JP2019094854A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2019094854A
JP2019094854A JP2017225761A JP2017225761A JP2019094854A JP 2019094854 A JP2019094854 A JP 2019094854A JP 2017225761 A JP2017225761 A JP 2017225761A JP 2017225761 A JP2017225761 A JP 2017225761A JP 2019094854 A JP2019094854 A JP 2019094854A
Authority
JP
Japan
Prior art keywords
pressure
compressor
turbine
restriction
target value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017225761A
Other languages
English (en)
Inventor
梢 依藤
Kozue Yorifuji
梢 依藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017225761A priority Critical patent/JP2019094854A/ja
Publication of JP2019094854A publication Critical patent/JP2019094854A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)

Abstract

【課題】可変ノズルの開度を各種の制約を満たす範囲の限界付近まで設定できるようにする。【解決手段】可変ノズル開度の操作量の算出に際し、コンプレッサ前圧力とコンプレッサ後圧力との圧力比に関する制約、及び、タービンの回転数に関する制約、及び、コンプレッサ後圧力に関する制約を満たす範囲で、コンプレッサ後圧力の目標値を算出する。そして、エキマニ圧力に関する制約、及び、膨張比に関する制約を満たす範囲で、取得された新気量、吸気温度、コンプレッサ前圧力、エキマニガス温度、ターボ後圧力、及び、タービン通過ガス量と、ターボ過給機の総合効率と、コンプレッサ後圧力の目標値とから、エキマニ圧力の目標値を算出する。算出されたエキマニ圧力の目標値、エキマニガス温度、ターボ後圧力、及び、タービン通過ガス量から、可変ノズルの操作量を決定する。【選択図】図2

Description

この発明は、内燃機関の制御装置に関する。より具体的には、可変ノズルを備えるターボ過給機を含む複数のアクチュエータを操作して、内燃機関の運転を操作する内燃機関の制御装置に関するものである。
可変ノズルを有するターボ過給機を備えた内燃機関では、可変ノズルの操作によりタービンの回転を能動的に制御することができる。そして、タービンの回転を制御することで、タービンの回転状態が関係する状態量を間接的に制御することができる。
また、例えば、特許文献1(特開2013−060914号公報)には、可変ノズル開度の制御が記載されている。この可変ノズルの制御では、タービンの過回転及びターボサージの発生を抑制するため、コンプレッサ前後圧力比とターボ回転数とが、それぞれに対する制約値内であるか否かに基づいて、可変ノズルの開度の操作可否が判定される。そして、可変ノズル開度が閉じ方向への操作が可能な場合にのみ可変ノズルの操作が実施され、閉じ方向への操作が不可である場合には開度の更新が禁止され、前回算出された開度が用いられる。
特開2013−060914号公報 特開2016−102426号公報
上記特許文献1の記載の制御によれば、可変ノズルの閉じ方向の操作が不可であるときには可変ノズルの開度の前回値がそのまま用いられる。このため、可変ノズルの開度の実値と、制約を満たす範囲で最も目標値に近い値(即ち、限界値)との差が大きいものとなる。実値と限界値との差の増加は、燃費改善や加速性能向上の観点からは好ましいものではない。また、特許文献1の制御では、閉じ方向への操作不可である場合、算出された可変ノズルの開度が用いられないため、その算出工程は無駄なものとなる。従って、特許文献1に記載の技術は未だ改善の余地を残すものである。
この発明は、上述のような課題を解決するためになされたもので、可変ノズル型ターボ過給機を備える内燃機関において、各制御値に対する制約を満たしつつ安全サイドの余裕代を小さく抑えた開度に可変ノズルが制御されるように改良された内燃機関の制御装置を提供するものである。
