JP2019109025A - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
JP2019109025A
JP2019109025A JP2017243342A JP2017243342A JP2019109025A JP 2019109025 A JP2019109025 A JP 2019109025A JP 2017243342 A JP2017243342 A JP 2017243342A JP 2017243342 A JP2017243342 A JP 2017243342A JP 2019109025 A JP2019109025 A JP 2019109025A
Authority
JP
Japan
Prior art keywords
unit
air conditioning
temperature
air
temperature detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017243342A
Other languages
English (en)
Inventor
洋助 出雲
Yosuke Izumo
洋助 出雲
関根 加津典
Katsunori Sekine
加津典 関根
弘志 ▲廣▼▲崎▼
弘志 ▲廣▼▲崎▼
Hiroshi Hirosaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2017243342A priority Critical patent/JP2019109025A/ja
Publication of JP2019109025A publication Critical patent/JP2019109025A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

【課題】センサー部を一方向に連続回転させつつ、センサーでの検出精度を低減させないようにした空気調和装置を提供する。【解決手段】空気調和装置は、空調対象空間の温度を検出する1つ又は複数の検出部及び検出部を有する回転部を備えたセンサー部と、回転部を一方向に回転させる駆動装置と、駆動装置を介して回転部の回転を制御する制御装置と、を有し、制御装置は、検出部の温度検出範囲の位置に応じて回転部の回転速度を調整するものである。【選択図】図10

Description

本発明は、空調対象空間の温度を検出するセンサーを備えた空気調和装置に関するものである。
近年、家庭用の空気調和装置には更なる快適性が求められている。そこで、室内などの空調対象空間の温度を、例えば熱画像又は温度データとして取得するセンサーを備えた空気調和装置が種々提案されている。例えば、特許文献1では、室内の人の活動量を熱画像として計測するようにした熱画像センサーが提案されている。具体的には、特許文献1には、「それぞれ赤外線を受光する複数の赤外線受光素子を備える赤外線受光部と、前記赤外線受光部に赤外光を照射させるレンズと、前記赤外線受光部と前記レンズとを、前記レンズの一部を中心として回転駆動させる回転部と、を備える」熱画像センサーが記載されている。
特開2016−217886号公報
空調対象空間の温度を取得する一般的なセンサーは、通常、予め定めた角度で反転させて、空調対象空間の温度を取得するようになっている。センサーを予め定めた角度で反転させる場合、走査範囲が、センサーを駆動させる駆動装置のギアのバックラッシュ又はリンクのあそびの影響を受ける。つまり、走査範囲が、往路と復路とでズレてしまい、取得した熱画像データなどの画像処理において背景差分法の精度が低減してしまう。
ところで、特許文献1には、赤外線検出器の各ローターが同一方向に回転し続けるという内容が記載されている。しかしながら、特許文献1には、赤外線検出器の各ローターを同一方向に回転し続ける場合の具体的な構造が記載されておらず、回転速度をどのように変更するのかということまでは開示されていない。つまり、特許文献1には、赤外線検出器の各ローターを同一方向に回転し続ける場合に必要な配線レイアウト及び赤外線検出器自体の形状などが具体的に検討されていない。したがって、センサーへ電力を供給する配線及びセンサーから信号を受信する配線の長さによってセンサーの回転できる範囲に制約が発生するが、特許文献1についてはこのような点については何ら開示されていない。
仮に、同一方向に回転し続けることができたとしても、特許文献1では、センサーの走査範囲が空調対象空間を向いているときと、向いていないときとで、回転速度を変化させるものではない。そのため、特許文献1においては、センサーが回転しているうちにタイムラグが発生することになる。つまり、センサーの走査範囲が空調対象空間を向くまでに時間がかかってしまうことになる。タイムラグが発生することでも、取得した熱画像データなどの画像処理における精度が低減する。
本発明は、以上のような課題を解決するためになされたもので、センサー部を一方向に連続回転させつつ、センサー部での検出精度を低減させないようにした空気調和装置を提供することを目的としている。
本発明に係る空気調和装置は、空調対象空間の温度を検出する1つ又は複数の検出部及び前記検出部を有する回転部を備えたセンサー部と、前記回転部を一方向に回転させる駆動装置と、前記駆動装置を介して前記回転部の回転を制御する制御装置と、を有し、前記制御装置は、前記検出部の温度検出範囲の位置に応じて前記回転部の回転速度を調整するものである。
本発明に係る空気調和装置は、センサー部が有する回転部を一方向に回転させるようにしたので、駆動装置のバックラッシュ及びリンクのあそびの影響が小さくなる。また、本発明に係る空気調和装置は、センサー部が有する回転部の回転速度を調整するようにしたので、タイムラグの影響を抑制できる。したがって、本発明の空気調和装置によれば、センサー部での検出精度の低減を抑制できる。
本発明の実施の形態1に係る空気調和装置の構成の一例を示す概略構成図である。 本発明の実施の形態1に係る空気調和装置の冷媒回路構成の一例を示す概略回路構成図である。 本発明の実施の形態1に係る空気調和装置のシステム構成の一例を示すブロック図である。 本発明の実施の形態1に係る空気調和装置の第1ユニットのセンサー部を拡大して概略的に示す断面図である。 本発明の実施の形態1に係る空気調和装置の第1ユニットのセンサー部を拡大して概略的に示す底面図である。 本発明の実施の形態1に係る空気調和装置の第1ユニットのセンサー部の初期設定時の温度検出範囲を説明する模式図である。 スリップリングの構成を模式的に示す模式図である。 検出した空調対象空間の温度データを時系列に360度分並べたデータの一例を示すグラフである。 センサー部の位置から見た空調対象空間の様子を模式的に示したグラフである。 本発明の実施の形態1に係る空気調和装置のセンサー部を制御する際の処理の流れを示すフローチャートである。 本発明の実施の形態1に係る空気調和装置の第1ユニットのセンサー部の調整後の温度検出範囲を説明する模式図である。 本発明の実施の形態2に係る空気調和装置の第1ユニットのセンサー部を拡大して概略的に示す断面図である。 本発明の実施の形態2に係る空気調和装置の第1ユニットのセンサー部を拡大して概略的に示す底面図である。 本発明の実施の形態2に係る空気調和装置のセンサー部を制御する際の処理の流れを示すフローチャートである。
以下、図面に基づいて本発明の実施の形態について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。
実施の形態1.
