and methods form the anode, the light emitting layer, the hole injection layer as needed, and the electron injection layer as needed, and finally the cathode do it. In addition, the electroluminescent element can be manufactured in the reverse order to the above from the cathode to the anode.

この電界発光素子は、透光性の基板上に作製する。この透光性基板は電界発光素子を支持する基板であり、その透光性については、400〜700nmの可視領域の光の透過率が50%以上、好ましくは90%以上であるものが望ましく、さらに平滑な基板を用いるのが好ましい。   This electroluminescent element is fabricated on a translucent substrate. The light transmitting substrate is a substrate for supporting the electroluminescent element, and the light transmitting property thereof is preferably one having a light transmittance of 50% or more, preferably 90% or more, in the visible region of 400 to 700 nm. It is preferable to use a smooth substrate.

これら基板は、機械的、熱的強度を有し、透明であれば特に限定されるものではないが、例えば、ガラス板、合成樹脂板などが好適に用いられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英などで成形された板が挙げられる。また、合成樹脂板としては、ポリカーボネート樹脂、アクリル樹脂、ポリエチレンテレフタレート樹脂、ポリエーテルサルファイド樹脂、ポリサルフォン樹脂などの板が挙げられる。   These substrates have mechanical and thermal strengths and are not particularly limited as long as they are transparent, but for example, glass plates, synthetic resin plates, etc. are suitably used. Examples of the glass plate include plates made of soda lime glass, glass containing barium and strontium, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz and the like. Moreover, as a synthetic resin board, boards, such as a polycarbonate resin, an acrylic resin, a polyethylene terephthalate resin, polyether sulfide resin, poly sulfone resin, are mentioned.

本発明の電界発光素子の各層の形成方法としては、真空蒸着、電子線ビーム照射、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法、もしくはスピンコーティング、ディッピング、フローコーティング等の湿式成膜法のいずれかの方法を適用することができる。また、特表2002−534782や、S.T.Lee, et al., Proceedings of SID’02, p.784(2002)に記載されているLITI(Laser Induced Thermal Imaging、レーザー熱転写)法や、印刷(オフセット印刷、フレキソ印刷、グラビア印刷、スクリーン印刷)、インクジェット等の方法を適用することもできる。
ただし、発光層は湿式成膜法での成膜に限定される。
As a method of forming each layer of the electroluminescent device of the present invention, a dry film forming method such as vacuum evaporation, electron beam irradiation, sputtering, plasma, ion plating or the like, or a wet film forming method such as spin coating, dipping or flow coating Either method can be applied. In addition, JP 2002-534782 and S.E. T. Lee, et al. , Proceedings of SID'02, p. Methods such as LITI (Laser Induced Thermal Imaging), printing (offset printing, flexographic printing, gravure printing, screen printing), inkjet, etc. described in 784 (2002) can also be applied.
However, the light emitting layer is limited to film formation by a wet film formation method.

有機層は、特に分子堆積膜であることが好ましい。ここで分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、溶液状態または液相状態の材料化合物から固体化され形成された膜のことであり、通常この分子堆積膜は、LB法により形成された薄膜(分子累積膜)とは凝集構造、高次構造の相違や、それに起因する機能的な相違により区分することができる。また特開昭57−51781号公報に開示されているように、樹脂等の結着剤と材料化合物とを溶剤に溶かして溶液とした後、これをスピンコート法等により薄膜化することによっても、有機層を形成することができる。各層の膜厚は特に限定されるものではないが、膜厚が厚すぎると一定の光出力を得るために大きな印加電圧が必要となり効率が悪くなり、逆に膜厚が薄すぎるとピンホール等が発生し、電界を印加しても充分な発光輝度が得にくくなる。したがって、各層の膜厚は、1nmから1μmの範囲が適しているが、10nmから0.2μmの範囲がより好ましい。   The organic layer is preferably a molecular deposition film. Here, a molecular deposition film is a thin film deposited and formed from a material compound in a gas phase, or a film solidified and formed from a material compound in a solution or liquid phase, and this molecular deposition film is usually used. And the thin film (molecular accumulated film) formed by the LB method can be classified according to the difference in the aggregation structure, the higher order structure, and the functional difference resulting therefrom. Further, as disclosed in JP-A-57-51781, a binder such as a resin and a material compound are dissolved in a solvent to form a solution, which is then thinned by spin coating or the like. , An organic layer can be formed. The film thickness of each layer is not particularly limited, but if the film thickness is too thick, a large applied voltage is required to obtain a constant light output, and the efficiency deteriorates, and conversely, if the film thickness is too thin, pinholes etc. This makes it difficult to obtain sufficient light emission luminance even if an electric field is applied. Therefore, the film thickness of each layer is suitably in the range of 1 nm to 1 μm, and more preferably in the range of 10 nm to 0.2 μm.

また、電界発光素子の温度、湿度、雰囲気等に対する安定性向上のために、素子の表面に保護層を設けたり、樹脂等により素子全体を被覆や封止を施したりしても良い。特に素子全体を被覆や封止する際には、光によって硬化する光硬化性樹脂が好適に使用される。   Further, in order to improve the stability of the electroluminescent element against temperature, humidity, atmosphere and the like, a protective layer may be provided on the surface of the element, or the entire element may be covered or sealed with a resin or the like. In particular, when covering or sealing the entire element, a photocurable resin which is cured by light is suitably used.

本発明の電界発光素子に印加する電流は通常、直流であるが、パルス電流や交流を用いてもよい。電流値、電圧値は、素子破壊しない範囲内であれば特に制限はないが、素子の消費電力や寿命を考慮すると、なるべく小さい電気エネルギーで効率良く発光させることが望ましい。   The current applied to the electroluminescent device of the present invention is usually direct current, but pulse current or alternating current may be used. The current value and the voltage value are not particularly limited as long as they do not break the element, but it is desirable to efficiently emit light with as small electrical energy as possible in consideration of the power consumption and the life of the element.

本発明の電界発光素子の駆動方法は、パッシブマトリクス法のみならず、アクティブマトリックス法での駆動も可能である。また、本発明の有機EL素子から光を取り出す方法としては、陽極側から光を取り出すボトム・エミッションという方法のみならず、陰極側から光を取り出すトップ・エミッションという方法にも適用可能である。これらの方法や技術は、城戸淳二著、「有機ELのすべて」、日本実業出版社(2003年発行)に記載されている。   The driving method of the electroluminescent device of the present invention can be driven not only by the passive matrix method but also by the active matrix method. Further, as a method of extracting light from the organic EL element of the present invention, not only a method of bottom emission for extracting light from the anode side, but also a method of top emission for extracting light from the cathode side can be applied. These methods and techniques are described in Koji Kido, "All About Organic EL", Nippon Keizai Publisher (issued in 2003).

