JP2019094789A - Artificial muscle actuator - Google Patents

Artificial muscle actuator Download PDF

Info

Publication number
JP2019094789A
JP2019094789A JP2017222417A JP2017222417A JP2019094789A JP 2019094789 A JP2019094789 A JP 2019094789A JP 2017222417 A JP2017222417 A JP 2017222417A JP 2017222417 A JP2017222417 A JP 2017222417A JP 2019094789 A JP2019094789 A JP 2019094789A
Authority
JP
Japan
Prior art keywords
unit
covering member
artificial muscle
unit covering
muscle actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017222417A
Other languages
Japanese (ja)
Inventor
中村 太郎
Taro Nakamura
太郎 中村
敏也 石川
Toshiya Ishikawa
敏也 石川
安司 渥美
Yasushi Atsumi
安司 渥美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANEKO CORD CO Ltd
KANEKO CORD KK
Chuo University
Original Assignee
KANEKO CORD CO Ltd
KANEKO CORD KK
Chuo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANEKO CORD CO Ltd, KANEKO CORD KK, Chuo University filed Critical KANEKO CORD CO Ltd
Priority to JP2017222417A priority Critical patent/JP2019094789A/en
Publication of JP2019094789A publication Critical patent/JP2019094789A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)
  • Quick-Acting Or Multi-Walled Pipe Joints (AREA)

Abstract

To provide an artificial muscle actuator capable of evenly cooling each unit cell in a unit coating member, even in a case where each unit cell extends and contracts in a state where a plurality of unit cells approach each other, are arranged with their cross sections formed substantially circularly, and are coated with the unit coating member.SOLUTION: An artificial muscle actuator comprises: a unit cell 20 composed of a shape memory alloy spring 22 to an end part of which an electric wire and a wire are connected, and a heat-resistant unit cell coating member 26 coating an outer periphery of the shape memory alloy spring 22; a unit coating member 10 coating an outermost periphery of a plurality of unit cells 20, wherein the plurality of unit cells approach each other and are arranged with their cross section formed substantially circularly; and a joint 30 for piping fitted to an end part of the unit coating member 10, and configured to inject cooling fluid into the unit coating member 10.SELECTED DRAWING: Figure 3

Description

本発明は、人工筋肉アクチュエータに関する。   The present invention relates to artificial muscle actuators.

人工筋肉アクチュエータとして、例えば非特許文献1に開示されたものがある(非特許文献1と非特許文献2とは、同一内容)。
非特許文献1に開示された人工筋肉アクチュエータは、端部に電線とアラミド糸とが接続された形状記憶合金バネと、ポリイミドフィルムを略短冊状にカットして形状記憶合金バネに円筒状に巻き付けた単セル被覆部材である巻フィルムチューブと、により人工筋肉の最小単位となる単セルを構成している。
そして、人工筋肉アクチュエータは、複数本の単セルをユニット被覆部材である天然ゴムチューブに挿入してコンポーネント化し、天然ゴムチューブ内に冷却液を流すことで、単セルの冷却を図っている。
As an artificial muscle actuator, there are some which were indicated by nonpatent literature 1, for example (nonpatent literature 1 and nonpatent literature 2 are the same contents).
In the artificial muscle actuator disclosed in Non-Patent Document 1, a shape memory alloy spring having an electric wire and an aramid yarn connected at its end and a polyimide film cut into a substantially rectangular shape and wound around the shape memory alloy spring in a cylindrical shape A single cell covering member, which is a wound film tube, constitutes a single cell which is a minimum unit of an artificial muscle.
And an artificial muscle actuator inserts a plurality of single cells into a natural rubber tube which is a unit covering member and is made into a component, and cooling of a single cell is aimed at by pouring cooling fluid in a natural rubber tube.

石川敏也、中村太郎、「巻フィルムチューブ式SMA人工筋肉アクチュエータのモバイル化と拮抗配置による剛性制御手法の検討」、計測自動制御学会論文集、公益社団法人計測自動制御学会、2016年3月、Vol.52、No.3、p.103-112Toshiya Ishikawa, Taro Nakamura, "Study on stiffness control method by moving a film tube type SMA artificial muscle actuator by mobile and antagonistic arrangement", Transactions of the Society of Measurement and Automatic Control, The Society of Measurement and Automatic Control, March 2016, Vol. .52, No. 3, p. 103-112 石川敏也(Toshiya Ishikawa)、中村太郎(Taro Nakamura )、巻フィルムチューブ式SMA人工筋肉アクチュエータのモバイル化と拮抗配置による剛性制御手法の検討(Portability and Antagonistic Stiffness Control for an Shape Memory Alloy Artificial Muscle Actuator Protected by a Rolled Film Tube)、2016年のIEEEの国際会議 高度知的メカトロニクス(AIM)予稿集(Advanced Intelligent Mechatronics(AIM), 2016 IEEE International Conference on)、カナダ、IEEE、2016年7月、978-1-5090-2064-5/16、p.220-227Toshiya Ishikawa (Toshiya Ishikawa), Taro Nakamura (Taro Nakamura) A study on stiffness control method by mobile and antagonist arrangement of wound film tube type SMA artificial muscle actuator (Portability and Antagonistic Stiffness Control for an Shape Memory Alloy Artificial Muscle Actuator Protected by Protected by a Rolled Film Tube), IEEE International Conference on 2016 Advanced Intelligent Mechatronics (AIM), 2016 IEEE International Conference on, Canada, IEEE, July 2016, 978- 5090-2064-5 / 16, p. 220-227