図1は、本発明の実施の形態1に係る空気調和装置100の構成の一例を示す概略構成図である。図2は、空気調和装置100の冷媒回路構成の一例を示す概略回路構成図である。図1及び図2に基づいて、空気調和装置100について説明する。なお、図2では、空気調和装置100が実行する冷房運転時の冷媒の流れを実線矢印で示し、空気調和装置100が実行する暖房運転時の冷媒の流れを破線矢印で示している。
<空気調和装置100の構成>
図1及び図2に示すように、空気調和装置100は、第1ユニット10及び第2ユニット50を有している。また、空気調和装置100は、使用者による入力を受け付ける操作部150を介して、空気調和装置100に対する運転指示がなされるようになっている。つまり、空気調和装置100は、操作部150を介して指示された運転情報に基づいて第1ユニット10が運転を行い、第2ユニット50も指示に即した運転を行うようになっている。
(第1ユニット10)
第1ユニット10は、屋内等の空調対象空間に冷熱又は温熱を供給する空間に設置され、第2ユニット50から供給される冷熱又は温熱により空調対象空間を冷却又は加温する機能を有する。第1ユニット10は、室内機として利用され、外郭を構成する筐体10aを有している。
なお、空調対象空間に冷熱又は温熱を供給する空間とは、その空調対象空間又はダクトなどを介して空調対象空間と接続された別の空間等である。
第1ユニット10は、第1熱交換器11、第1電装品12、第1送風ファン13a、上下ルーバー13c、及び、センサー部14−1を有している。第1熱交換器11及び第1電装品12は、筐体10aの内部に搭載され、上下ルーバー13c及びセンサー部14−1は、筐体10aの外部に露出するように搭載されている。なお、筐体10aの形状を図1に示す形状に限定するものではない。
第1熱交換器11は、空気調和装置100が備える冷媒回路Aの一要素となるものであり、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能する。第1熱交換器11は、フィンアンドチューブ型熱交換器、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、二重管式熱交換器、又は、プレート熱交換器等で構成することができる。ここでは、第1熱交換器11が空気と冷媒とで熱交換を行う熱交換器である場合を例示しているが、熱交換する対象に応じて第1熱交換器11のタイプを決定すればよい。
第1電装品12は、操作部150を介しての使用者からの指示内容、及び、センサー部14−1で得た情報に基づいてセンサー部14−1、第1送風ファン13a及び上下ルーバー13cなどを制御する制御装置としての機能を有する。なお、操作部150を介して使用者から入力される指示内容としては、空気調和装置100の運転モード、温度設定、湿度設定、風量設定、及び、風向設定などが考えられる。第1電装品12については後段で詳述する。
第1送風ファン13aは、第1熱交換器11に熱交換流体である空気を供給し、第1熱交換器11を通過した空気を空調対象空間に供給するものである。第1送風ファン13aは、複数の翼を有するプロペラファン又はクロスフローファン等で第1送風ファン13aを構成することができる。
上下ルーバー13cは、第1熱交換器11を通過した空気の経路に設置され、第1ユニット10の吹出口から吹き出される空気の上下方向への風向を可変に調整するものである。
センサー部14−1は、空調対象空間の環境情報のうち少なくとも温度を取得する機能を有する。センサー部14−1で取得された温度情報は、第1電装品12に送られる。なお、センサー部14−1については後段で詳述する。
(第2ユニット50)
第2ユニット50は、空調対象空間とは別空間に設置され、第1ユニット10に冷熱又は温熱を供給する機能を有する。第2ユニット50は、室外機として利用され、外郭を構成する筐体50aを有している。
なお、空調対象空間とは別空間とは、屋上、地下、天井裏、共有スペース、又は、駐車場などの空間等である。
第2ユニット50は、第2熱交換器51、第2電装品52、圧縮機53a、流路切替装置53b、第2送風ファン53c及び減圧装置53dを有している。第2熱交換器51、第2電装品52、圧縮機53a、流路切替装置53b、第2送風ファン53c及び減圧装置53dは、筐体50aの内部に搭載されている。なお、筐体50aの形状を図1に示す形状に限定するものではない。
第2熱交換器51は、空気調和装置100が備える冷媒回路Aの一要素となるものであり、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能する。第2熱交換器51は、フィンアンドチューブ型熱交換器、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、二重管式熱交換器、又は、プレート熱交換器等で構成することができる。ここでは、第2熱交換器51が空気と冷媒とで熱交換を行う熱交換器である場合を例示しているが、熱交換する対象に応じて第2熱交換器51のタイプを決定すればよい。
第2電装品52は、第1電装品12を介して伝達される使用者からの指示内容、及び、センサー部14−1で得た情報に基づいて圧縮機53a、流路切替装置53b、第2送風ファン53c及び減圧装置53dを制御する制御装置としての機能を有する。
圧縮機53aは、冷媒を圧縮して吐出するものである。圧縮機53aは、ロータリ圧縮機、又は、スクロール圧縮機等で構成することができる。第2熱交換器51が凝縮器として機能する場合、圧縮機53aから吐出された冷媒は、第2熱交換器51へ送られる。第2熱交換器51が蒸発器として機能する場合、圧縮機53aから吐出された冷媒は、第1熱交換器11を経由した後に、第2熱交換器51へ送られる。