本発明に係る内燃機関の制御装置は、可変ノズルを有するターボ過給機を備えた内燃機関の制御装置であって、以下のロジックによって可変ノズルの操作量を決定する。
この内燃機関の制御装置は、コンプレッサの入口側の吸気通路内圧力であるコンプレッサ前圧力を取得する。そして、コンプレッサ前圧力と、コンプレッサの出口側の吸気通路内圧力であるコンプレッサ後圧力との圧力比に関する制約、及び、タービンの回転数に関する制約、及び、コンプレッサ後圧力に関する制約を満たす範囲で、コンプレッサ後圧力の目標値を算出する。
また、制御装置は、吸気通路に取り込まれた新気の流量である新気量と、コンプレッサの入口側の吸気通路内温度である吸気温度と、タービンの入口側の排気通路内温度であるエキマニガス温度と、タービンの出口側の排気通路内圧力であるターボ後圧力と、タービンを通過するガスの流量であるタービン通過ガス量と、を取得する。そして、タービンの入口側の排気通路内圧力であるエキマニ圧力に関する制約、及び、膨張比に関する制約を満たす範囲で、取得された新気量、吸気温度、コンプレッサ前圧力、エキマニガス温度、ターボ後圧力、及び、タービン通過ガス量と、ターボ過給機の総合効率と、コンプレッサ後圧力の目標値とから、エキマニ圧力の目標値を算出する。
更に、制御装置は、エキマニ圧力の目標値、エキマニガス温度、ターボ後圧力、及び、タービン通過ガス量から、可変ノズルの操作量を決定する。
本発明による内燃機関の制御装置によれば、可変ノズルの開度の算出の過程で各種の制約値が用いられ、各種制約を越えない範囲での可変ノズル開度が決定される。これにより各種制約を満たす範囲内での限界値まで可変ノズルを操作することができ、燃費の改善及び加速性能の向上を図ることができる。
本発明の実施の形態としての内燃機関の概略構成を説明するための図である。 本発明の制御装置が備える、可変ノズルの開度を算出する構成を示すブロック図である。 ターボ過給機のコンプレッサマップを示す図である。 本発明の制御装置が備える、ターボモデルを用いてエキマニ圧力の目標値を算出する構成を示すブロック図である。
以下、図面に基づいてこの発明の実施の形態について説明する。図1は、本発明の実施の形態としての内燃機関の概略構成を説明するための図である。図1に示すとおり、本実施の形態のシステムは、複数気筒(図1では4気筒)を有する4サイクルのディーゼルエンジン(以下、単に「エンジン」とも称する)2を備えている。エンジン2は車両に搭載され、その動力源とされているものとする。本実施形態では、本発明をディーゼルエンジン(即ち、圧縮着火内燃機関)の制御に適用した場合について説明するが、本発明はディーゼルエンジンに限定されるものではなく、ガソリンエンジン(即ち、火花点火内燃機関)、その他の各種の内燃機関の制御に適用することが可能である。エンジン2の各気筒には、燃料を筒内に直接噴射するためのインジェクタ4が設置されている。各気筒のインジェクタ4は、共通のコモンレール6に接続されている。コモンレール6への燃料供給系の図示は省略するが、燃料タンク内の燃料は、所定の燃圧まで加圧されて、コモンレール6内に蓄えられ、コモンレール6から各インジェクタ4に供給される。
エンジン2は、可変ノズル型のターボ過給機10を備えている。ターボ過給機10は、排気ガスの排気エネルギによって作動するタービン12と、タービン12と一体的に連結され、タービン12に入力される排気ガスの排気エネルギによって回転駆動されるコンプレッサ14とを有している。更に、ターボ過給機10は、タービン12に供給される排気ガスの流量を調整するための可変ノズル(以下「VN」と略する)16を有している。
VN16は、図示を省略するアクチュエータ(例えば、電動モータ)によって開閉動作可能になっている。VN16の開度(以下「VN開度」とも称する)を小さくすると、タービン12の入口面積が小さくなり、タービン12に吹き付けられる排気ガスの流速を速くすることができる。その結果、コンプレッサ14およびタービン12の回転数(以下、「ターボ回転数」と称する)が上昇するので、過給圧を上昇させることができる。逆に、VN開度を大きくすると、タービン12の入口面積が大きくなり、タービン12に吹き付けられる排気ガスの流速が遅くなる。その結果、ターボ回転数が降下するので、過給圧を低下させることができる。