非特許文献1の人工筋肉アクチュエータでは、複数本の単セルを互いに近接して断面略円状に配置してユニット被覆部材である天然ゴムチューブで覆った状態で各単セルが収縮した場合、天然ゴムチューブも長さ的には短くなるものの、一番外側に位置する単セルと天然ゴムチューブとの隙間が大きくなり、冷却液がその大きくなった隙間に専ら流れ、中央部分に位置する単セルに冷却液が十分に行き渡りにくく、各単セルを均一に冷却することが困難である。   In the artificial muscle actuator of Non-Patent Document 1, when a plurality of single cells are arranged close to each other in a substantially circular cross-section and covered with a natural rubber tube which is a unit covering member, natural cells are contracted Although the rubber tube also becomes shorter in length, the gap between the outermost unit cell and the natural rubber tube becomes larger, and the coolant flows exclusively into the larger gap, and the unit cell is located in the central part It is difficult for the cooling liquid to spread sufficiently, and it is difficult to uniformly cool each single cell.

本発明は、このような事情に鑑みてなされたもので、複数本の単セルを互いに近接して断面略円状に配置してユニット被覆部材で覆った状態で各単セルが伸縮した場合であっても、ユニット被覆部材内の各単セルを均一に冷却することができる人工筋肉アクチュエータを提供することを目的とする。   The present invention has been made in view of such circumstances, and in the case where a plurality of unit cells are arranged close to each other in a substantially circular cross section and covered with a unit covering member, each unit cell expands and contracts. It is an object of the present invention to provide an artificial muscle actuator capable of uniformly cooling each single cell in a unit covering member even if any.

上記目的を達成するため、本発明の人工筋肉アクチュエータは、
端部に電線とワイヤとが接続された形状記憶合金バネと、前記形状記憶合金バネの外周を覆う耐熱性を有する単セル被覆部材とによりなる単セルと、
互いに近接して断面略円状に配置された複数本の前記単セルの最外周を覆うユニット被覆部材と、
前記ユニット被覆部材の端部に被嵌され前記ユニット被覆部材の内部に冷却流体を注入する配管用継手と、を備え、
前記ユニット被覆部材は、前記形状記憶合金バネの伸縮に伴う前記単セルの伸縮に伴って軸方向に伸縮すると共に、
前記ユニット被覆部材は、それぞれの前記単セル相互の隙間によってなる内側流路に前記冷却流体が所定量流れ得るように、前記ユニット被覆部材と前記単セルとの隙間によってなる外側流路の前記冷却流体の流路体積を抑制可能な内径である、
ことを特徴とする。
In order to achieve the above object, the artificial muscle actuator of the present invention is
A single cell comprising a shape memory alloy spring in which an electric wire and a wire are connected at an end portion, and a heat resistant single cell covering member covering an outer periphery of the shape memory alloy spring;
A unit covering member that covers the outermost periphery of the plurality of single cells disposed in a substantially circular shape in cross section in close proximity to each other;
And a pipe fitting which is fitted to the end of the unit covering member and injects a cooling fluid into the unit covering member.
The unit covering member expands and contracts in an axial direction along with the expansion and contraction of the unit cell accompanying the expansion and contraction of the shape memory alloy spring.
The unit covering member is configured to allow the cooling fluid to flow in a predetermined amount in the inner flow passage formed by the gap between the unit cells, and the cooling of the outer flow passage formed by the gap between the unit covering member and the unit cell. The inner diameter capable of suppressing the flow path volume of the fluid,
It is characterized by

また、前記ユニット被覆部材は、前記冷却流体によるベルヌイの定理の作用により、前記内側流路に前記冷却流体が所定量流れ得るように、前記外側流路の前記冷却流体の流路体積を抑制可能な内径に変形する、
ようにしても良い。
Further, the unit covering member can suppress the flow volume of the cooling fluid in the outer flow passage so that the cooling fluid can flow in the inner flow passage by a predetermined amount by the action of Bernoulli's theorem by the cooling fluid. Transforms to an inside diameter,
You may do so.

前記ユニット被覆部材は、前記ユニット被覆部材の内周面と前記単セルの外周面とが近接する内径である、
ようにしても良い。
The unit covering member has an inner diameter at which an inner peripheral surface of the unit covering member and an outer peripheral surface of the single cell are close to each other.
You may do so.

前記ユニット被覆部材は、前記ユニット被覆部材の内周面の前記単セルの外周面に対する摩擦抵抗が小さい、
ようにしても良い。
The unit covering member has a small frictional resistance to the outer peripheral surface of the unit cell of the inner peripheral surface of the unit covering member.
You may do so.

前記ユニット被覆部材は、内周面に撥水性を有する、
ようにしても良い。
The unit covering member has water repellency on the inner circumferential surface,
You may do so.

前記ユニット被覆部材は、フッ化炭素樹脂製である、
ようにしても良い。
The unit covering member is made of fluorocarbon resin,
You may do so.

前記ユニット被覆部材は、多孔質領域を含む、
ようにしても良い。
The unit covering member includes a porous region
You may do so.

前記配管用継手は、それぞれの前記単セルの端部外周を個別に保持すると共に、それぞれの前記単セルの内部に前記冷却流体を注入するために外部と連通する凹状連通溝を備える、
ようにしても良い。
The pipe joint separately holds an outer periphery of an end of each unit cell, and includes a concave communication groove communicating with the outside to inject the cooling fluid into the unit cell.
You may do so.