流路切替装置53bは、圧縮機53aの吐出側に設けられ、暖房運転と冷房運転とにおいて冷媒の流れを切り替えるものである。
なお、冷媒を一方向に循環させる場合には、流路切替装置53bは必須の構成ではない。また、流路切替装置53bとしては、四方弁、又は、二方弁あるいは三方弁の組み合わせが考えられる。
第2送風ファン53cは、第2熱交換器51に熱交換流体である空気を供給するものである。第2送風ファン53cの種別を特に限定するものではないが、複数の翼を有するプロペラファン等で第2送風ファン53cを構成することができる。
減圧装置53dは、第1熱交換器11又は第2熱交換器51を経由した冷媒を膨張させて減圧するものである。減圧装置53dは、冷媒の流量を調整可能な電動膨張弁等で構成するとよい。
なお、減圧装置53dを、第2ユニット50ではなく、第1ユニット10に配置してもよい。
(操作部150)
操作部150は、空気調和装置100の運転モード、温度設定、湿度設定、風量設定、及び、風向設定などの運転情報の指示を受け付けるものである。操作部150は、空気調和装置100に付属しているリモコンである。その他に、スマートフォン、携帯電話、PDA(Personal Digital Assistant)、パソコン、又はタブレットを操作部150としてもよい。
以上のように構成された第1ユニット10と第2ユニット50とは、ガス側連絡配管4A及び液側連絡配管4Bを含めた冷媒配管4により互いに接続され、これにより冷媒回路Aが構成される。つまり、冷媒回路Aは、圧縮機53a、流路切替装置53b、第1熱交換器11、減圧装置53d、及び、第2熱交換器51が冷媒配管4で接続されて構成される。
<空気調和装置100の空調動作>
次に、空気調和装置100の空調動作について、図2に基づいて冷媒の流れとともに説明する。ここでは、第1熱交換器11及び第2熱交換器51において冷媒と熱交換する熱交換流体が空気である場合を例に、空気調和装置100の動作について説明する。
まず、空気調和装置100が実行する冷房運転について説明する。
圧縮機53aを駆動させることによって、圧縮機53aら高温高圧のガス状態の冷媒が吐出する。以下、実線矢印にしたがって冷媒が流れる。圧縮機53aから吐出した高温高圧のガス冷媒は、流路切替装置53bを介して凝縮器として機能する第2熱交換器51に流れ込む。第2熱交換器51では、流れ込んだ高温高圧のガス冷媒と、第2送風ファン53cによって供給される空気との間で熱交換が行われて、高温高圧のガス冷媒は、凝縮して高圧の液冷媒になる。
第2熱交換器51から送り出された高圧の液冷媒は、減圧装置53dによって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。二相状態の冷媒は、蒸発器として機能する第1熱交換器11に流れ込む。第1熱交換器11では、流れ込んだ二相状態の冷媒と、第1送風ファン13aによって供給される空気との間で熱交換が行われて、二相状態の冷媒のうち液冷媒が蒸発して低圧のガス冷媒になる。この熱交換によって、室内が冷却されることになる。第1熱交換器11から送り出された低圧のガス冷媒は、流路切替装置53bを介して圧縮機53aに流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機53aから吐出する。以下、このサイクルが繰り返される。
次に、空気調和装置100が実行する暖房運転について説明する。
圧縮機53aを駆動させることによって、圧縮機53aから高温高圧のガス状態の冷媒が吐出する。以下、破線矢印にしたがって冷媒が流れる。圧縮機53aから吐出した高温高圧のガス冷媒は、流路切替装置53bを介して凝縮器として機能する第1熱交換器11に流れ込む。第1熱交換器11では、流れ込んだ高温高圧のガス冷媒と、第1送風ファン13aによって供給される空気との間で熱交換が行われて、高温高圧のガス冷媒は、凝縮して高圧の液冷媒になる。この熱交換によって、室内が暖房されることになる。
第1熱交換器11から送り出された高圧の液冷媒は、減圧装置53dによって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。二相状態の冷媒は、蒸発器として機能する第2熱交換器51に流れ込む。第2熱交換器51では、流れ込んだ二相状態の冷媒と、第2送風ファン53cによって供給される空気との間で熱交換が行われて、二相状態の冷媒のうち液冷媒が蒸発して低圧のガス冷媒になる。第2熱交換器51から送り出された低圧のガス冷媒は、流路切替装置53bを介して圧縮機53aに流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機53aから吐出する。以下、このサイクルが繰り返される。
空気調和装置100では、流路切替装置53bを制御することで冷媒流路を切り換えることにより、冷房運転又は暖房運転が実行可能になっている。図2において実線で示されるように流路切替装置53bが制御されている場合、空気調和装置100は冷房運転を行う。一方、図2において破線で示されるように流路切替装置53bが制御されている場合、空気調和装置100は暖房運転を行う。ただし、流路切替装置53bは、必須ではなく、空気調和装置100が冷房運転又は暖房運転のいずれか一方を行うものであってもよい。
<空気調和装置100のシステム構成>
図3は、空気調和装置100のシステム構成の一例を示すブロック図である。図3に基づいて、空気調和装置100のシステム構成について説明する。図3においては、第1送風ファン13a、左右ルーバー13b及び上下ルーバー13cを第1アクチュエータ部13と称し、圧縮機53a、流路切替装置53b、第2送風ファン53c及び減圧装置53dを第2アクチュエータ部53と称するものとする。
