JP2019090463A - Control device of transmission - Google Patents

Control device of transmission Download PDF

Info

Publication number
JP2019090463A
JP2019090463A JP2017218814A JP2017218814A JP2019090463A JP 2019090463 A JP2019090463 A JP 2019090463A JP 2017218814 A JP2017218814 A JP 2017218814A JP 2017218814 A JP2017218814 A JP 2017218814A JP 2019090463 A JP2019090463 A JP 2019090463A
Authority
JP
Japan
Prior art keywords
transmission
transmission mechanism
continuously variable
ratio
shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017218814A
Other languages
Japanese (ja)
Other versions
JP6910732B2 (en
Inventor
翔 奥谷
Sho Okuya
翔 奥谷
憲司 菱田
Kenji Hishida
憲司 菱田
大樹 宝藤
Daiki Hoto
大樹 宝藤
若山 英史
Hidefumi Wakayama
英史 若山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
JATCO Ltd
Original Assignee
Nissan Motor Co Ltd
JATCO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, JATCO Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2017218814A priority Critical patent/JP6910732B2/en
Publication of JP2019090463A publication Critical patent/JP2019090463A/en
Application granted granted Critical
Publication of JP6910732B2 publication Critical patent/JP6910732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Landscapes

  • Control Of Transmission Device (AREA)

Abstract

To provide a control device of a transmission which can avoid that a change of a drive force becomes discontinuous.SOLUTION: An automatic transmission 4 located between an engine 1 (drive source of a vehicle) and wheels 7 has a stepless gear change mechanism 8 which can change a gear change ratio steplessly, and a sub-gear change mechanism 9 (stepped gear change mechanism) which can change the gear change ratio steplessly by switching the fastening and release of a low brake L/B, a high clutch H/C and a reverse brake R/B (a plurality of fastening elements). When obtaining a target total ratio i(o) (target gear change ratio) of the automatic transmission 4 by gear-changing the stepless gear change mechanism 8 and the sub-gear change mechanism 9, a transmission controller 11 controls a gear change of the stepless gear change mechanism 8 so that the gear change of the stepless gear change mechanism 8 is finished after an inertia phase of the sub-gear change mechanism 9 is started.SELECTED DRAWING: Figure 1

Description

本発明は、変速機の制御装置に関する。   The present invention relates to a control device for a transmission.

従来、車両に搭載され、駆動源と車輪との間にある変速機であって、無段変速機構と有段変速機構とを有するものが知られている。特許文献1には、有段変速機構のギア段の切り替え作動中、無段変速機構を目標変速比に向けて変速させる制御装置が開示されている。   2. Description of the Related Art A transmission mounted on a vehicle and located between a drive source and a wheel and having a continuously variable transmission mechanism and a stepped transmission mechanism is known. Patent Document 1 discloses a control device for shifting the continuously variable transmission mechanism toward a target gear ratio during the switching operation of the gear stages of the stepped transmission mechanism.

特開平5−10428号公報JP-A-5-10428

上記従来の制御装置では、無段変速機構の変速が終了したときに有段変速機構の変速フェーズがイナーシャ相に到達していないと、変速機の変速比の変化が不連続となり、駆動力の変化が不連続となるおそれがあった。本発明は、このような技術的課題に鑑みてなされたもので、駆動力の変化が不連続となることを抑制可能な変速機の制御装置を提供することを目的とする。   In the above-described conventional control device, if the shift phase of the stepped transmission mechanism does not reach the inertia phase when the shift of the continuously variable transmission mechanism is finished, the change of the transmission gear ratio becomes discontinuous, and There was a risk that the change would be discontinuous. The present invention has been made in view of such technical problems, and it is an object of the present invention to provide a control device for a transmission that can suppress the change in driving force from becoming discontinuous.

本発明の一実施形態に係る変速機の制御装置では、無段変速機構及び有段変速機構を変速させて変速機の目標変速比を実現する際、有段変速機構のイナーシャ相が開始した後に無段変速機構の変速が終了するように、無段変速機構の変速を制御する。   In the control device for a transmission according to one embodiment of the present invention, when achieving the target transmission ratio of the transmission by shifting the continuously variable transmission mechanism and the stepped transmission mechanism, after the inertia phase of the stepped transmission mechanism is started The shifting of the continuously variable transmission mechanism is controlled so that the shifting of the continuously variable transmission mechanism is completed.

有段変速機構のイナーシャ相が開始した後に無段変速機構の変速が終了するように無段変速機構の変速を制御することで、変速機の変速比の変化が連続的となるため、駆動力の変化が不連続となることを抑制することができる。   By controlling the shifting of the continuously variable transmission mechanism so that the shifting of the continuously variable transmission mechanism ends after the inertia phase of the stepped transmission mechanism starts, the change of the transmission gear ratio becomes continuous, so the driving force It is possible to suppress that the change of V becomes discontinuous.

第1実施形態の車両の駆動システムの概略構成を示す。The schematic structure of the drive system of the vehicle of 1st Embodiment is shown. 第1実施形態の変速線図の一例を示す。An example of the gear change diagram of 1st Embodiment is shown. 第1実施形態のパワーオフダウンシフトにおけるタイムチャートである。It is a time chart in power off downshift of a 1st embodiment. 比較例のパワーオフダウンシフトにおけるタイムチャートである。It is a time chart in a power off downshift of a comparative example.

以下、図面を参照しながら本発明の実施形態について説明する。以下の説明において、ある変速機構の「変速比」は、当該変速機構の入力回転数を当該変速機構の出力回転数で除して得られる値である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the "gear ratio" of a certain transmission mechanism is a value obtained by dividing the input rotation number of the transmission mechanism by the output rotation number of the transmission mechanism.

〔第1実施形態〕
図1は、本実施形態の車両の駆動システムを示す。駆動システムは、パワートレーン及び変速制御部を有する。パワートレーンは、エンジン(内燃機関)1、トルクコンバータ2、減速機構(第1ギア列)3、自動変速機4、ファイナルドライブギア機構(第2ギア列。終減速装置)6、及び車輪7を有する。エンジン1は車両の駆動源である。トルクコンバータ2はロックアップクラッチ20を有し、エンジン1に駆動結合(駆動力を伝達可能に連結)する。自動変速機4は減速機構3を介してトルクコンバータ2に駆動結合する。ファイナルドライブギア機構6は、変速機出力軸(プロペラシャフト)5を介して自動変速機4に駆動結合する。自動変速機4からの動力は、ファイナルドライブギア機構6を経て、車輪7に出力される。
First Embodiment
FIG. 1 shows a drive system of a vehicle according to the present embodiment. The drive system has a powertrain and a shift control unit. The powertrain includes an engine (internal combustion engine) 1, a torque converter 2, a reduction mechanism (first gear train) 3, an automatic transmission 4, a final drive gear mechanism (second gear train, final reduction gear) 6, and wheels 7. Have. The engine 1 is a drive source of a vehicle. The torque converter 2 has a lockup clutch 20, and is drivingly coupled to the engine 1 (the driving force is communicably coupled). The automatic transmission 4 is drivably coupled to the torque converter 2 via the reduction mechanism 3. The final drive gear mechanism 6 is drivably coupled to the automatic transmission 4 via a transmission output shaft (propeller shaft) 5. The power from the automatic transmission 4 is output to the wheels 7 through the final drive gear mechanism 6.