複数本の単セルを互いに近接して断面略円状に配置してユニット被覆部材で覆った状態で各単セルが伸縮した場合であっても、ユニット被覆部材内の各単セルを均一に冷却することができる。   Even when each unit cell is expanded or contracted while a plurality of unit cells are arranged close to each other in a substantially circular cross section and covered with the unit covering member, each unit cell in the unit covering member is uniformly cooled can do.

本発明の人工筋肉アクチュエータの一実施の形態にかかる外観図である。It is an outline view concerning one embodiment of an artificial muscle actuator of the present invention. 本発明の人工筋肉アクチュエータの一実施の形態にかかる縦断面図である。It is a longitudinal section concerning one embodiment of an artificial muscle actuator of the present invention. 本発明の人工筋肉アクチュエータの一実施の形態にかかる拡大縦断面図である。FIG. 1 is an enlarged vertical sectional view according to an embodiment of an artificial muscle actuator of the present invention. 本発明の人工筋肉アクチュエータの一実施の形態にかかる図3のA−A線矢視断面図である。It is the sectional view on the AA line in FIG. 3 concerning one embodiment of the artificial muscle actuator of the present invention. 本発明の人工筋肉アクチュエータの一実施の形態にかかる動作を示す図3のA−A線矢視断面図である。FIG. 4 is a cross-sectional view taken along line AA of FIG. 3 showing an operation according to an embodiment of an artificial muscle actuator of the present invention. 本発明の人工筋肉アクチュエータの一実施の形態にかかる配管用継手の(a)右側面図、(b)縦断面図、(c)左側面図である。BRIEF DESCRIPTION OF THE DRAWINGS (a) Right side view of the coupling for piping concerning one embodiment of the artificial muscle actuator of this invention, (b) Longitudinal sectional view, (c) It is a left side view.

以下、本発明の人工筋肉アクチュエータの一実施の形態について図面を参照して詳細に説明する。
人工筋肉アクチュエータ1は、図1〜図5に示すように、複数本の単セル20と、互いに近接して断面略円状に配置された複数本の単セル20の最外周を覆うユニット被覆部材10と、ユニット被覆部材10の端部に被嵌されユニット被覆部材10の内部に冷却流体を注入する配管用継手30とで構成される。
Hereinafter, an embodiment of an artificial muscle actuator of the present invention will be described in detail with reference to the drawings.
As shown in FIGS. 1 to 5, the artificial muscle actuator 1 is a unit covering member that covers the outermost circumferences of a plurality of single cells 20 and a plurality of single cells 20 disposed close to each other and having a substantially circular cross section. And 10, a pipe fitting 30 fitted to the end of the unit covering member 10 and injecting a cooling fluid into the unit covering member 10.

単セル20は、形状記憶合金バネ22と、形状記憶合金バネ22の外周を覆う耐熱性を有する単セル被覆部材26とにより構成されている。形状記憶合金バネ22は、端部に電線とワイヤとが接続された構成が一般であるが、図2,3に示すように、本実施の形態の単セル20では、形状記憶合金バネ22の両端に電線とワイヤとの機能を併せ持った強化電線24が接続され、強化電線24が単セル被覆部材26の外側に伸びている。   The unit cell 20 is configured of a shape memory alloy spring 22 and a heat resistant single cell covering member 26 that covers the outer periphery of the shape memory alloy spring 22. The shape memory alloy spring 22 generally has a configuration in which an electric wire and a wire are connected at the end, but as shown in FIGS. 2 and 3, in the single cell 20 of this embodiment, the shape memory alloy spring 22 is The reinforced electric wire 24 having the functions of the electric wire and the wire is connected to both ends, and the reinforced electric wire 24 extends to the outside of the unit cell covering member 26.

単セル20の形状記憶合金バネ22の外周を覆う耐熱性を有する単セル被覆部材26は、耐熱性を有すると共に形状記憶合金バネ22の伸縮に追従して、軸方向に伸縮する略円筒形状のものである。単セル被覆部材26は、形状記憶合金バネ22を発熱させることから耐熱性を有する必要があり、また形状記憶合金バネ22の発生力を損なわない弾性コンプライアンスが大きく柔軟性に優れた材質及び形状がより好ましい。単セル被覆部材26としてのこのような要件を満たせば、材質や形状によって制約されるものではなく、例えば、ポリイミドフィルムを短冊状にした上で円筒状に巻き上げた巻フィルムチューブ等が使用可能である。   The heat resistant single cell covering member 26 covering the outer periphery of the shape memory alloy spring 22 of the single cell 20 is heat resistant and has a substantially cylindrical shape which is expanded and contracted in the axial direction following the expansion and contraction of the shape memory alloy spring 22. It is a thing. The unit cell covering member 26 needs to have heat resistance because the shape memory alloy spring 22 generates heat, and the material and shape are large in elastic compliance and excellent in flexibility without losing the generation force of the shape memory alloy spring 22. More preferable. If such requirements as the unit cell covering member 26 are satisfied, it is not restricted by the material or the shape, and for example, it is possible to use a wound film tube etc. in which a polyimide film is formed into a strip and wound up in a cylindrical shape is there.

ユニット被覆部材10は、互いに近接して断面略円状に配置された複数本の単セル20の最外周を覆うものであり、複数本の単セル20をユニット化するものである。図4,5に示すように、人工筋肉アクチュエータ1では、7本の単セル20を1本のユニット被覆部材10に収容して単セル20の最外周を覆うようにしているが、単セル20の本数によって制限されるものではなく、単セル20の本数は任意である。   The unit covering member 10 covers the outermost periphery of a plurality of unit cells 20 arranged close to each other and having a substantially circular cross section, and unitizes the plurality of unit cells 20. As shown in FIGS. 4 and 5, in the artificial muscle actuator 1, seven unit cells 20 are accommodated in one unit covering member 10 so as to cover the outermost periphery of the unit cell 20. The number of single cells 20 is arbitrary.