第1アクチュエータ部13の左右ルーバー13bは、第1熱交換器11を通過した空気の経路に設置され、第1ユニット10の吹出口から吹き出される空気の左右方向への風向を可変に調整するものである。
第1電装品12は、第1処理部12a及び第1制御部12bを有している。第1処理部12aは、操作部150を介しての使用者からの指示内容及びセンサー部14−1で得た情報を演算処理する。第1制御部12bは、第1処理部12aでの処理結果及び操作部150を介しての使用者からの指示内容に基づいて第1アクチュエータ部13及びセンサー部14−1の動作を制御する。
また、第1電装品12は、第2電装品52と有線又は無線で情報を送受信する機能を有している。なお、第1電装品12は、その機能を実現する回路デバイスのようなハードウェアで構成することもできるし、マイクロコンピュータのような演算装置と、その上で実行されるソフトウェアとにより構成することもできる。さらに、インターネット又はクラウドと接続ができる通信装置を備えることで、第1電装品12を第1ユニット10に備えるのではなく、インターネット又はやクラウド上のアプリあるいはインターネット又はやクラウドに接続されている他の装置に含めてもよい。
センサー部14−1は、通信装置14a、駆動装置14b及び回転部15を有している。通信装置14aは、回転部15への電力供給を行うとともに、回転部15で取得した情報を信号通信する。つまり、通信装置14aは、電源部及び信号部としての機能を有している。駆動装置14bは、回転部15を駆動するものである。
回転部15は、第1ユニット10が設置されている空間の温度情報を熱画像として取得する撮像部15b、及び、第1ユニット10が設置されている空間の温度情報を温度データとして取得する温度検出部15aを有している。図3では、回転部15に撮像部15b及び温度検出部15aの双方が備わっている場合を例に示しているが、撮像部15b及び温度検出部15aの少なくとも1つを備えていればよい。なお、撮像部15b及び温度検出部15aを特に限定するものではなく、上記機能を有するものであれば、いずれの種別であっても撮像部15b及び温度検出部15aとして適用することができる。
第2電装品52は、第2処理部52a及び第2制御部52bを有している。第2処理部52aは、第1電装品12を介して伝達される使用者からの指示内容及びセンサー部14−1で得た情報を演算処理する。第2制御部52bは、第2処理部52aでの処理結果に基づいて、第2アクチュエータ部53を制御する。
なお、第2電装品52に入力される情報としては、第2ユニット50に設置されている各種センサーからの情報も含まれる場合がある。各種センサーには、外気温を測定する外気温度センサー、圧縮機53aの吸入側の冷媒温度を測定する温度センサー、圧縮機53aの吐出側の冷媒温度を測定する温度センサー、及び、第2熱交換器51の冷媒出入口の冷媒温度を測定する温度センサー等がある。また、各種センサーには、圧縮機53aの吸入側の冷媒圧力を測定する吸入圧力センサー、圧縮機53aの吐出側の冷媒圧力を測定する吐出圧力センサー、及び、第2熱交換器51の冷媒出入口の冷媒圧力を測定する圧力センサー等がある。
第2電装品52は、その機能を実現する回路デバイスのようなハードウェアで構成することもできるし、マイクロコンピュータのような演算装置と、その上で実行されるソフトウェアとにより構成することもできる。
なお、第1電装品12又は第2電装品52のいずれか1つで、空気調和装置100を統括制御してもよい。
図4は、空気調和装置100の第1ユニット10のセンサー部14−1を拡大して概略的に示す断面図である。図5は、空気調和装置100の第1ユニット10のセンサー部14−1を拡大して概略的に示す底面図である。図6は、空気調和装置100の第1ユニット10のセンサー部14−1の初期設定時の温度検出範囲を説明する模式図である。図4〜図6に基づいて、第1ユニット10のセンサー部14−1について説明する。
なお、ここでは、駆動装置14bとしてステッピングモーターを用い、ステッピングモーターの動作によって回転部15が回転する場合を例に説明する。また、回転部15が温度検出部15aのみを有している場合を例に説明する。ただし、回転部15が温度検出部15aではなく撮像部15bのみを有していてもよい。
図4に示すように、センサー部14−1は、回転部15が筐体10aの底部から筐体10aの外部に露出するように設置される。回転部15は、駆動装置14bに連結され、駆動装置14bにより回転駆動される。駆動装置14bは、筐体10aの内部に配置されている。駆動装置14bの周囲には、通信装置14aが設置され、第1電装品12から送られる電源及び信号を駆動装置14bに伝達する。この状態を底面視すると、図5に示すように、回転部15のみが筐体10aの外部に露出され、視認可能になっている。
図6に示すように、第1ユニット10が設置される居室を空調対象空間Rと称するものとする。図6に示すように、第1ユニット10が設置される空調対象空間Rの窓側の壁を設置壁W1と称するものとする。図6に示すように、第1ユニット10から見た空調対象空間Rの右側の壁を右壁W2と称するものとする。図6に示すように、第1ユニット10から見た空調対象空間Rの奥側の壁を奥壁W3と称するものとする。図6に示すように、第1ユニット10から見た空調対象空間Rの左側の壁を左壁W4と称するものとする。図6に示すように、空調対象空間Rの床面を床Fと称するものとする。
空調対象空間Rを空調する第1ユニット10は、例えば設置壁W1に設置される。第1ユニット10には、センサー部14−1が取り付けられている。センサー部14−1の温度検出部15aは、図4及び図5に示すように、回転部15に内蔵され、又は、回転部15の表面に設置されている。そして、温度検出部15aは、回転部15の動作に合わせて一方向に回転し、検出方向、つまり走査範囲を変化させながら空調対象空間Rの温度データを取得する。