自動変速機4は、無段変速機構8及び副変速機構9を有する。無段変速機構8は、減速機構3の出力軸に連結される駆動プーリ(プライマリプーリ)8aと、副変速機構9の入力軸90に連結される従動プーリ(セカンダリプーリ)8bとを有し、これらの間にベルト8cを掛け渡したベルト式無段変速機構である。駆動プーリ8a及び従動プーリ8bにはそれぞれ、作動油(オイル)が供給され、その油圧に応じてプーリ幅を自由に変更することができる。無段変速機構8は、駆動プーリ8aへの供給圧と従動プーリ8bへの供給圧とを制御することで、変速比(プーリ比)を無段階に変更させることができる。   The automatic transmission 4 has a continuously variable transmission mechanism 8 and an auxiliary transmission mechanism 9. The continuously variable transmission mechanism 8 has a drive pulley (primary pulley) 8a connected to the output shaft of the reduction mechanism 3 and a driven pulley (secondary pulley) 8b connected to the input shaft 90 of the sub transmission mechanism 9. It is a belt type continuously variable transmission mechanism in which a belt 8c is stretched between them. Hydraulic fluid (oil) is supplied to each of the drive pulley 8a and the driven pulley 8b, and the pulley width can be freely changed according to the hydraulic pressure. The continuously variable transmission mechanism 8 can change the transmission ratio (pulley ratio) steplessly by controlling the supply pressure to the drive pulley 8a and the supply pressure to the driven pulley 8b.

副変速機構9は、複数の摩擦締結要素及び遊星歯車機構を有する有段変速機構である。遊星歯車機構はラビニヨ型であり、複合サンギア9aに入力軸90(従動プーリ8b)を駆動結合することで当該サンギア9aを入力とする。キャリア9bを変速機出力軸5に駆動結合することで当該キャリア9bを出力とする。サンギア9aは、ローブレーキ(第1速選択用ブレーキ)L/Bを介してケースCに固定可能である。キャリア9bは、ハイクラッチ(第2速選択用クラッチ)H/Cを介してリングギア9cに駆動結合することが可能である。リングギア9cは、リバースブレーキR/Bを介してケースCに固定可能である。   The auxiliary transmission mechanism 9 is a stepped transmission mechanism having a plurality of friction coupling elements and a planetary gear mechanism. The planetary gear mechanism is a Ravigneaux type, and the sun gear 9a is used as an input by drivingly connecting an input shaft 90 (follower pulley 8b) to the composite sun gear 9a. By drivingly coupling the carrier 9 b to the transmission output shaft 5, the carrier 9 b is used as an output. The sun gear 9a can be fixed to the case C via a low brake (first speed selection brake) L / B. The carrier 9b can be drivably coupled to the ring gear 9c via a high clutch (second speed selection clutch) H / C. The ring gear 9c can be fixed to the case C via the reverse brake R / B.

ローブレーキL/B、ハイクラッチH/C及びリバースブレーキR/Bは、湿式の摩擦締結要素であり、それぞれオイルが供給され、その油圧に応じて締結及び解放を自由に行うことができる。副変速機構9は、各締結要素への供給圧を制御することで、前進1速、前進2速及び後進を選択することができる。前進1速の選択の場合は、ローブレーキL/Bを締結すると共にハイクラッチH/C及びリバースブレーキR/Bを解放する。前進2速の選択の場合は、ハイクラッチH/Cを締結すると共にローブレーキL/B及びリバースブレーキR/Bを解放する。後進の選択の場合は、リバースブレーキR/Bを締結すると共にローブレーキL/B及びハイクラッチH/Cを解放する。   The low brake L / B, the high clutch H / C, and the reverse brake R / B are wet friction engagement elements, and are supplied with oil, respectively, and can be engaged and released freely according to the oil pressure. The auxiliary transmission mechanism 9 can select one forward speed, two forward speeds, and reverse by controlling the supply pressure to each fastening element. When the first forward speed is selected, the low brake L / B is engaged and the high clutch H / C and the reverse brake R / B are released. When selecting the second forward speed, the high clutch H / C is engaged and the low brake L / B and the reverse brake R / B are released. In case of the reverse selection, the reverse brake R / B is engaged and the low brake L / B and the high clutch H / C are released.

変速制御部は、自動変速機4の変速を制御するための制御部であり、油圧コントロールバルブユニット10及び変速機コントローラ11を有する。油圧コントロールバルブユニット10には、複数のソレノイドバルブが内蔵される。これらのソレノイドバルブの作動状態(オン・オフ)が切り替わることで、無段変速機構8の駆動プーリ8a及び従動プーリ8bへの供給圧(通常は、駆動プーリ8aへの供給圧のみ)が制御される。これにより、変速比が無段階に変更される。同様に、上記ソレノイドバルブの作動状態が切り替わることで、副変速機構9のローブレーキL/B、ハイクラッチH/C及びリバースブレーキR/Bへの供給圧が制御される。これにより、前進1速又は前進2速が選択される。また、上記ソレノイドバルブの作動状態が切り替わることで、ロックアップクラッチ20への供給圧が制御される。これにより、ロックアップクラッチ20の締結状態(締結及び解放)が変更される。   The transmission control unit is a control unit for controlling the transmission of the automatic transmission 4, and includes a hydraulic control valve unit 10 and a transmission controller 11. The hydraulic control valve unit 10 incorporates a plurality of solenoid valves. Supply pressure (usually only supply pressure to the drive pulley 8a) to the drive pulley 8a and the driven pulley 8b of the continuously variable transmission mechanism 8 is controlled by switching the operating state (on / off) of these solenoid valves Ru. Thereby, the transmission ratio is changed steplessly. Similarly, by switching the operation state of the solenoid valve, the supply pressure to the low brake L / B, the high clutch H / C and the reverse brake R / B of the auxiliary transmission mechanism 9 is controlled. Thereby, the first forward speed or the second forward speed is selected. Further, the supply pressure to the lockup clutch 20 is controlled by switching the operating state of the solenoid valve. Thereby, the engagement state (engagement and release) of the lockup clutch 20 is changed.