本発明の電界発光素子のフルカラー化方式の主な方式としては、3色塗り分け方式、色変換方式、カラーフィルター方式が挙げられる。3色塗り分け方式では、シャドウマスクを使った蒸着法や、インクジェット法や印刷法が挙げられる。また、特表2002−534782や、S.T.Lee, et al., Proceedings of SID’02, p.784(2002)に記載されているレーザー熱転写法(Laser Induced Thermal Imaging、LITI法ともいわれる)も用いることができる。色変換方式では、青色発光の発光層を使って、蛍光色素を分散した色変換(CCM)層を通して、青色より長波長の緑色と赤色に変換する方法である。カラーフィルター方式では、白色発光の有機EL素子を使って、液晶用カラーフィルターを通して3原色の光を取り出す方法であるが、これら3原色に加えて、一部白色光をそのまま取り出して発光に利用することで、素子全体の発光効率をあげることもできる。   As a main system of the full color system of the electroluminescent element of this invention, a three-color paint system, a color conversion system, and a color filter system are mentioned. The three-color application method includes an evaporation method using a shadow mask, an inkjet method, and a printing method. In addition, JP 2002-534782 and S.E. T. Lee, et al. , Proceedings of SID'02, p. The laser thermal transfer method (also called Laser Induced Thermal Imaging, also referred to as LITI method) described in 784 (2002) can also be used. The color conversion method is a method of converting a blue and green light having a longer wavelength than the blue through a color conversion (CCM) layer in which a fluorescent dye is dispersed, using a blue light emitting layer. The color filter method is a method of extracting light of three primary colors through a liquid crystal color filter using a white light emitting organic EL element, but in addition to these three primary colors, a part of white light is directly extracted and used for light emission Thus, the luminous efficiency of the entire device can be increased.

さらに、本発明の電界発光素子は、マイクロキャビティ構造を採用しても構わない。これは、有機EL素子は、発光層が陽極と陰極との間に挟持された構造であり、発光した光は陽極と陰極との間で多重干渉を生じるが、陽極及び陰極の反射率、透過率などの光学的な特性と、これらに挟持された有機層の膜厚とを適当に選ぶことにより、多重干渉効果を積極的に利用し、素子より取り出される発光波長を制御するという技術である。これにより、発光色度を改善することも可能となる。この多重干渉効果のメカニズムについては、J.Yamada等によるAM−LCD Digest of Technical Papers,OD−2,p.77〜80(2002)に記載されている。   Furthermore, the electroluminescent device of the present invention may adopt a microcavity structure. This is a structure in which the light emitting layer is sandwiched between the anode and the cathode, and the emitted light causes multiple interference between the anode and the cathode, but the reflectance and transmission of the anode and the cathode are transmitted. It is a technology to control the emission wavelength taken out from the element by positively utilizing the multiple interference effect by appropriately selecting the optical characteristics such as the ratio and the film thickness of the organic layer sandwiched by these. . This also makes it possible to improve the emission chromaticity. For the mechanism of this multiple interference effect, see J. Yamada et al. AM-LCD Digest of Technical Papers, OD-2, p. 77-80 (2002).

以上述べたように、本発明の半導体ナノ粒子2からなる半導体層を用いた電界発光素子は、低い駆動電圧で長時間の発光を得ることが可能である。故に、本有機EL素子は、壁掛けテレビ等のフラットパネルディスプレイや各種の平面発光体として、さらには、複写機やプリンター等の光源、液晶ディスプレイや計器類等の光源、表示板、標識灯等への応用が考えられる。   As described above, the electroluminescent device using the semiconductor layer formed of the semiconductor nanoparticle 2 of the present invention can obtain light emission for a long time at a low driving voltage. Therefore, the present organic EL element is used as a flat panel display such as a wall-mounted television or various flat light emitters, and further, a light source such as a copying machine or a printer, a light source such as a liquid crystal display or meter, a display board, a marker lamp, etc. The application of

<製造例1>
無水酢酸亜鉛0.55g、ドデカンチオール4.82ml、オレイルアミン6mlを加熱溶解し添加液を作成した。
塩化インジウム0.22g、オクチルアミン10mlを反応容器に入れ、窒素ガスを吹き込みながら、165℃に加熱した。塩化インジウムが溶解した後、ジエチルアミノホスフィン0.961mlを短時間で注入し、20分間165℃を制御した。その後、急冷し、40℃に冷却した。
次いで、上記添加液を注入し、240℃まで加熱し、同温度で2時間反応させた後、室温まで放冷した。
放冷後、ヘキサンとエタノールを用いて再沈殿法で精製を行った。トルエンを用いて、固形分濃度0.5質量%に調製し、InPのコアとZnSのシェルを有し、ドデカンチオールで表面処理された量子ドットの分散液(a)を得た。
<Production Example 1>
An additive solution was prepared by heating and dissolving 0.55 g of anhydrous zinc acetate, 4.82 ml of dodecanethiol and 6 ml of oleylamine.
0.22 g of indium chloride and 10 ml of octylamine were placed in a reaction vessel and heated to 165 ° C. while blowing nitrogen gas. After the indium chloride was dissolved, 0.961 ml of diethylaminophosphine was injected in a short time, and the temperature was controlled at 165 ° C. for 20 minutes. It was then quenched and cooled to 40.degree.
Then, the addition solution was injected, heated to 240 ° C., reacted at the same temperature for 2 hours, and allowed to cool to room temperature.
After leaving to cool, purification was performed by reprecipitation using hexane and ethanol. A solid solution was prepared to a solid concentration of 0.5% by mass using toluene, to obtain a dispersion (a) of quantum dots having a core of InP and a shell of ZnS and surface-treated with dodecanethiol.

<実施例1>
ドデカンチオールの0.5質量%のトルエン溶液を調整した。製造例1で調整した量子ドットの分散液(a)分散液とドデカンチオールの0.5質量%溶液とを、99:1の重量比で混合し5分間撹拌し、本発明の分散液を得た。
得られた本発明の分散液100重量部に対し、99重量部のメタノールを加えた後、遠心分離によって上澄み液を抽出した。得られた上澄み液をGC−MS(ガスクロマトグラフィー質量分析法)によって分析した結果、ドデカンチオールが検出された。結果を表6に示す。
Example 1
A 0.5 wt% toluene solution of dodecanethiol was prepared. The dispersion of the quantum dots prepared in Preparation Example 1 (a) and a 0.5% by mass solution of dodecanethiol are mixed at a weight ratio of 99: 1 and stirred for 5 minutes to obtain the dispersion of the present invention The
After adding 99 parts by weight of methanol to 100 parts by weight of the obtained dispersion of the present invention, the supernatant was extracted by centrifugation. As a result of analyzing the obtained supernatant liquid by GC-MS (gas chromatography mass spectrometry), dodecane thiol was detected. The results are shown in Table 6.

