JP2019093415A - Structure, and manufacturing method of structure - Google Patents

Structure, and manufacturing method of structure Download PDF

Info

Publication number
JP2019093415A
JP2019093415A JP2017224441A JP2017224441A JP2019093415A JP 2019093415 A JP2019093415 A JP 2019093415A JP 2017224441 A JP2017224441 A JP 2017224441A JP 2017224441 A JP2017224441 A JP 2017224441A JP 2019093415 A JP2019093415 A JP 2019093415A
Authority
JP
Japan
Prior art keywords
laminated wall
casting
laminated
wall portion
outer shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017224441A
Other languages
Japanese (ja)
Other versions
JP6829180B2 (en
Inventor
碩 黄
Shuo Huang
碩 黄
山田 岳史
Takeshi Yamada
岳史 山田
伸志 佐藤
Shinji Sato
伸志 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2017224441A priority Critical patent/JP6829180B2/en
Publication of JP2019093415A publication Critical patent/JP2019093415A/en
Application granted granted Critical
Publication of JP6829180B2 publication Critical patent/JP6829180B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

To provide such a structure that a solid part can be manufactured inexpensively by shortening a lead time; and to provide a manufacturing method of a structure.SOLUTION: A structure 51 includes laminated wall parts WA, WB formed by laminating a weld bead which is a molten solidified body of a filler material, and a casting part 47 formed in an inside space 45 enclosed by the laminated wall parts WA, WB. The structure has an anchor part 63 having at least either of a recess and a protrusion, on inside surfaces 61A, 61B of the laminated wall parts WA, WB, and the anchor part 63 is covered with the casting part 47.SELECTED DRAWING: Figure 6

Description

本発明は、中実部を有する構造体、及び構造体の製造方法に関する。   The present invention relates to a structure having a solid part, and a method of manufacturing the structure.

機械部品を鋳造により製造する場合、まず、製品の模型となる木型(金属、樹脂の場合もある)を作製し、この木型を基に砂型を造る。次いで、砂型に鋳湯を流し込み、砂型のキャビティ内で鋳物品を完成させる。しかし、このような鋳造においては、木型や砂型の作製に多くの工数を要し、完成品を得るまでのリードタイムが長くなってしまう。更に、少量生産の場合には、木型や砂型のコストが製品に付加されて製造コストが嵩む要因となる。   When machine parts are manufactured by casting, first, a wood mold (sometimes metal or resin) to be a product model is produced, and a sand mold is made based on this wood mold. The casting mold is then poured into a sand mold to complete the cast article within the sand mold cavity. However, in such casting, it takes a lot of man-hours to manufacture a wood mold and a sand mold, and the lead time to obtain a finished product becomes long. Furthermore, in the case of low-volume production, the cost of wood molds and sand molds is added to the product, which increases the manufacturing cost.

一方、新規な生産手段として3Dプリンタを用いた造形のニーズが高まっており、金属材料を用いた造形の実用化に向けて研究開発が進められている。金属材料を造形する3Dプリンタは、レーザや電子ビーム、更にはアーク等の熱源を用いて、金属粉体や金属ワイヤを溶融させ、溶融金属を積層させることで造形物を作製する。   On the other hand, the need for modeling using a 3D printer as a new production means is increasing, and research and development are being promoted toward the practical use of modeling using a metal material. A 3D printer for forming a metal material uses a heat source such as a laser, an electron beam, or an arc to melt a metal powder or a metal wire and laminate a molten metal to produce an object.

このような溶融金属を積層して造形物を造形する技術として、溶着ビードを用いて金型を製造するものが知られている(例えば、特許文献1参照)。特許文献1には、金型の形状を表現する形状データを生成する工程と、生成された形状データに基づいて、金型を等高線に沿った積層体に分割する工程と、得られた積層体の形状データに基づいて、溶加材を供給する溶接トーチの移動経路を作成する工程と、を備える金型の製造方法が記載されている。   As a technique of laminating such molten metal and forming a shaped object, one that manufactures a mold using a welding bead is known (see, for example, Patent Document 1). In Patent Document 1, a process of generating shape data representing a shape of a mold, a process of dividing the mold into a laminate along a contour line based on the generated shape data, and the obtained laminate And (d) creating a moving path of a welding torch for supplying a filler metal based on the shape data of (b).

また、金属積層造形法を用いて中空部を有する金属成形体を製造し、この金属成形体を鋳包んで中空部が外部と連通した鋳造品を製造する製造方法が特許文献2に記載されている。   Further, Patent Document 2 describes a manufacturing method of manufacturing a metal molded body having a hollow portion using metal additive manufacturing method, casting this metal molded body and manufacturing a cast product in which the hollow portion communicates with the outside. There is.

特許第3784539号公報Patent No. 3784539 特開2014−113610号公報JP, 2014-113610, A

しかしながら、特許文献1の技術は、金型の製造方法に関し、機械部品を大量に生産するための技術であって、特に、少量生産される機械部品の製造技術については記載されていない。また、特許文献2の技術は、金属積層造形法によって形成された金属成形体を鋳包んで、中空部を有する鋳物品を製造する技術である。そのため、金属成形体を鋳包む砂型、及び砂型を製作するための木型が不可欠であり、リードタイムが長くなる。また、少量生産時には、木型や砂型のコストについての課題が残る。   However, the technology of Patent Document 1 relates to a method of manufacturing a mold, which is a technology for mass-producing machine parts, and in particular, does not describe a technology of manufacturing machine-parts that are mass-produced. Moreover, the technique of patent document 2 is a technique which casts and encloses the metal molded object formed of the metal lamination molding method, and manufactures the cast article which has a hollow part. Therefore, a sand mold for casting and molding a metal molding and a wood mold for producing the sand mold are indispensable, and the lead time becomes long. In addition, at the time of small volume production, there remains a problem with the cost of wood mold and sand mold.

本発明は、上述した事情に鑑みてなされたものであり、その目的は、低コストで、且つリードタイムを短縮して中実部が製造できる構造体、及び構造体の製造方法を提供することにある。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a structure at a low cost and capable of manufacturing a solid part by shortening a lead time, and a method of manufacturing the structure. It is in.

本発明は下記構成からなる。
(1) 溶加材の溶融凝固体である溶着ビードが積層された積層壁部と、
前記積層壁部で囲まれた内側空間に形成された鋳物部と、
を備え、
前記積層壁部の内側面に、凹部と凸部の少なくともいずれかを有するアンカー部を有し、前記アンカー部が前記鋳物部に覆われている構造体。
(2) 溶加材の溶融凝固体である溶着ビードが積層された積層壁部と、
前記積層壁部で囲まれた内側空間に形成された鋳物部と、
を備え、
前記積層壁部は、構造体の外殻と、前記外殻の内側に形成された内殻とを有し、
前記外殻と前記内殻とを連結する連結アンカー部を更に備え、前記連結アンカー部が前記鋳物部に覆われている構造体。
(3) 溶加材を溶融及び凝固させた溶着ビードをベース上に積層して、少なくとも構造体の外殻を含む積層壁部を造形する造形工程と、
前記造形工程の後、造形された前記積層壁部で囲まれた内側空間に、鋳湯を流し込んで鋳物部を形成する鋳造工程と、
を有し、
前記鋳造工程の前に、前記積層壁部の内側面に、凹部と凸部の少なくともいずれかのアンカー部を形成する工程を更に有する構造体の製造方法。
(4) 溶加材を溶融及び凝固させた溶着ビードをベース上に積層して、少なくとも構造体の外殻と前記外殻の内側の内殻とを含む積層壁部を造形する造形工程と、
前記造形工程の後、造形された前記積層壁部で囲まれた内側空間に、鋳湯を流し込んで鋳物部を形成する鋳造工程と、
を有し、
前記鋳造工程の前に、前記積層壁部の前記外殻と前記内殻とを連結する連結アンカー部を形成する連結工程を更に有する構造体の製造方法。
The present invention has the following constitution.
(1) A laminated wall portion on which welding beads, which are melt solidified bodies of filler metals, are laminated;
A casting portion formed in an inner space surrounded by the laminated wall portion;
Equipped with
The structure which has an anchor part which has at least any one of a recessed part and a convex part in the inner surface of the said lamination | stacking wall part, and the said anchor part is covered by the said casting part.
(2) A laminated wall portion on which welding beads, which are melt solidified bodies of filler metals, are laminated;
A casting portion formed in an inner space surrounded by the laminated wall portion;
Equipped with
The laminated wall has an outer shell of a structure and an inner shell formed inside the outer shell,
The structure further provided with the connection anchor part which connects the said outer shell and the said inner shell, and the said connection anchor part is covered by the said casting part.
(3) forming a welding bead obtained by melting and solidifying a filler material on a base to form a laminated wall including at least an outer shell of a structure;
The casting process which pours a cast iron in the inner space enclosed by the said lamination | stacking wall part modeled after the said modeling process, and forms a casting part,
Have
The manufacturing method of the structure which further has the process of forming the anchor part of at least any one of a recessed part and a convex part in the inner surface of the said lamination | stacking wall part before the said casting process.
(4) forming a laminated wall including at least an outer shell of the structure and an inner shell of the outer shell by laminating on a base a welding bead obtained by melting and solidifying a filler material;
The casting process which pours a cast iron in the inner space enclosed by the said lamination | stacking wall part modeled after the said modeling process, and forms a casting part,
Have
The manufacturing method of the structure which further has a connection process which forms the connection anchor part which connects the said outer shell and the said inner shell of the said lamination | stacking wall part before the said casting process.

本発明によれば、中実部を有する構造体を、低コストで、且つリードタイムを短縮して製造できる。   According to the present invention, a structure having a solid part can be manufactured at low cost and with reduced lead time.

本発明の構造体を製造する製造システムの模式的な概略構成図である。It is a typical schematic block diagram of the manufacturing system which manufactures the structure of this invention. 積層壁部の形状データに基づく形状モデルを示す説明図である。It is explanatory drawing which shows the shape model based on the shape data of a lamination | stacking wall part. 外殻を有する構造体の模式的な斜視図である。It is a typical perspective view of a structure which has an outer shell. 外殻と内殻とを有する構造体の断面図である。It is sectional drawing of the structure which has an outer shell and an inner shell. 図4に示す構造体の模式的な斜視図である。It is a schematic perspective view of the structure shown in FIG. 第1構成例の積層壁部の概略断面図である。It is a schematic sectional drawing of the lamination | stacking wall part of a 1st structural example. 積層壁部の内側面に形成された凹部の配置を示す平面図である。It is a top view which shows arrangement | positioning of the recessed part formed in the inner surface of the lamination | stacking wall part. 積層壁部の内側面に形成された凹部の配置を示す平面図である。It is a top view which shows arrangement | positioning of the recessed part formed in the inner surface of the lamination | stacking wall part. 積層壁部に形成された凹部の断面形状を示す断面図である。It is sectional drawing which shows the cross-sectional shape of the recessed part formed in the lamination | stacking wall part. 第1変形例の凹部の断面形状を示す断面図である。It is sectional drawing which shows the cross-sectional shape of the recessed part of a 1st modification. 第2変形例の凹部を示す概略平面図である。It is a schematic plan view which shows the recessed part of a 2nd modification. 第2変形例の他の凹部を示す概略平面図である。It is a schematic plan view which shows the other recessed part of a 2nd modification. 凹部の配置密度が異なる領域を有する構造体の概略断面図である。It is a schematic sectional drawing of the structure which has an area | region where the arrangement | positioning density of a recessed part differs. 凹部を積層壁部と積層壁部とに異なる形態で設けた構造体の概略断面図である。It is a schematic sectional drawing of the structure which provided the recessed part in the form different in a lamination | stacking wall part and a lamination | stacking wall part. 凹部が積層壁部の層間部に形成された積層壁部の概略断面図である。It is a schematic sectional drawing of the lamination | stacking wall part in which the recessed part was formed in the interlayer part of the lamination | stacking wall part. 凹部が積層壁部の層外縁部に形成された積層壁部の概略断面図である。It is a schematic sectional drawing of the lamination | stacking wall part in which the recessed part was formed in the layer outer edge part of the lamination | stacking wall part. 第2構成例の積層壁部と鋳物部の概略断面図である。It is a schematic sectional drawing of the lamination | stacking wall part and casting part of a 2nd structural example. 第3構成例の積層壁部と鋳物部の概略断面図である。It is a schematic sectional drawing of the lamination | stacking wall part and casting part of a 3rd structural example. 突片が互いに異なる向きに傾斜して組み合わされた積層壁部と鋳物部の概略断面図である。It is a schematic sectional drawing of the lamination | stacking wall part and casting part which the protrusion piece inclined and combined with mutually different direction. 一方の積層壁部側の突片と、他方の積層壁部側の突片との傾斜方向が異なる積層壁部と鋳物部の概略断面図である。It is a schematic sectional drawing of the lamination | stacking wall part from which the inclination direction of the protrusion of one lamination | stacking wall part side and the protrusion of the other lamination | stacking wall part side differs, and a casting part. 第4構成例の積層壁部と鋳物部を含む構造体の概略断面図である。It is a schematic sectional drawing of the structure containing the lamination | stacking wall part and casting part of a 4th structural example. 貫通孔が形成された連結アンカー部の断面図である。It is sectional drawing of the connection anchor part in which the through-hole was formed. 他の構造体の概略断面図である。It is a schematic sectional drawing of another structure. 図20に示す構造体の積層壁部に連結アンカー部を設けた骨格構造の一例を示す斜視図である。It is a perspective view which shows an example of frame | skeleton structure which provided the connection anchor part in the lamination | stacking wall part of the structure shown in FIG.