変速機コントローラ11は、油圧コントロールバルブユニット10における複数のソレノイドバルブの作動状態を制御する。変速機コントローラ11は、無段変速制御部111として機能するモジュール、及び有段変速制御部112として機能するモジュールを有する。無段変速制御部111は、自動変速機4の目標とする入力回転数(以下、「目標自動変速機入力回転数」)Nin(o)を算出し、この目標自動変速機入力回転数Nin(o)に基づき、無段変速機構8の変速比(以下、「無段変速側レシオ」)ipを無段階に制御する。有段変速制御部112は、副変速機構9の目標変速段(以下、「目標副変速側レシオ」)isub(o)を算出し、この目標副変速側レシオisub(o)に副変速機構9を制御する。変速機コントローラ11は、無段変速機構8の変速制御と副変速機構9の変速制御を実行することで、自動変速機4の全体として目標とする変速比(以下、「目標トータルレシオ」)i(o)を実現する。自動変速機4の全体としての変速比(以下、「トータルレシオ」)iは、無段変速側レシオipに副変速機構9の変速比(以下、「副変速側レシオ」)isubを乗じて得られる。 The transmission controller 11 controls the operating states of a plurality of solenoid valves in the hydraulic control valve unit 10. The transmission controller 11 includes a module that functions as the continuously variable transmission control unit 111 and a module that functions as the stepped transmission control unit 112. The continuously variable transmission control unit 111 calculates an input rotation speed as a target of the automatic transmission 4 (hereinafter, “target automatic transmission input rotation speed”) N in (o), and the target automatic transmission input rotation speed N based on in (o), the gear ratio of the continuously variable transmission mechanism 8 (hereinafter, "CVT side ratio") to control the i p steplessly. The stepped shift control unit 112 calculates a target shift speed (hereinafter, "target secondary shift ratio") i sub (o) of the secondary transmission mechanism 9, and shifts the secondary shift to the target secondary shift ratio i sub (o). Control mechanism 9; The transmission controller 11 executes the transmission control of the continuously variable transmission mechanism 8 and the transmission control of the sub transmission mechanism 9 to achieve a target gear ratio as a whole of the automatic transmission 4 (hereinafter, “target total ratio”) i Achieve (o). Overall gear ratio of the automatic transmission 4 (hereinafter, "total ratio") i is the transmission ratio of the auxiliary transmission mechanism 9 in the continuously variable transmission side ratio i p (hereinafter, "auxiliary transmission side ratio") multiplied by the i sub It is obtained.

変速機コントローラ11には、例えば、スロットル開度TVOを検出するスロットル開度センサSThからの信号、アクセルペダル開度APOを検出するアクセルペダル開度センサSAからの信号、エンジン1の出力回転数(以下、「エンジン回転数」)NEngを検出するエンジン回転センサSEからの信号、自動変速機4の入力回転数(以下、「自動変速機入力回転数」)Ninを検出する自動変速機入力回転センサSIからの信号、変速機出力軸5の回転数(以下、「自動変速機出力回転数」)Noutを検出する自動変速機出力回転センサSOからの信号、自動変速機4の油温を検出する油温センサSTeの出力信号、セレクトレバーの位置を検出するインヒビタスイッチSInhの出力信号が入力される。自動変速機出力回転数Noutとファイナルドライブギア機構6のギア比から車両の走行速度(以下、「車速」)VSPが検出される。 The transmission controller 11, for example, a signal from a throttle opening sensor S Th which detects throttle opening degree TVO, a signal from an accelerator pedal opening sensor S A for detecting an accelerator pedal opening APO, the output rotation of the engine 1 the number (hereinafter, "engine speed") signals from an engine speed sensor S E for detecting the N Eng, input speed of the automatic transmission 4 (hereinafter, "automatic transmission input rotational speed") automatically detecting the N in signal from the transmission input rotation sensor S I, the rotational speed of the transmission output shaft 5 (hereinafter, "automatic transmission output rotational speed") signal from an automatic transmission output rotation sensor S O for detecting the N out, the automatic transmission the output signal of the oil temperature sensor S Te for detecting the oil temperature of the machine 4, the output signal of the inhibitor switch S Inh that detects a position of a select lever are inputted. The traveling speed (hereinafter, "vehicle speed") VSP of the vehicle is detected from the automatic transmission output rotational speed N out and the gear ratio of the final drive gear mechanism 6.

変速機コントローラ11は、これら入力情報に基づき図2に例示する変速線図を用いて以下のとおりに自動変速機4の変速制御を行う。図2の変速線図は、無段変速機構8の変速線と、副変速機構9の変速線とを組み合わせたものである。この変速線図上では、自動変速機4の動作点が、車速VSPと目標自動変速機入力回転数Nin(o)に基づき決定される。目標自動変速機入力回転数Nin(o)は車速VSPとアクセルペダル開度APOとに応じて求められる。動作点と変速線図左下隅の零点とを結ぶ線の傾きがトータルレシオiを表している。副変速機構9の変速段として前進1速が選択されている場合、無段変速機構8の変速可能領域は、1速最Low線から1速最Hi線までの領域である。これに対し、副変速機構9の変速段として前進2速が選択されている場合、無段変速機構8の変速可能領域は、2速最Low線から2速最Hi線までの領域である。このため、図2のA領域は、副変速機構9の変速段が前進1速であるときのみ変速制御が可能な領域となる。また、B領域は、副変速機構9の変速段が前進1速又は前進2速であるときに変速制御が可能な領域となる。更に、C領域は、副変速機構9の変速段が前進2速であるときのみ変速制御が可能な領域となる。このように、自動変速機4は、変速比(レシオ)を無段階に変更させることができる無段変速機構8と、複数の変速段から任意の変速段を選択することができる副変速機構9とを組み合わせることで、どちらか一方のみで取り得るレシオカバレッジに比べて、拡大されたレシオカバレッジを得ることができる。 The transmission controller 11 performs the shift control of the automatic transmission 4 as follows using a shift diagram illustrated in FIG. 2 based on the input information. The shift diagram of FIG. 2 is a combination of the shift line of the continuously variable transmission mechanism 8 and the shift line of the auxiliary transmission mechanism 9. On this shift map, the operating point of the automatic transmission 4 is determined based on the vehicle speed VSP and the target automatic transmission input rotational speed N in (o). The target automatic transmission input rotational speed N in (o) is obtained according to the vehicle speed VSP and the accelerator pedal opening APO. The slope of the line connecting the operating point and the zero point in the lower left corner of the shift diagram represents the total ratio i. When the first forward speed is selected as the gear position of the auxiliary transmission mechanism 9, the variable speed region of the continuously variable transmission mechanism 8 is a region from the first lowest line to the first highest line. On the other hand, when the second forward gear is selected as the gear position of the auxiliary transmission mechanism 9, the shiftable area of the continuously variable transmission mechanism 8 is an area from the second lowest speed line to the second highest speed Hi line. Therefore, the region A in FIG. 2 is a region where the shift control can be performed only when the gear position of the auxiliary transmission mechanism 9 is the first forward gear. Further, the B region is a region where shift control can be performed when the gear position of the sub transmission mechanism 9 is the first forward gear or the second forward gear. Further, the region C is a region where shift control can be performed only when the gear position of the auxiliary transmission mechanism 9 is the second forward gear. As described above, the automatic transmission 4 has the continuously variable transmission mechanism 8 capable of changing the gear ratio steplessly, and the auxiliary transmission mechanism 9 capable of selecting an arbitrary gear position from a plurality of gear positions. In combination with the above, it is possible to obtain expanded ratio coverage as compared to ratio coverage that can be taken with only one or the other.