初期設定時においては、空気調和装置100は、例えば図6に示すように、矢印R1の範囲を温度検出部15aでの温度検出範囲として、矢印A1に示すように一方向に360度回転駆動するように設定される。初期設定時の状態で温度検出部15aが駆動装置14bにより回転させられると、図6に示す矢印R1の範囲が温度検出部15aの回転に伴って変化し、空調対象空間Rの温度検出が実行されることになる。
回転部15を一方向に360度回転させるためには、スリップリング又は非接触回転コネクタなどを用いて、通信装置14aと回転部15とを接続しなければならない。ここで、スリップリング及び非接触回転コネクタについて簡単に説明する。図7は、スリップリング200の構成を模式的に示す模式図である。
図7に示すように、スリップリング200は、複数のリング部201、複数のブラシ部202、リング部201及びブラシ部202を収容する内側ケーシング206、及び、内側ケーシング206を収容する外側ケーシング205を有している。
外側ケーシング205は、スリップリング200の外郭を構成するものであり、金属又は樹脂などで形成するとよい。外側ケーシング205には、通信装置14aに接続する配線210が挿通する開口部が複数形成されている。
内側ケーシング206は、リング部201及びブラシ部202を収容しつつ、外側ケーシング205に収容されるものである。また、内側ケーシング206は、リング部201及びブラシ部202を収容する他、回転部15の基端を構成する基端側軸部15A及び回転部15と基端側軸部15Aとを連結する連結軸部15Bの一部を収容する。内側ケーシング206は、樹脂などで構成され、ブラシ部202が挿通可能な開口部又はスリットを複数有している。
リング部201は、金属で構成され、基端側軸部15Aの外周部に設置される。
ブラシ部202は、基端側軸部15Aの外周部に設置されるリング部201に設置され、配線210と接続するものである。
なお、図7では、回転部15の基端に取り付けられるタイプのスリップリング200について図示しているが、このタイプに限定するものではなく、スリップリング200を回転部15の途中に取り付けるタイプとしてもよい。
このように構成された回転コネクタであるスリップリング200を通信装置14aと回転部15との間に介在させることによって、回転部15を一方向に継続して360度回転させることが可能になる。
なお、スリップリング200ではなく、非接触回転コネクタを通信装置14aと回転部15との間に介在させてもよい。非接触回転コネクタは、通信装置14aからの電源及び信号を光通信で回転部15に伝えるものである。非接触回転コネクタを用いる場合、スリップリング200の構成であったリング部201及びブラシ部202が不要となり、更にコンパクトになる。
ここで、第1ユニット10の初期設定時の空調対象空間Rの温度検出について説明する。図8は、検出した空調対象空間Rの温度データを時系列に360度分並べたデータの一例を示すグラフである。図9は、センサー部の位置から見た空調対象空間Rの様子を模式的に示したグラフである。なお、図8では、センサー部14−1から上向きの点線を0度とし、反時計回りに空調対象空間Rの状況を検出したときの温度データを時系列順に360度分並べている。図9は、図8で取得したデータの時系列を反転させ、設置壁W1、右壁W2、奥壁W3、左壁W4、及び、床Fの識別結果を当てはめたものである。
空気調和装置100が実行する冷房運転又は暖房運転が安定する頃には、センサー部14−1での検出された温度帯2が温度帯1となり、温度帯3が温度帯5となり、温度帯4が温度帯6となる。つまり、空気調和装置100の運転開始時に検出される温度帯と、空気調和装置100の運転が安定する頃に検出される温度帯とでは異なるものとなる。この温度帯の変化結果から、温度帯1及び温度帯5が設置壁W1から検出した温度データであることが識別でき、温度帯6が床Fから検出した温度データであると識別できる。
また、右壁W2、奥壁W3及び左壁W4は、センサー部14−1の回転方向から割り当てる。そして、奥壁W3と、右壁W2及び左壁W4と、の判別は、温度帯6を検出する温度検出部15aの位置の差で判別する。つまり、図6に示したように、第1ユニット10が左壁W4に寄った位置に設置されている場合、初期設定時においては、左壁W4を検出している時間が長くなるので、この検出時間から、右壁W2、奥壁W3、及び、左壁W4を識別することができる。なお、センサー部14−1の回転の向きが時計回りの場合には、右壁W2及び左壁W4の割り当ては逆転する。
このように、空気調和装置100においては、360度分の温度データを分析することで、空調対象空間Rの壁及び床の位置の推定精度が向上する。そのため、空気調和装置100によれば、空調対象空間Rの壁及び床を利用した気流制御の精度が向上し、居住空間等の空調対象空間Rの快適性も向上する。さらに、空気調和装置100によれば、気流制御の精度が向上するので、消費エネルギーの低減効果が得られる。
次に、センサー部14−1の回転制御の一例について説明する。図10は、空気調和装置100のセンサー部14−1を回転制御する際の処理の流れを示すフローチャートである。上述したように、センサー部14−1は、一方向に360度回転を継続する。すなわち、センサー部14−1は、初期設定時に設定された回転速度で回転しながら空調対象空間Rの温度データを取得する。なお、撮像部15bが設置されていれば、空調対象空間Rの温度データを熱画像として取得することが可能になる。
ところで、センサー部14−1は、一方向に360度回転を継続するものであり、一定のタイミングで温度検出範囲が空調対象空間Rから外れることになる。つまり、センサー部14−1の温度検出範囲が設置壁W1の方向を向く場合が生じる。そこで、空気調和装置100では、センサー部14−1の回転速度を調整し、センサー部14−1の回転速度を変更可能にしている。