<実施例2〜88>
ドデカンチオールに代わり、表6に示す化合物を用い、それぞれ0.5質量%のトルエン溶液を調整した。
製造例1で調整した量子ドットの分散液(a)分散液と各化合物のトルエン溶液を表6に示す比率で混合した以外は、実施例1と同様に本発明の分散液を調整した。
また、GC−MSによる分析でドデカンチオールの代わり用いた化合物の検出も確認できた。結果を表6に示す。
Examples 2 to 88
A 0.5 mass% toluene solution was prepared using the compounds shown in Table 6 instead of dodecanethiol.
The dispersion of the present invention was prepared in the same manner as in Example 1 except that the dispersion of the quantum dots prepared in Preparation Example 1 (a) and the toluene solution of each compound were mixed at the ratio shown in Table 6.
Moreover, the detection of the compound used instead of dodecane thiol was also able to be confirmed by analysis by GC-MS. The results are shown in Table 6.

<比較例1>
量子ドットの分散液(a)を、ペトリ皿上で120℃のオーブン内で1時間加熱乾燥させ、得られた乾燥物をTG−DTA(重量・示唆熱分析)で熱分析を行った。仕込み量に対する、40℃〜490℃の間の熱重量減少は25%であった。
また、量子ドットの分散液(a)100重量部に対し、99重量部のメタノールを加えた後、遠心分離によって上澄み液を抽出した。得られた上澄み液をGC−MS(ガスクロマトグラフィー質量分析法)によって分析したが、ドデカンチオールは検出限界以下であった。結果を表6に示す。
Comparative Example 1
The dispersion (a) of the quantum dots was dried by heating on a petri dish in an oven at 120 ° C. for 1 hour, and the resulting dried product was subjected to thermal analysis by TG-DTA (weight / differential thermal analysis). The thermal weight loss between 40 ° C. and 490 ° C. was 25% based on the charged amount.
After adding 99 parts by weight of methanol to 100 parts by weight of the dispersion of quantum dots (a), the supernatant was extracted by centrifugation. The obtained supernatant was analyzed by GC-MS (gas chromatography-mass spectrometry), but dodecanethiol was below the detection limit. The results are shown in Table 6.

比較例1では、乾燥物のTG−DTAによる分析で25%の熱重量減少が確認されたが一方で、GC−MSによる遠心分離後の上澄み液の分析でドデカンチオールが検出限界以下であった。すなわち、量子ドットは、半導体ナノ粒子に表面処理されたドデカンチオールを含むが、量子ドットの分散液(a)中には、半導体ナノ粒子に配位していないドデカンチオールを含んでいないと判断できる。   In Comparative Example 1, a thermal weight loss of 25% was confirmed by TG-DTA analysis of the dried product, while dodecanethiol was below the detection limit in the analysis of the supernatant liquid after centrifugation by GC-MS. . That is, although the quantum dot contains dodecanethiol surface-treated to semiconductor nanoparticles, it can be judged that the dispersion liquid (a) of quantum dots does not contain dodecanethiol which is not coordinated to the semiconductor nanoparticles .

また、実施例1〜88ではGC−MSによる遠心分離後の上澄み液の分析で、各実施例で用いたリガンドが検出されたことから、半導体ナノ粒子に表面処理されたリガンド、および、半導体ナノ粒子に表面処理されていないリガンドの双方を含んでいると判断される。   Moreover, in Examples 1 to 88, since the ligand used in each Example was detected in the analysis of the supernatant liquid after centrifugation by GC-MS, the ligand surface-treated with semiconductor nanoparticles, and semiconductor nano particles It is determined that the particles contain both non-surface treated ligands.

<電界発光素子の実施例>
以下、本発明の電界発光素子について下記実施例により説明するが、本発明は下記実施例に限定されるものではない。実施例においては、特に断りのない限り、混合比は全て重量比を示す。蒸着(真空蒸着)は10−6Torrの真空中にて、基板の加熱や冷却といった温度制御はしない条件下で行った。また、素子の発光特性は、発光素子面積2mm×2mmの電界発光素子を用いて特性を測定した。
<Example of electroluminescent device>
Hereinafter, the electroluminescent element of the present invention will be described by way of the following examples, but the present invention is not limited to the following examples. In the examples, mixing ratios all indicate weight ratios unless otherwise noted. The deposition (vacuum deposition) was performed in a vacuum of 10 −6 Torr under conditions where temperature control such as heating and cooling of the substrate was not performed. The light emission characteristics of the element were measured using an electroluminescent element with a light emitting element area of 2 mm × 2 mm.

<実施例101>
洗浄したITO電極付きガラス板上に、PEDOT/PSS(ポリ(3,4−エチレンジオキシ)−2,5−チオフェン/ポリスチレンスルホン酸、Heraeus社製CLEVIOUS(登録商標) P VP CH8000)をスピンコート法にて製膜し、110℃にて20分間乾燥させて膜厚20nmの正孔注入層を得た。
次いで、ポリ(N―ビニルカルバゾール)を、1.0重量%の濃度でモノクロロベンゼンに溶解させ、スピンコート法で製膜し110℃にて20分間乾燥させて、60nmの膜厚の正孔輸送層を形成した。
その上に、実施例1で得た本発明の分散液を、スピンコートした後に窒素雰囲気下で5分間保持して20nmの発光層を形成した。
その上に、Avantama社製 酸化亜鉛のイソプロパノール分散液 N−10を、スピンコートして110℃で20分間乾燥させて、60nmの電子輸送層を形成した。
最後に、アルミニウム(Al)を200nm蒸着して電極を形成し、電界発光素子を得た。
この素子は、8Vにて外部量子効率4.5%、発光輝度25000(cd/m)の赤色発光を示し、その発光スペクトルのピーク波長は625nmであり、半値全幅は25nmであった。この素子を発光輝度1000(cd/m)で室温にて定電流駆動したときの輝度半減寿命を測定した。また、電流密度10(mA/cm)で駆動させた時の発光効率、および80℃の環境で100時間連続駆動させた後の相対輝度(=(100時間後の輝度)/(初期輝度))を測定した。
Example 101
PEDOT / PSS (poly (3,4-ethylenedioxy) -2,5-thiophene / polystyrene sulfonic acid, CLEVIOUS® P VP CH8000 manufactured by Heraeus) is spin-coated on a cleaned ITO electrode-attached glass plate It formed into a film by the method, and it was made to dry at 110 degreeC for 20 minutes, and the hole injection layer with a film thickness of 20 nm was obtained.
Subsequently, poly (N-vinylcarbazole) is dissolved in monochlorobenzene at a concentration of 1.0% by weight, formed into a film by spin coating, dried at 110 ° C. for 20 minutes, and hole transport of 60 nm thickness A layer was formed.
Then, the dispersion of the present invention obtained in Example 1 was spin-coated and then held for 5 minutes in a nitrogen atmosphere to form a 20 nm light emitting layer.
An isopropanol dispersion N-10 of zinc oxide manufactured by Avantama Co. was spin-coated thereon and dried at 110 ° C. for 20 minutes to form an electron transport layer of 60 nm.
Lastly, aluminum (Al) was deposited to a thickness of 200 nm to form an electrode, whereby an electroluminescent device was obtained.
This device exhibited a red emission with an external quantum efficiency of 4.5% and an emission luminance of 25000 (cd / m 2 ) at 8 V, the peak wavelength of the emission spectrum was 625 nm, and the full width at half maximum was 25 nm. The half life of the device was measured when the device was driven at a constant current at room temperature and a light emission luminance of 1000 (cd / m 2 ). In addition, luminous efficiency when driven at a current density of 10 (mA / cm 2 ), and relative luminance after continuous driving for 100 hours in an environment of 80 ° C. (= (luminance after 100 hours) / (initial luminance) Was measured.