ユニット被覆部材10は、形状記憶合金バネ22の伸縮に伴う単セル20の伸縮に伴って軸方向に伸縮するものである。また、ユニット被覆部材10は、詳細は後述するが、それぞれの単セル20相互の隙間によってなる内側流路200に冷却流体が所定量流れ得るように、ユニット被覆部材10と単セル20との隙間によってなる外側流路100の冷却流体の流路体積を抑制可能な内径である。   The unit covering member 10 is expanded and contracted in the axial direction along with the expansion and contraction of the unit cell 20 accompanying the expansion and contraction of the shape memory alloy spring 22. Further, although the unit covering member 10 will be described in detail later, the clearance between the unit covering member 10 and the single cell 20 so that the cooling fluid can flow a predetermined amount into the inner flow passage 200 formed by the clearance between each single cell 20. It is an internal diameter which can suppress the flow path volume of the cooling fluid of the outer side flow path 100 which becomes.

ユニット被覆部材10の材質及び形状は、互いに近接して断面略円状に配置された複数本の単セル20の最外周を覆って複数本の単セル20をユニット化が可能で、且つ、軸方向に伸縮可能なものであればよく、本実施の形態の各図で示すような弾性部材からなる単純な円筒状や多角形状の他、円筒部材を軸方向に複数嵌め合わせた伸縮式の棒状アンテナ構造のようなものでもよい。但し、ユニット被覆部材10は、内部に冷却流体を流すため、所定のシーリング性を有する必要がある。本実施の形態の人工筋肉アクチュエータ1のユニット被覆部材10では、ポリテトラフルオロエチレン(Polytetrafluoroethylene,PTFE)を円筒状に成形したものを使用している。   The material and the shape of the unit covering member 10 cover the outermost periphery of a plurality of single cells 20 arranged close to each other and having a substantially circular cross section to enable unitization of a plurality of single cells 20, and an axis It is sufficient that it can be expanded and contracted in the direction, and in addition to a simple cylindrical or polygonal shape made of an elastic member as shown in each drawing of the present embodiment, a stretchable rod having a plurality of cylindrical members fitted in the axial direction It may be like an antenna structure. However, the unit covering member 10 needs to have a predetermined sealing property in order to flow the cooling fluid inside. The unit covering member 10 of the artificial muscle actuator 1 according to the present embodiment uses a cylinder formed of polytetrafluoroethylene (PTFE).

配管用継手30は、ユニット被覆部材10の端部に被嵌されユニット被覆部材10の内部に冷却流体を注入するためのものである。配管用継手30は、図6に詳細を示すように、略円筒状の単セル配列ソケット40と、キャップ状のエンドブーツ50とで構成されている。単セル配列ソケット40の一端の外周に設けられたエンドブーツ取付溝40bに、エンドブーツ50の開放端50aの内周に設けられた単セル配管ソケット取付溝50cが被嵌され、単セル配列ソケット40の一端にエンドブーツ50を被せるように連結される。単セル配列ソケット40の他端の外周には、ユニット被覆部材取付溝40aが設けられている。また、単セル配列ソケット40の他端には、それぞれの単セル20の端部外周を個別に保持すると共に、それぞれの単セル20の内部に冷却流体を注入するために外部と連通する凹状連通溝である単セル挿嵌穴部42が設けられている。本実施の形態の単セル配列ソケット40では、凹状連通溝である単セル挿嵌穴部42が、図6(c)に示すように、単セル20が均等に配置されるように、軸中心に対して放射状に配置されている。   The pipe fitting 30 is fitted to the end of the unit covering member 10 and injects the cooling fluid into the unit covering member 10. As shown in detail in FIG. 6, the piping joint 30 is composed of a substantially cylindrical unit cell array socket 40 and a cap-like end boot 50. A single cell piping socket mounting groove 50c provided on the inner periphery of the open end 50a of the end boot 50 is fitted in the end boot mounting groove 40b provided on the outer periphery of one end of the single cell array socket 40. It connects so that the end boot 50 may be covered on the end of 40. A unit covering member mounting groove 40 a is provided on the outer periphery of the other end of the unit cell array socket 40. Further, the other end of the single cell array socket 40 holds the outer periphery of the end of each single cell 20 individually, and has a concave communication in communication with the outside for injecting the cooling fluid into the inside of each single cell 20 A single cell insertion hole 42 which is a groove is provided. In the single cell array socket 40 of the present embodiment, as shown in FIG. 6 (c), the single cell insertion holes 42, which are concave communication grooves, have an axial center so that the single cells 20 are uniformly disposed. It is arranged radially to.

エンドブーツ50の閉鎖端50bには、図6(a)に示すように、配管用チューブ取付穴52、ワイヤ取出穴54及びリード線取出穴56が穿設され、それぞれが、開放端50aに連通している。配管用チューブ取付穴52には、円筒状の配管用チューブ58が、挿嵌されている。このような配管用継手30によれば、単セル20の1本1本に冷却流体を行き渡らせることで、各単セル20を均一に冷却することができる。   As shown in FIG. 6A, a tube attachment hole 52 for piping, a wire extraction hole 54 and a lead wire extraction hole 56 are bored in the closed end 50b of the end boot 50, and each communicates with the open end 50a. doing. A cylindrical pipe 58 is inserted into the pipe attachment hole 52. According to such a pipe joint 30, by spreading the cooling fluid over one single cell 20, it is possible to uniformly cool each single cell 20.