空気調和装置100が運転を開始すると、センサー部14−1が初期設定速度で回転を始める(ステップS101)。同時に、センサー部14−1は、空調対象空間Rの温度データを取得する(ステップS102)。ここで、第1電装品12は、センサー部14−1の温度検出範囲が空調対象空間Rに向いているかどうかを判断する(ステップS103)。この結果、センサー部14−1の温度検出範囲が空調対象空間Rを向いているときは(ステップS103;Yes)、第1電装品12は、センサー部14−1を低速で回転させる(ステップS104)。一方、センサー部14−1の温度検出範囲が空調対象空間Rを向いていないときは(ステップS103;No)、第1電装品12は、センサー部14−1を高速で回転させる(ステップS105)。
すなわち、センサー部14−1の温度検出範囲が空調対象空間Rを向いているときにおいては、センサー部14−1を低速で回転させることによって、温度検出の精度を向上させるようにしている。一方、センサー部14−1の温度検出範囲が空調対象空間Rを向いていないときにおいては、センサー部14−1を高速で回転させることによって、温度検出範囲が空調対象空間Rを向くまでの時間を短縮するようにしている。こうすることで、空気調和装置100では、タイムラグを小さくしている。
ここでは、温度検出範囲の位置によってセンサー部14−1の回転速度を変更することで、回転部15の回転速度を調整した場合を説明した。つまり、空気調和装置100では、センサー部14−1の回転速度を調整することによって、温度検出精度を向上させるようにしているのである。
なお、低速とは初期設定速度以下の速度のことであり、高速とは初期設定速度よりも早い速度のことである。ただし、初期設定速度をステップS105の高速と同じとしてもよい。この場合、低速とは初期設定速度よりも遅い速度になる。
次に、センサー部14−1の温度検出範囲の調整について説明する。図11は、空気調和装置100の第1ユニット10のセンサー部14−1の調整後の温度検出範囲を説明する模式図である。
図6に示したように、第1ユニット10の据え付け時において、初期設定されている温度検出範囲の方向と、実際に据え付けられた際の温度検出範囲の方向と、に差異が生じる場合がある。つまり、第1ユニット10が設置壁W1の左右方向中心部に必ずしも設置されるわけではなく、右壁W2に寄った位置あるいは左壁W4に寄った位置に設置されることも多い。
例えば、図6の場合においては、第1ユニット10が左壁W4に寄った位置に設置されている。このような場合、初期設定された状態で温度検出を行うと、左壁W4を検出している時間が長くなる。そのため、空気調和装置100によって空調される空調対象空間Rの範囲にバラツキが生じてしまう。そこで、図9に示した検出結果を記録しておき、空調対象空間Rとして重点的に検知する方向を調整する。つまり、図10に示すように、温度検出範囲を初期設定時に比較して右壁W2側にずらし、右壁W2及び左壁W4の検出している時間に偏りをなくすようにしている。このように、空気調和装置100では、センサー部14−1の温度検出範囲を調整することで、センサー部14−1で検出することができる空調対象空間Rの範囲に死角が発生するリスクを低下している。
図10のように調整した後は、暖房運転であって、風向が自動設定の場合では、上下ルーバー13c及び左右ルーバー13bの向きを調節し、第1ユニット10から吹き出す空気が右壁W2及び左壁W4の方向または奥壁W3の方向になるように調節すればよい。また、図10のように調整した後は、冷房運転であって、風向が自動設定の場合では、上下ルーバー13c及び左右ルーバー13bの向きを調節し、第1ユニット10から吹き出す空気が床Fの方向または奥壁W3の方向になるように調節すればよい。
以上のように、空気調和装置100は、一方向に回転する回転部15を有し、制御装置として機能する第1電装品12が、検出部の温度検出範囲の位置によって、回転部15の回転速度を調整するようになっている。そのため、空気調和装置100によれば、センサー部14−1の回転部15を一方向に回転させるようにしたので、駆動装置14bのバックラッシュ及びリンクのあそびの影響が小さくなる。また、空気調和装置100によれば、センサー部14−1の回転部15の回転速度を調整するようにしたので、タイムラグの影響を抑制できる。その結果、空気調和装置100によれば、センサー部14−1で取得した温度データなどの画像処理において背景差分法の精度が向上する。
また、空気調和装置100は、第1電装品12が、検出部の温度検出範囲が空調対象空間Rを向いているときと、検出部の温度検出範囲が空調対象空間Rを向いていないときとで、回転部15の回転速度を切り替えるようになっている。そのため、空気調和装置100によれば、例えば検出部の温度検出範囲が空調対象空間を向いているときにおいて回転速度を低速にでき、空調対象空間の温度検出の精度を向上させるようにしている。
空気調和装置100によれば、第1電装品12が、センサー部14−1で検出した温度データを360度分の1つのまとまったデータとするので、360度分のデータを分析することができ、空調対象空間Rの壁及び床の位置の推定精度が向上する。その結果、壁又は床を利用した気流制御の精度が向上し、空調対象空間の快適性向上及び消費エネルギーの低減効果が得られる。
空気調和装置100によれば、回転部15と駆動装置14bとが、スリップリング200又は非接触回転コネクタで接続されているので、複雑な構成を採用することなく、回転部15を一方向に回転することが可能になる。
空気調和装置100によれば、検出部が、撮像部及び温度検出部の少なくとも1つであるので、複雑な構成を採用することなく、空調対象空間Rの温度検出を実行することが可能になる。
実施の形態2.
