JP2019090476A - Damper device - Google Patents

Damper device Download PDF

Info

Publication number
JP2019090476A
JP2019090476A JP2017219522A JP2017219522A JP2019090476A JP 2019090476 A JP2019090476 A JP 2019090476A JP 2017219522 A JP2017219522 A JP 2017219522A JP 2017219522 A JP2017219522 A JP 2017219522A JP 2019090476 A JP2019090476 A JP 2019090476A
Authority
JP
Japan
Prior art keywords
damper device
spring
gear
damper
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017219522A
Other languages
Japanese (ja)
Inventor
卓也 吉川
Takuya Yoshikawa
卓也 吉川
友則 木下
Tomonori Kinoshita
友則 木下
徹郎 谷口
Tetsuro Taniguchi
徹郎 谷口
晃祥 加藤
Akiyoshi Kato
晃祥 加藤
陽一 大井
Yoichi Oi
陽一 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Aisin AW Industries Co Ltd
Original Assignee
Aisin AW Co Ltd
Aisin AW Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd, Aisin AW Industries Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2017219522A priority Critical patent/JP2019090476A/en
Publication of JP2019090476A publication Critical patent/JP2019090476A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

To sufficiently secure durability and reliability while restraining increase in the cost of a damper device including a rotational inertia mass damper.SOLUTION: A damper device includes a plurality of rotation elements including an input element and an output element to which torque from an engine is transmitted, an elastic body which transmits the torque between the input element and the output element, and a rotational inertia mass damper which has a mass body. The rotational inertia mass damper has a planetary gear which includes a sun gear, a carrier rotatably supporting a plurality of pinion gears, and a ring gear meshed with the pinion gears. At least one of the sun gear, the ring gear, and the pinion gear is a gas soft nitriding treated product.SELECTED DRAWING: Figure 1

Description

本開示は、入力要素と出力要素との間でトルクを伝達する弾性体および回転慣性質量ダンパを含むダンパ装置に関する。   The present disclosure relates to a damper device including an elastic body that transmits torque between an input element and an output element and a rotary inertia mass damper.

従来、この種のダンパ装置として、入力要素(駆動側プレート)および出力要素(従動側プレート)の相対回転によって弾性変形させられるコイルスプリング等の弾性体と、サンギヤ、入力要素と一体に回転するリングギヤ、および複数のピニオンギヤを支持すると共に出力要素と一体に回転するキャリヤを有する遊星歯車機構を含む回転慣性質量ダンパとを備えたものが知られている(例えば、特許文献1参照)。このダンパ装置では、入力要素が出力要素に対して回転すると(捩れると)、弾性体が撓むと共に入力要素および出力要素の相対回転に応じてサンギヤが所定の角度範囲内で回転し、回転方向への振動に伴うサンギヤの慣性トルクが、駆動力源から入力要素に伝達されるトルクの変動や当該トルクの変動に起因するリングギヤの振動を抑制する荷重として作用する。これにより、回転慣性質量ダンパ(遊星歯車機構)から出力要素に連結された駆動対象部に出力されるトルクの変動が抑制され、当該駆動対象部における駆動力源の出力トルクの変動に起因する捩り振動が低減される。また、従来、高い硬さ(強度)が要求される部材として浸炭焼入れ部品を用いたトルクコンバータのロックアップダンパが知られている(例えば、特許文献2参照)。   Conventionally, as a damper device of this type, an elastic body such as a coil spring elastically deformed by relative rotation of an input element (drive side plate) and an output element (follower side plate), a sun gear, and a ring gear integrally rotating with the input element And a rotary inertia mass damper including a planetary gear mechanism that supports a plurality of pinion gears and has a carrier that rotates integrally with an output element (see, for example, Patent Document 1). In this damper device, when the input element is rotated (twisted) with respect to the output element, the elastic body is flexed and the sun gear is rotated within a predetermined angular range in accordance with the relative rotation of the input element and the output element. The inertia torque of the sun gear accompanying the vibration in the direction acts as a load that suppresses the fluctuation of the torque transmitted from the driving power source to the input element and the vibration of the ring gear caused by the fluctuation of the torque. Thereby, the fluctuation of the torque output from the rotary inertia mass damper (planet gear mechanism) to the drive target connected to the output element is suppressed, and the torsion caused by the change of the output torque of the driving force source in the drive target Vibration is reduced. In addition, conventionally, a lockup damper of a torque converter using a carburized and quenched part as a member requiring a high hardness (strength) is known (see, for example, Patent Document 2).

特開2017−110788号公報Unexamined-Japanese-Patent No. 2017-110788 特開2017−137518号後方JP 2017-137518 No. rear

特許文献1に記載されたダンパ装置において、駆動力源から駆動対象部までの間でトルクを伝達する部品として特許文献2に記載されたような浸炭焼入れ部品を採用することで、当該部品の耐摩耗性、耐久性、靭性等を向上させ、それによりダンパ装置の耐久性や信頼性を良好に確保することができるであろう。ただし、浸炭焼入れは、鋼材等の素材の変態点を超える温度まで部品を加熱する処理であることから、浸炭焼入れが施された部品における熱歪みの発生を回避することは困難である。このため、寸法精度が要求される部品には、浸炭焼入れ処理後に各種形状矯正加工を施さざるを得ず、それによりダンパ装置のコストアップを招いてしまうおそれがある。   In the damper device described in Patent Document 1, by adopting a carburized and quenched component as described in Patent Document 2 as a component that transmits torque between the driving force source and the drive target portion, the component is resistant The wearability, durability, toughness and the like can be improved, whereby the durability and reliability of the damper device can be favorably secured. However, since carburizing and quenching is a process of heating a part to a temperature exceeding the transformation point of a material such as steel, it is difficult to avoid the occurrence of thermal distortion in the part subjected to carburizing and quenching. For this reason, for parts requiring dimensional accuracy, various shape correction processes have to be performed after carburizing and quenching, which may lead to an increase in the cost of the damper device.

そこで、本開示は、回転慣性質量ダンパを含むダンパ装置のコストアップを抑制しつつ、耐久性や信頼性を良好に確保することを主目的とする。   Therefore, the present disclosure has as its main object to secure good durability and reliability while suppressing an increase in cost of a damper device including a rotary inertia mass damper.

本開示のダンパ装置は、エンジンからのトルクが伝達される入力要素および出力要素を含む複数の回転要素と、前記入力要素と前記出力要素との間でトルクを伝達する弾性体と、前記複数の回転要素の何れかである第1回転要素と前記第1回転要素とは異なる第2回転要素との相対回転に応じて回転する質量体を有する回転慣性質量ダンパとを含むダンパ装置において、前記回転慣性質量ダンパは、サンギヤ、複数のピニオンギヤを回転自在に支持するキャリヤ、および前記複数のピニオンギヤに噛合するリングギヤを含む遊星歯車を有し、前記サンギヤ、前記リングギヤ、および前記ピニオンギヤの少なくとも何れかとして、ガス軟窒化処理品が採用されたものである。   The damper device of the present disclosure includes: a plurality of rotating elements including an input element and an output element to which torque from an engine is transmitted; an elastic body transmitting torque between the input element and the output element; A damper apparatus comprising: a rotary inertia mass damper having a mass body that rotates according to relative rotation between a first rotary element which is any of rotary elements and a second rotary element different from the first rotary element; The inertial mass damper includes a sun gear, a carrier rotatably supporting a plurality of pinion gears, and a planetary gear including a ring gear meshing with the plurality of pinion gears, as at least one of the sun gear, the ring gear, and the pinion gear A gas soft nitrided product is adopted.

このダンパ装置の回転慣性質量ダンパは、サンギヤ、複数のピニオンギヤを回転自在に支持するキャリヤ、および複数のピニオンギヤに噛合するリングギヤを含む遊星歯車を有し、サンギヤ、キャリヤおよびリングギヤの何れかである質量体から慣性トルクをダンパ装置の回転要素の何れかに付与し、出力要素の振動を減衰させるものである。ここで、回転慣性質量ダンパは、第1および第2回転要素の間で主に慣性トルクを伝達し、平均トルクを伝達することはない。従って、回転慣性質量ダンパの遊星歯車の回転要素に要求される硬度(表面硬度)は、平均トルクを伝達するダンパ装置の回転要素に比べて低くなる。これを踏まえて、このダンパ装置では、回転慣性質量ダンパのサンギヤ、リングギヤ、およびピニオンギヤの少なくとも何れかとして、ガス軟窒化処理品が採用される。ガス軟窒化処理は、窒素を含む混合ガス雰囲気中で対象物を加熱し、当該対象物の表面に化合物層を生成すると共に内部に拡散層を生成する処理であり、対象物の表面の硬度、靭性、耐摩耗性、耐食性を向上させると共に、拡散層の生成により耐疲労強度を向上させ得るものである。従って、サンギヤ、リングギヤ、およびピニオンギヤの少なくとも何れかとして、ガス軟窒化処理部を採用すれば、回転慣性質量ダンパひいてはダンパ装置の耐久性や信頼性を良好に確保することが可能となる。更に、ガス軟窒化処理に際しては、浸炭焼入れ処理のように対象物を鋼材等の素材の変態点以上に加熱する必要がないことから、加熱処理後の対象物の変形や歪みの発生を良好に抑制することができる。従って、ガス軟窒化処理後のサンギヤ、リングギヤ、およびピニオンギヤの少なくとも何れかには、形状矯正加工を施す必要がなくなり、それによりダンパ装置の製造コストを低減することができる。この結果、回転慣性質量ダンパを含むダンパ装置のコストアップを抑制しつつ、耐久性や信頼性を向上させることが可能となる。   A rotary inertia mass damper of this damper device has a sun gear, a carrier rotatably supporting a plurality of pinion gears, and a planetary gear including a ring gear meshing with the plurality of pinion gears, which is any of the sun gear, the carrier and the ring gear An inertial torque is applied from the body to any of the rotating elements of the damper device to dampen the vibration of the output element. Here, the rotary inertia mass damper mainly transmits inertial torque between the first and second rotating elements, and does not transmit average torque. Therefore, the hardness (surface hardness) required for the rotating element of the planetary gear of the rotary inertia mass damper is lower than that of the damper element that transmits the average torque. Based on this, in this damper device, a gas soft nitrided product is adopted as at least one of the sun gear, ring gear and pinion gear of the rotary inertia mass damper. The gas soft nitriding process is a process of heating the object in a mixed gas atmosphere containing nitrogen to generate a compound layer on the surface of the object and a diffusion layer inside, and the hardness of the surface of the object, The toughness, the wear resistance and the corrosion resistance are improved, and the formation of the diffusion layer can improve the fatigue resistance. Therefore, by adopting the gas soft nitrided portion as at least one of the sun gear, the ring gear, and the pinion gear, it is possible to ensure good durability and reliability of the rotary inertia mass damper and hence the damper device. Furthermore, in the case of gas nitrocarburizing, there is no need to heat the object above the transformation point of the material such as steel as in carburizing and quenching, so that deformation and distortion of the object after heat treatment can be made favorable. It can be suppressed. Therefore, at least one of the sun gear, the ring gear, and the pinion gear after the gas soft nitriding process need not be subjected to shape correction processing, whereby the manufacturing cost of the damper device can be reduced. As a result, it is possible to improve the durability and the reliability while suppressing the cost increase of the damper device including the rotary inertia mass damper.

本開示のダンパ装置を含む発進装置の概略構成図である。It is a schematic block diagram of the starting apparatus containing the damper apparatus of this indication. 本開示のダンパ装置を示す断面図である。It is a sectional view showing a damper device of this indication. 本開示のダンパ装置を示す正面図である。It is a front view showing a damper device of the present disclosure. 本開示のダンパ装置の回転慣性質量ダンパを示す要部拡大図である。It is a principal part enlarged view showing a rotary inertia mass damper of a damper device of this indication. 本開示のダンパ装置の回転慣性質量ダンパを示す要部拡大図である。It is a principal part enlarged view showing a rotary inertia mass damper of a damper device of this indication. 本開示のダンパ装置に含まれるドリブンプレートおよび内歯ギヤを示す平面図である。It is a top view showing a driven plate and an internal gear included in a damper device of the present disclosure. 本開示の他のダンパ装置を含む発進装置の概略構成図である。It is a schematic block diagram of the starting apparatus containing the other damper apparatus of this indication. 本開示の他のダンパ装置を示す正面図である。It is a front view showing other damper devices of this indication.

次に、図面を参照しながら、本開示の発明を実施するための形態について説明する。   Next, an embodiment of the present disclosure will be described with reference to the drawings.

図1は、本開示のダンパ装置10を含む発進装置1を示す概略構成図であり、図2は、ダンパ装置10を示す断面図である。図1に示す発進装置1は、駆動装置としてのエンジン(内燃機関)EGを含む車両に搭載されるものであり、ダンパ装置10に加えて、エンジンEGのクランクシャフトに連結されて当該エンジンEGからのトルクが伝達される入力部材としてのフロントカバー3や、フロントカバー3に固定されるポンプインペラ(入力側流体伝動要素)4、ポンプインペラ4と同軸に回転可能なタービンランナ(出力側流体伝動要素)5、ダンパ装置10に連結されると共に自動変速機(AT)あるいは無段変速機(CVT)である変速機TMの入力軸ISに固定される出力部材としてのダンパハブ7、ロックアップクラッチ8等を含む。   FIG. 1 is a schematic configuration view showing a launch device 1 including a damper device 10 of the present disclosure, and FIG. 2 is a cross-sectional view showing the damper device 10. The start-up device 1 shown in FIG. 1 is mounted on a vehicle including an engine (internal combustion engine) EG as a drive device, and is connected to a crankshaft of the engine EG in addition to the damper device 10 and from the engine EG Cover 3 as an input member to which torque is transmitted, a pump impeller (input side fluid transmission element) 4 fixed to the front cover 3, a turbine runner rotatable coaxially with the pump impeller 4 (output side fluid transmission element 5) Damper hub 7 as an output member fixed to input shaft IS of transmission TM which is connected to damper device 10 and is automatic transmission (AT) or continuously variable transmission (CVT), lock-up clutch 8 etc. including.

なお、以下の説明において、「軸方向」は、特に明記するものを除いて、基本的に、発進装置1やダンパ装置10の中心軸(軸心)の延在方向を示す。また、「径方向」は、特に明記するものを除いて、基本的に、発進装置1やダンパ装置10、当該ダンパ装置10等の回転要素の径方向、すなわち発進装置1やダンパ装置10の中心軸から当該中心軸と直交する方向(半径方向)に延びる直線の延在方向を示す。更に、「周方向」は、特に明記するものを除いて、基本的に、発進装置1やダンパ装置10、当該ダンパ装置10等の回転要素の周方向、すなわち当該回転要素の回転方向に沿った方向を示す。   In the following description, the “axial direction” basically indicates the extending direction of the central axis (axial center) of the starting device 1 and the damper device 10, unless otherwise specified. Furthermore, “radial direction” basically refers to the radial direction of rotating elements such as the starting device 1, the damper device 10, the damper device 10, etc., that is, the center of the starting device 1 or the damper device 10, unless otherwise specified. The direction of extension of a straight line extending from the axis in a direction (radial direction) orthogonal to the central axis is shown. Furthermore, “circumferential direction” is basically along the circumferential direction of the rotating elements such as the launch device 1, the damper device 10, the damper device 10, etc., that is, along the rotational direction of the rotating elements, unless otherwise specified. Indicates the direction.