以下、本発明の実施形態について、図面を参照して詳細に説明する。
図1は本発明の構造体を製造する製造システムの模式的な概略構成図である。
本構成の製造システム100は、積層造形装置11と、鋳造装置13と、積層造形装置11を統括制御するコントローラ15と、を備える。コントローラ15は、鋳造装置13を含めて制御するものであってもよい。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram of a manufacturing system for manufacturing the structure of the present invention.
The manufacturing system 100 of the present configuration includes a layered manufacturing apparatus 11, a casting apparatus 13, and a controller 15 that integrally controls the layered manufacturing apparatus 11. The controller 15 may control including the casting device 13.

積層造形装置11は、先端軸にトーチ17を有する溶接ロボット19と、トーチ17に溶加材(溶接ワイヤ)Mを供給する溶加材供給部23とを有する。   The layered shaping apparatus 11 has a welding robot 19 having a torch 17 at its tip end axis, and a filler material supply unit 23 for supplying a filler material (welding wire) M to the torch 17.

鋳造装置13は、不図示の加熱炉によって加熱された鋳湯25を貯留するるつぼ27を有し、不図示の注湯機構によって鋳湯25が所望の位置に供給可能となっている。これら積層造形装置11と鋳造装置13は、本構成においては、それぞれ既存の装置が用いられる。   The casting apparatus 13 has a crucible 27 for storing a casting 25 heated by a heating furnace (not shown), and the casting 25 can be supplied to a desired position by a pouring mechanism (not shown). In the present configuration, the existing apparatuses are used as the layered manufacturing apparatus 11 and the casting apparatus 13 respectively.

コントローラ15は、CAD/CAM部31と、軌道演算部33と、記憶部35と、これらが接続される制御部37と、を有する。
溶接ロボット19は、多関節ロボットであり、先端軸に設けたトーチ17には、溶加材Mが連続供給可能に支持される。トーチ17の位置や姿勢は、ロボットアームの自由度の範囲で3次元的に任意に設定可能となっている。
The controller 15 has a CAD / CAM unit 31, a trajectory calculation unit 33, a storage unit 35, and a control unit 37 to which these are connected.
The welding robot 19 is an articulated robot, and the welding material M is supported so as to be continuously supplied to the torch 17 provided on the tip end shaft. The position and posture of the torch 17 can be arbitrarily set three-dimensionally in the range of the degree of freedom of the robot arm.

トーチ17は、不図示のシールドノズルを有し、シールドノズルからシールドガスが供給される。アーク溶接法としては、被覆アーク溶接や炭酸ガスアーク溶接等の消耗電極式、TIG溶接やプラズマアーク溶接等の非消耗電極式のいずれであってもよく、作製する構造体の外殻等の積層壁部Wに応じて適宜選定される。   The torch 17 has a shield nozzle (not shown), and shield gas is supplied from the shield nozzle. The arc welding method may be any of a consumable electrode type such as coated arc welding and carbon dioxide gas arc welding, and a non-consumable electrode type such as TIG welding and plasma arc welding. A laminated wall such as an outer shell of a structure to be produced It is appropriately selected according to the part W.

例えば、消耗電極式の場合、シールドノズルの内部にはコンタクトチップが配置され、溶融電流が給電される溶加材Mがコンタクトチップに保持される。トーチ17は、溶加材Mを保持しつつ、シールドガス雰囲気で溶加材Mの先端からアークを発生する。溶加材Mは、ロボットアーム等に取り付けた不図示の繰り出し機構により、溶加材供給部23からトーチ17に送給される。そして、トーチ17を移動しつつ、連続送給される溶加材Mを溶融及び凝固させると、ベースプレート41上に溶加材Mの溶融凝固体である線状の溶着ビード43が形成される。   For example, in the case of the consumable electrode type, the contact tip is disposed inside the shield nozzle, and the filler material M to which the melting current is supplied is held by the contact tip. The torch 17 generates an arc from the tip of the filler material M in a shield gas atmosphere while holding the filler material M. The filler material M is fed from the filler material supply unit 23 to the torch 17 by a feeding mechanism (not shown) attached to a robot arm or the like. Then, while the torch 17 is moved, when the filler material M continuously fed is melted and solidified, a linear welding bead 43 which is a molten solid of the filler material M is formed on the base plate 41.

CAD/CAM部31は、作製しようとする構造体の外殻(及び後述する内殻等を含む)となる積層壁部Wの形状データを作成した後、複数の層に分割して、各層の形状を表す層形状データを生成する。軌道演算部33は、生成された層形状データに基づいてトーチ17の移動軌跡を求める。記憶部35は、生成された層形状データやトーチ17の移動軌跡等のデータを記憶する。   The CAD / CAM unit 31 creates shape data of the laminated wall portion W to be an outer shell (including the inner shell and the like described later) of the structure to be produced, and then divides it into a plurality of layers. Layer shape data representing a shape is generated. The trajectory calculation unit 33 obtains a movement trajectory of the torch 17 based on the generated layer shape data. The storage unit 35 stores data such as the generated layer shape data and the movement trajectory of the torch 17.

制御部37は、記憶部35に記憶された層形状データやトーチ17の移動軌跡に基づく駆動プログラムを実行して、溶接ロボット19を駆動する。   The control unit 37 executes a drive program based on the layer shape data stored in the storage unit 35 and the movement trajectory of the torch 17 to drive the welding robot 19.

上記構成の製造システム100は、設定された層形状データから生成されるトーチ17の移動軌跡に沿って、トーチ17を溶接ロボット19の駆動により移動させながら、溶加材Mを溶融させ、溶融した溶加材Mをベースプレート41上に供給する。これにより、ベースプレート41上に線状の溶着ビード43が形成され、上記した積層壁部Wがベースプレート41上に造形される。   The manufacturing system 100 configured as described above melts and melts the filler material M while moving the torch 17 by the driving of the welding robot 19 along the movement trajectory of the torch 17 generated from the set layer shape data. The filler material M is supplied onto the base plate 41. Thereby, the linear welding bead 43 is formed on the base plate 41, and the above-mentioned laminated wall portion W is shaped on the base plate 41.

なお、ベースプレート41は、鋼板等の金属板からなり、基本的には積層壁部Wの底面(最下層の面)より大きいものが使用される。なお、ベースプレート41は、板状に限らず、ブロック体や棒状等、他の形状のベースであってもよい。   The base plate 41 is made of a metal plate such as a steel plate, and basically, one larger than the bottom surface (the surface of the lowermost layer) of the laminated wall portion W is used. The base plate 41 is not limited to a plate shape, and may be a base of another shape such as a block or a rod.

積層壁部Wの造形後、鋳造装置13により、造形された積層壁部Wの内側空間45に鋳湯25を流し込む。流し込んだ鋳湯25が凝固すると、積層壁部Wの内側に鋳物部47が形成された中実構造の構造体が得られる。   After shaping of the laminated wall portion W, the cast iron 25 is poured into the inner space 45 of the shaped laminated wall portion W by the casting device 13. When the cast iron 25 poured in solidifies, a solid structure structure in which the casting portion 47 is formed inside the laminated wall portion W is obtained.

次に、本構成の製造システム100により積層壁部Wを造形し、更に鋳物部47を形成して構造体を得るまでの具体的な手順について詳述する。   Next, a specific procedure for forming the laminated wall portion W by the manufacturing system 100 of the present configuration and further forming the casting portion 47 to obtain a structure will be described in detail.

図2は積層壁部Wの形状データに基づく形状モデルWaを示す説明図である。
まず、コントローラ15は、溶接ロボット19により積層壁部Wを造形させる駆動プログラムを作成する。
FIG. 2 is an explanatory view showing a shape model Wa based on shape data of the laminated wall portion W. As shown in FIG.
First, the controller 15 creates a drive program for forming the laminated wall portion W by the welding robot 19.

CAD/CAM部31には、作製しようとする構造体の形状データが入力される。CAD/CAM部31は、構造体の形状データから、構造体の外殻となる積層壁部Wの形状モデルWaを生成する。そして、積層造形装置11による1回の溶着ビード形成によって得られる1層分の高さをHとし、形状モデルWaの高さH毎の層形状データ49を生成する。   The CAD / CAM unit 31 receives shape data of a structure to be produced. The CAD / CAM unit 31 generates a shape model Wa of the laminated wall portion W to be an outer shell of the structure from the shape data of the structure. Then, the height of one layer obtained by the formation of one weld bead by the layered manufacturing apparatus 11 is H, and layer shape data 49 for each height H of the shape model Wa is generated.

つまり、ベースプレート41から高さHの層P(1)における形状モデルWaの断面形状を表す層形状データ49を、形状モデルWaの形状データから解析的に求めて生成する。同様に、高さ2Hの層P(2)、高さ3Hの層P(3)、そして、高さnHの層P(n)から層形状データ49を生成する。生成された層P(1)〜P(n)の層形状データ49は、図1に示す軌道演算部33に送られる。   That is, layer shape data 49 representing the cross-sectional shape of the shape model Wa in the layer P (1) of height H from the base plate 41 is analytically determined and generated from the shape data of the shape model Wa. Similarly, layer shape data 49 is generated from a layer P (2) of height 2H, a layer P (3) of height 3H, and a layer P (n) of height nH. The layer shape data 49 of the generated layers P (1) to P (n) are sent to the trajectory calculation unit 33 shown in FIG.

軌道演算部33は、入力された層形状データ49に基づいてトーチ17の移動軌跡T(1)〜T(n)を演算する。移動軌跡T(1)〜T(n)は、例えば、始端点、終端点、及び始端点から終端点までの移動経路を含む座標データやベクトルデータとして求められる。軌道演算部33は、各層形状データ49から求めた移動軌跡に沿ってトーチ17を移動させる溶接ロボット19の駆動プログラムを生成する。生成された駆動プログラムは、記憶部35に保存される。   The trajectory calculation unit 33 calculates movement trajectories T (1) to T (n) of the torch 17 based on the input layer shape data 49. The movement trajectories T (1) to T (n) are obtained as coordinate data or vector data including, for example, a start point, an end point, and a movement path from the start point to the end point. The trajectory calculation unit 33 generates a drive program of the welding robot 19 that moves the torch 17 along the movement trajectory obtained from each layer shape data 49. The generated drive program is stored in the storage unit 35.

つまり、軌道演算部33は、互いに平行で等間隔な複数の層P(1)〜P(n)の層形状データ49から移動軌跡T(1)〜T(n)を求める。そして、軌道演算部33は、各移動軌跡T(1)〜T(n)に沿ってトーチ17を移動させる溶接ロボット19の駆動プログラムを生成する。   That is, the trajectory calculation unit 33 obtains movement trajectories T (1) to T (n) from layer shape data 49 of the plurality of layers P (1) to P (n) parallel to each other and equally spaced. Then, the trajectory calculation unit 33 generates a drive program of the welding robot 19 that moves the torch 17 along the movement trajectories T (1) to T (n).