図12は、本発明の実施の形態2に係る空気調和装置の第1ユニット10のセンサー部14−2を拡大して概略的に示す断面図である。図13は、本発明の実施の形態2に係る空気調和装置の第1ユニット10のセンサー部14−2を拡大して概略的に示す底面図である。図12及び図13に基づいて、センサー部14−2について説明する。なお、実施の形態2では実施の形態1との相違点を中心に説明し、実施の形態1と同一部分には、同一符号を付して説明を省略するものとする。
センサー部14−2の基本構成は、実施の形態1で説明したセンサー部14−1と同じであるが、回転部15に温度検出部15a及び撮像部15bを有している点で、実施の形態1で説明したセンサー部14−1と相違している。温度検出部15a及び撮像部15bは、360度÷(温度検出部15a及び撮像部15bの総数)で求められる角度の間隔で配置する。例えば、温度検出部15a及び撮像部15bがそれぞれ1個ずつ設置されている場合は、360度÷2=180度の間隔で温度検出部15a及び撮像部15bを設置する。また、温度検出部15a及び撮像部15bの総数が3個の場合は、360度÷3=120度の間隔で温度検出部15a及び撮像部15bを設置する。つまり、等間隔で配置するとよい。
このようにすれば、温度検出部15aにより温度検出範囲及び撮像部15bによる温度検出範囲を均等にすることができ、空調対象空間Rの温度状態をより高精度に検出することが可能になる。なお、温度検出部15aを設けずに撮像部15bのみを複数設けるようにしてもよく、撮像部15bを設けずに温度検出部15aのみを複数設けるようにしてもよい。また、以下の説明において、温度検出部15a及び撮像部15bをまとめて検出部と称する場合があるものとする。
温度検出部15a及び撮像部15bの総数が複数である場合、360度分の温度データは、各検出部で取得したそれぞれの温度データをまとめて作成してもよいし、各検出部で取得した温度データを足し合わせて作成してもよい。
次に、センサー部14−2の制御の一例について説明する。図14は、本発明の実施の形態2に係る空気調和装置のセンサー部14−2を制御する際の処理の流れを示すフローチャートである。
空気調和装置が運転を開始すると、センサー部14−2が初期設定速度で回転を始める(ステップS201)。同時に、センサー部14−2は、温度検出部15aによる空調対象空間Rの温度データを取得する(ステップS202)。ここで、第1電装品12は、温度検出部15aの温度検出範囲が空調対象空間Rに向いているかどうかを判断する(ステップS203)。この結果、温度検出部15aの温度検出範囲が空調対象空間Rを向いているときは(ステップS203;Yes)、第1電装品12は、センサー部14−2を低速で回転させる(ステップS204)。一方、温度検出部15aの温度検出範囲が空調対象空間Rを向いていないときは(ステップS203;No)、第1電装品12は、センサー部14−2を高速で回転させる(ステップS205)。
次に、センサー部14−2は、撮像部15bによる空調対象空間Rの温度データを取得する(ステップS206)。ここで、第1電装品12は、撮像部15bの温度検出範囲が空調対象空間Rに向いているかどうかを判断する(ステップS207)。この結果、撮像部15bの温度検出範囲が空調対象空間Rを向いているときは(ステップS207;Yes)、第1電装品12は、センサー部14−2を低速で回転させる(ステップS208)。一方、撮像部15bの温度検出範囲が空調対象空間Rを向いていないときは(ステップS207;No)、第1電装品12は、センサー部14−2を高速で回転させる(ステップS209)。
以上のように、本発明の実施の形態2に係る空気調和装置では、センサー部14−2の回転速度を調整するようにしている。すなわち、センサー部14−2の各検出部の温度検出範囲が空調対象空間Rを向いているときにおいては、センサー部14−2を低速で回転させることによって、温度検出の精度を向上させるようにしている。一方、センサー部14−2の各検出部の温度検出範囲が空調対象空間Rを向いていないときにおいては、センサー部14−2を高速で回転させることによって、温度検出範囲が空調対象空間Rを向くまでの時間を短縮するようにしている。
ここでも、実施の形態1と同様に、温度検出範囲の位置によってセンサー部14−2の回転速度を変更することで、回転部15の回転速度を調整した場合を説明した。つまり、本発明の実施の形態2に係る空気調和装置では、センサー部14−1の回転速度を調整することによって、温度検出精度を向上させるようにしているのである。
本発明の実施の形態を場合を分けて説明したが、本発明は実施の形態で説明した内容に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。また、本発明の実施の形態1及び本発明の実施の形態2に係る空気調和装置の中には、空調対象空間Rを加湿する加湿装置、空調対象空間Rを除湿する除湿装置、又は、空調対象空間Rを除加湿する除加湿装置が含まれるものとする。また、第1ユニット10が壁掛けタイプである場合を例に説明したが、第1ユニット10は、天井埋め込みタイプであってもよく、床置きタイプであってもよい。
4 冷媒配管、4A ガス側連絡配管、4B 液側連絡配管、10 第1ユニット、10a 筐体、11 第1熱交換器、12 第1電装品、12a 第1処理部、12b 第1制御部、13 第1アクチュエータ部、13a 第1送風ファン、13b 左右ルーバー、13c 上下ルーバー、14−1 センサー部、14−2 センサー部、14a 通信装置、14b 駆動装置、15 回転部、15A 基端側軸部、15B 連結軸部、15a 温度検出部、15b 撮像部、50 第2ユニット、50a 筐体、51 第2熱交換器、52 第2電装品、52a 第2処理部、52b 第2制御部、53 第2アクチュエータ部、53a 圧縮機、53b 流路切替装置、53c 第2送風ファン、53d 減圧装置、100 空気調和装置、150 操作部、200 スリップリング、201 リング部、202 ブラシ部、205 外側ケーシング、206 内側ケーシング、210 配線、A 冷媒回路、F 床、R 空調対象空間、W1 設置壁、W2 右壁、W3 奥壁、W4 左壁。

Claims (7)

  1. 空調対象空間の温度を検出する1つ又は複数の検出部及び前記検出部を有する回転部を備えたセンサー部と、
    前記回転部を一方向に回転させる駆動装置と、
    前記駆動装置を介して前記回転部の回転を制御する制御装置と、を有し、
    前記制御装置は、
    前記検出部の温度検出範囲の位置に応じて前記回転部の回転速度を調整する
    空気調和装置。
  2. 前記制御装置は、
    前記検出部の温度検出範囲が前記空調対象空間を向いているときと、前記検出部の温度検出範囲が前記空調対象空間を向いていないときとで、前記回転部の回転速度を切り替える
    請求項1に記載の空気調和装置。
  3. 前記制御装置は、
    前記センサー部で検出した温度データを360度分の1つのまとまったデータとする
    請求項1又は2に記載の空気調和装置。
  4. 前記回転部と前記駆動装置とは、
    スリップリング又は非接触回転コネクタで接続されている
    請求項1〜3のいずれか一項に記載の空気調和装置。
  5. 前記検出部が、
    撮像部及び温度検出部の少なくとも1つである
    請求項1〜4のいずれか一項に記載の空気調和装置。
  6. 上下ルーバー、左右ルーバー、及び、送風ファンを備え、
    前記制御装置は、