ポンプインペラ4は、フロントカバー3に密に固定される図示しないポンプシェルと、ポンプシェルの内面に配設された複数のポンプブレード(図示省略)とを有する。タービンランナ5は、図示しないタービンシェルと、タービンシェルの内面に配設された複数のタービンブレード(図示省略)とを有する。タービンシェルの内周部は、複数のリベットを介してダンパハブ7に固定される。ポンプインペラ4とタービンランナ5とは、互いに対向し合い、両者の間には、タービンランナ5からポンプインペラ4への作動油(作動流体)の流れを整流するステータ6(図1参照)が同軸に配置される。ステータ6は、複数の図示しないステータブレードを有し、ステータ6の回転方向は、ワンウェイクラッチ60(図1参照)により一方向のみに設定される。これらのポンプインペラ4、タービンランナ5およびステータ6は、作動油を循環させるトーラス(環状流路)を形成し、トルク増幅機能をもったトルクコンバータ(流体伝動装置)として機能する。ただし、発進装置1において、ステータ6やワンウェイクラッチ60を省略し、ポンプインペラ4およびタービンランナ5を流体継手として機能させてもよい。   The pump impeller 4 has a pump shell (not shown) tightly fixed to the front cover 3 and a plurality of pump blades (not shown) disposed on the inner surface of the pump shell. The turbine runner 5 has a turbine shell (not shown) and a plurality of turbine blades (not shown) disposed on the inner surface of the turbine shell. The inner periphery of the turbine shell is fixed to the damper hub 7 via a plurality of rivets. The pump impeller 4 and the turbine runner 5 face each other, and between the two, a stator 6 (see FIG. 1) for rectifying the flow of hydraulic fluid (working fluid) from the turbine runner 5 to the pump impeller 4 is coaxial Will be placed. The stator 6 has a plurality of stator blades (not shown), and the rotational direction of the stator 6 is set to one direction only by the one-way clutch 60 (see FIG. 1). The pump impeller 4, the turbine runner 5 and the stator 6 form a torus (annular flow path) for circulating hydraulic fluid, and function as a torque converter (fluid transmission device) having a torque amplification function. However, in the starter 1, the stator 6 and the one-way clutch 60 may be omitted, and the pump impeller 4 and the turbine runner 5 may function as fluid couplings.

ロックアップクラッチ8は、ダンパ装置10を介してフロントカバー3とダンパハブ7とを連結するロックアップを実行すると共に当該ロックアップを解除するものである。本実施形態において、ロックアップクラッチ8は、摩擦材が貼着されたロックアップピストンを含む油圧式単板クラッチである。ロックアップクラッチ8のロックアップピストンは、フロントカバー3の内部でダンパ装置10を基準としてタービンランナ5の反対側に位置するようにダンパハブ7に対して軸方向に移動自在に嵌合され、フロントカバー3のエンジンEG側の内壁面と対向する。ただし、ロックアップクラッチ8は、油圧式多板クラッチであってもよい。   The lockup clutch 8 executes lockup for connecting the front cover 3 and the damper hub 7 via the damper device 10 and releases the lockup. In the present embodiment, the lockup clutch 8 is a hydraulic single disc clutch including a lockup piston to which a friction material is attached. The lockup piston of the lockup clutch 8 is axially movably fitted to the damper hub 7 so as to be located on the opposite side of the turbine runner 5 with reference to the damper device 10 inside the front cover 3, and the front cover It faces the inner wall surface of 3 engine EG side. However, the lockup clutch 8 may be a hydraulic multi-plate clutch.

ダンパ装置10は、図1および図2に示すように、回転要素として、ドライブ部材(入力要素)11と、ドリブンプレート(出力要素)15とを含む。更に、ダンパ装置10は、トルク伝達要素(トルク伝達弾性体)として、ドライブ部材11とドリブンプレート15との間で並列に作用してトルクを伝達する複数(本実施形態では、例えば6個)の第1スプリング(第1弾性体)SP1と、ドライブ部材11とドリブンプレート15との間で並列に作用してトルクを伝達可能な複数(本実施形態では、例えば3個)の第2スプリング(第2弾性体)SP2とを含む。   The damper device 10 includes a drive member (input element) 11 and a driven plate (output element) 15 as rotational elements, as shown in FIGS. 1 and 2. Furthermore, the damper device 10 acts as a torque transfer element (torque transfer elastic body) in parallel between the drive member 11 and the driven plate 15 to transmit torque (for example, six in this embodiment) A plurality of (for example, three in this embodiment) second springs (for example, three in the present embodiment) that can act in parallel between the first spring (first elastic body) SP1 and the drive member 11 and the driven plate 15 to transmit torque. 2) Elastic body) SP2 is included.

すなわち、ダンパ装置10は、図1に示すように、ドライブ部材11とドリブンプレート15との間に、複数の第1スプリングSP1を含む第1トルク伝達経路TP1と、複数の第2スプリングSP2を含むと共に第1トルク伝達経路TP1と並列に設けられる第2トルク伝達経路TP2とを有する。本実施形態において、第2トルク伝達経路TP2の複数の第2スプリングSP2は、ドライブ部材11への入力トルク(駆動トルク)あるいは車軸側からドリブンプレート15に付与されるトルク(被駆動トルク)がダンパ装置10の最大捩れ角θmaxに対応したトルクT2(第2の閾値)よりも小さい予め定められたトルク(第1の閾値)T1に達してドライブ部材11のドリブンプレート15に対する捩れ角が所定角度θref以上になってから、第1トルク伝達経路TP1の第1スプリングSP1と並列に作用する。これにより、ダンパ装置10は、2段階(2ステージ)の減衰特性を有することになる。   That is, as shown in FIG. 1, damper device 10 includes, between drive member 11 and driven plate 15, a first torque transmission path TP1 including a plurality of first springs SP1 and a plurality of second springs SP2. And a second torque transfer path TP2 provided in parallel with the first torque transfer path TP1. In the present embodiment, the plurality of second springs SP2 of the second torque transmission path TP2 are dampers of input torque (drive torque) to the drive member 11 or torque (driven torque) applied to the driven plate 15 from the axle side. The torsion angle of the drive member 11 with respect to the driven plate 15 reaches a predetermined angle θref when a predetermined torque (first threshold) T1 smaller than the torque T2 (second threshold) corresponding to the maximum torsion angle θmax of the device 10 is reached. After the above, it acts in parallel with the first spring SP1 of the first torque transmission path TP1. Thus, the damper device 10 has two-stage (two-stage) damping characteristics.

また、本実施形態では、第1および第2スプリングSP1,SP2として、荷重が加えられてないときに真っ直ぐに延びる軸心を有するように螺旋状に巻かれた金属材からなる直線型コイルスプリングが採用されている。これにより、アークコイルスプリングを用いた場合に比べて、第1および第2スプリングSP1,SP2を軸心に沿ってより適正に伸縮させることができる。この結果、ドライブ部材11(入力要素)とドリブンプレート15(出力要素)との相対変位が増加していく際に第1スプリングSP1等からドリブンプレート15に伝達されるトルクと、ドライブ部材11とドリブンプレート15との相対変位が減少していく際に第1スプリングSP1等からドリブンプレート15に伝達されるトルクとの差すなわちヒステリシスを低減化することが可能となる。ただし、第1および第2スプリングSP1,SP2の少なくとも何れかとして、アークコイルスプリングが採用されてもよい。   Further, in the present embodiment, as the first and second springs SP1 and SP2, a linear coil spring made of a metal material spirally wound so as to have an axial center extending straight when no load is applied. It is adopted. Thereby, compared with the case where an arc coil spring is used, 1st and 2nd spring SP1 and SP2 can be expanded-contracted more appropriately along an axial center. As a result, when the relative displacement between the drive member 11 (input element) and the driven plate 15 (output element) increases, the torque transmitted from the first spring SP1 or the like to the driven plate 15, the drive member 11 and the driven member When the relative displacement with the plate 15 decreases, it is possible to reduce the difference with the torque transmitted from the first spring SP1 etc. to the driven plate 15, that is, the hysteresis. However, an arc coil spring may be employed as at least one of the first and second springs SP1 and SP2.

図2に示すように、ダンパ装置10のドライブ部材11は、ロックアップクラッチ8の図示しないロックアップピストンに連結される環状の第1入力プレート12と、第1入力プレート12と対向するように複数のリベット(連結部材)90(図3参照)を介して当該第1入力プレート12に連結される環状の第2入力プレート13とを含む。これにより、ドライブ部材11、すなわち第1および第2入力プレート12,13は、ロックアップピストンと一体に回転し、ロックアップクラッチ8の係合によりフロントカバー3(エンジンEG)とダンパ装置10のドライブ部材11とが連結されることになる。   As shown in FIG. 2, the drive member 11 of the damper device 10 includes a plurality of annular first input plates 12 connected to a lockup piston (not shown) of the lockup clutch 8 and a plurality of the drive members 11 so as to face the first input plate 12. And an annular second input plate 13 connected to the first input plate 12 via a rivet (connecting member) 90 (see FIG. 3). Thereby, the drive member 11, ie, the first and second input plates 12 and 13 rotate integrally with the lockup piston, and the engagement of the lockup clutch 8 drives the front cover 3 (engine EG) and the damper device 10 The member 11 is to be connected.

第1入力プレート12は、鋼板等をプレス加工することにより形成された環状のプレス加工品であり、図2および図3に示すように、それぞれ円弧状に延びると共に周方向に間隔をおいて(等間隔に)配設された複数(本実施形態では、例えば6個)の内側スプリング収容窓(第1収容窓)12wiと、各内側スプリング収容窓12wiの内側縁部に沿って延びる複数(本実施形態では、例えば6個)のスプリング支持部12aと、各内側スプリング収容窓12wiの外側縁部に沿って延びる複数(本実施形態では、例えば6個)のスプリング支持部12bと、各内側スプリング収容窓12wiの周方向における両側に設けられる複数(本実施形態では、例えば12個)の内側スプリング当接部12ciとを含む。各内側スプリング収容窓12wiは、図3からわかるように、第1スプリングSP1の自然長に応じた周長を有する。   The first input plate 12 is an annular pressed product formed by pressing a steel plate or the like, and as shown in FIGS. 2 and 3, the first input plate 12 extends in an arc shape and is spaced apart in the circumferential direction A plurality of (in this embodiment, for example, six) inner spring accommodation windows (first accommodation windows) 12wi arranged at equal intervals, and a plurality (this one) extending along the inner edge of each inner spring accommodation window 12wi In the embodiment, for example, six spring supports 12a, a plurality of (for example, six in the present embodiment) spring supports 12b extending along the outer edge of each inner spring housing window 12wi, and each inner spring And a plurality of (for example, 12 in this embodiment) inner spring abutment portions 12ci provided on both sides in the circumferential direction of the accommodation window 12wi. Each inner spring accommodation window 12wi has a circumferential length corresponding to the natural length of the first spring SP1, as can be seen from FIG.

更に、第1入力プレート12は、それぞれ円弧状に延びると共に対応する内側スプリング収容窓12wiの径方向外側に周方向に間隔をおいて(等間隔に)配設された複数(本実施形態では、例えば3個)の外側スプリング収容窓(第2収容窓)12woと、各外側スプリング収容窓12woの外側縁部に沿って延びる複数(本実施形態では、例えば3個)のスプリング支持部12dと、各外側スプリング収容窓12woの周方向における両側に設けられる複数(本実施形態では、例えば6個)の外側スプリング当接部12coとを含む。各外側スプリング収容窓12woは、図3に示すように、第2スプリングSP2の自然長よりも長い周長を有する。   Further, each of the first input plates 12 extends in an arc shape, and a plurality of (in this embodiment, the first input plate 12) are circumferentially spaced (equally spaced) outward in the radial direction of the corresponding inner spring housing window 12wi. For example, three) outer spring accommodation windows (second accommodation windows) 12wo, and a plurality (for example, three in this embodiment) spring support portions 12d extending along the outer edge of each outer spring accommodation window 12wo; And a plurality of (e.g., six in the present embodiment) outer spring abutment portions 12co provided on both sides in the circumferential direction of each outer spring accommodation window 12wo. Each outer spring receiving window 12wo has a circumferential length longer than the natural length of the second spring SP2, as shown in FIG.

また、第1入力プレート12の外周部12oは、平坦かつ環状に形成されており、対応する外側スプリング収容窓12woの径方向外側に位置するように周方向に間隔をおいて(等間隔に)に配設された複数(本実施形態では、例えば3個)のピニオンギヤ支持部12pと、各外側スプリング収容窓12woの径方向外側に位置する部分とを含む。更に、第1入力プレート12の外周部12oは、それぞれ複数の内側スプリング収容窓12wiおよび外側スプリング収容窓12woを含む内周部12iから全周にわたってスプリング支持部12a,12b,12dと同じ側にダンパ装置10の軸方向にオフセットされている。そして、当該外周部12oは、複数のピニオンギヤ支持部12pおよび複数の外側スプリング収容窓12woに沿って延びる短尺筒状かつ無端状の繋ぎ部12rを介して内周部12iに連なる。   Further, the outer peripheral portion 12 o of the first input plate 12 is formed flat and annularly, and is circumferentially spaced (equally spaced) so as to be positioned radially outward of the corresponding outer spring accommodation window 12 wo And a plurality of (in this embodiment, three, for example) pinion gear support portions 12p disposed on the outer side of the outer spring accommodation window 12wo. Furthermore, the outer peripheral portion 12o of the first input plate 12 is a damper on the same side as the spring support portions 12a, 12b, 12d all around from the inner peripheral portion 12i including the plurality of inner spring accommodation windows 12wi and outer spring accommodation windows 12wo. It is offset in the axial direction of the device 10. The outer peripheral portion 12o is connected to the inner peripheral portion 12i via a short cylindrical and endless connecting portion 12r extending along the plurality of pinion gear support portions 12p and the plurality of outer spring accommodation windows 12wo.

第2入力プレート13は、鋼板等をプレス加工することにより形成された環状のプレス加工品であり、図2および図3に示すように、それぞれ円弧状に延びると共に周方向に間隔をおいて(等間隔に)配設された複数(本実施形態では、例えば6個)の内側スプリング収容窓(第1収容窓)13wiと、各内側スプリング収容窓13wiの内側縁部に沿って延びる複数(本実施形態では、例えば6個)のスプリング支持部13aと、各内側スプリング収容窓13wiの外側縁部に沿って延びる複数(本実施形態では、例えば6個)のスプリング支持部13bと、各内側スプリング収容窓13wiの周方向における両側に設けられる複数(本実施形態では、例えば12個)の内側スプリング当接部13ciとを含む。各内側スプリング収容窓13wiは、第1入力プレート12の各内側スプリング収容窓12wiと同様に、第1スプリングSP1の自然長に応じた周長を有する。   The second input plate 13 is an annular pressed product formed by pressing a steel plate or the like, and as shown in FIG. 2 and FIG. A plurality of (in this embodiment, for example, six) inner spring housing windows (first housing windows) 13wi arranged at equal intervals, and a plurality (this one) extending along the inner edge of each inner spring housing window 13wi In the embodiment, for example, six spring support portions 13a, a plurality of (for example, six in the present embodiment) spring support portions 13b extending along the outer edge of each inner spring housing window 13wi, and each inner spring And a plurality of (for example, 12 in the present embodiment) inner spring contact portions 13ci provided on both sides in the circumferential direction of the accommodation window 13wi. Each inner spring receiving window 13wi has a circumferential length corresponding to the natural length of the first spring SP1, as with each inner spring receiving window 12wi of the first input plate 12.