さらに、作成した素子をGCIB−TOF−SIMSを用いて測定を行った結果、ポリ(N−ビニルカルバゾール)正孔輸送層にドデカンチオールが含まれていることが確認された。結果を表7に示す。
ここで、GCIB−TOF−SIMSとは、アルゴンクラスターイオンビーム(通常Ar1000 +〜Ar3000 +)を用いて対象をエッチングしながら、表面から放出されるイオン(二次イオン)を、その飛行時間差(飛行時間は重さの平方根に比例)を利用して質量分離する手法である。TOF−SIMS測定には、ION−TOF社製TOF.SIMS.5を用い、GCIBのエッチングイオンとしてはAr2500 +を用いた。
Furthermore, as a result of measuring using GCIB-TOF-SIMS the produced element, it was confirmed that dodecane thiol is contained in the poly (N-vinyl carbazole) hole transport layer. The results are shown in Table 7.
Here, GCIB-TOF-SIMS refers to ions (secondary ions) emitted from the surface while etching the object using an argon cluster ion beam (usually Ar 1000 + to Ar 3000 + ). This is a method of mass separation using (time of flight is proportional to the square root of weight). For TOF-SIMS measurement, ION-TOF manufactured by TOF. SIMS. Ar 2500 + was used as an etching ion of GCIB using No.5.

<実施例102〜188>
実施例1で得た本発明の分散液を、表6記載の実施例で得られたものに変更した以外は同様にして電界発光素子を作成した。この素子を発光輝度1000(cd/m)で室温にて定電流駆動したときの輝度半減寿命を測定した。
また、電流密度10(mA/cm)で駆動させた時の発光効率、および80℃の環境で100時間連続駆動させた後の相対輝度を測定した。さらに、作成した素子をGCIB−TOF−SIMSを用いて測定を行い、添加した化合物の正孔輸送層中の存在確認を行った。結果を表7に示す。
Examples 102 to 188
The electroluminescent element was similarly produced except having changed the dispersion liquid of this invention obtained in Example 1 into the thing obtained by the Example of Table 6. The half life of the device was measured when the device was driven at a constant current at room temperature and a light emission luminance of 1000 (cd / m 2 ).
In addition, the luminous efficiency when driven at a current density of 10 (mA / cm 2 ) and the relative luminance after being continuously driven for 100 hours in an environment of 80 ° C. were measured. Furthermore, measurement was performed using GCIB-TOF-SIMS, and the presence of the added compound in the hole transport layer was confirmed. The results are shown in Table 7.

<比較例101>
実施例1で得た本発明の分散液を、量子ドットの分散液(a)に変更した以外は同様にして電界発光素子を作成した。この素子を発光輝度1000(cd/m)で室温にて定電流駆動したときの輝度半減寿命を測定した。また、電流密度10(mA/cm)で駆動させた時の発光効率、および80℃の環境で100時間連続駆動させた後の相対輝度を測定した。さらに、作成した素子をGCIB−TOF−SIMSを用いて測定を行い、使用したリガンドの正孔輸送層中の存在確認を行った。結果を表7に示す。
Comparative Example 101
The electroluminescent element was similarly produced except having changed the dispersion liquid of this invention obtained in Example 1 into the dispersion liquid (a) of the quantum dot. The half life of the device was measured when the device was driven at a constant current at room temperature and a light emission luminance of 1000 (cd / m 2 ). In addition, the luminous efficiency when driven at a current density of 10 (mA / cm 2 ) and the relative luminance after being continuously driven for 100 hours in an environment of 80 ° C. were measured. Furthermore, the measurement was performed using GCIB-TOF-SIMS, and the presence of the used ligand in the hole transport layer was confirmed. The results are shown in Table 7.

<実施例201>
洗浄したITO電極付きガラス板上に、Avantama社製 酸化亜鉛のイソプロパノール分散液 N−10を、スピンコートして110℃で20分間乾燥させて、80nmの電子輸送層を形成した。その上に、実施例1で得た本発明の分散液を、スピンコートした後に窒素雰囲気下で5分間保持して20nmの発光層を形成した。
次いで、4,4’−ビス(カルバゾール−9−イル)ビフェニルを真空蒸着して40nmの正孔輸送層を成膜した。さらに、酸化モリブデン(MoO)を真空蒸着して10nmの正孔注入層を成膜した。最後に、アルミニウム(Al)を200nm蒸着して電極を形成し、電界発光素子を得た。
この素子を発光輝度1000(cd/m)で室温にて定電流駆動したときの輝度半減寿命を測定した。また、電流密度10(mA/cm)で駆動させた時の発光効率、および80℃の環境で100時間連続駆動させた後の相対輝度(=(100時間後の輝度)/(初期輝度))を測定した。
さらに、作成した素子をGCIB−TOF−SIMSを用いて測定を行った結果、発光層以外ではドデカンチオールが検出されなかった。結果を表8に示す。
Example 201
An isopropanol dispersion N-10 of zinc oxide manufactured by Avantama Co. was spin-coated on a cleaned glass plate with an ITO electrode and dried at 110 ° C. for 20 minutes to form an electron transport layer of 80 nm. Then, the dispersion of the present invention obtained in Example 1 was spin-coated and then held for 5 minutes in a nitrogen atmosphere to form a 20 nm light emitting layer.
Next, 4,4′-bis (carbazol-9-yl) biphenyl was vacuum deposited to form a 40 nm hole transport layer. Furthermore, molybdenum oxide (MoO 3 ) was vacuum deposited to form a 10 nm hole injection layer. Lastly, aluminum (Al) was deposited to a thickness of 200 nm to form an electrode, whereby an electroluminescent device was obtained.
The half life of the device was measured when the device was driven at a constant current at room temperature and a light emission luminance of 1000 (cd / m 2 ). In addition, luminous efficiency when driven at a current density of 10 (mA / cm 2 ), and relative luminance after continuous driving for 100 hours in an environment of 80 ° C. (= (luminance after 100 hours) / (initial luminance) Was measured.
Furthermore, as a result of measuring using GCIB-TOF-SIMS with the produced element, dodecane thiol was not detected except the light emitting layer. The results are shown in Table 8.