吸気通路20は、吸気マニホールド22により枝分かれして、各気筒の吸気ポート(図示せず)に接続している。エンジン2の吸気通路20の入口付近には、エアクリーナ30が設けられている。エアクリーナ30を通って吸入された空気は、ターボ過給機10のコンプレッサ14で圧縮された後、インタークーラ32で冷却される。インタークーラ32を通過した吸入空気は、吸気マニホールド22により各気筒の吸気ポート(図示せず)に分配される。
吸気通路20におけるインタークーラ32と吸気マニホールド22との間には、吸気絞り弁(即ち、ディーゼルスロットル)34が設置されている。吸気絞り弁34は、アクチュエータによって電気的に開閉自在に構成されている。
排気通路40は、排気マニホールド42により枝分かれして、各気筒の排気ポート(図示せず)に接続している。ターボ過給機10のタービン12は、排気通路40の途中に配置されている。タービン14よりも下流側の排気通路40には、排気ガスを浄化するための後処理装置44が設けられている。後処理装置44としては、例えば、酸化触媒、NOx触媒、DPF(Diesel Particulate Filter)、DPNR(Diesel Particulate-NOx-Reduction system)等を用いることができる。
吸気通路20における吸気マニホールド22近傍には、EGR(Exhaust Gas Recirculation)通路50の一端が接続されている。EGR通路50の他端は、排気通路40の排気マニホールド42近傍に接続されている。このEGR通路50を通して、排気ガス(既燃ガス)の一部を吸気通路20へ還流させること、つまり外部EGRを行うことができる。
EGR通路50の途中には、EGRガスを冷却するためのEGRクーラ52が設けられている。EGR通路50には、EGRクーラ52をバイパスするためのバイパス通路54が、EGRクーラ52と並行に接続されている。EGR通路50の、EGRクーラ52よりEGRガスの流れに対して下流側(即ち、吸気通路20に近い側)には、EGRバルブ56が設置されている。
吸気通路20におけるエアクリーナ30の下流近傍には、吸気通路20に吸入される新気の流量である新気量Gaに関する情報を取得するためのエアフローメータ60が設置されている。また、このシステムは、その他にも、コンプレッサ14の入口側の吸気通路20内の温度である吸気温度Thaを計測するためのセンサ、コンプレッサ14の入口側の吸気通路20内の圧力であるコンプレッサ前圧力P2を計測するための圧力センサ62、吸気絞り弁34の下流、即ち、吸気マニホールド22内の吸気圧力Pimを計測するための吸気圧センサ66、大気圧を検出するための大気圧センサ(図示せず)、アクセルペダル68の踏み込み量(アクセル開度)を検出するためのアクセルポジションセンサ(図示せず)、エンジン2のクランク角度を検出するためのクランク角センサ(図示せず)等、エンジン2の運転状態や運転情報に関する情報を取得するための各種センサを有している。
本実施の形態のシステムは、制御装置としてのECU(Electronic Control Unit)70を備えている。ECU70の入力部には、上述した各種センサが接続されている。またECU70の出力部には、上述したインジェクタ4、吸気絞り弁34、EGRバルブ56、ターボ過給機10の他、エンジン2を制御するための各種アクチュエータが接続されている。ECU70は、入力された各種の情報に基づいて、所定のプログラムに従って各機器を駆動する。
ECU70が有する機能の一つに、コンプレッサ14の出口側の吸気通路20内の圧力であるコンプレッサ後圧力P3が、目標値になるようにターボ過給機10の運転を制御する機能がある。ターボ過給機10の運転を制御するための操作量の1つにVN16の開度がある。
ECU70は、コンプレッサ後圧力P3の目標値からVN16の開度を直接演算するのではなく、まず、コンプレッサ後圧力P3の目標値から、後述する制約を考慮した目標コンプレッサ後圧力P3trgを算出する。そして、制約考慮後の目標コンプレッサ後圧力P3trgの値を用いて、タービン12の入口側の圧力である排気マニホールド42の圧力(以下、「エキマニ圧力」と称する)P4の目標値を算出する。更に、エキマニ圧力P4の目標値から、後述する制約を考慮した目標エキマニ圧力P4trgを算出する。そして、制約考慮後の目標エキマニ圧力P4trgの値を用いて、VN16の各開度を決定する。
図2は、ECU70が備えるVN16の開度の目標値を算出する構成を示すブロック図である。ECU70は、演算部72、74、76、78を備える。以下、演算部72、74、76、78のそれぞれの機能について説明する。