更に、第2入力プレート13は、それぞれ円弧状に延びると共に対応する内側スプリング収容窓13wiの径方向外側に周方向に間隔をおいて(等間隔に)配設された複数(本実施形態では、例えば3個)の外側スプリング収容窓(第2収容窓)13woと、各外側スプリング収容窓13woの外側縁部に沿って延びる複数(本実施形態では、例えば3個)のスプリング支持部13dと、各外側スプリング収容窓13woの周方向における両側に設けられる複数(本実施形態では、例えば6個)の外側スプリング当接部13coとを含む。各外側スプリング収容窓13woは、第1入力プレート12の各外側スプリング収容窓12woと同様に、第2スプリングSP2の自然長よりも長い周長を有する。   Furthermore, the second input plate 13 extends in a circular arc shape and is circumferentially spaced outward (at regular intervals) radially outside the corresponding inner spring housing window 13 wi (in the present embodiment, For example, three) outer spring accommodation windows (second accommodation windows) 13wo, and a plurality (for example, three in the present embodiment) spring support portions 13d extending along the outer edge of each outer spring accommodation window 13wo; And a plurality of (for example, six in this embodiment) outer spring abutment portions 13co provided on both sides in the circumferential direction of each outer spring accommodation window 13wo. Each outer spring receiving window 13wo, like each outer spring receiving window 12wo of the first input plate 12, has a circumferential length longer than the natural length of the second spring SP2.

また、第2入力プレート13の外周部13oは、平坦かつ環状に形成されており、対応する外側スプリング収容窓13woの径方向外側に位置するように周方向に間隔をおいて(等間隔に)に配設された複数(本実施形態では、例えば3個)のピニオンギヤ支持部13pと、各外側スプリング収容窓13woの径方向外側に位置する部分とを含む。更に、第2入力プレート13の外周部13oは、それぞれ複数の内側スプリング収容窓13wiおよび外側スプリング収容窓13woを含む内周部13iから全周にわたってスプリング支持部13a,13b,13dと同じ側にダンパ装置10の軸方向にオフセットされている。そして、当該外周部13oは、複数のピニオンギヤ支持部13pおよび複数の外側スプリング収容窓13woに沿って延びる短尺筒状かつ無端状の繋ぎ部13rを介して内周部13iに連なる。本実施形態では、第1および第2入力プレート12,13として、同一の形状を有するものが採用され、これにより、部品の種類の数を削減することが可能となる。   Further, the outer peripheral portion 13o of the second input plate 13 is formed flat and annularly, and is circumferentially spaced (equally spaced) so as to be positioned radially outward of the corresponding outer spring accommodation window 13wo. And a plurality of (in this embodiment, three, for example) pinion gear support portions 13p disposed on the outer side of each of the outer spring accommodation windows 13wo. Further, the outer peripheral portion 13o of the second input plate 13 is a damper on the same side as the spring supporting portions 13a, 13b, 13d from the inner peripheral portion 13i including the plurality of inner spring housing windows 13wi and the outer spring housing windows 13wo. It is offset in the axial direction of the device 10. The outer peripheral portion 13o is connected to the inner peripheral portion 13i via a short cylindrical and endless connecting portion 13r extending along the plurality of pinion gear support portions 13p and the plurality of outer spring accommodation windows 13wo. In the present embodiment, as the first and second input plates 12 and 13, those having the same shape are adopted, which makes it possible to reduce the number of types of parts.

ドリブンプレート(出力プレート)15は、鋼板等をプレス加工することにより形成された板状かつ環状のプレス加工品であり、第1および第2入力プレート12,13の軸方向における間に配置されると共に、複数のリベットを介してダンパハブ7に固定される。図2および図3に示すように、ドリブンプレート15は、周方向に間隔をおいて(等間隔に)配設された複数(本実施形態では、例えば6個)の内側スプリング保持窓(第1保持窓)15wiと、各内側スプリング収容窓12wiの周方向における両側に設けられる複数(本実施形態では、例えば12個)の内側スプリング当接部15ciと、対応する内側スプリング保持窓15wiの径方向外側に配置された複数(本実施形態では、例えば3個)の外側スプリング保持窓15wo(第2保持窓)と、各外側スプリング収容窓12woの周方向における両側に設けられる複数(本実施形態では、例えば6個)の外側スプリング当接部15coとを含む。   The driven plate (output plate) 15 is a plate-like and annular press-formed product formed by pressing a steel plate or the like, and is disposed between the first and second input plates 12 and 13 in the axial direction. And is fixed to the damper hub 7 via a plurality of rivets. As shown in FIGS. 2 and 3, the driven plate 15 is provided with a plurality of (for example, six in the present embodiment) inner spring holding windows (first in the present embodiment) disposed at intervals (at regular intervals) in the circumferential direction. Retaining windows 15wi, and plural (for example, 12 in the present embodiment) inner spring abutment portions 15ci provided on both sides in the circumferential direction of each inner spring accommodation window 12wi, and radial directions of corresponding inner spring retaining windows 15wi A plurality of (for example, three in the present embodiment) outer spring holding windows 15wo (second holding windows) arranged on the outer side, and a plurality (in the present embodiment) provided on both sides in the circumferential direction of each outer spring housing window 12wo For example, six) outer spring abutments 15co.

各内側スプリング保持窓15wiは、図3からわかるように、第1スプリングSP1の自然長に応じた周長を有し、各外側スプリング保持窓15woは、図3からわかるように、第2スプリングSP2の自然長に応じた周長を有する。また、本実施形態において、ドリブンプレート15は、外周部から周方向に間隔をおいて(等間隔に)径方向における外側に突出するように形成された複数(本実施形態では、例えば3個)の突出部15eを含み、各突出部15eには、上記外側スプリング保持窓15woが1個ずつ形成されている。   Each inner spring holding window 15wi has a circumferential length corresponding to the natural length of the first spring SP1, as can be seen from FIG. 3, and each outer spring holding window 15wo is, as can be seen from FIG. 3, a second spring SP2. Has a perimeter according to the natural length of the Further, in the present embodiment, a plurality of driven plates 15 (for example, three in the present embodiment) are formed so as to protrude outward in the radial direction at intervals (at regular intervals) in the circumferential direction from the outer peripheral portion. The outer spring holding window 15wo is formed one by one in each of the projections 15e.

ドリブンプレート15の各内側スプリング保持窓15wiには、第1スプリングSP1が1個ずつ配置(嵌合)され、複数の第1スプリングSP1は、同一円周上に並ぶ。また、各内側スプリング保持窓15wiの周方向における両側に設けられた内側スプリング当接部15ciは、当該内側スプリング保持窓15wi内の第1スプリングSP1の一端または他端に当接する。更に、ドリブンプレート15の各外側スプリング保持窓15woには、第2スプリングSP2が1個ずつ配置(嵌合)され、複数の第2スプリングSP2は、複数の第1スプリングSP1よりもドリブンプレート15の径方向における外側で同一円周上に並ぶ。また、各外側スプリング保持窓15woの周方向における両側に設けられた外側スプリング当接部15coは、当該外側スプリング保持窓15wo内の第2スプリングSP2の一端または他端に当接する。   One first spring SP1 is disposed (fitted) in each of the inner spring holding windows 15wi of the driven plate 15, and the plurality of first springs SP1 are arranged on the same circumference. Further, the inner spring contact portions 15ci provided on both sides in the circumferential direction of each inner spring holding window 15wi abut on one end or the other end of the first spring SP1 in the inner spring holding window 15wi. Further, one second spring SP2 is disposed (fitted) in each of the outer spring holding windows 15wo of the driven plate 15, and the plurality of second springs SP2 are closer to the driven plate 15 than the plurality of first springs SP1. They line up on the same circumference on the outside in the radial direction. The outer spring contact portions 15co provided on both sides in the circumferential direction of each outer spring holding window 15wo contact one end or the other end of the second spring SP2 in the outer spring holding window 15wo.

ドライブ部材11の第1および第2入力プレート12,13は、ドリブンプレート15、複数の第1スプリングSP1および複数の第2スプリングSP2をダンパ装置10の軸方向における両側から挟み込むように複数のリベット90を介して互いに連結される。これにより、各第1スプリングSP1の側部は、第1および第2入力プレート12,13の対応する内側スプリング収容窓12wi,13wi内に収容され、スプリング支持部12a,13aにより径方向内側から支持(ガイド)される。更に、各第1スプリングSP1は、径方向外側に位置する第1および第2入力プレート12,13のスプリング支持部12b,13bによっても支持(ガイド)され得るようになる。また、ダンパ装置10の取付状態において、各内側スプリング収容窓12wiの周方向における両側に設けられた内側スプリング当接部12ciおよび各内側スプリング収容窓13wiの周方向における両側に設けられた内側スプリング当接部13ciは、当該内側スプリング収容窓12wi,13wi内の第1スプリングSP1の一端または他端に当接する。これにより、ドライブ部材11とドリブンプレート15とが複数の第1スプリングSP1を介して連結される。   The first and second input plates 12 and 13 of the drive member 11 have a plurality of rivets 90 so as to sandwich the driven plate 15, the plurality of first springs SP 1 and the plurality of second springs SP 2 from both sides in the axial direction of the damper device 10. Connected to each other via Thereby, the side portion of each first spring SP1 is accommodated in the corresponding inner spring accommodation window 12wi, 13wi of the first and second input plates 12, 13 and supported from the inside in the radial direction by the spring support portions 12a, 13a. (Guided). Furthermore, each first spring SP1 can also be supported (guided) by the spring support portions 12b and 13b of the first and second input plates 12 and 13 located radially outward. Further, in the mounting state of the damper device 10, the inner spring abutment portions 12ci provided on both sides in the circumferential direction of the respective inner spring accommodation windows 12wi and the inner spring abutments provided on both sides in the circumferential direction of the respective inner spring accommodation windows 13wi. The contact portion 13ci abuts on one end or the other end of the first spring SP1 in the inner spring accommodation windows 12wi and 13wi. Thereby, the drive member 11 and the driven plate 15 are connected via the plurality of first springs SP1.

更に、各第2スプリングSP2の側部は、第1および第2入力プレート12,13の対応する外側スプリング収容窓12wo,13wo内に収容され、径方向外側に位置するスプリング支持部12d,13dによって支持(ガイド)され得るようになる。ダンパ装置10の取付状態において、各第2スプリングSP2は、外側スプリング収容窓12wo,13woの周方向における略中央部に位置し、第1および第2入力プレート12,13の外側スプリング当接部12co,13coの何れとも当接しない。そして、第2スプリングSP2の一方の端部は、ドライブ部材11への入力トルク(駆動トルク)あるいは車軸側からドリブンプレート15に付与されるトルク(被駆動トルク)が上記トルクT1に達してドライブ部材11のドリブンプレート15に対する捩れ角が所定角度θref以上になると、第1および第2入力プレート12,13の対応する外側スプリング収容窓12wo,13woの両側に設けられた外側スプリング当接部12co,13coの一方と当接することになる。   Furthermore, the side portions of each second spring SP2 are accommodated in the corresponding outer spring receiving windows 12wo, 13wo of the first and second input plates 12, 13 by means of radially outwardly located spring supports 12d, 13d. It can be supported (guided). In the mounting state of the damper device 10, each second spring SP2 is located substantially at the center of the outer spring accommodation windows 12wo and 13wo in the circumferential direction, and the outer spring abutments 12co of the first and second input plates 12 and 13 , 13co does not contact either. Then, at one end of the second spring SP2, an input torque (drive torque) to the drive member 11 or a torque (driven torque) applied to the driven plate 15 from the axle side reaches the torque T1 and the drive member When the torsion angle of the 11 driven plate 15 is equal to or greater than the predetermined angle θ ref, the outer spring abutment portions 12co and 13co provided on both sides of the corresponding outer spring accommodation windows 12wo and 13wo of the first and second input plates 12 and 13, respectively. It will be in contact with one of the

加えて、ダンパ装置10は、ドライブ部材11とドリブンプレート15との相対回転を規制するストッパSTを含む。ストッパSTは、ドライブ部材11への入力トルクがダンパ装置10の最大捩れ角θmaxに対応した上記トルクT2に達すると、ドライブ部材11とドリブンプレート15との相対回転を規制し、それに伴って、第1および第2スプリングSP1,SP2のすべての撓みが規制される。本実施形態において、ストッパSTは、ドライブ部材11の第1および第2入力プレート12,13を連結する複数のリベット90と、ドリブンプレート15の各突出部15eとにより構成される。すなわち、複数のリベット90の少なくとも何れかと、ドリブンプレート15の対応する突出部15eの周方向における端部とが当接すると、ドライブ部材11とドリブンプレート15との相対回転が規制される。   In addition, the damper device 10 includes a stopper ST that regulates relative rotation between the drive member 11 and the driven plate 15. The stopper ST regulates the relative rotation between the drive member 11 and the driven plate 15 when the input torque to the drive member 11 reaches the torque T2 corresponding to the maximum torsion angle θmax of the damper device 10, and accordingly, Deflection of all of the first and second springs SP1 and SP2 is restricted. In the present embodiment, the stopper ST is formed of a plurality of rivets 90 connecting the first and second input plates 12 and 13 of the drive member 11 and the protrusions 15 e of the driven plate 15. That is, when at least one of the plurality of rivets 90 abuts on the circumferential end of the corresponding projection 15 e of the driven plate 15, relative rotation between the drive member 11 and the driven plate 15 is restricted.

更に、ダンパ装置10は、図1および図2に示すように、複数の第1スプリングSP1を含む第1トルク伝達経路TP1と、複数の第2スプリングSP2を含む第2トルク伝達経路TP2との双方に並列に設けられる回転慣性質量ダンパ20を含む。本実施形態において、回転慣性質量ダンパ20は、ダンパ装置10の入力要素であるドライブ部材11と出力要素であるドリブンプレート15との間に配置されるシングルピニオン式の遊星歯車21(図1参照)を有する。   Furthermore, as shown in FIGS. 1 and 2, damper device 10 has both a first torque transmission path TP1 including a plurality of first springs SP1 and a second torque transmission path TP2 including a plurality of second springs SP2. And a rotational inertia mass damper 20 provided in parallel to each other. In the present embodiment, the rotary inertia mass damper 20 is a single pinion type planetary gear 21 (see FIG. 1) disposed between the drive member 11 which is an input element of the damper device 10 and the driven plate 15 which is an output element. Have.

遊星歯車21は、外周に外歯15tを含んで回転慣性質量ダンパ20(遊星歯車21)のサンギヤとして機能するドリブンプレート15と、それぞれ外歯15tに噛合する複数(本実施形態では、例えば3個)のピニオンギヤ23を回転自在に支持してキャリヤとして機能するドライブ部材11の第1および第2入力プレート12,13と、各ピニオンギヤ23に噛合すると共にサンギヤとしてのドリブンプレート15(外歯15t)と同心円上に配置されるリングギヤ25とにより構成される。サンギヤとしてのドリブンプレート15、複数のピニオンギヤ23およびリングギヤ25は、流体室9内で、ダンパ装置10の径方向からみて第1および第2スプリングSP1,SP2と軸方向に少なくとも部分的に重なり合う。これにより、回転慣性質量ダンパ20ひいてはダンパ装置10の軸長を短縮化することが可能となる。   The planetary gear 21 includes a plurality of (in this embodiment, three, for example, in the present embodiment) a driven plate 15 including outer teeth 15t on the outer periphery and functioning as a sun gear of the rotary inertia mass damper 20 (planet gear 21). And the first and second input plates 12 and 13 of the drive member 11 functioning as a carrier rotatably supporting the pinion gear 23, and the driven plate 15 (outer teeth 15t) as a sun gear while meshing with each pinion gear 23. It is comprised by the ring gear 25 arrange | positioned concentrically. The driven plate 15 as a sun gear, the plurality of pinion gears 23 and the ring gear 25 axially overlap at least partially with the first and second springs SP1 and SP2 in the fluid chamber 9 as viewed from the radial direction of the damper device 10. As a result, it is possible to shorten the axial length of the rotary inertia mass damper 20 and hence the damper device 10.