図2のA〜C領域では、動作点(目標トータルレシオi(o))に応じて、目標自動変速機入力回転数Nin(o)が達成されるように、無段変速機構8が制御される。これにより、変速比が無段階に連続制御される。これに対し、副変速機構9の変速線は、前進1速から前進2速に切り替わる1→2UP線と、前進2速から前進1速に切り替わる2→1Down線とにより、前進1速領域と前進2速領域とが決定される。例えば、動作点が、1→2UP線を低車速側から高車速側に向かって横切ると、前進2速を選択する。2→1Down線を高車速側から低車速側に向かって横切ると、前進1速を選択する。また、例えば、走行中にセレクトレバーの位置がDレンジからLレンジへ切り替えられることに伴って動作点がC領域のP点からA領域のQ点に移行すると、副変速機構9を前進2速から前進1速にダウンシフトする要求が出力される。なお、Lレンジハイリミッタ線は、Lレンジでの回転数の下限を示す。 In the region A to C in FIG. 2, the continuously variable transmission mechanism 8 controls so that the target automatic transmission input rotational speed N in (o) is achieved according to the operating point (the target total ratio i (o)). Be done. Thereby, the transmission ratio is continuously controlled steplessly. On the other hand, the shift line of the auxiliary transmission mechanism 9 is the first forward speed region and the forward direction by the 1 → 2 UP line that switches from the first forward speed to the second forward speed and the 2 → 1 Down line that switches from the second forward speed to the first forward speed. The 2-speed region is determined. For example, when the operating point crosses the 1 → 2 UP line from the low speed side to the high speed side, the second forward speed is selected. When the 2 → 1 Down line is crossed from the high vehicle speed side to the low vehicle speed side, the first forward speed is selected. Also, for example, when the operating point shifts from point P in area C to point Q in area A as the position of the select lever is switched from D range to L range during traveling, the auxiliary transmission mechanism 9 is set to the second forward speed A request to shift down to the first forward speed is output from. The L range high limiter line indicates the lower limit of the rotational speed in the L range.

以下、副変速機構9の入力軸90が駆動側となり変速機出力軸5が従動側となる状態をパワーオン状態といい、それ以外の状態をパワーオフ状態という。パワーオン状態は、エンジン1の側から自動変速機4(無段変速機構8)へ入力されるトルク(以下、「無段変速側入力トルク」)Tp_inが正である状態である。パワーオフ状態は、変速機出力軸5が駆動側となり入力軸90が従動側となる状態、言い換えると無段変速側入力トルクTp_inが負である状態を含むほか、無段変速側入力トルクTp_inが(正負に関わらず)ゼロ付近である状態を含む。言い換えると、パワーオフ状態は、副変速機構9の入力軸90が非駆動側となる状態をいう。エンジン1の出力トルク(以下、「エンジントルク」)TEngとトルクコンバータ2のロックアップクラッチ20の締結状態とから、無段変速側入力トルクTp_inを得ることができる。無段変速側入力トルクTp_inが所定のパワーオン判定値Tp_in*(正値)より大きければパワーオン状態と判定でき、パワーオン判定値Tp_in*以下であればパワーオフ状態と判定できる。無段変速側入力トルクTp_inは、エンジン1の側から副変速機構9(入力軸90)へ入力されるトルク(以下、「副変速側入力トルク」)Tsub_inに略相当する。なお、無段変速側入力トルクTp_inと無段変速側レシオipとから副変速側入力トルクTsub_inを算出し、副変速側入力トルクTsub_inが所定の判定値より大きいか否かによりパワーオン状態であるかパワーオフ状態であるかを判定してもよい。また、アクセルペダル操作の有無(例えばアクセル開度APO)その他によりパワーオン状態であるかパワーオフ状態であるかを判定してもよい。 Hereinafter, a state in which the input shaft 90 of the auxiliary transmission mechanism 9 is on the drive side and the transmission output shaft 5 is on the driven side is referred to as a power on state, and other states are referred to as a power off state. The power-on state is a state in which a torque (hereinafter, "continuously variable transmission input torque") Tp_in input from the side of the engine 1 to the automatic transmission 4 (the continuously variable transmission mechanism 8) is positive. The power-off state includes a state in which the transmission output shaft 5 is on the drive side and the input shaft 90 is on the driven side, in other words, a state in which the continuously variable transmission input torque Tp_in is negative. Including the state where p_in is near zero (regardless of positive or negative). In other words, the power-off state is a state in which the input shaft 90 of the auxiliary transmission mechanism 9 is in the non-drive side. The continuously variable transmission side input torque T p — in can be obtained from the output torque (hereinafter, “engine torque”) T Eng of the engine 1 and the engaged state of the lockup clutch 20 of the torque converter 2. If the continuously variable transmission input torque Tp_in is larger than a predetermined power on determination value Tp_in * (positive value), it can be determined that the power is on, and if it is smaller than the power on determination value Tp_in *, it can be determined that the power is off. Stepless side input torque T P_IN, the torque inputted from the side of the engine 1 to the auxiliary transmission mechanism 9 (the input shaft 90) (hereinafter, "auxiliary transmission side input torque") substantially corresponds to the T sub_in. Note that to calculate the auxiliary transmission side input torque T Sub_in from the continuously variable transmission side input torque T P_IN and the continuously variable side ratio i p, auxiliary transmission side input torque T Sub_in the power depending on whether greater than a predetermined judgment value It may be determined whether it is in the on state or in the power off state. Further, whether the power is on or the power off may be determined based on the presence or absence of the accelerator pedal operation (for example, the accelerator opening APO) or the like.