次に、制御部37は、生成された駆動プログラムに基づいて溶接ロボット19を駆動する。即ち、図1に示す溶接ロボット19により、トーチ17を図2に示す移動軌跡T(1)に沿って移動させて、ベースプレート41上に第1層目の溶着ビード43を形成する。続いて、溶接ロボット19がトーチ17を移動軌跡T(2)に沿って移動させ、第2層目の溶着ビード43を形成し、最終的に、第n層目の溶着ビード43を形成する。これにより、積層壁部Wが造形される(外殻の造形工程)。   Next, the control unit 37 drives the welding robot 19 based on the generated drive program. That is, the welding robot 19 shown in FIG. 1 moves the torch 17 along the movement trajectory T (1) shown in FIG. 2 to form the welding bead 43 of the first layer on the base plate 41. Subsequently, the welding robot 19 moves the torch 17 along the movement trajectory T (2) to form the second layer welding bead 43, and finally, the nth layer welding bead 43 is formed. Thereby, the lamination wall part W is modeled (modeling process of outer shell).

次に、図1に示す、るつぼ27を、不図示の注湯機構により積層壁部Wの位置まで移動させて、鋳湯25を積層壁部Wの内側空間45に流し込む。そして、積層壁部Wの内側空間45に流し込んだ鋳湯を凝固させて、鋳物部47を形成する(鋳造工程)。この工程は、コントローラ15によらずに、人手を介して行うものであってもよい。その後、ベースプレート41を必要に応じて切り離す(ベースプレートの分離工程)。   Next, the crucible 27 shown in FIG. 1 is moved to the position of the laminated wall W by a pouring mechanism (not shown), and the casting bath 25 is poured into the inner space 45 of the laminated wall W. Then, the casting bath poured into the inner space 45 of the laminated wall portion W is solidified to form the casting portion 47 (casting step). This process may be performed manually without using the controller 15. Thereafter, the base plate 41 is separated as required (base plate separation step).

図3に外殻を有する構造体51の模式的な斜視図を示す。
上記した工程により、図3に示す線状の溶着ビード層が積層された積層壁部Wと、この積層壁部Wの内側空間45に設けられた鋳物部47と、を備える中実構造の構造体51が得られる。
FIG. 3 shows a schematic perspective view of a structure 51 having an outer shell.
A solid structure having a laminated wall portion W in which the linear welding bead layers shown in FIG. 3 are laminated by the above-described steps, and a casting portion 47 provided in the inner space 45 of the laminated wall portion W. The body 51 is obtained.

なお、ベースプレート41として、第1層目の移動軌跡T(1)の形状と同じ外縁形状を有する板材を用い、第1層目の溶着ビード43をベースプレート外縁に沿って形成してもよい。その場合、構造体51からベースプレート41が殆ど突出しないため、ベースプレート41を切り離す工程を省略できる。   The first layer weld bead 43 may be formed along the outer edge of the base plate using a plate material having the same outer edge shape as the shape of the movement trajectory T (1) of the first layer as the base plate 41. In that case, since the base plate 41 hardly protrudes from the structure 51, the process of separating the base plate 41 can be omitted.

積層壁部Wからのベースプレート41の分離工程は、ベースプレート41との界面ではなく、ベースプレート41の近傍となる2,3層の溶着ビード43を含めて分離させてもよい。ベースプレート41の近傍では、ベースプレート41からの抜熱効果が高いため、残留応力が大きくなる傾向がある。一方、3層目以降の溶着ビード43では、次層の積層により焼鈍されて残留応力が緩和される。そのため、ベースプレート41近傍の複数層の溶着ビード43を含めて分離することで、残留応力の影響を意識しなくて済む。   The separation process of the base plate 41 from the laminated wall portion W may be separated including two or three layers of welding beads 43 near the base plate 41 instead of the interface with the base plate 41. In the vicinity of the base plate 41, since the heat removal effect from the base plate 41 is high, the residual stress tends to be large. On the other hand, in the welding bead 43 of the third and subsequent layers, annealing is performed by laminating the next layer to relieve the residual stress. Therefore, it is not necessary to be conscious of the influence of the residual stress by separating including the welding bead 43 of a plurality of layers near the base plate 41.

構造体51は、外殻のみ有する積層壁部Wに限らず、外殻と内殻とを有する積層壁部Wを備えた構成であってもよい。
図4は外殻と内殻とを有する構造体51Aの断面図、図5は図4に示す構造体51Aの模式的な斜視図である。
The structure 51 is not limited to the laminated wall portion W having only the outer shell, and may be configured to include the laminated wall portion W having the outer shell and the inner shell.
FIG. 4 is a cross-sectional view of a structure 51A having an outer shell and an inner shell, and FIG. 5 is a schematic perspective view of the structure 51A shown in FIG.

図4,図5に示すように、構造体51Aは、外殻55の内側に内殻57が形成され、外殻55と内殻57との間の内側空間45には鋳物部47が形成される。また、内殻57の内側は、中空空間46となっている。この構造体51Aは、前述した造形工程により外殻55及び内殻57を造形した後、前述した鋳造工程により、外殻55と内殻57との間の内側空間45に鋳湯を流し込み、鋳物部47を形成することで得られる。   As shown in FIGS. 4 and 5, in the structure 51A, the inner shell 57 is formed inside the outer shell 55, and the casting portion 47 is formed in the inner space 45 between the outer shell 55 and the inner shell 57. Ru. Further, the inside of the inner shell 57 is a hollow space 46. In this structure 51A, after the outer shell 55 and the inner shell 57 are shaped by the above-described forming step, a cast iron is poured into the inner space 45 between the outer shell 55 and the inner shell 57 by the above-described casting step It can be obtained by forming the portion 47.

本構成によれば、溶着ビードの積層によって積層壁部を成形するので、鋳造のための型作製が不要となり、鋳造工数や型材料のコストを低減できる。また、構造体を製造するリードタイムが短縮される。更に、比較的高コストな積層材料の使用が積層壁部だけで済み、材料費を抑えて製造コストを低減できる。   According to this configuration, since the laminated wall portion is formed by laminating the welding beads, it is not necessary to manufacture a mold for casting, and the number of casting processes and the cost of the mold material can be reduced. Also, the lead time for manufacturing the structure is shortened. Furthermore, the use of relatively expensive laminated material is only required for the laminated wall, which can reduce the material cost and reduce the manufacturing cost.

次に、図3に示す構造体51と図5に示す構造体51Aに共通する積層壁部Wの詳細な構成を以下に説明する。
<第1構成例>
図6は第1構成例の積層壁部Wの概略断面図である。この図6は図3に示すVI−VI線断面、及び図5に示すVI−VI線断面に対応する概略断面図である。
Next, the detailed configuration of the laminated wall portion W common to the structure 51 shown in FIG. 3 and the structure 51A shown in FIG. 5 will be described below.
<First Configuration Example>
FIG. 6 is a schematic cross-sectional view of the laminated wall portion W of the first configuration example. 6 is a schematic cross-sectional view corresponding to the cross section along line VI-VI shown in FIG. 3 and the cross section along line VI-VI shown in FIG.

以降の説明では、図3に示す構造体51の鋳物部47を挟む一対の外殻である積層壁部W、及び、図5に示す構造体51Aの鋳物部47を挟む積層壁部W、即ち、外殻55と内殻57を、一方の積層壁部WA、他方の積層壁部WBとして説明する。つまり、構造体51においては、積層壁部WA,WBは共に外殻であり、構造体51Aにおいては、積層壁部WAは外殻55、積層壁部WBは内殻57である。積層壁部WAと積層壁部WBとの間に鋳物部47が形成されることで、中実部を有する構造体が形成される。   In the following description, a laminated wall portion W which is a pair of outer shells sandwiching the casting portion 47 of the structure 51 shown in FIG. 3 and a laminated wall portion W sandwiching the casting portion 47 of the structure 51A shown in FIG. The outer shell 55 and the inner shell 57 will be described as one stacked wall portion WA and the other stacked wall portion WB. That is, in the structure 51, the laminated wall portions WA and WB are both outer shells, and in the structure 51A, the laminated wall portion WA is the outer shell 55 and the laminated wall portion WB is the inner shell 57. By forming the casting portion 47 between the laminated wall portion WA and the laminated wall portion WB, a structure having a solid portion is formed.

図6に示すように、積層壁部WA,WBは、互いに対向する内側面61A,61Bに、凹部63が形成される。凹部63は、内側面61A,61Bそれぞれの複数箇所に、離散配置される。図示例の凹部63は、図中の上下方向に関して略等間隔で、積層壁部WAと積層壁部WBで等しい高さ位置に形成されている。   As shown in FIG. 6, in the laminated wall portions WA and WB, concave portions 63 are formed in the inner side surfaces 61A and 61B facing each other. The recessed portions 63 are discretely disposed at a plurality of locations on each of the inner side surfaces 61A and 61B. The recessed portions 63 in the illustrated example are formed at substantially equal intervals in the vertical direction in the drawing, and at the same height position between the stacked wall portion WA and the stacked wall portion WB.

凹部63は、内側面61A,61Bの平面視で、真円,楕円,長円(半径の等しい2つの円を共通外接線で繋いだ形)等の円形、正三角形,二等辺三角形,直角三角形等の三角形、正方形,長方形,菱形,台形,平行四辺形等の四角形、五角形,六角形等の多角形等、種々の形状であってよい。   The concave portion 63 is a circle such as a perfect circle, an ellipse, or an oval (a shape in which two circles having the same radius are connected by a common circumscribed line) in a plan view of the inner surface 61A, 61B. It may have various shapes such as triangle, square, rectangle, rhombus, trapezoid, square such as parallelogram, polygon such as pentagon, hexagon, etc.

図7A,図7Bは積層壁部WA,WBの内側面61A,61Bに形成された凹部63の配置を示す平面図である。図示例では一例として平面視円形の凹部63を示している。
凹部63は、図7Aに一例として示すように、内側面61A,61B上に等ピッチPti,Ptjで正方配置されていてもよく、図7Bに一例として示すように、隣接する凹部63の列同士が半ピッチ(Ptj/2)ずれて配置されていてもよい。更に、凹部63は、内側面61A,61Bの円周方向、Z方向の凹部63のピッチを任意に設定した配列としてもよく、ランダム配置であってもよい。
FIGS. 7A and 7B are plan views showing the arrangement of the recessed portions 63 formed in the inner side surfaces 61A and 61B of the laminated wall portions WA and WB. In the illustrated example, a recess 63 having a circular shape in plan view is shown as an example.
Recesses 63 may be squarely arranged at equal pitches Pti and Ptj on inner side surfaces 61A and 61B as shown as an example in FIG. 7A, and as shown as an example in FIG. May be arranged at a half pitch (Ptj / 2) offset. Furthermore, the recesses 63 may be arranged in an arbitrary manner in which the pitch of the recesses 63 in the circumferential direction of the inner side surfaces 61A and 61B and in the Z direction may be set, or may be randomly arranged.

図8は積層壁部WA,WBに形成された凹部63の断面形状を示す断面図である。
凹部63は、積層壁部WA,WBの内側面61A,61Bから凹部底面65までの深さをD、上下方向(Z方向)の高さをH、上下方向の配置ピッチをPtとした場合、Pt/Hの比は、積層壁部の肉厚や材質に応じて適切な値に決定される。例えば、Pt/Hを1.2〜5、D/Hの比を0.3〜3の範囲に決定してもよい。また、上記関係は、上下方向(Z方向)に限らず、円周方向に関しても同様の配置ピッチとすることが好ましく、上下方向及び円周方向共に上記した配置ピッチの関係であることが好ましい。
FIG. 8 is a cross-sectional view showing the cross-sectional shape of the concave portion 63 formed in the laminated wall portions WA and WB.
When the recess 63 has a depth D from the inner side surfaces 61A and 61B of the laminated wall portions WA and WB to the recess bottom surface 65, a height in the vertical direction (Z direction) as H, and an arrangement pitch in the vertical direction as Pt, The ratio of Pt / H is determined to an appropriate value according to the thickness and material of the laminated wall portion. For example, Pt / H may be determined in the range of 1.2 to 5, and the D / H ratio may be determined in the range of 0.3 to 3. The above relationship is not limited to the vertical direction (Z direction), but is preferably the same arrangement pitch also in the circumferential direction, and it is preferable that the relationship between the vertical direction and the circumferential direction be the above-mentioned arrangement pitch.