演算部72には、コンプレッサ後圧力P3の目標値と、サージ制約P3目標値と、回転数制約P3目標値と、P3制約値とが、それぞれ入力される。コンプレッサ後圧力P3の目標値は、例えば、エンジン回転速度と燃料噴射量との関係を定めたマップや、吸気マニホールド22内の吸気圧力Pimの目標値又は吸気絞り弁34の入口側の吸気通路20内の圧力Piaの目標値に基づいて算出される。P3制約値は、エンジン失火防止のために必要なコンプレッサ後圧力P3の上限値である。
図3は、新気量とコンプレッサ前後圧力比との関係を示すコンプレッサマップである。図3を用いて、サージ制約P3目標値と、回転数制約P3目標値との算出方法について説明する。図3において破線Aはサージラインを表している。実線Bは制約回転数曲線を示す。
サージ制約P3目標値は、コンプレッサ前後圧力比に対する制約値から求められる制約値であり、コンプレッサにおける吸入空気の逆流を抑制するための制約値である。新気量Gaに応じて、図3に示されるようなコンプレッサマップに従って、サージラインAを超えない圧力比P3/P2が算出される。算出された圧力比P3/P2と、現在のコンプレッサ前圧力P2とから、サージ制約P3目標値が算出される。
回転数制約P3目標値は、ターボ過給機10の過回転を防止するための制約値である。新気量に応じて、図3に示されるようなコンプレッサマップに従って、制約回転数曲線Bを超えない圧力比P3/P2を算出する。算出された圧力比P3/P2と、現在のコンプレッサ前圧力P2とから、サージ制約P3目標値が算出される。
演算部72は、サージ制約P3目標値、回転数制約P3目標値、及び、P3制約値を満たす範囲で、コンプレッサ後圧力P3に最も近い値を算出する。即ち、演算部72では、入力された、コンプレッサ後圧力P3の目標値、サージ制約P3目標値、回転数制約P3目標値、及び、P3制約値の中で最小の目標値が選択され、この値が、各制約考慮後の目標コンプレッサ後圧力P3trgとして出力される。
演算部74は、ターボモデルを用いてエキマニ圧力P4の目標値を演算する。図4は、演算部74の構成の一例を示すブロック図である。演算部74には、目標コンプレッサ仕事算出部80と、目標タービン仕事算出部82と、目標排気系状態量算出部84とが含まれる。
目標コンプレッサ仕事算出部80は、以下の式(1)に従って、コンプレッサ14がする仕事であるコンプレッサ仕事の目標値(以下「目標コンプレッサ仕事」とも称する)WCtrgを算出する。式(1)は、コンプレッサ仕事WC、新気量Ga、吸気温度Tha、コンプレッサ前圧力P2、及び、コンプレッサ後圧力P3の間に成り立つ関係を表した式である。式(1)に、目標コンプレッサ後圧力P3trgと、新気量Ga、吸気温度Tha、及び、コンプレッサ前圧力P2の現在値を入力することによって、目標コンプレッサ仕事WCtrgが求められる。なお、式(1)において、Cpaは定温比熱であり、その値は例えば0.24、κは空気の比熱比であり、その値は例えば1.4である。
Figure 2019094854
目標タービン仕事算出部82は、以下の式(2)に従って、目標コンプレッサ仕事WCtrgから、タービン12がする仕事であるタービン仕事の目標値(以下、「目標タービン仕事」と称する)WTtrgを算出する。式(2)において、ηtotは、ターボ過給機10の総合効率である。ターボ総合効率ηtotは、固定値でもよいし、例えば、タービン12の回転速度を軸としたマップで定義される変数でもよい。
Figure 2019094854
目標排気系状態量算出部84は、以下の式(3)に従って、エキマニ圧力P4の目標値を算出する。式(3)は、タービン仕事WT、タービン入口側の排気通路40内の温度であるエキマニガス温度T4、タービン12の出口側の排気通路40内の圧力であるターボ後圧力P6、タービンを通過するガスの流量であるタービン通過ガス量Ga+Gf、及びエキマニ圧力P4の間に成り立つ関係を表した式である。式(3)に、目標タービン仕事WTtrgと、エキマニガス温度T4、ターボ後圧力P6、及び、タービン通過ガス量Ga+Gfの各現在値を入力することによって、エキマニ圧力P4の目標値が求められる。なお、式(3)において、Cpgは定圧比熱であり、その値は例えば0.26、κは排気ガスの比熱比であり、その値は例えば1.33である。
Figure 2019094854