図2および図4に示すように、外歯15tは、ドリブンプレート15の外周面に周方向に間隔をおいて(等間隔に)定められた複数の箇所に形成される。すなわち、本実施形態において、外歯15tは、ドリブンプレート15の外周面の隣り合う突出部15eの周方向における間に形成される。従って、外歯15tは、内側スプリング保持窓15wiすなわちドライブ部材11とドリブンプレート15との間でトルクを伝達する第1スプリングSP1よりも径方向外側に位置する。なお、ドリブンプレート15に突出部15eが形成されない場合、外歯15tは、ドリブンプレート15の外周の全体に形成されてもよい。   As shown in FIG. 2 and FIG. 4, the external teeth 15 t are formed at a plurality of places defined on the outer peripheral surface of the driven plate 15 in the circumferential direction at intervals (at equal intervals). That is, in the present embodiment, the external teeth 15 t are formed between the adjacent protruding portions 15 e in the circumferential direction of the outer peripheral surface of the driven plate 15. Accordingly, the external teeth 15 t are located radially outward of the inner spring holding window 15 wi, that is, the first spring SP 1 transmitting torque between the drive member 11 and the driven plate 15. When the protrusion 15 e is not formed on the driven plate 15, the external teeth 15 t may be formed on the entire outer periphery of the driven plate 15.

遊星歯車21のキャリヤを構成する第1入力プレート12の各ピニオンギヤ支持部12pは、第2入力プレート13の対応するピニオンギヤ支持部13pと軸方向に対向し、互いに対をなすピニオンギヤ支持部12p,13pは、それぞれピニオンギヤ23に挿通されたピニオンシャフト24の対応する端部を支持する。これにより、遊星歯車21の複数のピニオンギヤ23は、複数の第1スプリングSP1よりもドリブンプレート15の径方向における外側、かつリングギヤ25よりも当該径方向における内側に配置される複数の第2スプリングSP2と周方向に並ぶように配置される。更に、ピニオンシャフト24の周方向における両側には、第1および第2入力プレート12,13を締結するためのリベット90が配置される。   The respective pinion gear support portions 12p of the first input plate 12 constituting the carrier of the planetary gear 21 axially face the corresponding pinion gear support portions 13p of the second input plate 13 and form a pair of pinion gear support portions 12p and 13p. Each supports the corresponding end of the pinion shaft 24 inserted in the pinion gear 23. As a result, the plurality of pinion gears 23 of the planetary gear 21 are arranged on the radially outer side of the driven plate 15 with respect to the plurality of first springs SP1 and the plurality of second springs SP2 arranged on the inner side in the radial direction with respect to the ring gear 25. And arranged to line up in the circumferential direction. Furthermore, rivets 90 for fastening the first and second input plates 12 and 13 are disposed on both sides of the pinion shaft 24 in the circumferential direction.

ピニオンギヤ23は、図4に示すように、外周に外歯23tを有する環状部材であり、当該ピニオンギヤ23の歯幅は、外歯15tの歯幅、すなわちドリブンプレート15の板厚よりも大きく定められている。また、ピニオンギヤ23の内周面とピニオンシャフト24の外周面との間には、複数のニードルベアリング230が配置される。更に、各ピニオンギヤ23の軸方向における両側には、一対の大径ワッシャ231が配置され、大径ワッシャ231とピニオンギヤ支持部12pまたは13pとの間には、当該大径ワッシャ231よりも小径の一対の小径ワッシャ232が配置される。   As shown in FIG. 4, the pinion gear 23 is an annular member having external teeth 23t on the outer periphery, and the tooth width of the pinion gear 23 is set larger than the tooth width of the external teeth 15t, ie, the plate thickness of the driven plate 15. ing. Further, a plurality of needle bearings 230 are disposed between the inner circumferential surface of the pinion gear 23 and the outer circumferential surface of the pinion shaft 24. Furthermore, a pair of large diameter washers 231 are disposed on both sides in the axial direction of each pinion gear 23, and a pair of diameters smaller than the large diameter washers 231 between the large diameter washers 231 and the pinion gear support 12p or 13p. Small diameter washers 232 are disposed.

遊星歯車21のリングギヤ25は、図4に示すように、内周に内歯250tが形成された環状の内歯ギヤ250と、内歯ギヤ250の一方の側面(図4中、左側の側面)に接するように配置される錘体251と、内歯ギヤ250と錘体251とを互いに固定するための複数のリベット252とを含む。内歯ギヤ250および錘体251は、何れも鋼板等をプレス加工することにより形成される環状のプレス加工品である。内歯ギヤ250の内歯250tは、内歯ギヤ250の内周面の全体にわたって形成される。ただし、内歯250tは、内歯ギヤ250の内周面に周方向に間隔をおいて(等間隔に)定められた複数の箇所に形成されてもよい。更に、内歯ギヤ250の歯幅は、ピニオンギヤ23の歯幅よりも小さく、かつ外歯15tの歯幅、すなわちドリブンプレート15の板厚と略同一である。   The ring gear 25 of the planetary gear 21 is, as shown in FIG. 4, an annular internal gear 250 having an internal gear 250t formed on its inner periphery, and one side of the internal gear 250 (the left side in FIG. 4). And a plurality of rivets 252 for fixing the internal gear 250 and the weight 251 to each other. Each of the internal gear 250 and the weight 251 is an annular pressed product formed by pressing a steel plate or the like. The internal teeth 250 t of the internal gear 250 are formed over the entire inner peripheral surface of the internal gear 250. However, the internal teeth 250t may be formed at a plurality of locations defined on the inner circumferential surface of the internal gear 250 in the circumferential direction at regular intervals. Further, the tooth width of the internal gear 250 is smaller than the tooth width of the pinion gear 23, and is substantially the same as the tooth width of the external teeth 15t, that is, the thickness of the driven plate 15.

また、本実施形態において、錘体251は、凹円柱面状の内周面を有する円環状部材であり、内歯ギヤ250の外径と略同一の外径を有すると共に、内歯250tの歯底円の半径よりも僅かに小さい内径を有する。本実施形態において、錘体251の軸長(厚み)は、当該錘体251の軸長と内歯ギヤ250の軸長(厚み)との和がピニオンギヤ23の軸長と略同一になるように定められている。そして、内歯ギヤ250、錘体251および複数のリベット252は、一体化されて回転慣性質量ダンパ20の質量体(慣性質量体)として機能する。このように、遊星歯車21の最外周に配置されるリングギヤ25を回転慣性質量ダンパ20の質量体として用いることで、当該リングギヤ25の慣性モーメントをより大きくして当該回転慣性質量ダンパ20の振動減衰性能をより向上させることができる。なお、錘体251は、上述のような円環状の部材を分割することにより形成されて、それぞれリベット252を介して内歯ギヤ250に固定される複数のセグメントを含むものであってもよい。   Further, in the present embodiment, the weight 251 is an annular member having a concave cylindrical surface-like inner circumferential surface, and has an outer diameter substantially the same as the outer diameter of the internal gear 250, and the teeth of the inner teeth 250t. It has an inner diameter slightly smaller than the radius of the bottom circle. In the present embodiment, the axial length (thickness) of the weight body 251 is such that the sum of the axial length of the weight body 251 and the axial length (thickness) of the internal gear 250 is substantially the same as the axial length of the pinion gear 23 It is fixed. The internal gear 250, the weight 251 and the plurality of rivets 252 are integrated to function as a mass (inertial mass) of the rotary inertia mass damper 20. As described above, by using the ring gear 25 disposed on the outermost periphery of the planetary gear 21 as a mass of the rotary inertia mass damper 20, the inertia moment of the ring gear 25 is further increased, and the vibration damping of the rotary inertia mass damper 20 is performed. Performance can be further improved. The weight 251 may be formed by dividing an annular member as described above, and may include a plurality of segments fixed to the internal gear 250 through the rivets 252, respectively.

図4に示すように、リングギヤ25の内歯ギヤ250は、サンギヤとしてドリブンプレート15に対して軸方向にオフセットして配置され、内歯ギヤ250の内歯250tは、各ピニオンギヤ23の軸方向における端部に噛合する。また、リングギヤ25の錘体251の内周面は、図5に示すように、ピニオンギヤ23の外歯23tの歯先により径方向に支持され、それによりリングギヤ25の全体がキャリヤとしての第1および第2入力プレート12,13やサンギヤとしてのドリブンプレート15の軸心に対して精度よく調心されることになる。更に、リングギヤ25の軸方向への移動は、内歯ギヤ250(内歯250t)の側面に当接可能な大径ワッシャ231および錘体251の側面に当接可能な大径ワッシャ231により規制される。   As shown in FIG. 4, the internal gear 250 of the ring gear 25 is axially offset from the driven plate 15 as a sun gear, and the internal teeth 250 t of the internal gear 250 are in the axial direction of each pinion gear 23. Engage with the end. Further, as shown in FIG. 5, the inner peripheral surface of the weight body 251 of the ring gear 25 is radially supported by the tips of the external teeth 23t of the pinion gear 23, whereby the entire ring gear 25 is used as a first carrier and The axes of the second input plates 12 and 13 and the axis of the driven plate 15 as a sun gear are precisely aligned. Further, the axial movement of the ring gear 25 is restricted by the large diameter washer 231 that can abut against the side surface of the internal gear 250 (inner tooth 250t) and the large diameter washer 231 that can abut against the side surface of the weight body 251. Ru.

すなわち、大径ワッシャ231の外径は、各ピニオンギヤ23とリングギヤ25の内歯250tとが噛合した際に、当該大径ワッシャ231がピニオンギヤ23の側面と対向すると共にリングギヤ25の内歯250tの側面または錘体251の側面と対向するように定められている。より詳細には、本実施形態の大径ワッシャ231の外周部は、リングギヤ25の内歯250tの歯底および錘体251の内周面よりも径方向外側に突出する。また、本実施形態において、小径ワッシャ232の外径は、ピニオンギヤ23の外歯23tの歯底円よりも小径であり、小径ワッシャ232の外周は、ニードルベアリング230よりも径方向外側に位置する。   That is, when each pinion gear 23 and the inner teeth 250 t of the ring gear 25 mesh with each other, the large diameter washer 231 faces the side surface of the pinion gear 23 and the side surface of the inner teeth 250 t of the ring gear 25. Alternatively, it is set to face the side surface of the weight 251. More specifically, the outer peripheral portion of the large diameter washer 231 of the present embodiment protrudes radially outward beyond the bottom of the inner teeth 250 t of the ring gear 25 and the inner peripheral surface of the weight body 251. In the present embodiment, the outer diameter of the small diameter washer 232 is smaller than the bottom circle of the outer teeth 23 t of the pinion gear 23, and the outer periphery of the small diameter washer 232 is located radially outward of the needle bearing 230.

次に、上述のように構成される発進装置1の動作について説明する。   Next, the operation of the launch device 1 configured as described above will be described.

発進装置1において、ロックアップクラッチ8によるロックアップが解除されている際、図1からわかるように、エンジンEGからフロントカバー3に伝達されたトルク(動力)は、ポンプインペラ4、タービンランナ5、およびダンパハブ7という経路を介して変速機TMの入力軸ISへと伝達される。これに対して、発進装置1のロックアップクラッチ8によりロックアップが実行されると、エンジンEGからフロントカバー3およびロックアップクラッチ8を介してドライブ部材11に伝達されたトルクは、入力トルク等が上記トルクT1未満であってドライブ部材11のドリブンプレート15に対する捩れ角が所定角度θref未満である間、複数の第1スプリングSP1を含む第1トルク伝達経路TP1と、回転慣性質量ダンパ20とを介してドリブンプレート15およびダンパハブ7に伝達される。   In the starter 1, when the lockup by the lockup clutch 8 is released, as can be seen from FIG. 1, the torque (power) transmitted from the engine EG to the front cover 3 is the pump impeller 4, the turbine runner 5, And the damper hub 7 to the input shaft IS of the transmission TM. On the other hand, when lockup is executed by the lockup clutch 8 of the starting device 1, the torque transmitted from the engine EG to the drive member 11 through the front cover 3 and the lockup clutch 8 is input torque etc. While the torque T1 is less and the torsion angle of the drive member 11 to the driven plate 15 is less than the predetermined angle θref, the torque transmission path TP1 including the plurality of first springs SP1 and the rotational inertia mass damper 20 Then, it is transmitted to the driven plate 15 and the damper hub 7.

この際、ドライブ部材11がドリブンプレート15に対して回転すると(捩れると)、複数の第1スプリングSP1が撓むと共に、ドライブ部材11とドリブンプレート15との相対回転に応じて質量体としてのリングギヤ25が軸心周りに回転(揺動)する。このようにドライブ部材11がドリブンプレート15に対して回転(揺動)する際には、遊星歯車21の入力要素であるキャリヤとしてのドライブ部材11すなわち第1および第2入力プレート12,13の回転速度がサンギヤとしてのドリブンプレート15の回転速度よりも高くなる。従って、この際、リングギヤ25は、遊星歯車21の作用により増速され、ドライブ部材11よりも高い回転速度で回転する。これにより、回転慣性質量ダンパ20の質量体であるリングギヤ25から、ピニオンギヤ23を介して慣性トルクをダンパ装置10の出力要素であるドリブンプレート15に付与し、当該ドリブンプレート15の振動を減衰させることが可能となる。   At this time, when the drive member 11 is rotated (twisted) with respect to the driven plate 15, the plurality of first springs SP1 are bent, and a mass body is provided according to relative rotation between the drive member 11 and the driven plate 15. The ring gear 25 rotates (rocks) around the axis. Thus, when the drive member 11 rotates (swings) with respect to the driven plate 15, the rotation of the drive member 11 as the carrier that is the input element of the planetary gear 21, that is, the first and second input plates 12 and 13. The speed is higher than the rotational speed of the driven plate 15 as a sun gear. Accordingly, at this time, the ring gear 25 is accelerated by the action of the planetary gear 21 and rotates at a rotational speed higher than that of the drive member 11. Thereby, an inertial torque is applied to the driven plate 15 which is an output element of the damper device 10 from the ring gear 25 which is a mass body of the rotary inertia mass damper 20 via the pinion gear 23, and the vibration of the driven plate 15 is attenuated. Is possible.