<実施例202〜288>
実施例1で得た本発明の分散液を、表6記載の実施例で得られたものに変更した以外は同様にして電界発光素子を作成した。この素子を発光輝度1000(cd/m)で室温にて定電流駆動したときの輝度半減寿命を測定した。また、電流密度10(mA/cm)で駆動させた時の発光効率、および80℃の環境で100時間連続駆動させた後の相対輝度を測定した。さらに、作成した素子をGCIB−TOF−SIMSを用いて測定を行い、発光層以外における使用した添加した化合物の確認を行った。結果を表8に示す。
Examples 202 to 288
The electroluminescent element was similarly produced except having changed the dispersion liquid of this invention obtained in Example 1 into the thing obtained by the Example of Table 6. The half life of the device was measured when the device was driven at a constant current at room temperature and a light emission luminance of 1000 (cd / m 2 ). In addition, the luminous efficiency when driven at a current density of 10 (mA / cm 2 ) and the relative luminance after being continuously driven for 100 hours in an environment of 80 ° C. were measured. Furthermore, the produced element was measured using GCIB-TOF-SIMS, and confirmation of the used added compound other than a light emitting layer was performed. The results are shown in Table 8.

<比較例202>
実施例1で得た本発明の分散液を、量子ドットの分散液(a)に変更した以外は同様にして電界発光素子を作成した。この素子を発光輝度1000(cd/m)で室温にて定電流駆動したときの輝度半減寿命を測定した。また、電流密度10(mA/cm)で駆動させた時の発光効率、および80℃の環境で100時間連続駆動させた後の相対輝度を測定した。さらに、作成した素子をGCIB−TOF−SIMSを用いて測定を行い、発光層以外における使用した添加した化合物の確認を行った。結果を表8に示す。
Comparative Example 202
The electroluminescent element was similarly produced except having changed the dispersion liquid of this invention obtained in Example 1 into the dispersion liquid (a) of the quantum dot. The half life of the device was measured when the device was driven at a constant current at room temperature and a light emission luminance of 1000 (cd / m 2 ). In addition, the luminous efficiency when driven at a current density of 10 (mA / cm 2 ) and the relative luminance after being continuously driven for 100 hours in an environment of 80 ° C. were measured. Furthermore, the produced element was measured using GCIB-TOF-SIMS, and confirmation of the used added compound other than a light emitting layer was performed. The results are shown in Table 8.

実施例201〜288では、本発明の分散液中には、半導体ナノ粒子に配位していないリガンドが含まれているが、発光層以外では検出されていない。したがって、フリーのリガンドは発光層に局在化していると言える。   In Examples 201 to 288, although the dispersion liquid of the present invention contains a ligand which is not coordinated to the semiconductor nanoparticles, it is not detected except in the light emitting layer. Therefore, it can be said that the free ligand is localized in the light emitting layer.

<実施例301>
洗浄したITO電極付きガラス板上に、PEDOT/PSS(ポリ(3,4−エチレンジオキシ)−2,5−チオフェン/ポリスチレンスルホン酸、Heraeus社製CLEVIOUS(登録商標) P VP CH8000)をスピンコート法にて製膜し、110℃にて20分間乾燥させて膜厚20nmの正孔注入層を得た。
次いで、ポリ(9,9・n−ジヘキシル−2,7−フルオレン−alt・9−フェニル−3,6−カルバゾ−ル)(アルドリッチ社、製品番号678791)を、0.5重量%の濃度でモノクロロベンゼンに溶解させ、スピンコート法で製膜し110℃にて20分間乾燥させて、30nmの膜厚の正孔輸送層を形成した。
その上に、実施例1で得た本発明の分散液を、スピンコートした後に窒素雰囲気下で5分間保持して20nmの発光層を形成した。
その上に、Avantama社製 酸化亜鉛のイソプロパノール分散液 N−10を、スピンコートして110℃で20分間乾燥させて、55nmの電子輸送層を形成した。
最後に、アルミニウム(Al)を200nm蒸着して電極を形成し、電界発光素子を得た。
この素子を発光輝度1000(cd/m2)で室温にて定電流駆動したときの輝度半減寿命を測定した。また、電流密度10(mA/cm2)で駆動させた時の発光効率、および80℃の環境で100時間連続駆動させた後の相対輝度(=(100時間後の輝度)/(初期輝度))を測定した。
さらに、作成した素子をGCIB−TOF−SIMSを用いて測定を行った結果、PEDOT/PSSの正孔注入層とポリ(9,9・n−ジヘキシル−2,7−フルオレン−alt・9−フェニル−3,6−カルバゾ−ル)の正孔輸送層との間にドデカンチオールが偏在していることが確認された。結果を表9に示す。
<Embodiment 301>
PEDOT / PSS (poly (3,4-ethylenedioxy) -2,5-thiophene / polystyrene sulfonic acid, CLEVIOUS® P VP CH8000 manufactured by Heraeus) is spin-coated on a cleaned ITO electrode-attached glass plate It formed into a film by the method, and it was made to dry at 110 degreeC for 20 minutes, and the hole injection layer with a film thickness of 20 nm was obtained.
Then, poly (9,9 n-dihexyl-2,7-fluorene-alt 9-phenyl-3,6-carbazole) (Aldrich, product number 678791) at a concentration of 0.5% by weight It was dissolved in monochlorobenzene, formed into a film by spin coating, and dried at 110 ° C. for 20 minutes to form a hole transport layer with a film thickness of 30 nm.
Then, the dispersion of the present invention obtained in Example 1 was spin-coated and then held for 5 minutes in a nitrogen atmosphere to form a 20 nm light emitting layer.
An isopropanol dispersion N-10 of zinc oxide manufactured by Avantama Co. was spin-coated thereon and dried at 110 ° C. for 20 minutes to form an electron transport layer of 55 nm.
Lastly, aluminum (Al) was deposited to a thickness of 200 nm to form an electrode, whereby an electroluminescent device was obtained.
The half life of luminance when the device was driven at a constant current at room temperature and a light emission luminance of 1000 (cd / m 2) was measured. In addition, luminous efficiency when driven at a current density of 10 (mA / cm 2), and relative luminance after continuous driving for 100 hours in an environment of 80 ° C. (= (luminance after 100 hours) / (initial luminance)) Was measured.
Furthermore, as a result of measuring the prepared device using GCIB-TOF-SIMS, it is found that a hole injection layer of PEDOT / PSS and poly (9,9 n-dihexyl-2,7-fluorene-alt 9-phenyl It was confirmed that dodecanethiol was unevenly distributed with the hole transport layer of (-3, 6-carbazole). The results are shown in Table 9.