再び、図2を参照して、演算部76は、制約考慮後の目標エキマニ圧力P4trgを算出する。演算部76には、演算部74で算出されたエキマニ圧力P4の目標値と、エキマニ圧力P4に対する制約値として、エキマニ圧力P4制約値と、膨張比P4/P6による制約(以下、「膨張比制約」と称する)に関するP4目標値とが入力される。ここでエキマニ圧力P4制約値は、排気の逆流を防止するための制約であり、膨張比制約は、タービン12における排気空気逆流を防止するための制約値である。膨張比制約P4目標値は、膨張比制約値に、ターボ後圧力P6の現在値を掛けることで、算出される。演算部76は、エキマニ圧力P4の目標値が、エキマニ圧力P4制約値と膨張比制約P4目標値との範囲内である場合には、エキマニ圧力P4の目標値を、目標エキマニ圧力P4trgとして出力する。一方、エキマニ圧力P4の目標値が、エキマニ圧力P4制約値と膨張比制約P4目標値との範囲外である場合には、エキマニ圧力P4制約値と膨張比制約P4目標値とを満たす範囲で、エキマニ圧力P4の目標値に最も近い値を、目標エキマニ圧力P4trgとして出力する。
演算部78は、ノズル式である。演算部78は、以下の式(4)及び式(5)に従って、ノズルの開度を算出する。式(4)により、VN16の有効開口面積μAが算出される。式(4)におけるΦ関数は、式(5)により計算される。式(4)及び式(5)において、P4に目標エキマニ圧力P4trgを入力し、P6にターボ後圧力P6の現在値を入力し、T4にエキマニガス温度T4の現在値を入力し、Ga+Gfに、タービン通過ガス量Ga+Gfの現在値を入力することにより、VN16の有効開口面積μAが得られる。有効開口面積に応じて、VN16の開度が決定される。
Figure 2019094854
Figure 2019094854
以上説明したように、本実施の形態の制御装置によれば、演算の過程において各制約値が入力され、制約値を満たす形でVN16の開度が決定される。従って、各制約を満たす範囲で、目標過給圧に応じたVN16の開度の要求値に最も近い値が演算される。つまり安全サイドへの余裕代を必要最小限なものとすることができ、VN16を制約ギリギリの値にまで制御することができる。これにより燃費の改善及び加速性能の向上を図ることができる。
なお、本実施の形態では、制約値として、サージ制約P3目標値、回転数制約P3目標値、P3制約値、P4制約値、及び、膨張比制約P4目標値を考慮する場合について説明した。しかし、本発明において考慮される制約はこれに限られず、入力されるその他の状態量に対する各種制約を、計算の過程で考慮するように設定することができる。
2 エンジン
4 インジェクタ
6 コモンレール
10 ターボ過給機
12 タービン
14 コンプレッサ
16 可変ノズル(VN)
20 吸気通路
22 吸気マニホールド
30 エアクリーナ
32 インタークーラ
34 吸気絞り弁
40 排気通路
42 排気マニホールド
44 後処理装置
50 EGR通路
52 EGRクーラ
54 バイパス通路
56 EGRバルブ
60 エアフローメータ
62 圧力センサ
66 吸気圧センサ
68 アクセルペダル
70 ECU
72、74、76,78 演算部
80 目標コンプレッサ仕事算出部
82 目標タービン仕事算出部
84 目標排気系状態量算出部

Claims (1)

  1. 可変ノズルを有するターボ過給機を備えた内燃機関の制御装置において、
    吸気通路に取り込まれた新気の流量である新気量を取得する手段と、
    コンプレッサの入口側の吸気通路内温度である吸気温度を取得する手段と、
    前記コンプレッサの入口側の吸気通路内圧力であるコンプレッサ前圧力を取得する手段と、
    タービンの入口側の排気通路内温度であるエキマニガス温度を取得する手段と、
    前記タービンの出口側の排気通路内圧力であるターボ後圧力を取得する手段と、
    前記タービンを通過するガスの流量であるタービン通過ガス量を取得する手段と、
    前記コンプレッサ前圧力と前記コンプレッサの出口側の吸気通路内圧力であるコンプレッサ後圧力との圧力比に関する制約、及び、前記タービンの回転数に関する制約、及び、前記コンプレッサ後圧力に関する制約を満たす範囲で、前記コンプレッサ後圧力の目標値を算出する手段と、
    前記タービンの入口側の排気通路内圧力であるエキマニ圧力に関する制約、及び、膨張比に関する制約を満たす範囲で、前記新気量、前記吸気温度、前記コンプレッサ前圧力、前記エキマニガス温度、前記ターボ後圧力、前記タービン通過ガス量、前記ターボ過給機の総合効率、及び、前記コンプレッサ後圧力の目標値から、前記エキマニ圧力の目標値を算出する手段と、