人工筋肉アクチュエータ1の全体の構造としては、まず、ユニット被覆部材10に互いに近接して断面略円状に配置された状態で複数本の単セル20が収納され、ユニット被覆部材10の両端から強化電線24が出た状態で、ユニット被覆部材10の両端に、配管用継手30のユニット被覆部材取付溝40aがユニット被覆部材10に嵌まり込む形で、配管用継手30が挿嵌されている。各単セル20の端部すなわちユニット被覆部材10の端部は、配管用継手30の単セル配列ソケット40の単セル挿嵌穴部42に、単セル20の配列を維持した状態で、それぞれ挿嵌され固定されている。   As the entire structure of the artificial muscle actuator 1, first, a plurality of unit cells 20 are accommodated in a state in which the unit covering member 10 is arranged close to each other in a substantially circular shape in cross section, and reinforced from both ends of the unit covering member 10 In the state where the electric wire 24 comes out, the pipe joint 30 is inserted in the form in which the unit cover member mounting groove 40a of the pipe joint 30 is fitted into the unit cover member 10 at both ends of the unit cover member 10. The end of each unit cell 20, that is, the end of the unit covering member 10 is inserted in the unit cell insertion hole 42 of the unit cell array socket 40 of the pipe joint 30 while maintaining the unit cell 20 arrangement. It is fitted and fixed.

複数本(単セル20の本数分)の強化電線24は、エンドブーツ50の内側で結節され、この結節点から電線であるリード線24a及びワイヤ24bが伸びている。リード線24aは、エンドブーツ50のリード線取出穴56を抜けて人工筋肉アクチュエータ1の外部に伸びている。ワイヤ24bは、例えば、アラミド糸で、エンドブーツ50のワイヤ取出穴54を抜けて人工筋肉アクチュエータ1の外部に伸びている。尚、リード線24aが挿通しているリード線取出穴56及びワイヤ24bが挿通しているワイヤ取出穴54は、モールドされている。尚、配管用継手30の配管用チューブ58には、冷却流体を供給するための冷却流体チューブ60が、連結装着されている。   A plurality of (several the number of unit cells 20) reinforcing wires 24 are knotted inside the end boot 50, and lead wires 24a and wires 24b, which are wires, extend from the nodes. The lead wire 24 a extends through the lead wire takeout hole 56 of the end boot 50 to the outside of the artificial muscle actuator 1. The wire 24 b is, for example, an aramid thread, and extends outside the artificial muscle actuator 1 through the wire takeout hole 54 of the end boot 50. The lead wire outlet hole 56 through which the lead wire 24a is inserted and the wire outlet hole 54 through which the wire 24b is inserted are molded. A cooling fluid tube 60 for supplying a cooling fluid is connected to and attached to the piping tube 58 of the piping joint 30.

このような構造の人工筋肉アクチュエータ1は、非通電状態では図1(a)に示すように伸びた状態で、リード線24a、強化電線24を介して各単セル20の形状記憶合金バネ22に通電すると、形状記憶合金バネ22が縮まり、図1(b)に示すように人工筋肉アクチュエータ1全体が収縮する。より具体的には、人工筋肉アクチュエータ1は、形状記憶合金バネ22が低温で与えられた負荷歪が高温で相変態により解消される時の発生力を利用するもので、形状記憶合金バネ22への直接通電による加熱で相変態によって発現させて人工筋肉アクチュエータ1を駆動させるものである。このため、形状記憶合金バネ22の温度制御を行う必要があり、通電による加熱の他、単セル20を冷却流体で冷却する必要がある。   In the non-energized state, as shown in FIG. 1A, the artificial muscle actuator 1 having such a structure extends to the shape memory alloy spring 22 of each unit cell 20 through the lead wire 24 a and the reinforcing wire 24. When energized, the shape memory alloy spring 22 contracts and the entire artificial muscle actuator 1 contracts as shown in FIG. 1 (b). More specifically, the artificial muscle actuator 1 utilizes the generated force when the load strain given by the shape memory alloy spring 22 at a low temperature is eliminated by phase transformation at a high temperature. The artificial muscle actuator 1 is driven by being expressed by phase transformation by heating by direct current conduction. For this reason, it is necessary to control the temperature of the shape memory alloy spring 22, and it is necessary to cool the single cell 20 with a cooling fluid in addition to heating by energization.

冷却流体は、形状記憶合金バネ22の冷却が可能なものであれば、液体でも気体でもかまわない。冷却流体は、化学的に不活性で粘度が低いものが好ましく、液体では、例えば、粘度の低いシリコンオイル、エチレングリコール、水等が好ましく、気体では、例えば、空気、窒素ガス、不活性ガス等が使用可能である。   The cooling fluid may be liquid or gas as long as the shape memory alloy spring 22 can be cooled. The cooling fluid is preferably chemically inert and low in viscosity, and in the case of a liquid, for example, silicone oil with low viscosity, ethylene glycol, water and the like are preferable, and in the gas, for example, air, nitrogen gas, inert gas and the like Is available.