<実施例302〜388>
実施例1で得た本発明の分散液を、表6記載の実施例で得られたものに変更した以外は同様にして電界発光素子を作成した。この素子を発光輝度1000(cd/m)で室温にて定電流駆動したときの輝度半減寿命を測定した。また、電流密度10(mA/cm)で駆動させた時の発光効率、および80℃の環境で100時間連続駆動させた後の相対輝度を測定した。さらに、作成した素子をGCIB−TOF−SIMSを用いて測定を行い、正孔注入層と正孔輸送層の間でのリガンドの偏在を確認した。結果を表9に示す。
Examples 302 to 388
The electroluminescent element was similarly produced except having changed the dispersion liquid of this invention obtained in Example 1 into the thing obtained by the Example of Table 6. The half life of the device was measured when the device was driven at a constant current at room temperature and a light emission luminance of 1000 (cd / m 2 ). In addition, the luminous efficiency when driven at a current density of 10 (mA / cm 2 ) and the relative luminance after being continuously driven for 100 hours in an environment of 80 ° C. were measured. Furthermore, the measurement was performed using GCIB-TOF-SIMS, and the uneven distribution of the ligand between the hole injection layer and the hole transport layer was confirmed. The results are shown in Table 9.

<比較例302>
実施例1で得た本発明の分散液を、量子ドットの分散液(a)に変更した以外は同様にして電界発光素子を作成した。この素子を発光輝度1000(cd/m)で室温にて定電流駆動したときの輝度半減寿命を測定した。また、電流密度10(mA/cm)で駆動させた時の発光効率、および80℃の環境で100時間連続駆動させた後の相対輝度を測定した。さらに、作成した素子をGCIB−TOF−SIMSを用いて測定を行い、正孔注入層と正孔輸送層の間でのリガンドの偏在を確認した。結果を表9に示す。
Comparative Example 302
The electroluminescent element was similarly produced except having changed the dispersion liquid of this invention obtained in Example 1 into the dispersion liquid (a) of the quantum dot. The half life of the device was measured when the device was driven at a constant current at room temperature and a light emission luminance of 1000 (cd / m 2 ). In addition, the luminous efficiency when driven at a current density of 10 (mA / cm 2 ) and the relative luminance after being continuously driven for 100 hours in an environment of 80 ° C. were measured. Furthermore, the measurement was performed using GCIB-TOF-SIMS, and the uneven distribution of the ligand between the hole injection layer and the hole transport layer was confirmed. The results are shown in Table 9.

実施例と比較例の比較より、本発明の電界発光素子は、発光特性や耐久性に優れた性能を発揮していることが解る。
このような効果が得られた仮説を説明する。実施例101〜188は、正孔輸送層にリガンドが拡散・浸透したことで発光層と正孔輸送層の界面が不明確になり、比較例101とくらべ発光層への正孔注入性が改善したことが考えられる。
また、実施例201〜288は、発光層内に半導体ナノ粒子に表面処理されていないリガンドが存在することで高いホールブロック性が発現し、比較例201と比べて再結合確率が飛躍的に高まったことが考えられる。
実施例301〜388は、PEDOTと正孔輸送層の界面に半導体ナノ粒子に、表面処理されていないリガンドが偏在することで、インターレイヤーの様な役割を果たし、発光効率の改善が成されたと推察される。
また、メカニズムは明確ではないが、全ての実施例で、耐久性や耐熱性に於いても顕著な向上効果が認められる。仮説ではあるが、発光層と他の層の界面(実施例101〜188、201〜288)や、他の積層界面(実施例301〜388、ここでは正孔注入層と正孔輸送層の界面)を安定化し劣化を抑制していると考えている。
From the comparison of the example and the comparative example, it is understood that the electroluminescent device of the present invention exhibits the performance excellent in the light emission characteristic and the durability.
Explain the hypothesis that such an effect was obtained. In Examples 101 to 188, the interface between the light emitting layer and the hole transporting layer becomes unclear due to the diffusion and penetration of the ligand in the hole transporting layer, and the hole injecting property to the light emitting layer is improved as compared with Comparative Example 101. It is thought that it did.
Further, in Examples 201 to 288, a high hole blocking property is expressed by the presence of the ligand not subjected to the surface treatment to the semiconductor nanoparticles in the light emitting layer, and the recombination probability is dramatically increased compared to Comparative Example 201. Can be thought of.
In Examples 301 to 388, the non-surface-treated ligand is unevenly distributed to the semiconductor nanoparticles at the interface between PEDOT and the hole transport layer, thereby playing a role like an interlayer and improving the luminous efficiency. It is guessed.
In addition, although the mechanism is not clear, in all the examples, a remarkable improvement effect is observed in durability and heat resistance. Although it is a hypothesis, the interface between the light emitting layer and the other layer (Examples 101 to 188, 201 to 288) and the other laminated interface (Examples 301 to 388, here the interface between the hole injection layer and the hole transport layer) ) To stabilize and prevent deterioration.

また、本発明の分散液と電界発光素子の製造方法は、上述の効果が得られる電界発光素子を、極めて簡便に作成することが可能であるため、特に有用なものである。
In addition, the dispersion liquid and the method of manufacturing an electroluminescent device according to the present invention are particularly useful because the electroluminescent device which can obtain the above-mentioned effects can be extremely easily produced.