    前記エキマニ圧力の目標値、前記エキマニガス温度、前記ターボ後圧力、及び、前記タービン通過ガス量から、前記可変ノズルの操作量を決定する手段と、
    を備えることを特徴とする内燃機関の制御装置。
JP2017225761A 2017-11-24 2017-11-24 内燃機関の制御装置 Pending JP2019094854A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017225761A JP2019094854A (ja) 2017-11-24 2017-11-24 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017225761A JP2019094854A (ja) 2017-11-24 2017-11-24 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2019094854A true JP2019094854A (ja) 2019-06-20

Family

ID=66971222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017225761A Pending JP2019094854A (ja) 2017-11-24 2017-11-24 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP2019094854A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115292946A (zh) * 2022-08-15 2022-11-04 中国航发沈阳发动机研究所 一种基于变比热计算的高压涡轮效率评估方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115292946A (zh) * 2022-08-15 2022-11-04 中国航发沈阳发动机研究所 一种基于变比热计算的高压涡轮效率评估方法及装置
CN115292946B (zh) * 2022-08-15 2023-09-05 中国航发沈阳发动机研究所 一种基于变比热计算的高压涡轮效率评估方法及装置

Similar Documents

Publication Publication Date Title
JP3995239B2 (ja) エンジンのegrシステムの制御方法
JP4124143B2 (ja) 電動機付過給機の制御装置
JP5187123B2 (ja) 内燃機関の制御装置
US20160003133A1 (en) Control device for internal combustion engine
JP2009509080A (ja) 排気再循環を行う内燃エンジンのための方法
JP2014034959A (ja) 過給機付きエンジンの排気還流装置
JP2013060914A (ja) 内燃機関の制御装置
JP4736969B2 (ja) ディーゼルエンジンの制御装置
JP4556932B2 (ja) 過給圧制御装置
US10823120B2 (en) Spark ignited engine load extension with low pressure exhaust gas recirculation and delta pressure valve
JP4542489B2 (ja) 内燃機関のエキゾーストマニホールド内温度推定装置
JP2018155167A (ja) 内燃機関の制御装置
CN116838505A (zh) 一种混动增压发动机的egr***及控制方法
JP2019094854A (ja) 内燃機関の制御装置
JP4911432B2 (ja) 内燃機関の制御装置
WO2018221160A1 (ja) 内燃機関のスロットルバルブ制御装置
JP2019203435A (ja) エンジンの制御装置
JP6913624B2 (ja) 内燃機関の制御方法
JP2010168954A (ja) 内燃機関の制御装置
JP2014234808A (ja) 過給機付内燃機関の排気還流装置および排気還流方法
JP2020002905A (ja) 内燃機関の制御装置
JP7468383B2 (ja) 内燃機関の制御装置
JP6943673B2 (ja) 制御装置および制御方法
JP6881610B2 (ja) ガソリンエンジンの排気浄化方法および排気浄化装置
JP6835655B2 (ja) Egr装置