より詳細には、複数の第1スプリングSP1と回転慣性質量ダンパ20とが並列に作用する際、複数の第1スプリングSP1(第1トルク伝達経路TP1)からドリブンプレート15に伝達されるトルク(平均トルク)は、第1スプリングSP1の変位(撓み量すなわち捩れ角)に依存(比例)したものとなる。これに対して、回転慣性質量ダンパ20からドリブンプレート15に伝達されるトルク(慣性トルク)は、ドライブ部材11とドリブンプレート15との角加速度の差、すなわちドライブ部材11とドリブンプレート15との間の第1スプリングSP1の変位の2回微分値に依存(比例)したものとなる。これにより、ダンパ装置10のドライブ部材11に伝達される入力トルクが周期的に振動していると仮定すれば、ドライブ部材11から複数の第1スプリングSP1を介してドリブンプレート15に伝達される振動の位相と、ドライブ部材11から回転慣性質量ダンパ20を介してドリブンプレート15に伝達される振動の位相とが180°ずれることになる。この結果、ダンパ装置10では、複数の第1スプリングSP1からドリブンプレート15に伝達される振動と、回転慣性質量ダンパ20からドリブンプレート15に伝達される振動との一方により、他方の少なくとも一部を打ち消して、ドリブンプレート15の振動を良好に減衰させることが可能となる。なお、回転慣性質量ダンパ20は、ドライブ部材11とドリブンプレート15との間で主に慣性トルクを伝達し、平均トルクを伝達することはない。   More specifically, when the plurality of first springs SP1 and the rotary inertia mass damper 20 act in parallel, the torque (average torque) transmitted to the driven plate 15 from the plurality of first springs SP1 (first torque transmission path TP1) The torque) is dependent (proportional) on the displacement (deflection or twist angle) of the first spring SP1. On the other hand, the torque (inertial torque) transmitted from rotational inertia mass damper 20 to driven plate 15 is the difference in angular acceleration between drive member 11 and driven plate 15, ie, between drive member 11 and driven plate 15. Is dependent (proportional) to the second derivative value of the displacement of the first spring SP1. Thereby, assuming that the input torque transmitted to the drive member 11 of the damper device 10 periodically vibrates, the vibration transmitted to the driven plate 15 from the drive member 11 via the plurality of first springs SP1. And the phase of the vibration transmitted from the drive member 11 to the driven plate 15 via the rotary inertia mass damper 20 are shifted by 180 °. As a result, in the damper device 10, at least a portion of the other is generated by one of the vibration transmitted from the plurality of first springs SP1 to the driven plate 15 and the vibration transmitted from the rotary inertia mass damper 20 to the driven plate 15. By canceling out, the vibration of the driven plate 15 can be favorably damped. The rotary inertia mass damper 20 mainly transmits inertia torque between the drive member 11 and the driven plate 15 and does not transmit average torque.

また、入力トルク等が上記トルクT1以上になってドライブ部材11のドリブンプレート15に対する捩れ角が所定角度θref以上になると、各第2スプリングSP2の一方の端部が、第1および第2入力プレート12,13の対応する外側スプリング収容窓12wo,13woの両側に設けられた外側スプリング当接部12co,13coの一方と当接する。これにより、ドライブ部材11に伝達されたトルクは、入力トルク等が上記トルクT2に達してストッパSTによりドライブ部材11とドリブンプレート15との相対回転が規制されるまで、上記第1トルク伝達経路TP1と、複数の第2スプリングSP2を含む第2トルク伝達経路TP2と、回転慣性質量ダンパ20とを介してドリブンプレート15およびダンパハブ7に伝達される。すなわち、ダンパ装置10において、複数の第2スプリングSP2は、ドリブンプレート15の対応する外側スプリング当接部15coと、第1および第2入力プレート12,13の外側スプリング当接部12co,13coとの双方に当接するまでトルクを伝達することなく(撓まず)、ドライブ部材11とドリブンプレート15との相対捩れ角が増加するのに伴って第1スプリングSP1と並列に作用する。これにより、ドライブ部材11とドリブンプレート15との相対捩れ角の増加に応じてダンパ装置10の剛性を高め、並列に作用する第1および第2スプリングSP1,SP2によって大きなトルクを伝達したり、衝撃トルク等を受け止めたりすることが可能となる。   Further, when the input torque or the like becomes equal to or larger than the torque T1 and the twist angle of the drive member 11 to the driven plate 15 becomes equal to or larger than the predetermined angle θref, one end of each second spring SP2 becomes the first and second input plates. It comes into contact with one of the outer spring abutment portions 12 co, 13 co provided on both sides of the corresponding outer spring receiving windows 12 wo, 13 wo of 12, 13. Thereby, the torque transmitted to the drive member 11 is the first torque transmission path TP1 until the input torque or the like reaches the torque T2 and the relative rotation between the drive member 11 and the driven plate 15 is restricted by the stopper ST. , The second torque transmission path TP2 including the plurality of second springs SP2, and the rotary inertia mass damper 20, the torque is transmitted to the driven plate 15 and the damper hub 7. That is, in the damper device 10, the plurality of second springs SP2 include the corresponding outer spring abutments 15co of the driven plate 15 and the outer spring abutments 12co and 13co of the first and second input plates 12 and 13. It acts in parallel with the first spring SP1 as the relative twist angle between the drive member 11 and the driven plate 15 increases without transmitting torque (without bending) until it abuts on both sides. Thereby, the rigidity of the damper device 10 is enhanced according to the increase of the relative torsion angle between the drive member 11 and the driven plate 15, and a large torque is transmitted by the first and second springs SP1 and SP2 acting in parallel, It becomes possible to receive torque etc.

ここで、回転慣性質量ダンパ20は、キャリヤとしての第1および第2入力プレート(第1回転要素)12,13とサンギヤとしてのドリブンプレート15との間で主に慣性トルクを伝達し、平均トルクを伝達することはない。従って、回転慣性質量ダンパ20の遊星歯車21の回転要素に要求される硬度(表面硬度)は、平均トルクを伝達するダンパ装置10の回転要素に比べて低くなる。これを踏まえて、ダンパ装置10では、回転慣性質量ダンパ20のサンギヤとしてのドリブンプレート15、ピニオンギヤ23、およびリングギヤ25として、ガス軟窒化処理品が採用される。   Here, the rotary inertia mass damper 20 mainly transmits inertia torque between the first and second input plates (first rotating elements) 12 and 13 as a carrier and the driven plate 15 as a sun gear, and an average torque is obtained. Do not transmit. Therefore, the hardness (surface hardness) required of the rotating element of the planetary gear 21 of the rotary inertia mass damper 20 is lower than that of the rotating element of the damper device 10 transmitting the average torque. Based on this, in the damper device 10, a gas soft nitrided product is adopted as the driven plate 15, the pinion gear 23, and the ring gear 25 as a sun gear of the rotary inertia mass damper 20.

ガス軟窒化処理は、NH3,N2およびCO2を含む混合ガス雰囲気の炉内で対象物(ここでは、プレス加工品)を例えば530〜600℃に加熱し、当該対象物の表面に5〜20μm程度の鉄の炭窒化物を含む緻密な化合物層を生成すると共に、対象物の内部、すなわち化合物層の直下から0.5mm程度内側までの範囲に固溶窒素拡散層を生成する処理である。かかるガス軟窒化処理は、対象物の表面に化合物層を生成することで当該対象物の表面の硬度、靭性、耐摩耗性、耐食性を向上させると共に、内部に固溶窒素拡散層を生成することで耐疲労強度を向上させ得るものである。 The gas soft nitriding process heats an object (here, a pressed product) to, for example, 530 to 600 ° C. in a furnace of a mixed gas atmosphere containing NH 3 , N 2 and CO 2 , and the surface of the object is By forming a dense compound layer containing iron carbonitride of about 20 μm or so and forming a solid solution nitrogen diffusion layer within the object, that is, within about 0.5 mm from immediately below the compound layer is there. Such gas nitrocarburizing improves the hardness, toughness, wear resistance, and corrosion resistance of the surface of the object by generating a compound layer on the surface of the object, and generates a solid solution nitrogen diffusion layer inside. Fatigue resistance can be improved.

従って、ドリブンプレート15、ピニオンギヤ23、およびリングギヤ25として、ガス軟窒化処理部を採用すれば、回転慣性質量ダンパ20ひいてはダンパ装置10の耐久性や信頼性を良好に確保することが可能となる。本実施形態において、上記慣性トルクのみならず平均トルクをも伝達するドリブンプレート15については、その厚みを浸炭焼入れ部品である場合に要求される厚みよりも大きくした上でガス軟窒化処理を施すことで、要求される強度を確保している。また、リングギヤ25については、内歯ギヤ250および錘体251を複数のリベット252により連結した状態でガス軟窒化処理が実行される。   Therefore, by adopting a gas soft nitrided portion as the driven plate 15, the pinion gear 23 and the ring gear 25, it is possible to ensure good durability and reliability of the rotary inertia mass damper 20 and hence the damper device 10. In the present embodiment, with respect to the driven plate 15 transmitting not only the above-mentioned inertia torque but also the average torque, the gas soft nitriding is performed after the thickness thereof is made larger than the thickness required for carburized and quenched parts. In the required strength. Further, with respect to the ring gear 25, the gas soft nitriding is performed in a state in which the internal gear 250 and the weight 251 are connected by the plurality of rivets 252.

更に、ガス軟窒化処理に際しては、対象物を鋼材等の素材の変態点以上に加熱する必要がないことから、加熱処理後の対象物の変形や歪みの発生を良好に抑制することができる。従って、ガス軟窒化処理後のドリブンプレート15、ピニオンギヤ23、およびリングギヤ25には、形状矯正加工を施す必要がなくなり、それによりダンパ装置10の製造コストを低減することができる。この結果、回転慣性質量ダンパ20を含むダンパ装置10のコストアップを抑制しつつ、耐久性や信頼性を向上させることが可能となる。   Furthermore, since it is not necessary to heat the object above the transformation point of the material such as steel during gas soft nitriding, it is possible to favorably suppress the occurrence of deformation or distortion of the object after heat treatment. Therefore, the driven plate 15, the pinion gear 23, and the ring gear 25 after the gas soft nitriding process need not be subjected to shape correction processing, whereby the manufacturing cost of the damper device 10 can be reduced. As a result, it is possible to improve the durability and the reliability while suppressing the cost increase of the damper device 10 including the rotary inertia mass damper 20.

また、上記実施形態において、サンギヤとしてのドリブンプレート15、リングギヤ25の内歯ギヤ250および錘体251は、プレス加工により形成されたプレス加工品である。これにより、ドリブンプレート15およびリングギヤ25の製造コストをより低下させて、回転慣性質量ダンパ20を含むダンパ装置10のコストアップをより良好に抑制することが可能となる。加えて、リングギヤ25の内歯ギヤ250および外歯15tの歯幅の双方をピニオンギヤ23の歯幅よりも小さくした場合には、図6からわかるように、プレス加工品であるドリブンプレート15および内歯ギヤ250を、いわゆる親子取りにより作成することもできるので、母材を有効に利用して歩留まりを向上させることも可能となる。   Further, in the above embodiment, the driven plate 15 as a sun gear, the internal gear 250 of the ring gear 25 and the weight 251 are pressed products formed by press processing. As a result, the manufacturing cost of the driven plate 15 and the ring gear 25 can be further reduced, and the cost increase of the damper device 10 including the rotary inertia mass damper 20 can be suppressed more favorably. In addition, when both of the tooth widths of the internal gear 250 and the external teeth 15 t of the ring gear 25 are made smaller than the tooth width of the pinion gear 23, as can be seen from FIG. Since the tooth gear 250 can also be created by so-called parent-child taking, it is also possible to effectively utilize the base material to improve the yield.

なお、本実施形態において、回転慣性質量ダンパ20のキャリヤとしての第1および第2入力プレート12,13には、ガス軟窒化処理の代わりに、浸炭焼入れ処理が施される。これにより、それぞれ複数の内側スプリング収容窓12wi,13wiおよび外側スプリング収容窓12wo,13woが形成されると共にエンジンEGからのトルクが伝達される第1および第2入力プレート12,13の強度を良好に確保することが可能となる。ただし、キャリヤとしての第1および第2入力プレート12,13は、その厚みを浸炭焼入れ部品である場合に要求される厚みよりも大きくした上でガス軟窒化処理が施されたものであってもよい。また、ピニオンギヤ23としては、ガス軟窒化処理品の代わりに、浸炭焼入れされたものが採用されてもよい。   In the present embodiment, the first and second input plates 12 and 13 as carriers of the rotary inertia mass damper 20 are subjected to carburizing and quenching instead of gas soft nitriding. Thereby, the strength of the first and second input plates 12 and 13 to which the plurality of inner spring accommodation windows 12wi and 13wi and the outer spring accommodation windows 12wo and 13wo are formed and to which the torque from the engine EG is transmitted is improved. It becomes possible to secure. However, even if the first and second input plates 12 and 13 as carriers have been subjected to gas soft nitriding after their thicknesses have been made larger than those required in the case of carburized and quenched parts. Good. Further, as the pinion gear 23, a carburized and quenched one may be employed instead of the gas soft nitrided product.

図7は、本開示の他のダンパ装置10Bを含む発進装置1Bを示す概略構成図であり、図8は、ダンパ装置10Bを示す正面図である。なお、発進装置1Bやダンパ装置10Bの構成要素のうち、上述の発進装置1等と同一の要素については同一の符号を付し、重複する説明を省略する。   FIG. 7 is a schematic configuration view showing a launch device 1B including another damper device 10B of the present disclosure, and FIG. 8 is a front view showing the damper device 10B. In addition, the same code | symbol is attached | subjected about the element same as the above-mentioned starting apparatus 1 grade among the components of the starting apparatus 1B or the damper apparatus 10B, and the overlapping description is abbreviate | omitted.

図7および図8に示すダンパ装置10Bは、回転要素として、ドライブ部材(入力要素)11Bと、中間プレート(中間要素)14と、ドリブンプレート(出力要素)15Bとを含む。更に、ダンパ装置10Bは、トルク伝達要素(トルク伝達弾性体)として、ドライブ部材11Bと中間プレート14との間でトルクを伝達する複数(本実施形態では、例えば3個)の入力側スプリング(入力側弾性体)SP11と、中間プレート14とドリブンプレート15Bとの間でトルクを伝達する複数(本実施形態では、例えば3個)の出力側スプリング(出力側弾性体)SP12と、ドライブ部材11Bと中間プレート14との間でトルクを伝達可能な複数(本実施形態では、例えば3個)の第2スプリング(第2弾性体)SP2とを含む。   The damper device 10B shown in FIGS. 7 and 8 includes a drive member (input element) 11B, an intermediate plate (intermediate element) 14, and a driven plate (output element) 15B as rotating elements. Further, the damper device 10B, as a torque transfer element (torque transfer elastic body), transmits a plurality of (for example, three in the present embodiment) input side springs (inputs) which transmit torque between the drive member 11B and the intermediate plate 14 Side elastic body) SP11, a plurality of (for example, three in this embodiment) output side springs (output side elastic body) SP12 for transmitting torque between the intermediate plate 14 and the driven plate 15B, and the drive member 11B A plurality of (for example, three in this embodiment) second springs (second elastic bodies) SP2 capable of transmitting torque with the intermediate plate 14 are included.

ダンパ装置10Bのドライブ部材11Bは、回転慣性質量ダンパ20Bの遊星歯車21Bのキャリヤとして機能する第1および第2入力プレート12B,13Bを含む。第1および第2入力プレート12B,13Bは、ダンパ装置10のドライブ部材11と基本的に同一の構造を有するプレス加工品である。ただし、第1および第2入力プレート12B,13Bの内側スプリング収容窓12wi等およびスプリング支持部12a,12b等は、図8に示すように、入力側スプリングSP11の自然長と出力側スプリングSP12の自然長との和よりも長い周長を有するように形成されている。ドリブンプレート15Bは、図8に示すように、外周部から周方向に間隔をおいて(等間隔に)径方向外側に突出するように形成された複数(本実施形態では、例えば3個)のスプリング当接部15cを有する環状のプレス加工品である。更に、隣り合うスプリング当接部15cの周方向における間には、円弧状に延びる切欠状の内側スプリング保持窓15wiが形成されている。   The drive member 11B of the damper device 10B includes first and second input plates 12B and 13B that function as carriers of the planetary gear 21B of the rotary inertia mass damper 20B. The first and second input plates 12B and 13B are pressed products having basically the same structure as the drive member 11 of the damper device 10. However, as shown in FIG. 8, the inner spring accommodation windows 12wi and the like of the first and second input plates 12B and 13B and the spring support portions 12a and 12b have a natural length of the input side spring SP11 and a natural length of the output side spring SP12. It is formed to have a circumference longer than the sum of the length and the length. As shown in FIG. 8, the plurality of (in this embodiment, for example, three) driven plates 15B are formed so as to protrude radially outward at equal intervals from the outer peripheral portion (at equal intervals). It is an annular pressed product having a spring contact portion 15c. Further, a notch-shaped inner spring holding window 15wi extending in an arc shape is formed between the adjacent spring contact portions 15c in the circumferential direction.