副変速機構9を前進1速と前進2速との間で変速するとき、ハイクラッチH/CとローブレーキL/Bのうち一方を締結し他方を解放するいわゆる架け替え制御が実施される。以下、前進2速から前進1速へのダウンシフトを例にとって説明する。ダウンシフトではハイクラッチH/Cが締結状態から解放状態に切り替わり、ローブレーキL/Bが解放状態から締結状態に切り替わる。変速機コントローラ11は、パワーオン状態と判定したとき、ハイクラッチH/Cへの供給油圧(ハイクラッチH/Cのトルク容量)の制御によりダウンシフト(パワーオンダウンシフト)を進行させる。パワーオフ状態と判定したとき、ローブレーキL/Bへの供給油圧(ローブレーキL/Bのトルク容量)の制御によりダウンシフト(パワーオフダウンシフト)を進行させる。   When the auxiliary transmission mechanism 9 is shifted between the first forward speed and the second forward speed, so-called remake control is performed in which one of the high clutch H / C and the low brake L / B is engaged and the other is released. Hereinafter, the downshift from the second forward speed to the first forward speed will be described as an example. In the downshift, the high clutch H / C switches from the engaged state to the released state, and the low brake L / B switches from the released state to the engaged state. When the transmission controller 11 determines that the power is on, it advances the downshift (power on downshift) by controlling the hydraulic pressure supplied to the high clutch H / C (torque capacity of the high clutch H / C). When it is determined that the power is off, the downshift (power off downshift) is advanced by the control of the oil pressure supplied to the low brake L / B (torque capacity of the low brake L / B).

具体的には、変速機コントローラ11は、車速VSPが所定の閾値VSP*より大きい非停車時(走行時)に、パワーオン状態と判定すると、準備(変速開始時)制御を行った後、ハイクラッチH/Cのトルク容量の制御によりダウンシフトを進行させる。イナーシャ相の後、トルク相となる。準備制御では、ローブレーキL/Bへの油圧のプリチャージを行い、ローブレーキL/Bを締結直前の状態で待機させる(準備相)。パワーオン状態では、ローブレーキL/Bのトルク容量がなくても、副変速側入力トルクTp_inにより入力軸90の回転数(以下、「副変速側入力回転数」)Nsub_inが上昇しようとする。このため、ハイクラッチH/Cのトルク容量をある程度低下させるだけで、副変速側入力回転数Nsub_inが上昇し、イナーシャ相が進行する。イナーシャ相の進行中、ハイクラッチH/Cへの供給油圧の制御により、副変速側入力回転数Nsub_inの過度の上昇(吹き上がり)を抑制する。その後、ハイクラッチH/Cへの供給油圧(指示トルク容量)を低下させると共にローブレーキL/Bへの供給油圧を増大させ、トルクの伝達を受け持つ締結要素をハイクラッチH/CからローブレーキL/Bへと移行させる(トルク相)。 Specifically, when the transmission controller 11 determines that the vehicle is in the power on state when the vehicle speed VSP is not larger than the predetermined threshold VSP * (during traveling), the transmission controller 11 performs preparation (during shift start) control and then goes high. The downshift is advanced by the control of the torque capacity of the clutch H / C. After the inertia phase, it becomes the torque phase. In the preparation control, the hydraulic pressure to the low brake L / B is precharged, and the low brake L / B is made to stand by in a state immediately before engagement (preparation phase). In the power-on state, even if there is no torque capacity of the low brake L / B, the number of revolutions of the input shaft 90 (hereinafter referred to as "the auxiliary transmission side input rotational speed") N sub_in tends to rise by the auxiliary transmission side input torque Tp_in. Do. For this reason, only by decreasing the torque capacity of the high clutch H / C to some extent, the auxiliary transmission side input rotational speed N sub_in rises, and the inertia phase progresses. During the progress of the inertia phase, the control of the oil pressure supplied to the high clutch H / C suppresses an excessive increase (blow up) of the auxiliary transmission side input rotational speed N sub — in. Thereafter, the hydraulic pressure (command torque capacity) supplied to the high clutch H / C is decreased, and the hydraulic pressure supplied to the low brake L / B is increased, and a fastening element responsible for torque transmission is transmitted from the high clutch H / C to the low brake L. Shift to / B (torque phase).

変速機コントローラ11は、走行時にパワーオフ状態と判定すると、準備制御を行った後、ローブレーキL/Bのトルク容量の制御によりダウンシフトを進行させる。トルク相の後、イナーシャ相となる。パワーオフ状態では、副変速側入力トルクTsub_inが小さい(例えば負である)ため、単にハイクラッチH/Cのトルク容量を低下させても、副変速側入力回転数Nsub_inが上昇しない(低下しようとする)。よって、準備制御の後、ハイクラッチH/Cへの供給油圧(指示トルク容量)を低下させると共にローブレーキL/Bへの供給油圧を増大させ、トルクの伝達を受け持つ締結要素をハイクラッチH/CからローブレーキL/Bへと移行させる(トルク相)。その後、ローブレーキL/Bへの供給油圧の制御により、副変速側入力回転数Nsub_inを上昇させ、イナーシャ相を進行させる。 When the transmission controller 11 determines that it is in the power off state during traveling, it performs preparation control and then advances the downshift by controlling the torque capacity of the low brake L / B. After the torque phase, it becomes the inertia phase. In the power-off state, the auxiliary transmission side input torque T sub_in is small (for example, negative), so even if the torque capacity of the high clutch H / C is simply reduced, the auxiliary transmission side input rotational speed N sub_in does not increase (decreased try to). Therefore, after preparation control, the hydraulic pressure (command torque capacity) to the high clutch H / C is reduced and the hydraulic pressure supplied to the low brake L / B is increased, and the engaging element responsible for torque transmission is the high clutch H / Shift from C to low brake L / B (torque phase). Thereafter, by controlling the hydraulic pressure supplied to the low brake L / B, the auxiliary transmission side input rotational speed N sub_in is increased to advance the inertia phase.

車速VSPが閾値VSP*以下である停車時は、準備制御の後、イナーシャ相がなく、トルク相となる。上記いずれの場合も、終了制御(変速終了時制御)を行って遷移を終了する。変速機コントローラ11は、ハイクラッチH/Cへの供給油圧をゼロとしてハイクラッチH/Cを完全解放させるとともにローブレーキL/Bへの供給油圧を増大させてローブレーキL/Bを完全締結させる。   When the vehicle speed VSP is less than or equal to the threshold value VSP *, after the preparation control, there is no inertia phase and the torque phase is obtained. In any of the above cases, the end control (control at the end of the shift) is performed to end the transition. The transmission controller 11 completely releases the high clutch H / C while setting the supply hydraulic pressure to the high clutch H / C to zero and increasing the supply hydraulic pressure to the low brake L / B to completely engage the low brake L / B. .