ここで、人工筋肉アクチュエータ1のように互いに近接して断面略円状に配置された複数本の単セル20の最外周を、従来の天然ゴムチューブで単純に覆った場合、形状記憶合金バネ22の伸縮に合わせて天然ゴムチューブも軸方向に伸縮可能であるものの、編年ゴムチューブが収縮するとその内周面と単セルとの隙間が拡がって、冷却流体が専らこの隙間に流れて単セル20相互の隙間に流れず、それぞれの単セル20を均一に冷却することができない。このため、本願発明のユニット被覆部材10は、形状記憶合金バネ22の伸縮に伴う単セル20の伸縮に伴って軸方向に伸縮すると共に、内側流路200に冷却流体が所定量流れ得るように、外側流路100の冷却流体の流路体積を抑制可能な内径であることを特徴としており、このような内径にすることで、ユニット被覆部材10内の各単セル20を均一に冷却することができる。   Here, when the outermost peripheries of a plurality of single cells 20 disposed close to each other and having a substantially circular cross section like the artificial muscle actuator 1 are simply covered with a conventional natural rubber tube, the shape memory alloy spring 22 Although natural rubber tubes can be axially expanded and contracted according to the expansion and contraction of the natural rubber tubes, when the annual rubber tubes shrink, the gap between the inner peripheral surface and the unit cell expands, and the cooling fluid flows exclusively into this gap and the unit cell They do not flow into the gaps between them, and can not uniformly cool the single cells 20. Therefore, the unit covering member 10 of the present invention expands and contracts in the axial direction along with the expansion and contraction of the unit cell 20 accompanying the expansion and contraction of the shape memory alloy spring 22, and a predetermined amount of cooling fluid can flow in the inner flow passage 200. The inner diameter of the cooling fluid in the outer flow passage 100 can be suppressed, and the unit cells 20 in the unit covering member 10 can be uniformly cooled by using such an inner diameter. Can.

また、図5に示すように、ユニット被覆部材10の内周面10aと単セル20の外周面20aとの隙間Aが若干空いている状況がある場合であっても、ユニット被覆部材10に冷却流体が流れることで、図4に示すように、ベルヌイの定理の作用により単セル20の外周面にユニット被覆部材10の内周面10aが密着するように変形して隙間Aがなくなるような構成であってもよい。このように、ユニット被覆部材10が、冷却流体によるベルヌイの定理の作用により、内側流路200に冷却流体が所定量流れ得るように、外側流路100の冷却流体の流路体積を抑制可能な内径に変形することで、ユニット被覆部材10内の各単セル20を均一に冷却することができる。   Further, as shown in FIG. 5, even if there is a situation where there is a slight clearance A between the inner circumferential surface 10 a of the unit covering member 10 and the outer circumferential surface 20 a of the unit cell 20, the unit covering member 10 is cooled With the flow of fluid, as shown in FIG. 4, the configuration is such that the inner peripheral surface 10a of the unit covering member 10 is deformed to be in close contact with the outer peripheral surface of the unit cell 20 by the action of Bernoulli's theorem and the gap A disappears. It may be Thus, the unit covering member 10 can suppress the flow volume of the cooling fluid in the outer flow passage 100 so that the cooling fluid can flow in the inner flow passage 200 by a predetermined amount by the action of Bernoulli's theorem by the cooling fluid By deforming to the inner diameter, each single cell 20 in the unit covering member 10 can be cooled uniformly.

他方、ユニット被覆部材10が、ユニット被覆部材10の内周面10aと単セル20の外周面20aとが近接する内径にする構成であってもよい。このように、ユニット被覆部材10が、形状記憶合金バネ22の伸縮に伴う単セル20の伸縮に伴って軸方向に伸縮するものの、ユニット被覆部材10の内周面10aと単セル20の外周面20aとが近接する内径が維持されることで、すなわち、内側流路200に冷却流体が所定量流れ得るように、外側流路100の冷却流体の流路体積を抑制可能な内径が維持されることで、ユニット被覆部材10内の各単セル20を均一に冷却することができる。   On the other hand, the unit covering member 10 may have an inner diameter such that the inner circumferential surface 10 a of the unit covering member 10 and the outer circumferential surface 20 a of the unit cell 20 are close to each other. Thus, although unit covering member 10 axially expands and contracts with expansion and contraction of unit cell 20 accompanying expansion and contraction of shape memory alloy spring 22, inner peripheral surface 10a of unit covering member 10 and the outer peripheral surface of unit cell 20 By maintaining the inner diameter close to 20a, that is, the inner diameter capable of suppressing the flow volume of the cooling fluid of the outer flow passage 100 is maintained so that the cooling fluid can flow to the inner flow passage 200 by a predetermined amount. Thus, each single cell 20 in the unit covering member 10 can be cooled uniformly.

ユニット被覆部材10の内周面10aと単セル20の外周面20aとが近接する内径の場合、ユニット被覆部材10が単セル20の動きを妨げかねないが、ユニット被覆部材10の内周面10aの単セル20の外周面20aに対する摩擦抵抗を小さくすることにより、ユニット被覆部材10内での単セル20のスムーズな動きを確保することができる。   If the inner diameter 10a of the unit covering member 10 and the outer peripheral surface 20a of the unit cell 20 are close to each other, the unit covering member 10 may prevent the movement of the unit cell 20, but the inner diameter 10a of the unit covering member 10 By reducing the frictional resistance to the outer peripheral surface 20a of the unit cell 20, smooth movement of the unit cell 20 within the unit covering member 10 can be ensured.