また、中間プレート14は、鋼板等をプレス加工することにより形成された環状のプレス加工品であり、外周に外歯14tを含んで回転慣性質量ダンパ20Bの(遊星歯車21B)のサンギヤとして機能する。すなわち、ダンパ装置10Bの回転慣性質量ダンパ20Bは、外周に外歯14tを含んでサンギヤとして機能する中間プレート14と、それぞれ外歯14tに噛合する複数(本実施形態では、例えば3個)のピニオンギヤ23を回転自在に支持してキャリヤとして機能するドライブ部材11Bの第1および第2入力プレート12B,13Bと、各ピニオンギヤ23に噛合すると共にサンギヤとしての中間プレート14(外歯14t)と同心円上に配置されて質量体として機能するリングギヤ25とにより構成される。   Further, the intermediate plate 14 is an annular pressed product formed by pressing a steel plate or the like, and functions as a sun gear of (the planetary gear 21B) of the rotary inertia mass damper 20B including the outer teeth 14t on the outer periphery. . That is, the rotary inertia mass damper 20B of the damper device 10B includes the external plate 14t on the outer periphery and the intermediate plate 14 functioning as a sun gear, and a plurality of (for example, three in this embodiment) pinion gears engaged with the external teeth 14t. 23 rotatably supports the first and second input plates 12B and 13B of the drive member 11B which functions as a carrier, and concentrically with the intermediate plate 14 (outer teeth 14t) as a sun gear while meshing with the respective pinion gears 23 It is comprised by the ring gear 25 arrange | positioned and functioning as a mass body.

中間プレート14は、図8に示すように、外周の外歯14tに加えて、内周部から周方向に間隔をおいて(等間隔に)径方向内側に突出するように形成された複数(本実施形態では、例えば3個)の内側スプリング当接部14ciと、外周部から周方向に間隔をおいて(等間隔に)径方向外側に突出するように形成された複数(本実施形態では、例えば3個)の突出部14eと、各突出部14eに1個ずつ形成された切欠部である複数(本実施形態では、例えば3個)のスプリング保持窓14wと、各スプリング保持窓14wの周方向における両側に設けられた複数(本実施形態では、例えば6個)の外側スプリング当接部14coとを含む。各スプリング保持窓14wは、図8に示すように、第2スプリングSP2の自然長に応じた周長を有する。また、外歯14tは、隣り合う突出部14eの周方向における間に形成される。   As shown in FIG. 8, in addition to the outer teeth 14t on the outer periphery, the intermediate plate 14 is formed with a plurality of (i. In the present embodiment, for example, three inner spring contact portions 14ci and a plurality (in the present embodiment) formed so as to protrude radially outward at equal intervals (in equal intervals) from the outer peripheral portion in the circumferential direction. For example, three projections 14e, a plurality of (in this embodiment, three, for example) spring holding windows 14w which are notches formed in each of the projections 14e, and each spring holding window 14w And a plurality of (for example, six in this embodiment) outer spring abutment portions 14co provided on both sides in the circumferential direction. Each spring holding window 14w has a circumferential length corresponding to the natural length of the second spring SP2, as shown in FIG. Further, the external teeth 14t are formed between the adjacent protruding portions 14e in the circumferential direction.

ドリブンプレート15Bの各内側スプリング保持窓15wiには、互いに対をなして直列に作用する入力側スプリングSP11および出力側スプリングSP12が1個ずつ配置される。また、ドリブンプレート15Bは、中間プレート14により包囲され、各内側スプリング保持窓15wi内の入力側スプリングSP11と出力側スプリングSP12との間には、両者の端部に当接するように中間プレート14の内側スプリング当接部14ciが配置される。これにより、ダンパ装置10Bの取付状態において、各入力側スプリングSP11の一端は、ドリブンプレート15Bの対応するスプリング当接部15cに当接し、各入力側スプリングSP11の他端は、中間プレート14の対応する内側スプリング当接部14ciに当接する。更に、ダンパ装置10Bの取付状態において、各出力側スプリングSP12の一端は、中間プレート14の対応する内側スプリング当接部14ciに当接し、各出力側スプリングSP12の他端は、ドリブンプレート15Bの対応するスプリング当接部15cに当接する。また、中間プレート14の各スプリング保持窓14wには、第2スプリングSP2が1個ずつ配置(嵌合)され、各スプリング保持窓14wの周方向における両側に設けられた外側スプリング当接部14coは、当該外側スプリング保持窓14w内の第2スプリングSP2の一端または他端に当接する。   In each of the inner spring holding windows 15wi of the driven plate 15B, an input side spring SP11 and an output side spring SP12 which are paired and work in series are disposed one by one. Further, the driven plate 15B is surrounded by the intermediate plate 14, and between the input side spring SP11 and the output side spring SP12 in each of the inner spring holding windows 15wi, the intermediate plate 14 is made to abut on both ends. An inner spring abutment 14ci is arranged. Thus, in the mounted state of the damper device 10B, one end of each input side spring SP11 abuts on the corresponding spring contact portion 15c of the driven plate 15B, and the other end of each input side spring SP11 corresponds to the corresponding intermediate plate 14 Contact with the inner spring contact portion 14ci. Furthermore, in the mounted state of the damper device 10B, one end of each output spring SP12 abuts on the corresponding inner spring abutment portion 14ci of the intermediate plate 14, and the other end of each output spring SP12 corresponds to the driven plate 15B. Contact with the spring contact portion 15c. Further, one second spring SP2 is disposed (fitted) in each spring holding window 14w of the intermediate plate 14, and the outer spring contact portions 14co provided on both sides in the circumferential direction of each spring holding window 14w are And abut on one end or the other end of the second spring SP2 in the outer spring holding window 14w.

ドライブ部材11Bの第1および第2入力プレート12B,13Bは、中間プレート14、ドリブンプレート15B、それぞれ複数の入力側スプリングSP11、出力側スプリングSP12および第2スプリングSP2をダンパ装置10Bの軸方向における両側から挟み込むように複数のリベット90を介して互いに連結される。これにより、対をなす入力側スプリングSP11および出力側スプリングSP12の側部は、第1および第2入力プレート12B,13Bの対応する内側スプリング収容窓12wi等内に収容され、スプリング支持部12a等により径方向内側から支持(ガイド)される。更に、対をなす入力側スプリングSP11および出力側スプリングSP12は、径方向外側に位置する第1および第2入力プレート12B,13Bのスプリング支持部12b等によっても支持(ガイド)され得るようになる。また、ダンパ装置10Bの取付状態において、各内側スプリング収容窓12wiの周方向における両側に設けられた内側スプリング当接部12ciおよび第2入力プレート13Bの各内側スプリング収容窓の周方向における両側に設けられた内側スプリング当接部は、当該内側スプリング収容窓12wi等内の入力側スプリングSP11の上記一端または出力側スプリングSP12の上記他端に当接する。これにより、ドライブ部材11Bとドリブンプレート15Bとが複数の入力側スプリングSP11、中間プレート14および複数の出力側スプリングSP12を介して連結される。   The first and second input plates 12B and 13B of the drive member 11B include the intermediate plate 14, the driven plate 15B, a plurality of input springs SP11, an output spring SP12, and a second spring SP2 on both sides in the axial direction of the damper device 10B. They are connected to each other via a plurality of rivets 90 so as to sandwich them. Thereby, the side portions of the input side spring SP11 and the output side spring SP12 forming a pair are accommodated in the corresponding inner spring accommodation windows 12wi and the like of the first and second input plates 12B and 13B by the spring support portion 12a and the like. It is supported (guided) from the radially inner side. Further, the pair of input side spring SP11 and the output side spring SP12 can be supported (guided) also by the spring support portions 12b and the like of the first and second input plates 12B and 13B located radially outward. Further, in the mounting state of the damper device 10B, the inner spring contact portions 12ci provided on both sides in the circumferential direction of the respective inner spring accommodation windows 12wi and the second input plate 13B are provided on both sides in the circumferential direction of the respective inner spring accommodation windows. The inner spring abutment portion abuts on the one end of the input spring SP11 or the other end of the output spring SP12 in the inner spring accommodation window 12wi or the like. Thereby, the drive member 11B and the driven plate 15B are connected via the plurality of input side springs SP11, the intermediate plate 14 and the plurality of output side springs SP12.

更に、各第2スプリングSP2の側部は、第1および第2入力プレート12B,13Bの対応する外側スプリング収容窓12等内に収容され、径方向外側に位置するスプリング支持部12d等によって支持(ガイド)され得るようになる。ダンパ装置10Bの取付状態において、各第2スプリングSP2は、外側スプリング収容窓12wo等の周方向における略中央部に位置し、第1および第2入力プレート12B,13Bの外側スプリング当接部12co等の何れとも当接しない。そして、第2スプリングSP2の一方の端部は、ドライブ部材11Bへの入力トルク(駆動トルク)あるいは車軸側からドリブンプレート15Bに付与されるトルク(被駆動トルク)が予め定められたトルクT1(第1の閾値)に達してドライブ部材11Bのドリブンプレート15Bに対する捩れ角が所定角度θref以上になると、第1および第2入力プレート12B,13Bの対応する外側スプリング収容窓12wo等の両側に設けられた外側スプリング当接部12co等の一方と当接することになる。   Furthermore, the side portion of each second spring SP2 is accommodated in the corresponding outer spring accommodation window 12 or the like of the first and second input plates 12B and 13B, and is supported by the radially outwardly positioned spring support 12d or the like ( Guide) to be able to. In the mounting state of the damper device 10B, each second spring SP2 is located substantially at the center of the outer spring accommodation window 12wo in the circumferential direction, and the outer spring abutment portions 12co of the first and second input plates 12B, 13B, etc. It does not abut any of the above. Then, one end of the second spring SP2 has a torque T1 (a second torque) at which an input torque (drive torque) to the drive member 11B or a torque (driven torque) applied to the driven plate 15B from the axle side is predetermined. When the torsion angle of the drive member 11B with respect to the driven plate 15B becomes equal to or greater than the predetermined angle θref when the threshold value of 1) is reached, the first and second input plates 12B and 13B are provided on both sides such as corresponding outer spring receiving windows 12wo. It comes in contact with one of the outer spring contact portions 12 co and the like.

加えて、ダンパ装置10Bは、図7に示すように、中間プレート14とドリブンプレート15Bとの相対回転を規制する第1ストッパST1と、ドライブ部材11Bと中間プレート14との相対回転を規制する第2ストッパST2を含む。第1ストッパST1は、ドライブ部材11Bへの入力トルクあるいは車軸側からドリブンプレート15Bに付与されるトルクが上記トルクT1に達してドライブ部材11Bのドリブンプレート15Bに対する捩れ角が所定角度θref以上になると、中間プレート14とドリブンプレート15Bとの相対回転を規制する。ダンパ装置10Bにおいて、第1ストッパST1は、中間プレート14の内周部に周方向に間隔をおいて(等間隔に)形成された複数のストッパ部14stと、ドリブンプレート15Bの各スプリング当接部15cの外周部から周方向に延出されたスプリング支持部15stとにより構成される。すなわち、中間プレート14の各ストッパ部14stが対応するスプリング当接部15cのスプリング支持部15stに当接すると、中間プレート14とドリブンプレート15Bとの相対回転が規制される。   In addition, as shown in FIG. 7, the damper device 10B restricts the relative rotation between the drive member 11B and the intermediate plate 14, and the first stopper ST1 for restricting the relative rotation between the intermediate plate 14 and the driven plate 15B. 2 includes a stopper ST2. In the first stopper ST1, when the input torque to the drive member 11B or the torque applied to the driven plate 15B from the axle side reaches the torque T1 and the twist angle of the drive member 11B to the driven plate 15B becomes a predetermined angle θref or more, The relative rotation between the intermediate plate 14 and the driven plate 15B is restricted. In the damper device 10B, the first stopper ST1 is formed on the inner peripheral portion of the intermediate plate 14 with a plurality of stopper portions 14st formed at intervals in the circumferential direction (at equal intervals) and spring contact portions of the driven plate 15B. It is comprised by the spring support part 15st extended in the circumferential direction from the outer peripheral part of 15c. That is, when the stoppers 14st of the intermediate plate 14 abut on the spring support portions 15st of the corresponding spring contact portions 15c, relative rotation between the intermediate plate 14 and the driven plate 15B is restricted.

また、第2ストッパST2は、ドライブ部材11Bへの入力トルクあるいは車軸側からドリブンプレート15Bに付与されるトルクがダンパ装置10Bの最大捩れ角θmaxに対応したトルクT2(第2の閾値)に達すると、ドライブ部材11Bと中間プレート14との相対回転を規制する。ダンパ装置10Bにおいて、第2ストッパST2は、ドライブ部材11Bの第1および第2入力プレート12B,13Bを連結する複数のリベット90と、中間プレート14の各突出部14eとにより構成される。すなわち、複数のリベット90の少なくとも何れかと、中間プレート14の突出部14eの周方向における端部とが当接すると、ドライブ部材11Bと中間プレート14との相対回転が規制され、それにより入力側スプリングSP11、出力側スプリングSP12および第2スプリングSP2のすべての撓みが規制される。   In addition, when the second stopper ST2 receives the input torque to the drive member 11B or the torque applied to the driven plate 15B from the axle side reaches the torque T2 (second threshold) corresponding to the maximum torsion angle θmax of the damper device 10B. The relative rotation between the drive member 11B and the intermediate plate 14 is restricted. In the damper device 10B, the second stopper ST2 is composed of a plurality of rivets 90 connecting the first and second input plates 12B and 13B of the drive member 11B, and the protrusions 14e of the intermediate plate 14. That is, when at least one of the plurality of rivets 90 abuts on the circumferential end of the protrusion 14 e of the intermediate plate 14, relative rotation between the drive member 11 B and the intermediate plate 14 is restricted, whereby the input side spring Deflection of all of SP11, output side spring SP12 and 2nd spring SP2 is regulated.

上述のように構成される発進装置1Bにおいて、ロックアップクラッチ8によるロックアップが解除されている際、図7からわかるように、エンジンEGからフロントカバー3に伝達されたトルク(動力)は、ポンプインペラ4、タービンランナ5、およびダンパハブ7という経路を介して変速機TMの入力軸ISへと伝達される。これに対して、発進装置1Bのロックアップクラッチ8によりロックアップが実行されると、エンジンEGからフロントカバー3およびロックアップクラッチ8を介してドライブ部材11Bに伝達されたトルクは、入力トルク等が上記トルクT1未満であってドライブ部材11Bのドリブンプレート15Bに対する捩れ角が所定角度θref未満である間、複数の入力側スプリングSP11、中間プレート14および複数の出力側スプリングSP12を含むトルク伝達経路と、複数の入力側スプリングSP11と並列に配置される回転慣性質量ダンパ20Bとを介してドリブンプレート15Bおよびダンパハブ7に伝達される。   In the starting device 1B configured as described above, when the lockup by the lockup clutch 8 is released, as can be seen from FIG. 7, the torque (power) transmitted from the engine EG to the front cover 3 is a pump It is transmitted to the input shaft IS of the transmission TM via the path of the impeller 4, the turbine runner 5 and the damper hub 7. On the other hand, when lockup is executed by the lockup clutch 8 of the starting device 1B, the torque transmitted from the engine EG to the drive member 11B via the front cover 3 and the lockup clutch 8 is input torque etc. A torque transmission path including a plurality of input side springs SP11, an intermediate plate 14 and a plurality of output side springs SP12 while the torque T1 is less than the drive member 11B and the twist angle of the drive member 11B to the driven plate 15B is less than a predetermined angle θref; It is transmitted to the driven plate 15B and the damper hub 7 via the rotary inertia mass damper 20B arranged in parallel with the plurality of input side springs SP11.