変速機コントローラ11は、副変速機構9の架け替え制御中、準備相から終了相までを通じて、トルクダウン制御を行う。すなわち、エンジンコントローラにトルクダウン要求値を出力する。これによりエンジントルクTEngの上限を規制して、締結要素への指示供給油圧に対する実供給油圧の応答遅れが許容範囲外となるようなエンジントルクTEngの上昇を規制する。 The transmission controller 11 performs torque reduction control during the changeover control of the sub transmission mechanism 9 through the preparation phase to the termination phase. That is, the torque down request value is output to the engine controller. Thus, the upper limit of the engine torque T Eng is regulated, and the increase of the engine torque T Eng is regulated such that the response delay of the actual supplied hydraulic pressure to the command supplied hydraulic pressure to the fastening element is out of the allowable range.

また、変速機コントローラ11は、無段変速機構8の変速制御と副変速機構9の変速制御とを協調して行う。変速機コントローラ11は、目標副変速側レシオisub(o)に至るまでの過渡的な副変速側レシオ(以下、「指示副変速側レシオ」)isub(c)を次のように決める。まず、副変速機構9の変速時間を定める。準備相に費やす時間を、解放側の締結要素への供給油圧の低下速度(抜け応答)と、締結側の締結要素のプリチャージ完了(棚圧越え)までの時間とに基づき決定する。トルク相に費やす時間を、副変速側入力トルクTsub_inに基づき決定する。例えば、副変速側入力トルクTsub_inが小さいときは大きいときよりも、トルク相の時間を短くする。また、イナーシャ相に費やす時間(実質的な変速の時間。以下、「副変速側変速時間」)Tsubを予め設定する。イナーシャ相における指示副変速側レシオisub(c)と、指示副変速側レシオisub(c)の時間変化率d(isub(c))/dt(言い換えるとイナーシャ相における副変速側入力回転数Nsub_inのプロフィールないし目標パターン)とを、以下のように決定する。図3に示すように、時間を横軸とする座標(タイムチャート)において、変化率d(isub(c))/dtが台形状となるように設定する。変化率d(isub(c))/dtは、イナーシャ相の前期に所定の勾配で増大し、イナーシャ相の中期に一定であり、イナーシャ相の後期に所定の勾配で減少する。この変化率d(isub(c))/dtから指示副変速側レシオisub(c)が決まる。指示副変速側レシオisub(c)は、イナーシャ相の前期に徐々に大きくなる勾配で増大し、イナーシャ相の中期に一定の勾配で増大し、イナーシャ相の後期に徐々に小さくなる勾配で増大する。この指示副変速側レシオisub(c)のプロフィールは、例えば以下の条件を満たすことが好ましい。
・締結要素への指示供給油圧により実現可能である。
・締結要素への指示供給油圧に対する実供給油圧の応答遅れが許容範囲内である。
・締結側の締結要素の完全締結時にイナーシャトルクによるショックを抑制できる。
Further, the transmission controller 11 coordinately performs the transmission control of the continuously variable transmission mechanism 8 and the transmission control of the sub transmission mechanism 9. The transmission controller 11 determines a transient sub-shift side ratio (hereinafter referred to as “instruction sub-shift side ratio”) i sub (c) up to the target sub shift side ratio i sub (o) as follows. First, the shift time of the auxiliary transmission mechanism 9 is determined. The time spent in the preparation phase is determined based on the rate of decrease of the supply hydraulic pressure to the release side fastening element (dropout response) and the time to the completion of precharging of the engagement side fastening element (exceeding the shelf pressure). The time spent in the torque phase is determined based on the sub shift side input torque Tsub_in . For example, when the auxiliary transmission side input torque Tsub_in is small, the time of the torque phase is made shorter than when it is large. Further, the time spent in the inertia phase (substantial shift time, hereinafter, “sub-shift side shift time”) Tsub is set in advance. Time change rate d (i sub (c)) / dt of the indicated secondary shift side ratio i sub (c) in the inertia phase and the indicated secondary shift side ratio i sub (c) (in other words, the secondary shift side input rotation in the inertia phase) The number N sub — in of profiles and target patterns) are determined as follows. As shown in FIG. 3, in the coordinates (time chart) in which time is taken along the horizontal axis, the change rate d (i sub (c)) / dt is set to be trapezoidal. The rate of change d (i sub (c)) / dt increases with a predetermined gradient in the early phase of the inertia phase, is constant in the middle of the inertia phase, and decreases with the predetermined gradient in the late phase of the inertia phase. From the rate of change d (i sub (c)) / dt, the commanded auxiliary transmission side ratio i sub (c) is determined. The indicated secondary shift side ratio i sub (c) increases with the gradient gradually increasing in the first half of the inertia phase, increases with a constant gradient in the middle of the inertia phase, and increases with the decreasing gradient in the second half of the inertia phase Do. It is preferable that the profile of the indicated auxiliary transmission side ratio i sub (c) satisfies the following conditions, for example.
-It is realizable by the instruction | indication supply oil pressure to a fastening element.
The response delay of the actual supply hydraulic pressure to the command supply hydraulic pressure to the fastening element is within the allowable range.
・ It is possible to suppress the shock due to the inertia torque at the time of complete fastening of the fastening element on the fastening side.