さらに、ユニット被覆部材10の内周面10aに撥水性を備えさせることで、ユニット被覆部材10の内周面10aの単セル20の外周面20aに対する摩擦抵抗を小さくすることにより、ユニット被覆部材10内での単セル20のスムーズな動きを確保することができると共に、内側流路200の冷却流体の流れを妨げない範囲で、外側流路100の冷却流体の流れを促すことができる。   Furthermore, by providing the inner circumferential surface 10 a of the unit covering member 10 with water repellency, the frictional resistance of the inner circumferential surface 10 a of the unit covering member 10 to the outer circumferential surface 20 a of the unit cell 20 is reduced. The smooth movement of the unit cell 20 can be ensured, and the flow of the cooling fluid in the outer flow passage 100 can be promoted as long as the flow of the cooling fluid in the inner flow passage 200 is not impeded.

ユニット被覆部材10は、単セル20の外周面20aや冷却流体に対する摩擦抵抗が低い方が望ましく、フッ化炭素樹脂製であることが好ましい。また、ユニット被覆部材10は、伸縮に対する追従性の観点で、多孔質領域を含むことが好ましい。   The unit covering member 10 desirably has low frictional resistance to the outer peripheral surface 20 a of the unit cell 20 and the cooling fluid, and is preferably made of fluorocarbon resin. Moreover, it is preferable that the unit covering member 10 contains a porous area | region from a viewpoint of the followability with respect to expansion-contraction.

本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。   The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. In addition, the embodiment described above is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is indicated not by the embodiments but by the claims. And, various modifications applied within the scope of the claims and the meaning of the invention are considered to be within the scope of the present invention.

1 人工筋肉アクチュエータ
10 ユニット被覆部材
10a 内周面
20 単セル
20a 外周面
22 形状記憶合金バネ
24 強化電線
24a リード線
24b ワイヤ
26 単セル被覆部材
30 配管用継手
40 単セル配列ソケット
40a ユニット被覆部材取付溝
40b エンドブーツ取付溝
42 単セル挿嵌穴部
50 エンドブーツ
50a 開放端
50b 閉鎖端
50c 単セル配列ソケット取付溝
52 配管用チューブ取付穴
54 ワイヤ取出穴
56 リード線取出穴
58 配管用チューブ
60 冷却流体チューブ
100 外側流路
200 内側流路
DESCRIPTION OF SYMBOLS 1 artificial muscle actuator 10 unit covering member 10a inner circumferential surface 20 single cell 20a outer circumferential surface 22 shape memory alloy spring 24 reinforced electric wire 24a lead wire 24b wire 26 single cell covering member 30 piping joint 40 single cell array socket 40a unit covering member attachment Groove 40b End boot mounting groove 42 Single cell insertion hole 50 End boot 50a Open end 50b Closed end 50c Single cell array socket mounting groove 52 Piping tube mounting hole 54 Wire takeout hole 56 Lead wire takeout hole 58 Piping tube 60 Cooling Fluid tube 100 outer channel 200 inner channel

Claims (8)

端部に電線とワイヤとが接続された形状記憶合金バネと、前記形状記憶合金バネの外周を覆う耐熱性を有する単セル被覆部材とによりなる単セルと、
互いに近接して断面略円状に配置された複数本の前記単セルの最外周を覆うユニット被覆部材と、
前記ユニット被覆部材の端部に被嵌され前記ユニット被覆部材の内部に冷却流体を注入する配管用継手と、を備え、
前記ユニット被覆部材は、前記形状記憶合金バネの伸縮に伴う前記単セルの伸縮に伴って軸方向に伸縮すると共に、
前記ユニット被覆部材は、それぞれの前記単セル相互の隙間によってなる内側流路に前記冷却流体が所定量流れ得るように、前記ユニット被覆部材と前記単セルとの隙間によってなる外側流路の前記冷却流体の流路体積を抑制可能な内径である、
ことを特徴とする人工筋肉アクチュエータ。
A single cell comprising a shape memory alloy spring in which an electric wire and a wire are connected at an end portion, and a heat resistant single cell covering member covering an outer periphery of the shape memory alloy spring;
A unit covering member that covers the outermost periphery of the plurality of single cells disposed in a substantially circular shape in cross section in close proximity to each other;
And a pipe fitting which is fitted to the end of the unit covering member and injects a cooling fluid into the unit covering member.
The unit covering member expands and contracts in an axial direction along with the expansion and contraction of the unit cell accompanying the expansion and contraction of the shape memory alloy spring.
The unit covering member is configured to allow the cooling fluid to flow in a predetermined amount in the inner flow passage formed by the gap between the unit cells, and the cooling of the outer flow passage formed by the gap between the unit covering member and the unit cell. The inner diameter capable of suppressing the flow path volume of the fluid,
An artificial muscle actuator characterized by
前記ユニット被覆部材は、前記冷却流体によるベルヌイの定理の作用により、前記内側流路に前記冷却流体が所定量流れ得るように、前記外側流路の前記冷却流体の流路体積を抑制可能な内径に変形する、
ことを特徴とする請求項1に記載の人工筋肉アクチュエータ。
The unit covering member has an inner diameter capable of suppressing the flow volume of the cooling fluid in the outer flow passage so that the cooling fluid can flow in the inner flow passage by a predetermined amount by the action of Bernoulli's theorem by the cooling fluid. Transform into
The artificial muscle actuator according to claim 1, characterized in that
前記ユニット被覆部材は、前記ユニット被覆部材の内周面と前記単セルの外周面とが近接する内径である、
ことを特徴とする請求項1に記載の人工筋肉アクチュエータ。
The unit covering member has an inner diameter at which an inner peripheral surface of the unit covering member and an outer peripheral surface of the single cell are close to each other.
The artificial muscle actuator according to claim 1, characterized in that
前記ユニット被覆部材は、前記ユニット被覆部材の内周面の前記単セルの外周面に対する摩擦抵抗が小さい、
ことを特徴とする請求項1から3のいずれか1項に記載の人工筋肉アクチュエータ。
The unit covering member has a small frictional resistance to the outer peripheral surface of the unit cell of the inner peripheral surface of the unit covering member.
The artificial muscle actuator according to any one of claims 1 to 3, characterized in that.
前記ユニット被覆部材は、内周面に撥水性を有する、
ことを特徴とする請求項1から4のいずれか1項に記載の人工筋肉アクチュエータ。
The unit covering member has water repellency on the inner circumferential surface,
The artificial muscle actuator according to any one of claims 1 to 4, characterized in that.
前記ユニット被覆部材は、フッ化炭素樹脂製である、
ことを特徴とする請求項1から5のいずれか1項に記載の人工筋肉アクチュエータ。
The unit covering member is made of fluorocarbon resin,
The artificial muscle actuator according to any one of claims 1 to 5, characterized in that.
前記ユニット被覆部材は、多孔質領域を含む、
ことを特徴とする請求項1から5のいずれか1項に記載の人工筋肉アクチュエータ。
The unit covering member includes a porous region
The artificial muscle actuator according to any one of claims 1 to 5, characterized in that.
前記配管用継手は、それぞれの前記単セルの端部外周を個別に保持すると共に、それぞれの前記単セルの内部に前記冷却流体を注入するために外部と連通する凹状連通溝を備える、
ことを特徴とする請求項1から7のいずれか1項に記載の人工筋肉アクチュエータ。
The pipe joint separately holds an outer periphery of an end of each unit cell, and includes a concave communication groove communicating with the outside to inject the cooling fluid into the unit cell.
The artificial muscle actuator according to any one of claims 1 to 7, characterized in that:
JP2017222417A 2017-11-20 2017-11-20 Artificial muscle actuator Pending JP2019094789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017222417A JP2019094789A (en) 2017-11-20 2017-11-20 Artificial muscle actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017222417A JP2019094789A (en) 2017-11-20 2017-11-20 Artificial muscle actuator