Claims (5)

対向する1対の電極と、前記1対の電極の間であって陽極側に位置する正孔注入層および/または正孔輸送層と、前記1対の電極の間であって陰極側に位置する電子注入層および/または電子輸送層と、前記正孔注入層および/または正孔輸送層と電子注入層および/または電子輸送層との間に位置する発光層とを有する電界発光素子であって、
前記発光層が、半導体ナノ粒子の表面を少なくとも一部に、RCOOH、RNH、RNH、RN、RSH、RHPO、RHPO、RPO、RHP、RHP、RP、ROH、RCOOR’、RPO(OH)、およびRPOOHからなる群より選ばれる化合物が配位してなる量子ドットと、半導体ナノ粒子の表面に配位していない前記化合物とを含有している、
電界発光素子。
前記式中、
R、R’は、それぞれ独立して、置換もしくは未置換の芳香族炭化水素基、置換もしくは未置換の芳香族複素環基、置換もしくは未置換の脂肪族炭化水素基、置換もしくは未置換の脂肪族複素環基、または、置換もしくは未置換のアルコキシ基である。一分子中に、複数のRを有する場合、それらは同一でも異なっていても良い。
Located between a pair of opposing electrodes, a hole injection layer and / or a hole transport layer located between the pair of electrodes and on the anode side, and between the pair of electrodes and located on the cathode side An electroluminescent device comprising: an electron injection layer and / or an electron transport layer; and a light emitting layer positioned between the hole injection layer and / or the hole transport layer and the electron injection layer and / or the electron transport layer. ,
The light-emitting layer, at least a portion of the surface of the semiconductor nanoparticles, RCOOH, RNH 2, R 2 NH, R 3 N, RSH, RH 2 PO, R 2 HPO, R 3 PO, RH 2 P, R 2 HP , A compound selected from the group consisting of R 3 P, ROH, RCOOR ′, RPO (OH) 2 , and R 2 POOH, and the aforementioned compound which is not coordinated to the surface of the semiconductor nanoparticle And contains
Electroluminescent device.
In the above formula,
R and R ′ each independently represent a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, a substituted or unsubstituted aliphatic hydrocarbon group, a substituted or unsubstituted fat Group heterocyclic group or a substituted or unsubstituted alkoxy group. When one or more Rs are contained in one molecule, they may be the same or different.
対向する1対の電極と、前記1対の電極の間であって陽極側に位置する正孔注入層および/または正孔輸送層と、前記1対の電極の間であって陰極側に位置する電子注入層および/または電子輸送層と、前記正孔注入層および/または正孔輸送層と電子注入層および/または電子輸送層との間に位置する発光層とを有する電界発光素子であって、
前記発光層が、半導体ナノ粒子の表面の少なくとも一部に、RCOOH、RNH、RNH、RN、RSH、RHPO、RHPO、RPO、RHP、RHP、RP、ROH、RCOOR’、RPO(OH)、およびRPOOHからなる群より選ばれる化合物が配位してなる量子ドットを含有し、
正孔注入層、正孔輸送層、電子注入層、および電子輸送層からなる群より選ばれる少なくも一層が、前記化合物を含有する、
電界発光素子。
前記式中、R、R’は、それぞれ独立して、置換もしくは未置換の芳香族炭化水素基、置換もしくは未置換の芳香族複素環基、置換もしくは未置換の脂肪族炭化水素基、置換もしくは未置換の脂肪族複素環基、または、置換もしくは未置換のアルコキシ基である。一分子中に、複数のRを有する場合、それらは同一でも異なっていても良い。
Located between a pair of opposing electrodes, a hole injection layer and / or a hole transport layer located between the pair of electrodes and on the anode side, and between the pair of electrodes and located on the cathode side An electroluminescent device comprising: an electron injection layer and / or an electron transport layer; and a light emitting layer positioned between the hole injection layer and / or the hole transport layer and the electron injection layer and / or the electron transport layer. ,
The light emitting layer is formed on at least a part of the surface of the semiconductor nanoparticle by RCOOH, RNH 2 , R 2 NH, R 3 N, RSH, RH 2 PO, R 2 HPO, R 3 PO, RH 2 P, R 2 HP And R 3 P, ROH, RCOOR ′, RPO (OH) 2 , and R 2 POOH containing a quantum dot formed by coordination of a compound selected from the group consisting of
At least one layer selected from the group consisting of a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer contains the compound.
Electroluminescent device.
In the above formulas, R and R ′ each independently represent a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, a substituted or unsubstituted aliphatic hydrocarbon group, or a substituted or unsubstituted aliphatic hydrocarbon group It is an unsubstituted aliphatic heterocyclic group or a substituted or unsubstituted alkoxy group. When one or more Rs are contained in one molecule, they may be the same or different.
対向する1対の電極と、前記1対の電極の間であって陽極側に位置する正孔注入層および/または正孔輸送層と、前記1対の電極の間であって陰極側に位置する電子注入層および/または電子輸送層と、前記正孔注入層および/または正孔輸送層と電子注入層および/または電子輸送層との間に位置する発光層とを有する電界発光素子であって、
前記発光層が、半導体ナノ粒子の表面の少なくとも一部に、RCOOH、RNH、RNH、RN、RSH、RHPO、RHPO、RPO、RHP、RHP、RP、ROH、RCOOR’、RPO(OH)、およびRPOOHからなる群より選ばれる化合物が配位してなる量子ドットを含有し、
電極と正孔注入層との間、電極と正孔輸送層との間、正孔注入層と正孔輸送層との間、電子注入層と電子輸送層との間、電極と電子注入層との間、または電極と電子輸送層との間の少なくともいずれかの位置に前記化合物を含有する中間層をさらに具備する、
電界発光素子。
前記式中、R、R’は、それぞれ独立して、置換もしくは未置換の芳香族炭化水素基、置換もしくは未置換の芳香族複素環基、置換もしくは未置換の脂肪族炭化水素基、置換もしくは未置換の脂肪族複素環基、または、置換もしくは未置換のアルコキシ基である。一分子中に、複数のRを有する場合、それらは同一でも異なっていても良い。
Located between a pair of opposing electrodes, a hole injection layer and / or a hole transport layer located between the pair of electrodes and on the anode side, and between the pair of electrodes and located on the cathode side An electroluminescent device comprising: an electron injection layer and / or an electron transport layer; and a light emitting layer positioned between the hole injection layer and / or the hole transport layer and the electron injection layer and / or the electron transport layer. ,
The light emitting layer is formed on at least a part of the surface of the semiconductor nanoparticle by RCOOH, RNH 2 , R 2 NH, R 3 N, RSH, RH 2 PO, R 2 HPO, R 3 PO, RH 2 P, R 2 HP And R 3 P, ROH, RCOOR ′, RPO (OH) 2 , and R 2 POOH containing a quantum dot formed by coordination of a compound selected from the group consisting of
Between the electrode and the hole injection layer, between the electrode and the hole transport layer, between the hole injection layer and the hole transport layer, between the electron injection layer and the electron transport layer, and between the electrode and the electron injection layer Further comprising an intermediate layer containing the compound at least at any position between the electrode and the electron transport layer,
Electroluminescent device.
In the above formulas, R and R ′ each independently represent a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, a substituted or unsubstituted aliphatic hydrocarbon group, or a substituted or unsubstituted aliphatic hydrocarbon group It is an unsubstituted aliphatic heterocyclic group or a substituted or unsubstituted alkoxy group. When one or more Rs are contained in one molecule, they may be the same or different.
請求項1〜3いずれか1項に記載の電界発光素子の製造方法であって、
半導体ナノ粒子の表面の少なくとも一部に前記化合物が配位してなる量子ドット、半導体ナノ粒子の表面に配位していない前記化合物、および液状分散媒を含む分散液を、
陽極側に位置する正孔注入層または正孔輸送層に塗布し、乾燥するか、
あるいは
陰極側に位置する電子注入層または電子輸送層に塗布し、乾燥し、
発光層を形成することを特徴とする、
電界発光素子の製造方法。
It is a manufacturing method of the electroluminescent element of any one of Claims 1-3, Comprising:
A dispersion liquid comprising a quantum dot formed by coordinating the compound to at least a part of the surface of the semiconductor nanoparticle, the compound not coordinated to the surface of the semiconductor nanoparticle, and a liquid dispersion medium,
Apply to the hole injection layer or hole transport layer located on the anode side and dry it,
Or apply to the electron injection layer or electron transport layer located on the cathode side and dry it,
Forming a light emitting layer,
Method of manufacturing an electroluminescent device
半導体ナノ粒子の表面の少なくとも一部にRCOOH、RNH、RNH、RN、RSH、RHPO、RHPO、RPO、RHP、RHP、RP、ROH、RCOOR’、RPO(OH)、およびRPOOHからなる群より選ばれる化合物が配位してなる量子ドット、半導体ナノ粒子の表面に配位していない前記化合物、および液状分散媒を含む分散液。
前記式中、R、R’は、それぞれ独立して、置換もしくは未置換の芳香族炭化水素基、置換もしくは未置換の芳香族複素環基、置換もしくは未置換の脂肪族炭化水素基、置換もしくは未置換の脂肪族複素環基、または、置換もしくは未置換のアルコキシ基である。一分子中に、複数のRを有する場合、それらは同一でも異なっていても良い。
RCOOH at least a part of the surface of the semiconductor nanoparticles, RNH 2, R 2 NH, R 3 N, RSH, RH 2 PO, R 2 HPO, R 3 PO, RH 2 P, R 2 HP, R 3 P, ROH , RCOOR ′, RPO (OH) 2 , and R 2 POOH, a quantum dot formed by coordination of a compound selected from the group consisting of the above, the above-mentioned compound not coordinated to the surface of the semiconductor nanoparticle, and a liquid dispersion medium Dispersion.
In the above formulas, R and R ′ each independently represent a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, a substituted or unsubstituted aliphatic hydrocarbon group, or a substituted or unsubstituted aliphatic hydrocarbon group It is an unsubstituted aliphatic heterocyclic group or a substituted or unsubstituted alkoxy group. When one or more Rs are contained in one molecule, they may be the same or different.
JP2017247314A 2017-12-25 2017-12-25 Electroluminescent element, method for manufacturing electroluminescent element, and dispersion liquid Withdrawn JP2019114668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017247314A JP2019114668A (en) 2017-12-25 2017-12-25 Electroluminescent element, method for manufacturing electroluminescent element, and dispersion liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017247314A JP2019114668A (en) 2017-12-25 2017-12-25 Electroluminescent element, method for manufacturing electroluminescent element, and dispersion liquid