この際、ドライブ部材11Bが中間プレート14やドリブンプレート15Bに対して回転すると(捩れると)、入力側スプリングSP11および出力側スプリングSP12の少なくとも何れか一方が撓むと共に、ドライブ部材11Bと中間プレート14との相対回転に応じて質量体としてのリングギヤ25が軸心周りに回転(揺動)する。このようにドライブ部材11Bが中間プレート14に対して回転(揺動)する際には、遊星歯車21Bの入力要素であるキャリヤとしてのドライブ部材11Bすなわち第1および第2入力プレート12B,13Bの回転速度がサンギヤとしての中間プレート14の回転速度よりも高くなる。従って、この際、リングギヤ25は、遊星歯車21Bの作用により増速され、中間プレート14よりも高い回転速度で回転する。これにより、回転慣性質量ダンパ20Bの質量体であるリングギヤ25から、ピニオンギヤ23を介して慣性トルクを中間プレート14に付与し、それによりドリブンプレート15Bの振動を減衰させることができる。   At this time, when the drive member 11B rotates (is twisted) with respect to the intermediate plate 14 or the driven plate 15B, at least one of the input side spring SP11 and the output side spring SP12 is bent, and the drive member 11B and the intermediate plate The ring gear 25 as a mass body rotates (rocks) around the axis according to the relative rotation with respect to. Thus, when the drive member 11B rotates (rocks) with respect to the intermediate plate 14, rotation of the drive member 11B as the carrier that is an input element of the planetary gear 21B, that is, the first and second input plates 12B and 13B. The speed is higher than the rotational speed of the intermediate plate 14 as a sun gear. Therefore, at this time, the ring gear 25 is accelerated by the action of the planetary gear 21 B and rotates at a rotational speed higher than that of the intermediate plate 14. Thereby, an inertia torque can be applied to the intermediate plate 14 from the ring gear 25 which is a mass of the rotary inertia mass damper 20B through the pinion gear 23, and thereby the vibration of the driven plate 15B can be attenuated.

すなわち、ダンパ装置10Bでは、出力側スプリングSP12からドリブンプレート15Bに伝達される振動と、回転慣性質量ダンパ20Bから中間プレート14および出力側スプリングSP12を介してドリブンプレート15Bに伝達される振動との一方により、他方の少なくとも一部を打ち消して、ドリブンプレート15Bの振動を良好に減衰させることが可能となる。加えて、ダンパ装置10Bでは、回転慣性質量ダンパ20Bとドリブンプレート15Bに連結される変速機TMとの間に出力側スプリングSP12が介在することから、変速機TMの軸部材(入力軸ISや出力軸、中間軸等)の慣性モーメントから定まる固有振動数に対する回転慣性質量ダンパ20B全体の慣性モーメントの影響を低減化することもできる。なお、回転慣性質量ダンパ20Bも、ドライブ部材11Bと中間プレート14との間で主に慣性トルクを伝達し、平均トルクを伝達することはない。   That is, in damper device 10B, one of the vibration transmitted from output side spring SP12 to driven plate 15B and the vibration transmitted from rotary inertia mass damper 20B to driven plate 15B via intermediate plate 14 and output side spring SP12. Thus, it is possible to well damp the vibration of the driven plate 15B by canceling at least a part of the other. In addition, in the damper device 10B, since the output side spring SP12 is interposed between the rotary inertia mass damper 20B and the transmission TM connected to the driven plate 15B, the shaft member of the transmission TM (input shaft IS or output It is also possible to reduce the influence of the moment of inertia of the entire rotary inertia mass damper 20B on the natural frequency determined from the moment of inertia of the axis, middle axis, etc.). The rotary inertia mass damper 20B also mainly transmits inertia torque between the drive member 11B and the intermediate plate 14, and does not transmit average torque.

また、入力トルク等が上記トルクT1以上になってドライブ部材11Bのドリブンプレート15Bに対する捩れ角が所定角度θref以上になると、第1ストッパST1により中間プレート14とドリブンプレート15Bとの相対回転および各出力側スプリングSP12の撓みが規制される。更に、入力トルク等が上記トルクT1以上になると、各第2スプリングSP2の一方の端部が、第1および第2入力プレート12B,13Bの対応する外側スプリング収容窓12wo等の両側に設けられた外側スプリング当接部12co等の一方と当接する。   Further, when the input torque or the like becomes equal to or larger than the torque T1 and the twist angle of the drive member 11B to the driven plate 15B becomes equal to or larger than the predetermined angle θref, relative rotation and output between the intermediate plate 14 and the driven plate 15B by the first stopper ST1. Deflection of the side spring SP12 is restricted. Furthermore, when the input torque or the like becomes equal to or greater than the torque T1, one end of each second spring SP2 is provided on both sides of the corresponding outer spring accommodation window 12wo or the like of the first and second input plates 12B and 13B. Contact with one of the outer spring contact portions 12 co and the like.

これにより、ドライブ部材11Bに伝達されたトルクは、入力トルク等が上記トルクT2に達して第2ストッパST2によりドライブ部材11Bとドリブンプレート15Bとの相対回転が規制されるまで、複数の入力側スプリングSP11と、当該複数の入力側スプリングSP11と並列に作用する複数の第2スプリングSP2と、回転慣性質量ダンパ20Bとを介して中間プレート14に伝達され、更に撓みが規制された出力側スプリングSP12および第1ストッパST1を介してドリブンプレート15Bおよびダンパハブ7に伝達される。すなわち、ダンパ装置10Bでは、ドライブ部材11Bとドリブンプレート15Bとの相対捩れ角が増加するのに伴って複数の第2スプリングSP2が複数の入力側スプリングSP11と並列に作用する。これにより、ドライブ部材11Bとドリブンプレート15Bとの相対捩れ角の増加に応じてダンパ装置10Bの剛性を高め、並列に作用する入力側スプリングSP11および第2スプリングSP2によって大きなトルクを伝達したり、衝撃トルク等を受け止めたりすることが可能となる。   Thereby, the torque transmitted to the drive member 11B is a plurality of input side springs until the input torque or the like reaches the torque T2 and the relative rotation between the drive member 11B and the driven plate 15B is restricted by the second stopper ST2. An output side spring SP12 which is transmitted to the intermediate plate 14 via the SP11, the plurality of second springs SP2 acting in parallel with the plurality of input side springs SP11, and the rotary inertia mass damper 20B and whose deflection is further restricted It is transmitted to the driven plate 15B and the damper hub 7 via the first stopper ST1. That is, in the damper device 10B, as the relative twist angle between the drive member 11B and the driven plate 15B increases, the plurality of second springs SP2 act in parallel with the plurality of input side springs SP11. Thereby, the rigidity of the damper device 10B is increased according to the increase of the relative torsion angle between the drive member 11B and the driven plate 15B, and a large torque is transmitted by the input side spring SP11 and the second spring SP2 acting in parallel. It becomes possible to receive torque etc.

そして、ダンパ装置10Bの回転慣性質量ダンパ20Bにおいても、サンギヤとしての中間プレート14、ピニオンギヤ23、およびリングギヤ25として、ガス軟窒化処理品が採用される。これにより、回転慣性質量ダンパ20Bひいてはダンパ装置10Bの耐久性や信頼性を良好に確保することが可能となる。更に、ガス軟窒化処理後の中間プレート14、ピニオンギヤ23、およびリングギヤ25に形状矯正加工を施す必要がなくなるので、それによりダンパ装置10Bの製造コストを低減することができる。この結果、回転慣性質量ダンパ20Bを含むダンパ装置10Bのコストアップを抑制しつつ、耐久性や信頼性を向上させることが可能となる。   Also in the rotary inertia mass damper 20B of the damper device 10B, a gas soft nitrided product is adopted as the intermediate plate 14 as a sun gear, the pinion gear 23 and the ring gear 25. As a result, the durability and the reliability of the rotary inertia mass damper 20B and hence the damper device 10B can be favorably maintained. Furthermore, since it is not necessary to carry out shape correction processing on the intermediate plate 14, the pinion gear 23 and the ring gear 25 after the gas soft nitriding process, the manufacturing cost of the damper device 10B can be reduced. As a result, it is possible to improve the durability and the reliability while suppressing the cost increase of the damper device 10B including the rotary inertia mass damper 20B.

また、ダンパ装置10Bにおいて、サンギヤとしての中間プレート14、リングギヤ25の内歯ギヤ250および錘体251は、プレス加工により形成されたプレス加工品である。これにより、中間プレート14およびリングギヤ25の製造コストをより低下させて、回転慣性質量ダンパ20Bを含むダンパ装置10Bのコストアップをより良好に抑制することが可能となる。加えて、ダンパ装置10Bでは、中間プレート14、ドリブンプレート15Bおよび内歯ギヤ250を、いわゆる親子取りにより作成することもできるので、母材を有効に利用して歩留まりを向上させることも可能となる。   Further, in the damper device 10B, the intermediate plate 14 as a sun gear, the internal gear 250 of the ring gear 25, and the weight 251 are press-formed products formed by press processing. As a result, the manufacturing cost of the intermediate plate 14 and the ring gear 25 can be further reduced, and the cost increase of the damper device 10B including the rotary inertia mass damper 20B can be suppressed more favorably. In addition, in the damper device 10B, the intermediate plate 14, the driven plate 15B, and the internal gear 250 can be prepared by so-called parent and child taking, so that the yield can be improved by effectively utilizing the base material. .

以上説明したように、本開示のダンパ装置は、エンジン(EG)からのトルクが伝達される入力要素(11,11B)および出力要素(15,15B)を含む複数の回転要素と、前記入力要素(11,11B)と前記出力要素(15,15B)との間でトルクを伝達する弾性体(SP1,SP11)と、前記複数の回転要素の何れかである第1回転要素(15,14)と前記第1回転要素とは異なる第2回転要素(11,11B,12,12B,13,13B)との相対回転に応じて回転する質量体(25)を有する回転慣性質量ダンパ(20,20B)とを含むダンパ装置(10,10B)において、前記回転慣性質量ダンパ(20,20B)が、サンギヤ(15,15t,14,14t)、複数のピニオンギヤ(23)を回転自在に支持するキャリヤ(11,11B,12,12B,13,13B)、および前記複数のピニオンギヤ(23)に噛合するリングギヤ(25)を含む遊星歯車(21,21B)を有し、前記サンギヤ(15,15t,14,14t)、前記リングギヤ(25)、および前記ピニオンギヤ(23)の少なくとも何れかとして、ガス軟窒化処理品が採用されたものである。   As described above, the damper device of the present disclosure includes: a plurality of rotating elements including an input element (11, 11B) and an output element (15, 15B) to which torque from the engine (EG) is transmitted; An elastic body (SP1, SP11) that transmits torque between (11, 11B) and the output element (15, 15B), and a first rotating element (15, 14) that is any of the plurality of rotating elements Inertia mass damper (20, 20B) having a mass body (25) that rotates in response to relative rotation between the second rotation element (11, 11B, 12, 12B, 13, 13B) different from the first rotation element And the rotary inertia mass damper (20, 20B) rotatably supports the sun gear (15, 15t, 14, 14t) and the plurality of pinion gears (23). Carrier (11, 11B, 12, 12B, 13, 13B) and a planetary gear (21, 21B) including a ring gear (25) meshing with the plurality of pinion gears (23), the sun gear (15, 15t) , 14, 14t), at least one of the ring gear (25) and the pinion gear (23), a gas soft nitrided product is adopted.

本開示のダンパ装置の回転慣性質量ダンパは、サンギヤ、複数のピニオンギヤを回転自在に支持するキャリヤ、および複数のピニオンギヤに噛合するリングギヤを含む遊星歯車を有し、サンギヤ、およびリングギヤの何れかである質量体から慣性トルクをダンパ装置の回転要素の何れかに付与し、出力要素の振動を減衰させるものである。ここで、回転慣性質量ダンパは、第1および第2回転要素の間で主に慣性トルクを伝達し、平均トルクを伝達することはない。従って、回転慣性質量ダンパの遊星歯車の回転要素に要求される硬度(表面硬度)は、平均トルクを伝達するダンパ装置の回転要素に比べて低くなる。これを踏まえて、本開示のダンパ装置では、回転慣性質量ダンパのサンギヤ、リングギヤ、およびピニオンギヤの少なくとも何れかとして、ガス軟窒化処理品が採用される。ガス軟窒化処理は、窒素を含む混合ガス雰囲気中で対象物を加熱し、当該対象物の表面に化合物層を生成すると共に内部に拡散層を生成する処理であり、対象物の表面の硬度、靭性、耐摩耗性、耐食性を向上させると共に、拡散層の生成により耐疲労強度を向上させ得るものである。従って、サンギヤ、リングギヤ、およびピニオンギヤの少なくとも何れかとして、ガス軟窒化処理部を採用すれば、回転慣性質量ダンパひいてはダンパ装置の耐久性や信頼性を良好に確保することが可能となる。更に、ガス軟窒化処理に際しては、浸炭焼入れ処理のように対象物を鋼材等の素材の変態点以上に加熱する必要がないことから、加熱処理後の対象物の変形や歪みの発生を良好に抑制することができる。従って、ガス軟窒化処理後のサンギヤ、リングギヤ、およびピニオンギヤの少なくとも何れかには、形状矯正加工を施す必要がなくなり、それによりダンパ装置の製造コストを低減することができる。この結果、回転慣性質量ダンパを含むダンパ装置のコストアップを抑制しつつ、耐久性や信頼性を向上させることが可能となる。   The rotary inertia mass damper of the damper device of the present disclosure includes a sun gear, a carrier that rotatably supports a plurality of pinion gears, and a planetary gear including a ring gear that meshes with the plurality of pinion gears, and is either a sun gear or a ring gear. The inertial torque is applied from the mass to any of the rotating elements of the damper device to dampen the vibration of the output element. Here, the rotary inertia mass damper mainly transmits inertial torque between the first and second rotating elements, and does not transmit average torque. Therefore, the hardness (surface hardness) required for the rotating element of the planetary gear of the rotary inertia mass damper is lower than that of the damper element that transmits the average torque. Based on this, in the damper device of the present disclosure, a gas soft nitrided product is adopted as at least one of a sun gear, a ring gear, and a pinion gear of a rotary inertia mass damper. The gas soft nitriding process is a process of heating the object in a mixed gas atmosphere containing nitrogen to generate a compound layer on the surface of the object and a diffusion layer inside, and the hardness of the surface of the object, The toughness, the wear resistance and the corrosion resistance are improved, and the formation of the diffusion layer can improve the fatigue resistance. Therefore, by adopting the gas soft nitrided portion as at least one of the sun gear, the ring gear, and the pinion gear, it is possible to ensure good durability and reliability of the rotary inertia mass damper and hence the damper device. Furthermore, in the case of gas nitrocarburizing, there is no need to heat the object above the transformation point of the material such as steel as in carburizing and quenching, so that deformation and distortion of the object after heat treatment can be made favorable. It can be suppressed. Therefore, at least one of the sun gear, the ring gear, and the pinion gear after the gas soft nitriding process need not be subjected to shape correction processing, whereby the manufacturing cost of the damper device can be reduced. As a result, it is possible to improve the durability and the reliability while suppressing the cost increase of the damper device including the rotary inertia mass damper.