凹部63の形状が上記関係であることで、鋳湯との接合強度が向上し、適切なアンカー効果が安定して得られる。   By the shape of the recessed part 63 being the said relationship, joint strength with a cast iron improves, and an appropriate anchor effect is acquired stably.

<凹部63の変形例>
(第1変形例)
図9は第1変形例の凹部63Aの断面形状を示す断面図である。
第1変形例の凹部63Aは、積層壁部WA,WBの内側面61A,61Bと凹部底面65とを接続する凹部内壁面67が、内側面61A,61Bから凹部底面65に向かうほど窄まって形成される。凹部内壁面67は、上下方向(Z方向)の上側については、凹部底面65の法線Lの方向から角度θで傾斜しており、下側については、法線Lの方向から角度θで傾斜している。
Modification of Recess 63
(First modification)
FIG. 9 is a cross-sectional view showing the cross-sectional shape of the recess 63A of the first modified example.
In the concave portion 63A of the first modification, the concave inner wall surface 67 connecting the inner side surfaces 61A, 61B of the laminated wall portions WA, WB and the concave portion bottom surface 65 is narrowed toward the concave portion bottom surface 65 from the inner side surfaces 61A, 61B. It is formed. The concave inner wall surface 67 is inclined at an angle θ 1 from the direction of the normal L of the concave bottom surface 65 on the upper side in the vertical direction (Z direction), and on the lower side, the angle θ 2 from the direction of the normal L It is inclined at.

角度θ、θは、積層壁部の肉厚や材質に応じて適切な値に決定される。例えば、0°〜70°、好ましくは10°〜60°、更に好ましくは20°〜40°に設定される。角度θ、θをこの範囲にすることで、鋳湯の流動が良好となり、凹部63A内に鋳湯が安定して隙間なく充填される。特に、上型の角度θが法線Lの方向から上方へ向けて傾斜させることで、前述した鋳造工程において凹部63A内に空気が残存して巣が生じることを防止できる。なお、角度θ、θは、等しい角度であってもよく、凹部63の中心軸Axよりも上方ではθ、下方ではθとしてもよく、上方から下方にかけて連続的又は段階的に変化するものであってもよい。 The angles θ 1 and θ 2 are determined to be appropriate values in accordance with the thickness and material of the laminated wall portion. For example, 0 ° to 70 °, preferably 10 ° to 60 °, and more preferably 20 ° to 40 °. By setting the angles θ 1 and θ 2 in this range, the flow of the molten metal becomes good, and the molten metal is stably filled in the recess 63A without a gap. In particular, by the angle theta 1 of the upper mold tilts toward the direction of the normal L upward, it is possible to prevent the nest occurs air remaining in the recess 63A in the casting process described above. Note that the angles θ 1 and θ 2 may be equal angles, or θ 1 above the central axis Ax of the recess 63 or θ 2 below, and changes continuously or stepwise from the top to the bottom It may be

(第2変形例)
前述した凹部63は、積層壁部WA,WBの内側面61A,61Bに離散配置された構成の他、円周方向に連続する溝であってもよい。
図10A、図10Bは第2変形例の凹部63Bをそれぞれ示す概略平面図である。
図10Aに示す凹部63Bは、内側面61A,61Bの円周方向に沿って延びる複数の連続した溝である。各凹部63Bは、内側面61A,61Bの展開面において、それぞれ平行に形成される。
また、図10Bに示す凹部63Bは、円周方向から傾斜して延びる複数の連続した溝である。溝の傾斜方向は、図示例に限らず任意の方向であってもよい。なお、凹部63Bの長手方向に直交する断面形状は、上述した凹部63の平面視の形状と同様に、円形、四角形、多角形等、種々の形状であってよい。
(2nd modification)
The recessed part 63 mentioned above may be a groove | channel which follows the circumferential direction besides the structure discretely arranged by inner surface 61A, 61B of lamination | stacking wall part WA, WB.
10A and 10B are schematic plan views showing the recess 63B of the second modification, respectively.
Recesses 63B shown in FIG. 10A are a plurality of continuous grooves extending along the circumferential direction of the inner side surfaces 61A, 61B. Recesses 63B are formed in parallel with each other on the developed surface of inner side surfaces 61A and 61B.
Moreover, the recessed part 63B shown to FIG. 10B is a some continuous groove | channel which inclines and extends from the circumferential direction. The inclination direction of the groove is not limited to the illustrated example but may be any direction. The cross-sectional shape orthogonal to the longitudinal direction of the recess 63B may be various shapes such as a circle, a square, and a polygon, as in the above-described shape of the recess 63 in plan view.

凹部63Bが複数の連続した溝であることで、積層壁部WA,WBと鋳物部47との接触面積が増加して、積層壁部WA,WBと鋳物部47との接合強度を、凹部63が離散配置された場合と比較して更に向上できる。また、溝の長手方向と直交する方向の剪断強度が向上し、特定方向の構造体の強度を選択的に向上できる。   Since the recess 63B is a plurality of continuous grooves, the contact area between the stacked wall portion WA, WB and the casting portion 47 is increased, and the bonding strength between the stacked wall portion WA, WB and the casting portion 47 can be Can be further improved as compared with the case of discrete arrangement. In addition, the shear strength in the direction orthogonal to the longitudinal direction of the groove is improved, and the strength of the structure in the specific direction can be selectively improved.

(第3変形例)
前述した凹部63は、積層壁部WA,WBの内側面61A,61Bに等間隔で配置することに限らず、凹部63の配置密度を任意に変更することができる。
図11は凹部63の配置密度が異なる領域を有する構造体の概略断面図である。
同図に示すように、積層壁部WA,WBの内側面61A,61Bは、凹部63の高密度領域Ar1と、低密度領域Ar2,Ar3とを有する。高密度領域Ar1では、低密度領域Ar2,Ar3と比較して、上下方向に関して凹部63の配置密度が高い。
(Third modification)
The recesses 63 described above are not limited to being arranged at equal intervals on the inner side surfaces 61A, 61B of the laminated wall portions WA, WB, but the arrangement density of the recesses 63 can be arbitrarily changed.
FIG. 11 is a schematic cross-sectional view of a structure having regions where the arrangement density of the recesses 63 is different.
As shown in the figure, the inner side surfaces 61A and 61B of the laminated wall portions WA and WB have a high density region Ar1 of the recess 63 and low density regions Ar2 and Ar3. In the high density region Ar1, the arrangement density of the recesses 63 is higher in the vertical direction than in the low density regions Ar2 and Ar3.

凹部63の配置密度を部分的に変更することにより、高密度領域Ar1における凹部63の鋳物部47との接合強度が、低密度領域Ar2,Ar3よりも高められる。よって、特に強度が必要な部位のみを高密度領域Ar1とすれば、構造体の強度を効率よく高められる。凹部の配置密度は、上記2段階の他、3段階以上の複数段階であってもよく、連続的に変化させることでもよい。また、凹部は離散配置される凹部であってもよく、第2変形例の凹部63Bのような連続する溝であってもよい。また、配置密度は上下方向に限らず、他の任意の方向であってもよい。   By partially changing the arrangement density of the recessed portions 63, the bonding strength between the recessed portions 63 and the casting portion 47 in the high density region Ar1 is higher than that in the low density regions Ar2 and Ar3. Therefore, the strength of the structure can be efficiently enhanced if the high density region Ar1 is used only for the portion that requires particularly high strength. The arrangement density of the recesses may be a plurality of three or more stages other than the above two stages, or may be changed continuously. The recesses may be discretely disposed recesses, or may be continuous grooves such as the recess 63B of the second modification. The arrangement density is not limited to the vertical direction, but may be any other direction.

(第4変形例)
前述した凹部63は、積層壁部WAと積層壁部WBに同一形態で設けることに限らず、互いに異ならせてもよい。
図12は凹部63を積層壁部WAと積層壁部WBとに異なる形態で設けた構造体の概略断面図である。
(4th modification)
The recessed portions 63 described above are not limited to being provided in the same form in the laminated wall portion WA and the laminated wall portion WB, and may be different from each other.
FIG. 12 is a schematic cross-sectional view of a structure in which the recessed portion 63 is provided in the laminated wall portion WA and the laminated wall portion WB in different forms.

同図に示すように、積層壁部WAの内側面61Aに形成した凹部63と、積層壁部WBの内側面61Bに形成した凹部63とは、上下方向(Z方向)に関して交互に配置される。この構成によれば、凹部63が積層壁部WAとWBとの上下方向に異なる位置に配置されるため、構造体全体として凹部63の上下方向の配置ピッチが実質的に短くなり、凹部63がより分散して配置される。よって、積層壁部WAと積層壁部WBとで凹部63が等ピッチで配置される場合と比較して、凹部63の分布がより均一化され、鋳物部47の積層壁部WA,WBとの接合強度を向上できる。   As shown in the figure, the concave portions 63 formed in the inner side surface 61A of the laminated wall portion WA and the concave portions 63 formed in the inner side surface 61B of the laminated wall portion WB are alternately arranged in the vertical direction (Z direction). . According to this configuration, since the recesses 63 are arranged at different positions in the vertical direction of the stacked wall portions WA and WB, the arrangement pitch of the recesses 63 in the vertical direction as the entire structure becomes substantially short, and the recesses 63 It is arranged more dispersedly. Therefore, as compared with the case where the recessed portions 63 are arranged at equal pitches in the stacked wall portion WA and the stacked wall portion WB, the distribution of the recessed portions 63 is made more uniform, and the stacked wall portions WA and WB of the casting portion 47. Bonding strength can be improved.

(第5変形例)
前述した凹部63は、積層壁部WA,WBの溶着ビード層の層構成に対応して設けることができる。
図13Aは凹部63が積層壁部WA,WBの層間部に形成された積層壁部WA,WBの概略断面図、図13Bは凹部が積層壁部WA,WBの層外縁部に形成された積層壁部WA,WBの概略断面図である。
(5th modification)
The recess 63 described above can be provided corresponding to the layer configuration of the welding bead layers of the laminated wall portions WA, WB.
13A is a schematic cross-sectional view of the laminated wall portion WA, WB in which the recess 63 is formed in the interlayer portion of the laminated wall portion WA, WB, and FIG. 13B is a laminate in which the recess is formed in the layer outer edge portion of the laminated wall portion WA, WB It is a schematic sectional drawing of wall part WA, WB.

図13Aに示すように、積層壁部WA,WBの内側面61A,61Bには、溶着ビード43の積層により、溶着ビード層毎に凹凸が繰り返し形成される。凹部63は、内側面61A,61Bの凹凸のうち、凹凸の括れ部となる溶着ビード層間の狭隘部69に形成される。   As shown in FIG. 13A, in the inner side surfaces 61A and 61B of the laminated wall portions WA and WB, unevenness is repeatedly formed for each welding bead layer by the lamination of the welding beads 43. The concave portion 63 is formed in the narrow portion 69 between the welding bead layers, which is a narrow portion of the unevenness among the unevenness of the inner side surfaces 61A and 61B.

この場合、積層造形により形成される積層壁部WA,WBの狭隘部69が、凹部63の形成により更に深くなり、凹部底面65と層外縁部(水平方向に最も突出した部分)71との差が大きくなる。これにより、凹部63の深さが増加して、凹部63内へ流れ込む鋳湯の量が増加して、積層壁部WA,WBと鋳物部47との接合強度が増加する。   In this case, the narrowing portion 69 of the laminated wall portion WA, WB formed by lamination molding is further deepened by the formation of the concave portion 63, and the difference between the concave bottom surface 65 and the layer outer edge portion (the most projecting portion in the horizontal direction) 71 Becomes larger. As a result, the depth of the recess 63 is increased, the amount of cast iron flowing into the recess 63 is increased, and the bonding strength between the laminated wall portions WA, WB and the casting portion 47 is increased.