Publications (1)

Publication Number Publication Date
JP2019114668A true JP2019114668A (en) 2019-07-11

Family

ID=67222802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017247314A Withdrawn JP2019114668A (en) 2017-12-25 2017-12-25 Electroluminescent element, method for manufacturing electroluminescent element, and dispersion liquid

Country Status (1)

Country Link
JP (1) JP2019114668A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023105711A1 (en) * 2021-12-09 2023-06-15 シャープディスプレイテクノロジー株式会社 Light-emitting element, display device, and method for manufacturing light-emitting element
US11832468B2 (en) 2020-07-01 2023-11-28 Samsung Electronics Co., Ltd. Light emitting device with electron auxiliary layer including metal oxide nanoparticles, method of manufacturing the device, and a display device
US11917845B2 (en) 2020-06-02 2024-02-27 Samsung Display Co., Ltd. Light-emitting device including electron transport particle, electronic apparatus including the same, and method of manufacturing the light-emitting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11917845B2 (en) 2020-06-02 2024-02-27 Samsung Display Co., Ltd. Light-emitting device including electron transport particle, electronic apparatus including the same, and method of manufacturing the light-emitting device
US11832468B2 (en) 2020-07-01 2023-11-28 Samsung Electronics Co., Ltd. Light emitting device with electron auxiliary layer including metal oxide nanoparticles, method of manufacturing the device, and a display device
WO2023105711A1 (en) * 2021-12-09 2023-06-15 シャープディスプレイテクノロジー株式会社 Light-emitting element, display device, and method for manufacturing light-emitting element

Similar Documents

Publication Publication Date Title
JP5691192B2 (en) Material for organic electroluminescence device and use thereof
US8007924B2 (en) Organic electroluminescent device and display using same
JP5673043B2 (en) Organic electroluminescence device
JP5110198B1 (en) Material for organic electroluminescence device and use thereof
JP7003621B2 (en) Semiconductor nanoparticles, dispersions containing the particles, semiconductor layers, methods for manufacturing laminates, and electroluminescent devices.
EP2018090A1 (en) Organic electroluminescent device
EP1722602A1 (en) Organic electroluminescent device and organic electroluminescent display
JP5152210B2 (en) Material for organic electroluminescence device and use thereof
US20070216289A1 (en) Organic Electroluminescence Display Device
JP2011173972A (en) Material for organic electroluminescent element and application thereof
EP2034803A1 (en) Organic electroluminescence element
JP6056367B2 (en) Material for organic electroluminescence device and use thereof
JP2020041080A (en) Composition for forming luminescent film, luminescent film and electroluminescence element
JP2011046851A (en) Material for organic electroluminescent element coated with low-molecular weight material, ink composition for organic electroluminescent element and organic electroluminescent element
JP2012190863A (en) Material for organic electroluminescent element and use thereof
JP2020066733A (en) Luminescence material, and electroluminescence element, ink composition and printed matter using the same
JP2011084717A (en) Material for organic electroluminescent element and application thereof
JP5565201B2 (en) Spiro compound and material for organic electroluminescence device
JP2012028711A (en) Material for organic electroluminescent element and use of the same
JP2020095936A (en) Electroluminescence element
JP2019114668A (en) Electroluminescent element, method for manufacturing electroluminescent element, and dispersion liquid
JP2013179198A (en) Material for organic electroluminescent element and application thereof
JP2009173565A (en) Material for organic electroluminescent element and organic electroluminescent element
JP2019081868A (en) Inkjet ink, and printed matter and electroluminescence device prepared using the same
JP2021005479A (en) Electroluminescent element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200804

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20210322