また、前記リングギヤ(25)は、前記ガス軟窒化処理品であってもよく、前記回転慣性質量ダンパ(20,20B)の前記質量体として機能してもよい。   Further, the ring gear (25) may be the gas soft nitrided product, and may function as the mass body of the rotary inertia mass damper (20, 20B).

更に、前記リングギヤ(25)は、前記複数のピニオンギヤ(23)に噛合する複数の内歯(250t)を有する内歯ギヤ(250)と、前記内歯ギヤ(250)の一方の側面に接するように該内歯ギヤ(250)に固定される錘体(251)とを含んでもよい。   Further, the ring gear (25) contacts an internal gear (250) having a plurality of internal teeth (250t) meshing with the plurality of pinion gears (23), and one side surface of the internal gear (250). And a weight (251) fixed to the internal gear (250).

また、前記サンギヤ(15,15t,14,14t)は、前記ガス軟窒化処理品であってもよい。   The sun gear (15, 15t, 14, 14t) may be the gas soft nitrided product.

更に、前記サンギヤ(15t,14t)は、前記第1回転要素(15,14)に一体化されてもよく、前記第2回転要素(11,11B,12,12B,13,13B)は、前記キャリヤとして機能してもよく、前記サンギヤ(15t,14t)を含む前記第1回転要素(15,14)は、前記ガス軟窒化処理品であってもよい。   Furthermore, the sun gear (15t, 14t) may be integrated with the first rotating element (15, 14), and the second rotating element (11, 11B, 12, 12B, 13, 13B) may be integrated with the first rotating element. It may function as a carrier, and the first rotary element (15, 14) including the sun gear (15t, 14t) may be the gas soft nitrided product.

また、前記ピニオンギヤ(23)は、前記ガス軟窒化処理品であってもよい。   The pinion gear (23) may be the gas soft nitrided product.

更に、前記サンギヤ(23)および前記リングギヤ(25)は、プレス加工品であってもよい。これにより、サンギヤおよびリングギヤの製造コストをより低下させて、回転慣性質量ダンパを含むダンパ装置のコストアップをより良好に抑制することが可能となる。加えて、サンギヤおよびリングギヤをプレス加工により製造する場合、両者を、いわゆる親子取りにより作成することもできるので、母材を有効に利用して歩留まりを向上させることも可能となる。   Furthermore, the sun gear (23) and the ring gear (25) may be pressed products. As a result, the manufacturing cost of the sun gear and the ring gear can be further reduced, and the cost increase of the damper device including the rotary inertia mass damper can be suppressed more favorably. In addition, when the sun gear and the ring gear are manufactured by press processing, both can be produced by so-called parent-child taking, so that it is also possible to improve the yield by effectively utilizing the base material.

また、前記第1回転要素は、前記出力要素(15)であってもよく、前記第2回転要素は、前記入力要素(11)であってもよい。このように、ダンパ装置から中間要素を省略することで、当該ダンパ装置のコストをより低減化することが可能となる。   Also, the first rotation element may be the output element (15), and the second rotation element may be the input element (11). Thus, by omitting the intermediate element from the damper device, the cost of the damper device can be further reduced.

更に、前記回転要素は、中間要素(14)を含んでもよく、前記弾性体は、前記入力要素(11B)と前記中間要素(14)との間でトルクを伝達する入力側弾性体(SP11)と、前記中間要素(14)と前記出力要素(15B)との間でトルクを伝達する出力側弾性体(SP12)とを含んでもよく、前記第1回転要素は、前記中間要素(14)であってもよく、前記第2回転要素は、前記入力要素(11B)であってもよい。かかるダンパ装置では、回転慣性質量ダンパと出力要素に連結される要素との間に出力側弾性体が介在することから、出力要素に連結される要素の慣性モーメントから定まる固有振動数に対する回転慣性質量ダンパ全体の慣性モーメントの影響を低減化することが可能となる。   Furthermore, the rotating element may include an intermediate element (14), and the elastic body transmits an torque between the input element (11B) and the intermediate element (14) (SP11) And an output elastic body (SP12) for transmitting torque between the intermediate element (14) and the output element (15B), and the first rotation element is the intermediate element (14). The second rotation element may be the input element (11B). In such a damper device, since the output elastic body is interposed between the rotary inertia mass damper and the element connected to the output element, the rotary inertia mass for the natural frequency determined by the inertia moment of the element connected to the output element It is possible to reduce the influence of the moment of inertia of the entire damper.

また、前記出力要素(15,15B)は、変速機(TM)の入力軸(IS)に作用的(直接または間接的)に連結されてもよい。   The output element (15, 15B) may also be operatively (directly or indirectly) coupled to the input shaft (IS) of the transmission (TM).

そして、本開示の発明は上記実施形態に何ら限定されるものではなく、本開示の外延の範囲内において様々な変更をなし得ることはいうまでもない。更に、上記発明を実施するための形態は、あくまで発明の概要の欄に記載された発明の具体的な一形態に過ぎず、発明の概要の欄に記載された発明の要素を限定するものではない。   The invention of the present disclosure is not limited to the above embodiment, and it goes without saying that various modifications can be made within the scope of the present disclosure. Furthermore, the mode for carrying out the invention is only one specific mode of the invention described in the section of the summary of the invention, and it is not limited to the elements of the invention described in the section of the summary of the invention. Absent.

本開示の発明は、ダンパ装置の製造分野等において利用可能である。   The invention of the present disclosure can be used in the field of manufacturing damper devices and the like.

1,1B 発進装置、3 フロントカバー、4 ポンプインペラ、5 タービンランナ、6 ステータ、7 ダンパハブ、8 ロックアップクラッチ、9 流体室、10,10B ダンパ装置、11,11B ドライブ部材、12,12B 第1入力プレート、12a,12b,12d スプリング支持部、12ci 内側スプリング当接部、12co 外側スプリング当接部、12i 内周部、12o 外周部、12p ピニオンギヤ支持部、12r 繋ぎ部、12wi 内側スプリング収容窓、12wo 外側スプリング収容窓、13,13B 第2入力プレート、13a,13b,13d スプリング支持部、13ci 内側スプリング当接部、13co 外側スプリング当接部、13i 内周部、13o 外周部、13o 外周部、13p ピニオンギヤ支持部、13r 繋ぎ部、13wi 内側スプリング収容窓、13wo 外側スプリング収容窓、14,14B 中間プレート、14ci 内側スプリング当接部、14co 外側スプリング当接部、14e 突出部、14st ストッパ部、14t 外歯、14w スプリング保持窓、15,15B ドリブンプレート、15c スプリング当接部、15ci 内側スプリング当接部、15co 外側スプリング当接部、15e 突出部、15st スプリング支持部、15t 外歯、15wi 内側スプリング保持窓、15wo 外側スプリング保持窓、20,20B 回転慣性質量ダンパ、21,21B 遊星歯車、23 ピニオンギヤ、23t 外歯、230 ニードルベアリング、231 大径ワッシャ、232 小径ワッシャ、235 ワッシャ、24 ピニオンシャフト、25 リングギヤ、250 内歯ギヤ、250t 内歯、251 錘体、252 リベット、60 ワンウェイクラッチ、90 リベット、EG エンジン、SP1 第1スプリング、SP2 第2スプリング、SP11 入力側スプリング、SP12 出力側スプリング、ST ストッパ、ST1 第1ストッパ、ST2 第2ストッパ、TM 変速機、TP1 第1トルク伝達経路、TP2 第2トルク伝達経路。   1, 1 B launch device, 3 front cover, 4 pump impeller, 5 turbine runner, 6 stator, 7 damper hub, 8 lockup clutch, 9 fluid chamber, 10, 10 B damper device, 11, 11 B drive member, 12, 12 B 1st Input plate, 12a, 12b, 12d Spring support portion, 12ci inner spring contact portion, 12co outer spring contact portion, 12i inner peripheral portion, 12o outer peripheral portion, 12p pinion gear support portion, 12r connecting portion, 12wi inner spring accommodation window, 12wo outer spring accommodation window, 13, 13B second input plate, 13a, 13b, 13d spring support portion, 13ci inner spring abutment portion, 13co outer spring abutment portion, 13i inner peripheral portion, 13o outer peripheral portion, 13o outer peripheral portion, 13p pinion gear Support part, 13r connecting part, 13wi inner spring accommodation window, 13wo outer spring accommodation window, 14, 14B middle plate, 14ci inner spring abutment part, 14co outer spring abutment part, 14e protrusion part, 14st stopper part, 14t external teeth , 14w spring retention window, 15, 15B driven plate, 15c spring abutment, 15ci inner spring abutment, 15co outer spring abutment, 15e protrusion, 15st spring support, 15t outer teeth, 15wi inner spring retention window , 15wo outer spring holding window, 20, 20B rotational inertia mass damper, 21, 21B planetary gear, 23 pinion gear, 23t external teeth, 230 needle bearing, 231 large diameter washer, 232 small diameter washer, 235 washer, 24 pinion shaft, 25 ring gear, 250 internal gear, 250t internal gear, 251 cone, 252 rivet, 60 one way clutch, 90 rivet, EG engine, SP1 first spring, SP2 second spring, SP11 input side spring, SP12 output Side spring, ST stopper, ST1 first stopper, ST2 second stopper, transmission, TP1 first torque transmission path, TP2 second torque transmission path.

Claims (10)

エンジンからのトルクが伝達される入力要素および出力要素を含む複数の回転要素と、前記入力要素と前記出力要素との間でトルクを伝達する弾性体と、前記複数の回転要素の何れかである第1回転要素と前記第1回転要素とは異なる第2回転要素との相対回転に応じて回転する質量体を有する回転慣性質量ダンパとを含むダンパ装置において、
前記回転慣性質量ダンパは、サンギヤ、複数のピニオンギヤを回転自在に支持するキャリヤ、および前記複数のピニオンギヤに噛合するリングギヤを含む遊星歯車を有し、
前記サンギヤ、前記リングギヤ、および前記ピニオンギヤの少なくとも何れかは、ガス軟窒化処理品であるダンパ装置。
A plurality of rotating elements including an input element and an output element to which a torque from an engine is transmitted, an elastic body transmitting torque between the input element and the output element, and any of the plurality of rotating elements A damper device comprising: a rotary inertia mass damper having a mass body that rotates in response to relative rotation between a first rotary element and a second rotary element different from the first rotary element.
The rotary inertia mass damper has a planetary gear including a sun gear, a carrier rotatably supporting a plurality of pinion gears, and a ring gear meshing with the plurality of pinion gears.
The damper device in which at least one of the sun gear, the ring gear, and the pinion gear is a gas soft nitrided product.
請求項1に記載のダンパ装置において、
前記リングギヤは、前記ガス軟窒化処理品であり、前記回転慣性質量ダンパの前記質量体として機能するダンパ装置。
In the damper device according to claim 1,
The damper device, wherein the ring gear is the gas soft nitrided product, and functions as the mass body of the rotary inertia mass damper.
請求項2に記載のダンパ装置において、
前記リングギヤは、前記複数のピニオンギヤに噛合する複数の内歯を有する内歯ギヤと、前記内歯ギヤの一方の側面に接するように該内歯ギヤに固定される錘体とを含むダンパ装置。
In the damper device according to claim 2,
A damper device comprising: an internal gear having a plurality of internal teeth meshing with the plurality of pinion gears; and a weight fixed to the internal gear so as to contact one side surface of the internal gear.
請求項1から3の何れか一項に記載のダンパ装置において、前記サンギヤは、前記ガス軟窒化処理品であるダンパ装置。   The damper device according to any one of claims 1 to 3, wherein the sun gear is the gas soft nitrided product. 請求項4に記載のダンパ装置において、
前記サンギヤは、前記第1回転要素に一体化されており、前記第2回転要素は、前記キャリヤとして機能し、前記サンギヤを含む前記第1回転要素は、前記ガス軟窒化処理品であるダンパ装置。
In the damper device according to claim 4,
The damper device wherein the sun gear is integrated with the first rotating element, the second rotating element functions as the carrier, and the first rotating element including the sun gear is the gas soft nitrided product. .
請求項1から5の何れか一項に記載のダンパ装置において、前記ピニオンギヤは、前記ガス軟窒化処理品であるダンパ装置。   The damper device according to any one of claims 1 to 5, wherein the pinion gear is the gas soft nitrided product. 請求項1から6の何れか一項に記載のダンパ装置において、前記サンギヤおよび前記リングギヤは、プレス加工品であるダンパ装置。   The damper device according to any one of claims 1 to 6, wherein the sun gear and the ring gear are pressed products. 請求項1から7の何れか一項に記載のダンパ装置において、
前記第1回転要素は、前記出力要素であり、前記第2回転要素は、前記入力要素であるダンパ装置。
The damper device according to any one of claims 1 to 7
The damper device wherein the first rotating element is the output element and the second rotating element is the input element.
請求項1から7の何れか一項に記載のダンパ装置において、
前記回転要素は、中間要素を含み、
前記弾性体は、前記入力要素と前記中間要素との間でトルクを伝達する入力側弾性体と、前記中間要素と前記出力要素との間でトルクを伝達する出力側弾性体とを含み、
前記第1回転要素は、前記中間要素であり、前記第2回転要素は、前記入力要素であるダンパ装置。
The damper device according to any one of claims 1 to 7
The rotating element comprises an intermediate element,
The elastic body includes an input elastic body transmitting torque between the input element and the intermediate element, and an output elastic body transmitting torque between the intermediate element and the output element.
The damper device, wherein the first rotating element is the intermediate element, and the second rotating element is the input element.
請求項1から9の何れか一項に記載のダンパ装置において、前記出力要素は、変速機の入力軸に作用的に連結されるダンパ装置。   The damper device according to any one of claims 1 to 9, wherein the output element is operatively connected to an input shaft of a transmission.
JP2017219522A 2017-11-14 2017-11-14 Damper device Pending JP2019090476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017219522A JP2019090476A (en) 2017-11-14 2017-11-14 Damper device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017219522A JP2019090476A (en) 2017-11-14 2017-11-14 Damper device

Publications (1)

Publication Number Publication Date
JP2019090476A true JP2019090476A (en) 2019-06-13

Family

ID=66837287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017219522A Pending JP2019090476A (en) 2017-11-14 2017-11-14 Damper device

Country Status (1)

Country Link
JP (1) JP2019090476A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021060063A (en) * 2019-10-04 2021-04-15 トヨタ自動車株式会社 Torsional vibration reduction device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021060063A (en) * 2019-10-04 2021-04-15 トヨタ自動車株式会社 Torsional vibration reduction device
JP7164506B2 (en) 2019-10-04 2022-11-01 トヨタ自動車株式会社 Torsional vibration reduction device

Similar Documents

Publication Publication Date Title
JP6609029B2 (en) Damper device
CN108603565B (en) Damper device
US11555527B2 (en) Damper device
CN110410454B (en) Damper device
WO2018079040A1 (en) Damper device
CN107709829A (en) Damper device
WO2019098219A1 (en) Damper device
JP2019090476A (en) Damper device
JP6928820B2 (en) Damper device
WO2020137396A1 (en) Damper device
WO2019098252A1 (en) Damper device
US20180320755A1 (en) Damper device
JP2019178720A (en) Damper device and balancing method of damper device
JP5742756B2 (en) Torsional vibration damping device
CN111120531B (en) Torsional vibration reducing device
JP2021143686A (en) Rotation inertia mass damper and its manufacturing method
JP2020125844A (en) Backlash reduction member and transmission
JP2017155777A (en) Power transmission device for vehicle