また、図13Bに示すように、凹部63を積層壁部WA,WBの内側面61A,61Bのビード層の層外縁部71に形成してもよい。その場合、凹部63に加え、狭隘部69も内側面61A,61Bの凹凸となる。その結果、凹凸の数が増加し、積層壁部WA,WBと鋳物部47との接触面積が増加して、双方の接合強度が増加する。   Further, as shown in FIG. 13B, the recessed portion 63 may be formed in the layer outer edge portion 71 of the bead layer of the inner side surfaces 61A, 61B of the laminated wall portions WA, WB. In that case, in addition to the concave portion 63, the narrowing portion 69 also has irregularities of the inner side surfaces 61A, 61B. As a result, the number of asperities increases, the contact area between the laminated wall portions WA and WB and the casting portion 47 increases, and the joint strength of both increases.

<第2構成例>
次に、第2構成例の積層壁部WA,WBを説明する。
図14は第2構成例の積層壁部WA,WBと鋳物部47の概略断面図である。
本構成の積層壁部WA,WBは、前述した第1構成例の凹部63,63A,63Bに代えて凸部73を設けている。
Second Configuration Example
Next, the laminated wall portions WA and WB of the second configuration example will be described.
FIG. 14 is a schematic cross-sectional view of the laminated wall portions WA and WB and the casting portion 47 in the second configuration example.
The laminated wall portions WA and WB of this configuration are provided with convex portions 73 instead of the concave portions 63, 63A and 63B of the first structural example described above.

凸部73は、内側面61A,61Bそれぞれの複数箇所に離散配置される。図示例では、凸部73が図中の上下方向に関して略等間隔で配置される。また、凸部73は、積層壁部WAと積層壁部WBとで、互いに等しい高さ位置に形成されている   The convex portions 73 are discretely disposed at a plurality of locations on each of the inner side surfaces 61A and 61B. In the illustrated example, the convex portions 73 are arranged at substantially equal intervals in the vertical direction in the drawing. Further, the convex portion 73 is formed at the same height position as each other by the laminated wall portion WA and the laminated wall portion WB.

凸部73は、内側面61A,61Bの平面視で、真円,楕円,長円(半径の等しい2つの円を共通外接線で繋いだ形)等の円柱状や円錐状、平面視で正三角形,二等辺三角形,直角三角形等の三角形、正方形,長方形,菱形,台形,平行四辺形等の四角柱状又は四角錐状、平面視で五角形径,六角形等の多角柱状又は多角錐状等、種々の形状であってよい。   The convex portion 73 has a cylindrical or conical shape such as a perfect circle, an ellipse, or an oval (a shape in which two circles having the same radius are connected by a common circumscribed line) in a plan view of the inner side surfaces 61A and 61B. Triangle, isosceles triangle, triangle such as right triangle, square, rectangle, rhombus, trapezoid, quadrilateral prism such as parallelogram, etc., polygonal prism such as pentagon diameter, hexagonal in plan view, polygonal pyramid, etc. It may be of various shapes.

また、凸部73は、円周方向に沿って延びる複数の連続した突条であってもよい。各突条は、内側面61A,61Bの展開面において、それぞれ平行に形成される。
更に、凸部73は、円周方向から傾斜して延びる複数の連続した突条であってもよい。突状の傾斜方向は、円周方向に限らず任意の方向であってもよい。なお、突状の長手方向に直交する断面形状は、凹部63の平面視の形状と同様に、円形、四角形、多角形等、種々の形状であってよい。
Further, the convex portion 73 may be a plurality of continuous ridges extending along the circumferential direction. The respective ridges are formed in parallel with each other on the developed surface of the inner side surfaces 61A and 61B.
Furthermore, the projections 73 may be a plurality of continuous ridges extending obliquely from the circumferential direction. The protruding inclination direction may be any direction, not limited to the circumferential direction. The cross-sectional shape orthogonal to the longitudinal direction of the protrusion may be various shapes such as a circle, a square, a polygon, and the like, as in the shape of the recess 63 in plan view.

凸部73が複数の連続した突条であることで、積層壁部WA,WBと鋳物部47との接触面積が増加して、積層壁部WA,WBと鋳物部47との接合強度を、凸部73が離散配置された場合と比較して更に向上できる。また、突条の長手方向と直交する方向の耐剪断力が向上し、特定方向の構造体の強度を選択的に向上できる。   When the convex portion 73 is a plurality of continuous ridges, the contact area between the laminated wall portion WA, WB and the casting portion 47 is increased, and the bonding strength between the laminated wall portion WA, WB and the casting portion 47 is This can be further improved as compared with the case where the convex portions 73 are discretely arranged. In addition, the shear resistance in the direction orthogonal to the longitudinal direction of the ridges is improved, and the strength of the structure in the specific direction can be selectively improved.

その他、詳細な説明は省略するが、凸部73についても前述した凹部63の場合の第3〜第4変形例と同様の構成にでき、これにより、凹部63の場合と同様の作用効果が得られる。また、第5変形例の凹部63に代えて凸部73を設けることで、積層壁部WA,WBの鋳物部47との接触面積が増加して、接合強度を向上できる。   In addition, although the detailed description is omitted, the convex portion 73 can be configured similarly to the third to fourth modified examples in the case of the concave portion 63 described above, and thereby, the same function and effect as the concave portion 63 is obtained. Be Further, by providing the convex portion 73 instead of the concave portion 63 of the fifth modified example, the contact area of the laminated wall portions WA, WB with the cast portion 47 can be increased, and the bonding strength can be improved.

<第3構成例>
次に、第3構成例の積層壁部WA,WBを説明する。
図15は第3構成例の積層壁部WA,WBと鋳物部47の概略断面図である。
本構成の積層壁部WA,WBは、前述した第1構成例の凹部63,63A,63Bに代えて、突片75を設けている。
<Third configuration example>
Next, the laminated wall portions WA and WB of the third configuration example will be described.
FIG. 15 is a schematic cross-sectional view of the laminated wall portions WA and WB and the casting portion 47 in the third configuration example.
In the laminated wall portions WA and WB of this configuration, in place of the concave portions 63, 63A and 63B of the first configuration example described above, the projecting pieces 75 are provided.

突片75は、内側面61A,61Bそれぞれの複数箇所に離散配置される。図示例では、図中の上下方向に関して略等間隔で、複数の突片75が内側面61A,61Bから突出して形成される。また、突片75は積層壁部WAと積層壁部WBとで、互いに等しい高さ位置に配置されている   The projecting pieces 75 are discretely disposed at a plurality of locations on each of the inner side surfaces 61A and 61B. In the illustrated example, a plurality of projecting pieces 75 are formed to protrude from the inner side surfaces 61A and 61B at substantially equal intervals in the vertical direction in the drawing. In addition, the protruding pieces 75 are arranged at the same height position in the laminated wall portion WA and the laminated wall portion WB.

突片75は、積層壁部WA,WBの内側面61A,61Bの法線方向から、図中上方に向けて傾斜している。これら複数の突片75の傾斜方向は、積層壁部WA,WB毎に同一の方向(図示例では上方)となっている。   The projecting piece 75 is inclined upward in the figure from the normal direction of the inner side surfaces 61A and 61B of the laminated wall portions WA and WB. The inclination directions of the plurality of protrusions 75 are the same (upper in the illustrated example) for each of the laminated wall portions WA and WB.

突片75は、例えば針金や線状部材をU字形に変形させた部材であって、その形状は任意である。また、線状部材に限らず、板材であってもよい。突片75は、溶接やねじ止め等によって積層壁部WA,WBに固定される。また、突片75は、積層壁部WA,WBの積層造形時に同時に積層造形したものであってもよい。   The projecting piece 75 is, for example, a member obtained by deforming a wire or a linear member into a U shape, and the shape is arbitrary. Moreover, not only a linear member but a board material may be sufficient. The projecting pieces 75 are fixed to the laminated wall portions WA, WB by welding, screwing or the like. Further, the projecting piece 75 may be formed by laminating and forming simultaneously at the time of laminating and forming the laminated wall portions WA and WB.

本構成によれば、積層壁部WA,WBの内側面61A,61Bから突片75が突出して鋳物部47に覆われ、突片75が鋳物部47と一体に形成される。このため、積層壁部WA,WB側と鋳物部47との接触面積が増加して、積層壁部WA,WBと鋳物部47との接合強度を更に向上できる。   According to this configuration, the projecting pieces 75 project from the inner side surfaces 61A and 61B of the laminated wall portions WA and WB and are covered with the casting portion 47, and the projecting pieces 75 are formed integrally with the casting portion 47. For this reason, the contact area of the lamination wall part WA, WB side and the casting part 47 increases, and the joint strength of the lamination wall part WA, WB and the casting part 47 can further be improved.

また、突片75は、その傾斜方向に沿った鋳物部47との剪断強度が高められる。そのため、図示例の構成では、積層壁部WA,WBと鋳物部47との間で上下方向の剪断強度を向上できる。   In addition, the projecting piece 75 has an increased shear strength with the casting portion 47 along the inclination direction. Therefore, in the configuration of the illustrated example, the shear strength in the vertical direction can be improved between the laminated wall portions WA and WB and the casting portion 47.

突片75は、各積層壁部WA,WBからそれぞれ同一の方向に傾斜させる構成に限らない。例えば、図16に示すように、互いに異なる向きに傾斜した突片75と突片77とを組み合わせることで、負荷される応力の向きによらずに、剪断強度を向上できる。   The protruding pieces 75 are not limited to the configuration in which the stacked wall portions WA and WB are inclined in the same direction. For example, as shown in FIG. 16, by combining the projecting pieces 75 and the projecting pieces 77 inclined in different directions, it is possible to improve the shear strength regardless of the direction of the applied stress.

更に、図17に示すように、積層壁部WA側の突片75と、積層壁部WB側の突片77とを、それぞれ傾斜方向を異ならせた形態としてもよい。この場合、図中矢印Fで示す外力が作用した場合の剪断強度を高められる。   Furthermore, as shown in FIG. 17, the protruding pieces 75 on the laminated wall WA side and the protruding pieces 77 on the laminated wall WB may be different in inclination direction. In this case, the shear strength in the case where an external force shown by arrow F in the drawing acts can be increased.

<第4構成例>
次に、第4構成例の積層壁部WA,WBを説明する。
図18は第4構成例の積層壁部WA,WBと鋳物部47を含む構造体の概略断面図である。
本構成の構造体は、積層壁部WA,WBを連結する連結アンカー部79を備える。その他の構成は図6に示す第1構成例の構造体と同様である。
Fourth Configuration Example
Next, the laminated wall portions WA and WB of the fourth configuration example will be described.
FIG. 18 is a schematic cross-sectional view of a structure including the laminated wall portions WA and WB and the casting portion 47 in the fourth configuration example.
The structure of this configuration includes a connection anchor portion 79 that connects the stacked wall portions WA and WB. The other configuration is the same as the structure of the first configuration example shown in FIG.

連結アンカー部79は、丸棒や板材等の積層壁部WA,WBとは別体の部材であり、積層壁部WA,WBに溶接等により固定される。また、連結アンカー部79は、積層壁部WA,WBと共に積層造形された積層造形体であってもよい。   The connection anchor portion 79 is a member separate from the laminated wall portions WA, WB such as a round bar or a plate, and is fixed to the laminated wall portions WA, WB by welding or the like. In addition, the connection anchor portion 79 may be a laminate-molded article laminated and formed with the laminate wall portions WA and WB.

連結アンカー部79は、図示例では等間隔に配置されているが、任意位置に設けた構成にしてもよい。また、互いに平行に配置される他、積層壁部WA,WBの内側面61A,61Bの法線方向から傾斜して配置されていてもよい。   The connection anchor portions 79 are arranged at equal intervals in the illustrated example, but may be provided at an arbitrary position. Further, in addition to being disposed in parallel with each other, they may be disposed inclined from the normal direction of the inner side surfaces 61A, 61B of the laminated wall portions WA, WB.