    前記センサー部で検出した温度データを基に前記上下ルーバー、前記左右ルーバー、前記送風ファン及び前記駆動装置を制御する
    請求項1〜5のいずれか一項に記載の空気調和装置。
  7. 前記空調対象空間の暖房、冷房、除湿、又は、加湿を行う装置として利用される
    請求項1〜6のいずれか一項に記載の空気調和装置。
JP2017243342A 2017-12-20 2017-12-20 空気調和装置 Pending JP2019109025A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017243342A JP2019109025A (ja) 2017-12-20 2017-12-20 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017243342A JP2019109025A (ja) 2017-12-20 2017-12-20 空気調和装置

Publications (1)

Publication Number Publication Date
JP2019109025A true JP2019109025A (ja) 2019-07-04

Family

ID=67179573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017243342A Pending JP2019109025A (ja) 2017-12-20 2017-12-20 空気調和装置

Country Status (1)

Country Link
JP (1) JP2019109025A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021130960A1 (ja) * 2019-12-26 2021-07-01 三菱電機株式会社 空調制御装置、空調システム、空調方法及びプログラム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190456A (ja) * 1993-12-28 1995-07-28 Matsushita Seiko Co Ltd 空気循環装置
US20090232182A1 (en) * 2008-03-11 2009-09-17 Samsung Electronics Co., Ltd. Air conditioner and temperature sensor
JP2015055393A (ja) * 2013-09-11 2015-03-23 日立アプライアンス株式会社 空気調和機
JP2015190666A (ja) * 2014-03-28 2015-11-02 日立アプライアンス株式会社 空気調和機の室内機及びこれを用いた空気調和機
JP2016038153A (ja) * 2014-08-07 2016-03-22 三菱電機株式会社 空気調和装置
JP2016159504A (ja) * 2015-03-02 2016-09-05 セイコーエプソン株式会社 記録装置
WO2017061049A1 (ja) * 2015-10-09 2017-04-13 三菱電機株式会社 空気調和装置の室内機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190456A (ja) * 1993-12-28 1995-07-28 Matsushita Seiko Co Ltd 空気循環装置
US20090232182A1 (en) * 2008-03-11 2009-09-17 Samsung Electronics Co., Ltd. Air conditioner and temperature sensor
JP2015055393A (ja) * 2013-09-11 2015-03-23 日立アプライアンス株式会社 空気調和機
JP2015190666A (ja) * 2014-03-28 2015-11-02 日立アプライアンス株式会社 空気調和機の室内機及びこれを用いた空気調和機
JP2016038153A (ja) * 2014-08-07 2016-03-22 三菱電機株式会社 空気調和装置
JP2016159504A (ja) * 2015-03-02 2016-09-05 セイコーエプソン株式会社 記録装置
WO2017061049A1 (ja) * 2015-10-09 2017-04-13 三菱電機株式会社 空気調和装置の室内機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021130960A1 (ja) * 2019-12-26 2021-07-01 三菱電機株式会社 空調制御装置、空調システム、空調方法及びプログラム
JPWO2021130960A1 (ja) * 2019-12-26 2021-07-01
JP7209869B2 (ja) 2019-12-26 2023-01-20 三菱電機株式会社 空調制御装置、空調システム、空調方法及びプログラム

Similar Documents

Publication Publication Date Title
JP5404777B2 (ja) 空気調和装置
US20080173035A1 (en) Split system dehumidifier
EP2233849A1 (en) Air conditioning apparatus
JP4520370B2 (ja) 水熱源ヒートポンプ式輻射パネル用空調機
JP6835141B2 (ja) 空調システム
JP5725114B2 (ja) 空調システム
JP5871747B2 (ja) 空気調和機
WO2019193680A1 (ja) 空気調和システム
US20220090813A1 (en) Outside air treatment device and air conditioning system
JP6685418B2 (ja) 空調システム、空調制御装置、空調方法及びプログラム
JP7002918B2 (ja) 換気システム、空調システム、換気方法及びプログラム
WO2021214930A1 (ja) 空気調和システムおよび制御方法
JP2019109025A (ja) 空気調和装置
JP6784161B2 (ja) 空調システム
JP6288138B2 (ja) 制御装置
JP6557101B2 (ja) 空気調和機
KR20170090837A (ko) 공기조화기 및 그 제어방법
JP7212283B2 (ja) 空気調和装置
WO2021181486A1 (ja) 空調システム、空調制御装置、空調方法及びプログラム
JP2019138521A (ja) 空気調和装置
US20240003580A1 (en) Air-conditioning system, controller for air-conditioning apparatus, and control method for air-conditioning apparatus
KR20160025221A (ko) 공기조화기
WO2017022114A1 (ja) 空気調和装置の室内機
JP7068762B2 (ja) 動作決定装置、動作決定プログラム及び動作決定方法
JP6740491B1 (ja) 室外機、空気調和システムおよびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220830