変速機コントローラ11は、目標トータルレシオi(o)と目標副変速側レシオisub(o)とから、目標とする(変速後の)無段変速機構8の変速比(以下、「目標無段変速側レシオ」)ip(o)を算出し、目標無段変速側レシオip(o)に至るまでの過渡的な無段変速側レシオ(以下、「指示無段変速側レシオ」)ip(c)を次のように決める。図3に示すように、時間を横軸とする座標(タイムチャート)において、指示無段変速側レシオip(c)の時間変化率d(ip(c))/dtが台形状となるように設定する。変化率d(iP(c))/dtは、無段変速機構8の変速の前期に所定の勾配で増大し、無段変速機構8の変速の中期に一定であり、無段変速機構8の変速の後期に所定の勾配で減少する。無段変速機構8の変速(の前期)は、例えば副変速機構9の準備相と同時に開始する。無段変速機構8の変速の後期は、副変速機構9のイナーシャ相の前期と重なり、好ましくは一致する。すなわち、無段変速機構8の変速の後期は、副変速機構9のイナーシャ相(の前期)が開始すると同時に開始し、副変速機構9のイナーシャ相の前期が終了すると同時に終了することが好ましい。 The transmission controller 11 uses the target total ratio i (o) and the target secondary shift side ratio isub (o) to set a target gear ratio of the continuously variable transmission mechanism 8 (after gear shift) (hereinafter referred to as “target continuously variable ratio Shift side ratio ") I p (o) is calculated, and a transient stepless transmission side ratio (hereinafter referred to as" instruction stepless shift side ratio ") i up to the target stepless shift side ratio i p (o) Determine p (c) as follows. As shown in FIG. 3, the coordinate (time chart) to the horizontal axis of time, the instruction time rate of change d of the continuously variable transmission side ratio i p (c) (i p (c)) / dt trapezoidal To set. The rate of change d (i P (c)) / dt increases with a predetermined gradient in the first half of the shift of the continuously variable transmission mechanism 8 and is constant in the middle of the shift of the continuously variable transmission mechanism 8. It decreases with a predetermined slope later in the gear shift. The shift (the previous period) of the continuously variable transmission mechanism 8 starts, for example, simultaneously with the preparation phase of the auxiliary transmission mechanism 9. The second half of the shifting of the continuously variable transmission mechanism 8 overlaps with, and preferably coincides with, the previous period of the inertia phase of the auxiliary transmission mechanism 9. That is, it is preferable that the second half of the shift of the continuously variable transmission mechanism 8 be started at the same time as (the previous period of) the inertia phase of the sub transmission mechanism 9 starts and is ended at the same time as the previous period of the inertia phase of the sub transmission mechanism 9 ends.

このようにして、無段変速機構8の変速に費やす時間(以下、「無断変速側変速時間」)Tpが予め設定される。この無断変速側変速時間Tpは、例えばパワーオフダウンシフトのとき、副変速機構9の準備相の時間とトルク相の時間とを加算した時間Tpp+tpよりも長い(Tp>Tpp+tp)。そして、変化率d(ip(c))/dtから指示無段変速側レシオip(c)が決まる。指示無段変速側レシオip(c)は、無段変速機構8の変速の前期に徐々に大きくなる勾配で増大し、中期に一定の勾配で増大し、後期に徐々に小さくなる勾配で増大する。すなわち、無段変速機構8の変速終了まで(少なくとも副変速機構9のイナーシャ相開始まで)無段変速機構8がダウンシフトし続ける(無段変速機構8が最ロー:最大変速比までダウンシフトしない)ように、指示無段変速側レシオip(c)が設定される。指示無段変速側レシオip(c)と指示副変速側レシオisub(c)との積(指示トータルレシオi(c))の時間変化を想定すると、それは、自動変速機4の変速の前期に徐々に大きくなる勾配で増大し、中期に略一定の勾配で増大し、後期に徐々に小さくなる勾配で増大した後に目標トータルレシオi(o)に達する、S字状のプロフィールとなる。 In this way, time spent on the shift of the continuously variable transmission mechanism 8 (hereinafter, "continuously variable side shift time") T p is set in advance. The continuously variable side shift time T p, for example when the power-off downshift, the subtransmission longer than preparation phase time and time and time T pp + tp obtained by adding the torque phase mechanism 9 (T p> T pp + tp ). Then, the rate of change d (i p (c)) / dt instruction stepless side ratio i p (c) is determined from the. Instruction continuously variable side ratio i p (c) is increased by gradually increases gradient year shift of the continuously variable transmission mechanism 8, to increase the medium term at a constant gradient, increasing in gradient gradually decrease late Do. That is, the continuously variable transmission mechanism 8 continues to downshift until the shift of the continuously variable transmission mechanism 8 ends (at least until the inertia phase of the auxiliary transmission mechanism 9 starts) (the continuously variable transmission mechanism 8 is lowest: not downshifted to the maximum gear ratio) ) as an indication continuously variable side ratio i p (c) is set. Assuming the time variation of the product of instructions continuously variable side ratio i p and (c) instructing the auxiliary transmission side ratio i sub (c) (indicated total ratio i (c)), it is the shift of the automatic transmission 4 It becomes an S-shaped profile that increases with the gradient gradually increasing in the first half, increases with a substantially constant gradient in the middle, and increases with the decreasing gradient gradually in the second half, and then reaches the target total ratio i (o).

変速機コントローラ11は、副変速機構9のイナーシャ相では、指示副変速側レシオisub(c)の上記プロフィールを実現するような、副変速機構9の解放側及び締結側の締結要素のトルク容量(指示トルク容量)をそれぞれ求め、これらの指示トルク容量を実現するような、解放側の締結要素への供給油圧及び締結側の締結要素への指示供給油圧を設定する。変速機コントローラ11は、フィードフォワード制御の操作量であるF/F指示容量と、フィードバック制御の操作量であるF/B指示容量との加算値として、上記指示トルク容量を求める。F/F指示容量を、副変速側入力トルクTsub_in を基に算出する。F/B指示容量を、副変速側入力回転数Nsub_inを基に算出する。F/F指示容量及びF/B指示容量は、各相の開始・終了の判定をトリガーにして算出される。なお、締結要素の実圧応答遅れ分を補正するための適合要素として、副変速機構9の変速の進行率に応じた補正ゲインとオフセットをF/F指示容量に持たせてもよい。この場合、トルク相から補正をかけ、終了相で進行率に応じて補正を解除する。また、変速機コントローラ11は、指示無段変速側レシオip(c)の上記プロフィールを実現するように、駆動プーリ8aへの供給圧と従動プーリ8bへの供給圧とを制御する。 In the inertia phase of the auxiliary transmission mechanism 9, the transmission controller 11 achieves torque profile of the release side and the engagement side of the auxiliary transmission mechanism 9 so as to realize the above-mentioned profile of the instructed secondary transmission side ratio i sub (c). (Instructed torque capacity) is determined, and the supplied hydraulic pressure to the release side fastening element and the instructed supplied hydraulic pressure to the fastening side engaging element are set so as to realize these instructed torque capacities. The transmission controller 11 obtains the indicated torque capacity as an added value of the F / F designated capacity which is the operation amount of the feedforward control and the F / B designated capacity which is the operation amount of the feedback control. The F / F commanded displacement is calculated based on the sub shift side input torque Tsub_in . The F / B commanded capacity is calculated based on the sub shift side input rotational speed N sub_in . The F / F designated capacity and the F / B designated capacity are calculated by using the determination of the start / end of each phase as a trigger. As an adaptation element for correcting the actual pressure response delay of the fastening element, the F / F instruction capacity may have a correction gain and an offset according to the rate of progress of the shift of the auxiliary transmission mechanism 9. In this case, correction is applied from the torque phase, and the correction is canceled according to the progress rate in the end phase. Further, the transmission controller 11 is instructed to realize the profile of the continuously variable transmission side ratio i p (c), it controls the supply pressure and the pressure supplied to the driven pulley 8b to the drive pulley 8a.