本構成によれば、積層壁部WAと積層壁部WBとが連結アンカー部79により接合されて、積層壁部WA,WBと連結アンカー部79によって構造体の骨格が形成される。このため、構造体の強度が連結アンカー部79を設けない場合よりも高められ、しかも、鋳湯との接触面積が増加するため、鋳物部47と連結アンカー部79との接合強度を高められる。   According to this configuration, the laminated wall portion WA and the laminated wall portion WB are joined by the connection anchor portion 79, and the laminated wall portions WA and WB and the connection anchor portion 79 form a framework of the structure. For this reason, the strength of the structure is enhanced as compared to the case where the connection anchor portion 79 is not provided, and the contact area with the cast iron is increased, so the bonding strength between the casting portion 47 and the connection anchor portion 79 can be enhanced.

また、連結アンカー部79は、図19に示すように、連結アンカー部79の一部に貫通孔81を形成することが好ましい。その場合、積層壁部WA,WBで囲まれた領域内における鋳湯の流動が助長される。また、鋳湯が凝固した後は、積層壁部WA,WB及び連結アンカー部79と、鋳物部47との接合強度をより高められる。   In addition, as shown in FIG. 19, the connection anchor portion 79 preferably has a through hole 81 formed in part of the connection anchor portion 79. In that case, the flow of the molten metal in the area surrounded by the laminated wall portions WA and WB is promoted. In addition, after the casting solution is solidified, the bonding strength between the laminated wall portions WA and WB and the connection anchor portion 79 and the casting portion 47 can be further enhanced.

<構造体の他の構成例>
上記した構造体は、図3、図5に示す構造体51,51Aに基づく形状であるが、これに限らず、他の任意の形状であってもよい。
一例として、図20に他の構造体51Bの概略断面図を示す。
本構成の構造体51Bは、ギヤポンプの外筒として使用される中空のケーシングである。この構造体51Bは、外殻である積層壁部WAと、内殻である積層壁部WAと、積層壁部WAと積層壁部WBとの内側空間45に鋳湯を流し込んで凝固させた鋳物部47と、を有する。
<Another example of structure of structure>
Although the above-mentioned structure is a shape based on structure 51, 51A shown in Drawing 3 and Drawing 5, it may not be this but another arbitrary shape.
As an example, FIG. 20 shows a schematic cross-sectional view of another structure 51B.
The structure 51B of this configuration is a hollow casing used as an outer cylinder of the gear pump. This structure 51B is a casting obtained by pouring a molten metal into the inner space 45 of the laminated wall portion WA which is an outer shell, the laminated wall portion WA which is an inner shell, and the laminated wall portion WA and the laminated wall portion WB. And a part 47.

積層壁部WAは、断面略楕円形の外殻であり、ギヤポンプの外筒の骨格を形成する。また、積層壁部WBは、積層壁部WAの内側に形成され、2つの円筒体が互いの半径距離よりも近くに配置されて一つの内殻として繋がった形状を有する。一対の部分円筒状の内殻である積層壁部WBの内側には、中空空間46が画成される。この中空空間46には、それぞれポンプのロータが挿入され、積層壁部WBの内側面がロータの対向面となる。   The laminated wall portion WA is an outer shell having a substantially elliptical cross section, and forms a framework of an outer cylinder of the gear pump. In addition, the laminated wall portion WB is formed inside the laminated wall portion WA, and has a shape in which two cylindrical bodies are disposed closer to each other than a radial distance from each other and connected as one inner shell. A hollow space 46 is defined inside the laminated wall portion WB which is a pair of partial cylindrical inner shells. The rotors of the pumps are respectively inserted into the hollow spaces 46, and the inner side surfaces of the laminated wall portion WB become the opposing surfaces of the rotors.

構造体51BのIV−IV線断面は、前述した図2の構造体51のVI−VI線断面、図5の構造体51AのVI−VI線断面と同様に、第1〜第4構成例の各種形態とすることができ、同様の作用効果が得られる。   The IV-IV line cross section of the structure 51B is the same as the VI-VI line cross section of the structure 51 of FIG. 2 described above, and the VI-VI line cross section of the structure 51A of FIG. It can be in various forms and the same effects can be obtained.

図21は図20に示す構造体51Bの積層壁部WA,WBに連結アンカー部79を設けた骨格構造53の一例を示す斜視図である。
本構成の構造体51Bの骨格構造53は、外殻である積層壁部WAと、内殻である積層壁部WBと、積層壁部WAと積層壁部WBとを連結する複数の連結アンカー部79を備える。連結アンカー部79は、積層壁部WAと積層壁部WBとの間の内側空間45に形成されたリブとなり、構造体51Bの骨格を堅固にしている。また、連結アンカー部79には、それぞれ複数の貫通孔81が形成されている。
FIG. 21 is a perspective view showing an example of a skeleton structure 53 in which the connection anchor portion 79 is provided on the laminated wall portions WA and WB of the structure 51B shown in FIG.
The skeletal structure 53 of the structure 51B of this configuration includes a laminated wall portion WA which is an outer shell, a laminated wall portion WB which is an inner shell, and a plurality of connection anchor portions which connect the laminated wall portion WA and the laminated wall portion WB. 79 is provided. The connection anchor portion 79 is a rib formed in the inner space 45 between the laminated wall portion WA and the laminated wall portion WB, and makes the frame of the structure 51B rigid. Further, a plurality of through holes 81 are formed in the connection anchor portion 79, respectively.

この構造体51の骨格構造53によれば、積層壁部WA,WBと連結アンカー部79により画成される複数の内側空間45に鋳湯を流し込む際、鋳湯が貫通孔81を通じて隣接する内側空間45に流れ込み、湯回りを良好にできる。また、鋳湯の凝固後では、積層壁部WA,WB及び連結アンカー部79は、鋳湯との接触面積が増加して、凝固した鋳物部との接合強度が向上する。よって、高強度な構造体が得られる。   According to the skeleton structure 53 of the structure 51, when pouring a casting bath into a plurality of inner spaces 45 defined by the laminated wall portions WA and WB and the connection anchor portion 79, the casting bath is an inner side adjacent to each other through the through holes 81. It flows into the space 45, and the hot water can be well made. In addition, after solidification of the casting bath, the contact area with the casting bath is increased in the laminated wall portions WA and WB and the connection anchor portion 79, and the bonding strength with the solidified casting portion is improved. Thus, a high strength structure can be obtained.

本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。   The present invention is not limited to the above-described embodiments, but the configurations of the embodiments may be combined with one another, or modified or applied by those skilled in the art based on the description of the specification and the well-known techniques. It is intended for the invention, and is included in the scope for which protection is sought.

例えば、構造体の形状は、水平方向と上下方向の少なくともいずれかの方向に沿って肉厚が変化する形状であってもよい。また、角筒形状の構造体、平面視で矩形状、三角形状、楕円形状等の各種形状の構造体であってもよい。   For example, the shape of the structure may be a shape whose thickness changes along at least one of the horizontal direction and the vertical direction. In addition, it may be a rectangular cylinder-shaped structure or a structure of various shapes such as a rectangular shape, a triangular shape, or an elliptical shape in a plan view.

また、上記した構造体の製造方法では、アーク放電により溶接ワイヤを溶解して溶着ビードを形成し、低コストで、且つ短いリードタイムで構造体を作製している。
なお、溶接ワイヤを溶融させる熱源としては、上記したアークに限らない。例えば、アークとレーザとを併用した加熱方式、プラズマを用いる加熱方式、電子ビームやレーザを用いる加熱方式等、他の方式による熱源を採用してもよい。電子ビームやレーザにより加熱する場合、加熱量を更に細かく制御でき、溶着ビードの状態をより適正に維持して、積層構造物の更なる品質向上に寄与できる。
In the method of manufacturing a structure described above, the welding wire is melted by arc discharge to form a welding bead, and the structure is manufactured at low cost and with a short lead time.
The heat source for melting the welding wire is not limited to the above-described arc. For example, heat sources using other methods such as a heating method using an arc and a laser in combination, a heating method using a plasma, a heating method using an electron beam or a laser, etc. may be adopted. In the case of heating by an electron beam or a laser, the amount of heating can be controlled more finely, and the state of the weld bead can be maintained more properly, which can contribute to further quality improvement of the laminated structure.

更に、上記の説明では、溶着ビードを一つの閉じられた線状にした層を形成した構成を示しているが、溶着ビードによる閉じられた線は、同一の水平断面上で複数箇所に存在してもよい。また、閉じられた線状の層において、溶着ビードによる線の外側や内側に更に延出する溶着ビード部分が存在してもよい。いずれの場合でも、閉じられた領域内にそれぞれ鋳湯を流し込むことで、より複雑な形状の構造体を作製できる。この場合の閉じられた領域とは、円形や楕円形に限らず、正方形、長方形、多角形等の任意の形状とすることができる。   Furthermore, although the above description shows a configuration in which the welding bead is formed into one closed linear layer, the closed lines by the welding bead exist in multiple places on the same horizontal cross section. May be Also, in the closed linear layer, there may be a weld bead portion further extending to the outside or the inside of the line by the weld bead. In any case, a more complex shaped structure can be produced by pouring the molten metal into the closed regions respectively. The closed region in this case is not limited to a circle or an ellipse, but may be any shape such as a square, a rectangle, or a polygon.

また、上記の説明では、一本の線状の溶着ビードにより積層壁部を造形しているが、ウィービング動作のようにトーチ17を揺動させながら溶着ビードを形成したり、溶接ロボット19の駆動により、円や三角等の軌跡を描かせながらトーチ17を移動させたりしてもよい。その場合、溶接方向とは別方向の移動成分を有してトーチ17が移動されるため、溶着ビード幅を増減でき、積層壁部の幅を任意に調整できる。   Further, in the above description, although the laminated wall portion is formed by one linear welding bead, the welding bead is formed while swinging the torch 17 as in the weaving operation, or the welding robot 19 is driven. Thus, the torch 17 may be moved while drawing a locus such as a circle or a triangle. In that case, since the torch 17 is moved with a moving component different from the welding direction, the welding bead width can be increased or decreased, and the width of the laminated wall can be arbitrarily adjusted.

以上の通り、本明細書には次の事項が開示されている。
(1) 溶加材の溶融凝固体である溶着ビードが積層された積層壁部と、
前記積層壁部で囲まれた内側空間に形成された鋳物部と、
を備え、
前記積層壁部の内側面に、凹部と凸部の少なくともいずれかを有するアンカー部を有し、前記アンカー部が前記鋳物部に覆われている構造体。
この構造体によれば、溶着ビードの積層によって積層壁部を成形するので、鋳造のための型作製が不要となり、鋳造工数や型材料のコストを低減できる。また、構造体を製造するリードタイムが短縮される。更に、比較的高コストな積層材料の使用が積層壁部だけで済み、材料費を抑えて製造コストを低減できる。そして、積層壁部にアンカー部が設けられ、アンカー部が鋳物部に覆われることで、積層壁部と鋳物部との接合強度を向上できる。
As described above, the following matters are disclosed in the present specification.
(1) A laminated wall portion on which welding beads, which are melt solidified bodies of filler metals, are laminated;
A casting portion formed in an inner space surrounded by the laminated wall portion;
Equipped with
The structure which has an anchor part which has at least any one of a recessed part and a convex part in the inner surface of the said lamination | stacking wall part, and the said anchor part is covered by the said casting part.
According to this structure, since the laminated wall portion is formed by laminating the welding beads, it is not necessary to produce a mold for casting, and the number of casting processes and the cost of the mold material can be reduced. Also, the lead time for manufacturing the structure is shortened. Furthermore, the use of relatively expensive laminated material is only required for the laminated wall, which can reduce the material cost and reduce the manufacturing cost. And an anchor part is provided in a lamination wall part, and a joint strength of a lamination wall part and a casting part can be improved by covering an anchor part with a casting part.

(2) 前記アンカー部は、前記積層壁部の内側面の複数箇所に離散配置された(1)に記載の構造体。
この構造体によれば、複数のアンカー部が離散配置されることで、鋳湯との接触面積を増加させて、鋳物部との接合強度を向上できる。
(2) The structure according to (1), wherein the anchor portions are discretely disposed at a plurality of locations on the inner surface of the laminated wall portion.
According to this structure, by arranging the plurality of anchor portions in a discrete manner, the contact area with the casting bath can be increased, and the bonding strength with the casting portion can be improved.