Publications (1)

Publication Number Publication Date
JP2019094789A true JP2019094789A (en) 2019-06-20

Family

ID=66972804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017222417A Pending JP2019094789A (en) 2017-11-20 2017-11-20 Artificial muscle actuator

Country Status (1)

Country Link
JP (1) JP2019094789A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110906104A (en) * 2019-12-20 2020-03-24 中国科学院沈阳自动化研究所 Modular pipeline robot based on hydraulic artificial muscles
WO2020262802A1 (en) * 2019-06-24 2020-12-30 한국기계연구원 Soft actuator comprising cooler, wearable robot comprising same, massage device comprising same, and method for controlling same
KR20210087264A (en) * 2020-01-02 2021-07-12 한국기계연구원 Flexible actuator assembly including an air cooling device through respiration, wearable robot including the same, and control method therefor
US11542925B1 (en) 2021-09-14 2023-01-03 Toyota Motor Engineering & Manufacturing North America, Inc. Hybrid actuation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262802A1 (en) * 2019-06-24 2020-12-30 한국기계연구원 Soft actuator comprising cooler, wearable robot comprising same, massage device comprising same, and method for controlling same
CN110906104A (en) * 2019-12-20 2020-03-24 中国科学院沈阳自动化研究所 Modular pipeline robot based on hydraulic artificial muscles
CN110906104B (en) * 2019-12-20 2024-03-01 中国科学院沈阳自动化研究所 Modularized pipeline robot based on hydraulic artificial muscle
KR20210087264A (en) * 2020-01-02 2021-07-12 한국기계연구원 Flexible actuator assembly including an air cooling device through respiration, wearable robot including the same, and control method therefor
KR102276320B1 (en) 2020-01-02 2021-07-13 한국기계연구원 Flexible actuator assembly including an air cooling device through respiration, wearable robot including the same, and control method therefor
US11542925B1 (en) 2021-09-14 2023-01-03 Toyota Motor Engineering & Manufacturing North America, Inc. Hybrid actuation device

Similar Documents

Publication Publication Date Title
JP2019094789A (en) Artificial muscle actuator
JP6760954B2 (en) accumulator
KR100920883B1 (en) Superconducting Cable to Improve Cooling Ability
CN204344395U (en) There is the electromagnetic pump of the valve constitution of improvement
CN209818184U (en) Cooling jacket for thrust chamber of liquid rocket engine and thrust chamber
JP2016090080A (en) Cooling device and electronic device
JP2006125635A (en) Valve for fluid, liquid, or powder material having diaphragm shutter controlled by shape memory means
JP2019094790A (en) Unit coating member
US11054191B2 (en) Moving device for centering in a pipe
KR102031624B1 (en) Heatable fluid line
CN107923551A (en) Valve
JP2016008663A (en) Heat insulation multiple pipe and its process of manufacture
JP2015218853A (en) Control valve
CN110778908B (en) High-pressure tank
CN113565652A (en) Multilayer fixed high-temperature fluid channel
US20120007006A1 (en) Water valve
JP2017032022A (en) Fluid pressure actuator
JP4914663B2 (en) Telescopic joint
JP6354052B2 (en) Composite fluid pressure actuator
RU2557142C1 (en) Method of connection of fitting and pipe made out of polymer materials and connection assembly
CN220710074U (en) Anticreep formula transformer
CN104033609A (en) Sealing ring
KR20180070364A (en) Thermostat having improved reactivity
CN220710075U (en) Pressure relief type transformer
JP2004024698A (en) Adapter for dry type sprinkler head