(3) 前記アンカー部は、前記積層壁部に形成された複数の溝を含む(1)又は(2)に記載の構造体。
この構造体によれば、複数の溝が形成する凹凸によって、積層壁部と鋳物部との接合強度を向上できる。
(3) The structure according to (1) or (2), wherein the anchor portion includes a plurality of grooves formed in the laminated wall portion.
According to this structure, the bonding strength between the laminated wall portion and the casting portion can be improved by the unevenness formed by the plurality of grooves.

(4) 前記アンカー部は、前記積層壁部に形成された複数の突条を含む(1)〜(3)のいずれか一つに記載の構造体。
この構造体によれば、複数の突条が形成する凹凸によって、積層壁部と鋳物部との接合強度を向上できる。
(4) The structure according to any one of (1) to (3), wherein the anchor portion includes a plurality of ridges formed on the laminated wall portion.
According to this structure, the bonding strength between the laminated wall portion and the casting portion can be improved by the unevenness formed by the plurality of protrusions.

(5) 前記アンカー部は、前記積層壁部の内側面に突設された突片を含む(1)〜(4)のいずれか一つに記載の構造体。
この構造体によれば、突片が鋳物部に覆われることで、積層壁部をより高強度に鋳物部と接合できる。
(5) The structure according to any one of (1) to (4), wherein the anchor portion includes a projecting piece provided to protrude on an inner side surface of the laminated wall portion.
According to this structure, the laminated wall portion can be joined to the casting portion with higher strength by covering the projection with the casting portion.

(6) 前記突片は、前記積層壁部の内側面の法線方向から傾斜して突出している(5)に記載の構造体。
この構造体によれば、突片の傾斜方向に沿った方向の剪断強度が向上する。
(6) The structure according to (5), wherein the projecting piece projects obliquely from the normal direction of the inner surface of the laminated wall portion.
According to this structure, the shear strength in the direction along the inclination direction of the projecting piece is improved.

(7) 複数の前記突片は、同一方向に向けて傾斜している(6)に記載の構造体。
この構造体によれば、突片の傾斜方向を揃えることで、剪断強度を選択的に高めることができる。
(7) The structure according to (6), wherein the plurality of protrusions are inclined in the same direction.
According to this structure, the shear strength can be selectively increased by aligning the inclination directions of the protrusions.

(8) 前記積層壁部は、前記構造体の外殻と、前記外殻の内側に形成された内殻とを有し、
前記アンカー部は、前記外殻と前記内殻の少なくとも一方に形成されている(1)〜(7)のいずれか一つに記載の構造体。
この構造体によれば、外殻と内殻の少なくとも一方のアンカー部が鋳物部に覆われて、積層壁部及びアンカー部と鋳物部との接合強度を向上できる。
(8) The laminated wall portion has an outer shell of the structure and an inner shell formed inside the outer shell,
The structure according to any one of (1) to (7), wherein the anchor portion is formed on at least one of the outer shell and the inner shell.
According to this structure, the anchor portion of at least one of the outer shell and the inner shell is covered with the cast portion, and the bonding strength between the laminated wall portion and the anchor portion and the cast portion can be improved.

(9) 溶加材の溶融凝固体である溶着ビードが積層された積層壁部と、
前記積層壁部で囲まれた内側空間に形成された鋳物部と、
を備え、
前記積層壁部は、構造体の外殻と、前記外殻の内側に形成された内殻とを有し、
前記外殻と前記内殻とを連結する連結アンカー部を更に備え、前記連結アンカー部が前記鋳物部に覆われている構造体。
この構造体によれば、連結アンカー部が外殻と内殻とを連結することで、外殻と内殻との骨格構造の強度を向上できる。また、連結アンカー部は、鋳物部で覆われることで、鋳物部との接合強度を向上できる。
(9) A laminated wall portion on which welding beads, which are melt solidified bodies of filler metals, are laminated;
A casting portion formed in an inner space surrounded by the laminated wall portion;
Equipped with
The laminated wall has an outer shell of a structure and an inner shell formed inside the outer shell,
The structure further provided with the connection anchor part which connects the said outer shell and the said inner shell, and the said connection anchor part is covered by the said casting part.
According to this structure, the strength of the skeletal structure of the outer shell and the inner shell can be improved by connecting the outer shell and the inner shell with the connection anchor portion. Moreover, a connection anchor part can improve the joint strength with a casting part by being covered by a casting part.

(10) 前記連結アンカー部は、棒材又は板材である(9)に記載の構造体。
この構造体によれば、連結アンカー部を外殻、内殻とは別部材で形成することで、簡単に連結アンカー部を設置できる。
(10) The structure according to (9), wherein the connection anchor portion is a bar or plate.
According to this structure, the connection anchor portion can be easily installed by forming the connection anchor portion with an outer shell and a separate member from the inner shell.

(11) 前記連結アンカー部は、鋳湯を連通する貫通孔が形成されている(9)又は(10)に記載の構造体。
この構造体によれば、貫通孔を鋳湯が連通し、隣接する内側空間に鋳湯がスムーズに流れ込んで、均質な鋳物部が得られる。また、連結アンカー部の鋳物部との接触面積が増加して、連結アンカー部と鋳物部との接合強度が向上する。
(11) The structure according to (9) or (10), wherein the connection anchor portion is formed with a through hole communicating the casting solution.
According to this structure, the cast irons communicate with the through holes, and the cast irons smoothly flow into the adjacent inner space, and a homogeneous cast part can be obtained. In addition, the contact area of the connection anchor portion with the casting portion is increased, and the bonding strength between the connection anchor portion and the casting portion is improved.

(12) 溶加材を溶融及び凝固させた溶着ビードをベース上に積層して、少なくとも構造体の外殻を含む積層壁部を造形する造形工程と、
前記造形工程の後、造形された前記積層壁部で囲まれた内側空間に、鋳湯を流し込んで鋳物部を形成する鋳造工程と、
を有し、
前記鋳造工程の前に、前記積層壁部の内側面に、凹部と凸部の少なくともいずれかのアンカー部を形成する工程を更に有する構造体の製造方法。
この構造体の製造方法によれば、溶着ビードの積層によって積層壁部を成形するので、鋳造のための型作製が不要となり、鋳造工数や型材料のコストを低減できる。また、構造体を製造するリードタイムが短縮される。更に、比較的高コストな積層材料の使用が積層壁部だけで済み、材料費を抑えて製造コストを低減できる。そして、積層壁部にアンカー部が設けられ、アンカー部が鋳物部に覆われることで、積層壁部と鋳物部との接合強度を向上できる。
(12) forming a welding bead obtained by melting and solidifying a filler material on a base to form a laminated wall including at least an outer shell of a structure;
The casting process which pours a cast iron in the inner space enclosed by the said lamination | stacking wall part modeled after the said modeling process, and forms a casting part,
Have
The manufacturing method of the structure which further has the process of forming the anchor part of at least any one of a recessed part and a convex part in the inner surface of the said lamination | stacking wall part before the said casting process.
According to the manufacturing method of this structure, since the laminated wall portion is formed by laminating the welding beads, the mold preparation for casting becomes unnecessary, and the number of casting processes and the cost of the mold material can be reduced. Also, the lead time for manufacturing the structure is shortened. Furthermore, the use of relatively expensive laminated material is only required for the laminated wall, which can reduce the material cost and reduce the manufacturing cost. And an anchor part is provided in a lamination wall part, and a joint strength of a lamination wall part and a casting part can be improved by covering an anchor part with a casting part.

(13) 前記アンカー部は、前記溶着ビードの積層により形成する(12)に記載の構造体の製造方法。
この構造体の製造方法によれば、積層壁部の造形と共にアンカー部を形成でき、効率よく構造体を製造できる。
(13) The method for manufacturing a structure according to (12), wherein the anchor portion is formed by stacking the welding beads.
According to the manufacturing method of this structure, the anchor portion can be formed together with the formation of the laminated wall portion, and the structure can be manufactured efficiently.

(14) 前記アンカー部は、前記積層壁部の機械加工、又は前記積層壁部への別部材の接合により形成する(12)に記載の構造体の製造方法。
この構造体の製造方法によれば、積層壁部に加工を施すことで、簡単にアンカー部を形成できる。
(14) The method for manufacturing a structure according to (12), wherein the anchor portion is formed by machining of the laminated wall portion or bonding of another member to the laminated wall portion.
According to the manufacturing method of this structure, the anchor portion can be easily formed by processing the laminated wall portion.

(15) 前記積層壁部は、前記構造体の外殻と、前記外殻の内側に形成された内殻とを有し、
前記アンカー部を、前記外殻と前記内殻の少なくとも一方に形成する(12)〜(14)のいずれか一つに記載の構造体の製造方法。
この構造体の製造方法によれば、外殻と内殻の少なくとも一方のアンカー部が鋳物部に覆われて、積層壁部及びアンカー部と鋳物部との接合強度を向上できる。
(15) The laminated wall portion has an outer shell of the structure and an inner shell formed inside the outer shell,
The manufacturing method of the structure as described in any one of (12)-(14) which forms the said anchor part in at least one of the said outer shell and the said inner shell.
According to the manufacturing method of this structure, the anchor portion of at least one of the outer shell and the inner shell is covered with the casting portion, and the bonding strength between the laminated wall portion and the anchor portion and the casting portion can be improved.

(16) 溶加材を溶融及び凝固させた溶着ビードをベース上に積層して、少なくとも構造体の外殻と前記外殻の内側の内殻とを含む積層壁部を造形する造形工程と、
前記造形工程の後、造形された前記積層壁部で囲まれた内側空間に、鋳湯を流し込んで鋳物部を形成する鋳造工程と、
を有し、
前記鋳造工程の前に、前記積層壁部の前記外殻と前記内殻とを連結する連結アンカー部を形成する連結工程を更に有する構造体の製造方法。
この構造体の製造方法によれば、連結アンカー部が外殻と内殻とを連結することで、外殻と内殻との骨格構造の強度を向上できる。また、連結アンカー部は、鋳物部で覆われることで、鋳物部との接合強度を向上できる。
(16) forming a laminated wall including at least an outer shell of a structure and an inner shell of the outer shell by laminating on a base a welding bead obtained by melting and solidifying a filler material;
The casting process which pours a cast iron in the inner space enclosed by the said lamination | stacking wall part modeled after the said modeling process, and forms a casting part,
Have
The manufacturing method of the structure which further has a connection process which forms the connection anchor part which connects the said outer shell and the said inner shell of the said lamination | stacking wall part before the said casting process.
According to the manufacturing method of this structure, the strength of the skeletal structure of the outer shell and the inner shell can be improved by connecting the outer shell and the inner shell with the connection anchor portion. Moreover, a connection anchor part can improve the joint strength with a casting part by being covered by a casting part.

(17) 前記連結アンカー部は、前記溶着ビードの積層により形成する(16)に記載の構造体の製造方法。
この構造体の製造方法によれば、積層壁部の造形と共に連結アンカー部を形成でき、効率よく構造体を製造できる。
(17) The method for manufacturing a structure according to (16), wherein the connection anchor portion is formed by stacking the welding beads.
According to the manufacturing method of this structure, a connection anchor part can be formed with modeling of a lamination wall part, and a structure can be manufactured efficiently.

(18) 前記連結アンカー部は、前記積層壁部へ別部材を接合することにより形成する(16)に記載の構造体の製造方法。
この構造体の製造方法によれば、積層壁部の造形と共に連結アンカー部を形成でき、効率よく構造体を製造できる。
(18) The method for manufacturing a structure according to (16), wherein the connection anchor portion is formed by joining another member to the laminated wall portion.
According to the manufacturing method of this structure, a connection anchor part can be formed with modeling of a lamination wall part, and a structure can be manufactured efficiently.

(19) 前記ベースを前記積層壁部及び前記鋳物部から分離させる工程を有する(12)〜(18)のいずれか一つに記載の構造体の製造方法。
この構造体の製造方法によれば、ベースの分離により、所望形状の構造体が得られ、熱影響を受けた領域を除去できる。
(19) The method for manufacturing a structure according to any one of (12) to (18), including the step of separating the base from the laminated wall portion and the casting portion.
According to the method of manufacturing this structure, the separation of the base provides a structure of the desired shape and can remove the thermally affected area.

25 鋳湯
41 ベースプレート(ベース)
43 溶着ビード
45 内側空間
47 鋳物部
51,51A,51B 構造体
55 外殻
57 内殻
61 内側面
63,63A 凹部(アンカー部)
73 凸部(アンカー部)
75,77 突片(アンカー部)
79 連結アンカー部
81 貫通孔
M 溶加材
W,WA,WB 積層壁部
25 hot water 41 base plate (base)
43 welding bead 45 inner space 47 casting 51, 51A, 51B structure 55 outer shell 57 inner shell 61 inner surface 63, 63A recessed portion (anchor portion)
73 Convex part (Anchor part)
75, 77 projecting pieces (anchor part)
79 Joint anchor portion 81 Through hole M filler material W, WA, WB laminated wall portion

Claims (19)

溶加材の溶融凝固体である溶着ビードが積層された積層壁部と、
前記積層壁部で囲まれた内側空間に形成された鋳物部と、
を備え、
前記積層壁部の内側面に、凹部と凸部の少なくともいずれかを有するアンカー部を有し、前記アンカー部が前記鋳物部に覆われている構造体。
A laminated wall portion on which welding beads, which are melt solidified bodies of filler metals, are laminated;
A casting portion formed in an inner space surrounded by the laminated wall portion;
Equipped with
The structure which has an anchor part which has at least any one of a recessed part and a convex part in the inner surface of the said lamination | stacking wall part, and the said anchor part is covered by the said casting part.
前記アンカー部は、前記積層壁部の内側面の複数箇所に離散配置された請求項1に記載の構造体。   The structure according to claim 1, wherein the anchor portions are discretely disposed at a plurality of locations on the inner surface of the laminated wall portion. 前記アンカー部は、前記積層壁部に形成された複数の溝を含む請求項1又は請求項2に記載の構造体。   The structure according to claim 1, wherein the anchor portion includes a plurality of grooves formed in the laminated wall portion. 前記アンカー部は、前記積層壁部に形成された複数の突条を含む請求項1〜請求項3のいずれか一項に記載の構造体。   The structure according to any one of claims 1 to 3, wherein the anchor portion includes a plurality of ridges formed on the laminated wall portion. 前記アンカー部は、前記積層壁部の内側面に突設された突片を含む請求項1〜請求項4のいずれか一項に記載の構造体。   The structure according to any one of claims 1 to 4, wherein the anchor portion includes a protruding piece protruding from an inner side surface of the laminated wall portion. 前記突片は、前記積層壁部の内側面の法線方向から傾斜して突出している請求項5に記載の構造体。   The structure according to claim 5, wherein the projecting piece projects obliquely from the normal direction of the inner surface of the laminated wall portion. 複数の前記突片は、同一方向に向けて傾斜している請求項6に記載の構造体。   The structure according to claim 6, wherein the plurality of protrusions are inclined in the same direction. 前記積層壁部は、前記構造体の外殻と、前記外殻の内側に形成された内殻とを有し、
前記アンカー部は、前記外殻と前記内殻の少なくとも一方に形成されている請求項1〜請求項7のいずれか一項に記載の構造体。
The laminated wall has an outer shell of the structure and an inner shell formed inside the outer shell,
The structure according to any one of claims 1 to 7, wherein the anchor portion is formed on at least one of the outer shell and the inner shell.
溶加材の溶融凝固体である溶着ビードが積層された積層壁部と、
前記積層壁部で囲まれた内側空間に形成された鋳物部と、
を備え、
前記積層壁部は、構造体の外殻と、前記外殻の内側に形成された内殻とを有し、
前記外殻と前記内殻とを連結する連結アンカー部を更に備え、前記連結アンカー部が前記鋳物部に覆われている構造体。
A laminated wall portion on which welding beads, which are melt solidified bodies of filler metals, are laminated;
A casting portion formed in an inner space surrounded by the laminated wall portion;
Equipped with
The laminated wall has an outer shell of a structure and an inner shell formed inside the outer shell,
The structure further provided with the connection anchor part which connects the said outer shell and the said inner shell, and the said connection anchor part is covered by the said casting part.
前記連結アンカー部は、棒材又は板材である請求項9に記載の構造体。   The structure according to claim 9, wherein the connection anchor portion is a bar or a plate. 前記連結アンカー部は、鋳湯を連通する貫通孔が形成されている請求項9又は請求項10に記載の構造体。   The structure according to claim 9 or 10, wherein the connection anchor portion is formed with a through hole communicating the casting bath. 溶加材を溶融及び凝固させた溶着ビードをベース上に積層して、少なくとも構造体の外殻を含む積層壁部を造形する造形工程と、
前記造形工程の後、造形された前記積層壁部で囲まれた内側空間に、鋳湯を流し込んで鋳物部を形成する鋳造工程と、
を有し、
前記鋳造工程の前に、前記積層壁部の内側面に、凹部と凸部の少なくともいずれかのアンカー部を形成する工程を更に有する構造体の製造方法。
Forming on a base a welding bead obtained by melting and solidifying a filler material to form a laminated wall including at least an outer shell of a structure;
The casting process which pours a cast iron in the inner space enclosed by the said lamination | stacking wall part modeled after the said modeling process, and forms a casting part,
Have
The manufacturing method of the structure which further has the process of forming the anchor part of at least one of a recessed part and a convex part in the inner surface of the said lamination | stacking wall part before the said casting process.
前記アンカー部は、前記溶着ビードの積層により形成する請求項12に記載の構造体の製造方法。   The method for manufacturing a structure according to claim 12, wherein the anchor portion is formed by stacking the welding beads. 前記アンカー部は、前記積層壁部の機械加工、又は前記積層壁部への別部材の接合により形成する請求項12に記載の構造体の製造方法。   The method for manufacturing a structure according to claim 12, wherein the anchor portion is formed by machining of the laminated wall portion or bonding of another member to the laminated wall portion. 前記積層壁部は、前記構造体の外殻と、前記外殻の内側に形成された内殻とを有し、
前記アンカー部を、前記外殻と前記内殻の少なくとも一方に形成する請求項12〜請求項14のいずれか一項に記載の構造体の製造方法。
The laminated wall has an outer shell of the structure and an inner shell formed inside the outer shell,
The method for manufacturing a structure according to any one of claims 12 to 14, wherein the anchor portion is formed on at least one of the outer shell and the inner shell.
溶加材を溶融及び凝固させた溶着ビードをベース上に積層して、少なくとも構造体の外殻と前記外殻の内側の内殻とを含む積層壁部を造形する造形工程と、
前記造形工程の後、造形された前記積層壁部で囲まれた内側空間に、鋳湯を流し込んで鋳物部を形成する鋳造工程と、
を有し、
前記鋳造工程の前に、前記積層壁部の前記外殻と前記内殻とを連結する連結アンカー部を形成する連結工程を更に有する構造体の製造方法。
Forming a laminated wall including at least an outer shell of the structure and an inner shell of the outer shell by laminating on a base a welding bead obtained by melting and solidifying a filler material;
The casting process which pours a cast iron in the inner space enclosed by the said lamination | stacking wall part modeled after the said modeling process, and forms a casting part,
Have
The manufacturing method of the structure which further has a connection process which forms the connection anchor part which connects the said outer shell and the said inner shell of the said lamination | stacking wall part before the said casting process.
前記連結アンカー部は、前記溶着ビードの積層により形成する請求項16に記載の構造体の製造方法。   The method for manufacturing a structure according to claim 16, wherein the connection anchor portion is formed by stacking the welding beads. 前記連結アンカー部は、前記積層壁部へ別部材を接合することにより形成する請求項16に記載の構造体の製造方法。   The method for manufacturing a structure according to claim 16, wherein the connection anchor portion is formed by joining another member to the laminated wall portion. 前記ベースを前記積層壁部及び前記鋳物部から分離させる工程を有する請求項12〜請求項18のいずれか一項に記載の構造体の製造方法。   The method for manufacturing a structure according to any one of claims 12 to 18, further comprising the step of separating the base from the laminated wall portion and the casting portion.
JP2017224441A 2017-11-22 2017-11-22 Structure and method of manufacturing the structure Active JP6829180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017224441A JP6829180B2 (en) 2017-11-22 2017-11-22 Structure and method of manufacturing the structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017224441A JP6829180B2 (en) 2017-11-22 2017-11-22 Structure and method of manufacturing the structure

Publications (2)

Publication Number Publication Date
JP2019093415A true JP2019093415A (en) 2019-06-20
JP6829180B2 JP6829180B2 (en) 2021-02-10

Family

ID=66972481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017224441A Active JP6829180B2 (en) 2017-11-22 2017-11-22 Structure and method of manufacturing the structure

Country Status (1)

Country Link
JP (1) JP6829180B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021059772A (en) * 2019-10-09 2021-04-15 株式会社神戸製鋼所 Manufacturing method of laminate molded product and laminate molded product
CN114286727A (en) * 2019-06-21 2022-04-05 弗劳恩霍夫应用研究促进协会 Method for producing a casting mould and casting mould produced using said method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017514725A (en) * 2015-02-03 2017-06-08 フィリップス ライティング ホールディング ビー ヴィ Mold based on hot melt lamination method for molding and replicating an object, method for its production and hot melt lamination type 3D printer
WO2017130670A1 (en) * 2016-01-27 2017-08-03 株式会社日立製作所 Heterogeneous material bonded article, and production method for heterogeneous material bonded article

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017514725A (en) * 2015-02-03 2017-06-08 フィリップス ライティング ホールディング ビー ヴィ Mold based on hot melt lamination method for molding and replicating an object, method for its production and hot melt lamination type 3D printer
WO2017130670A1 (en) * 2016-01-27 2017-08-03 株式会社日立製作所 Heterogeneous material bonded article, and production method for heterogeneous material bonded article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114286727A (en) * 2019-06-21 2022-04-05 弗劳恩霍夫应用研究促进协会 Method for producing a casting mould and casting mould produced using said method
JP2021059772A (en) * 2019-10-09 2021-04-15 株式会社神戸製鋼所 Manufacturing method of laminate molded product and laminate molded product

Also Published As

Publication number Publication date
JP6829180B2 (en) 2021-02-10

Similar Documents

Publication Publication Date Title
JP6420855B2 (en) Method for additive manufacturing
JP6496758B2 (en) Method and conformal support for additive manufacturing
JP6409079B2 (en) Method for additive manufacturing and keyway support
JP5696867B2 (en) Metal product having internal space formed and method for manufacturing the same
WO2019107506A1 (en) Method for designing laminate molded article, production method, production device, and program
JP6778887B2 (en) Manufacturing method of 3D shaped object
JP2019089108A (en) Manufacturing method and manufacturing apparatus for molded object
JP7010799B2 (en) Structure manufacturing method and structure
JP6822881B2 (en) Manufacturing method and manufacturing system for laminated models
JP6892371B2 (en) Manufacturing method and manufacturing equipment for laminated models
JP6765360B2 (en) Structure manufacturing method and structure
JP2019093415A (en) Structure, and manufacturing method of structure
JP7203671B2 (en) LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED MOLDED PRODUCT
JP7123738B2 (en) LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED MOLDED PRODUCT
JP6810018B2 (en) Manufacturing method of laminated model
JP2019063858A (en) Method for manufacturing laminated molding and laminated molding
JP7160703B2 (en) LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED MOLDED PRODUCT
JP7258715B2 (en) LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED MOLDED PRODUCT
JP7189110B2 (en) LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED MOLDED PRODUCT
JP6765359B2 (en) Structure manufacturing method and structure
JP7181154B2 (en) Laminate-molded article manufacturing method
JP2021126673A (en) Manufacturing method of laminated molding
JP6792533B2 (en) Manufacturing method of structure
JP7160704B2 (en) LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED MOLDED PRODUCT
JP7484006B1 (en) Method for manufacturing objects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210121

R150 Certificate of patent or registration of utility model

Ref document number: 6829180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150