次に、作用効果を説明する。無段変速機構8の変速制御と副変速機構9の変速制御とを協調して行い目標トータルレシオi(o)を実現する際、無段変速機構8が変速を終了したときに副変速機構9のイナーシャ相が開始していないと、トータルレシオiの変化が不連続となり、車両の駆動力の変化が不連続となるおそれがある。以下、比較例を用いて説明する。比較例の変速機コントローラは、変速線図から定まる目標トータルレシオi(o)と所定の変速速度とから、自動変速機4の指示トータルレシオi(c)を決める。指示副変速側レシオisub(c)を本実施形態の変速機コントローラ11と同様にして求める。一方、指示トータルレシオi(c)を指示副変速側レシオisub(c)で除することで、指示無段変速側レシオip(c)を求める。このような比較例では、無段変速機構8の変速の終了タイミングが、副変速機構9のイナーシャ相の開始タイミングと特に関係づけられていない。よって、副変速機構9のイナーシャ相の開始前に、無段変速機構8の変速が終了しうる。例えば自動変速機4のダウンシフト時、無段変速機構8のダウンシフトが最ロー比で止まってから副変速機構9のダウンシフトが開始する場合、発生するエンジンブレーキが不連続となる。特に、無段変速側入力トルクTp_inが判定値Tp_in*以下であるパワーオフダウンシフトでは、ローブレーキL/Bへの油圧供給によりダウンシフトを進行させるため、準備相の後、トルク相となり、イナーシャ相の開始が遅れるおそれがある。よって、副変速機構9のイナーシャ相の開始前に、無段変速機構8の変速が終了しやすい。なかでも、運転者がエンジンブレーキ力を得るためにセレクトレバーをDレンジからLレンジへ切り替え、これによりダウンシフト要求が出されるような場合には、自動変速機4の急速な大変速が指令されるため、副変速機構9のダウンシフトが開始する前に無段変速機構8が最ローに達してしまうおそれが高い。 Next, the function and effect will be described. When the shift control of the continuously variable transmission mechanism 8 and the shift control of the auxiliary transmission mechanism 9 are coordinated to realize the target total ratio i (o), the auxiliary transmission mechanism 9 is operated when the continuously variable transmission mechanism 8 ends shifting. If the inertia phase does not start, the change of the total ratio i becomes discontinuous, and the change of the driving force of the vehicle may become discontinuous. Hereinafter, it demonstrates using a comparative example. The transmission controller of the comparative example determines the instructed total ratio i (c) of the automatic transmission 4 from the target total ratio i (o) determined from the shift map and the predetermined shift speed. The commanded auxiliary transmission side ratio i sub (c) is obtained in the same manner as the transmission controller 11 of the present embodiment. On the other hand, the commanded variable ratio side ratio i p (c) is obtained by dividing the commanded total ratio i (c) by the commanded sub-shift side ratio i sub (c). In such a comparative example, the end timing of the shift of the continuously variable transmission mechanism 8 is not particularly related to the start timing of the inertia phase of the auxiliary transmission mechanism 9. Therefore, the shift of the continuously variable transmission mechanism 8 can be completed before the start of the inertia phase of the auxiliary transmission mechanism 9. For example, at the time of downshifting of the automatic transmission 4, when the downshift of the auxiliary transmission mechanism 9 starts after the downshift of the continuously variable transmission mechanism 8 stops at the lowest ratio, the generated engine brake becomes discontinuous. In particular, in the case of a power off downshift in which the continuously variable transmission side input torque Tp_in is equal to or less than the determination value Tp_in *, the torque phase is set after the preparation phase in order to advance the downshift by supplying hydraulic pressure to the low brake L / B. , The start of the inertia phase may be delayed. Therefore, the shifting of the continuously variable transmission mechanism 8 is easily ended before the start of the inertia phase of the auxiliary transmission mechanism 9. Above all, when the driver switches the select lever from D range to L range in order to obtain engine braking force and a downshift request is issued by this, the rapid large shift of the automatic transmission 4 is commanded. Therefore, there is a high possibility that the continuously variable transmission mechanism 8 will reach the lowest level before the downshift of the auxiliary transmission mechanism 9 starts.

図4は、比較例の変速機コントローラによるパワーオフダウンシフトにおけるタイムチャートを示す。Gは車両の加速度(エンジンブレーキによる減速度を含む。)を示す。フェーズは副変速機構9の変速の各相を示す。TLBはローブレーキL/BのF/F指示容量、THCはハイクラッチH/CのF/F指示容量をそれぞれ示す。時刻t41〜t42が準備相、時刻t42〜t43がトルク相、時刻t43〜t44がイナーシャ相、時刻t44〜t45が終了相である。無段変速側レシオipは、副変速側レシオisubの変化開始前に、最ローに達してしまう(時刻t42直後)。言換えると、無段変速機構8が変速を終了してしまう。その後、時刻t43で副変速機構9のダウンシフト(イナーシャ相)が開始する。よって、自動変速機4の全体としての変速比(トータルレシオi)の変化が非連続的になることで減速度Gの変動が生じ(時刻t42近傍)、駆動力(エンジンブレーキ)の変化(ショック)として運転者に感じられるおそれがある。また、比較例では、指示無段変速側レシオip(c)は、指示副変速側レシオisub(c)との合計がトータルレシオiとなるように設定される。このため、副変速側レシオisub(指示副変速側レシオisub(c))が一定以上の大きさになると、いったん最ローに達した無段変速側レシオip(指示無段変速側レシオip(c))は、副変速側レシオisub(指示副変速側レシオisub(c))の増大に応じて減少する(時刻t44の前)。すなわち、無段変速機構8はアップシフトする。よって、自動変速機入力回転数Nin(トルクコンバータ2のタービンランナ2aの回転数)の変動が発生し、この回転変動(イナーシャトルク)によるショック(押し出され感)が生じるおそれがある(時刻t44の直前におけるGの変化で示す)。特に、無段変速機構8がロー側からアップシフトへ切り替わる場合、指示無段変速側レシオip(c)に対する実際の無段変速側レシオipの追従が遅れやすい。このため、副変速側レシオisubの変化のタイミングと無段変速側レシオipの変化のタイミングがずれて、トータルレシオi(自動変速機入力回転数Nin)の変動が生じ、ショックが生じやすい。 FIG. 4 shows a time chart in a power off downshift by the transmission controller of the comparative example. G indicates the acceleration of the vehicle (including deceleration due to engine braking). The phase indicates each phase of the shift of the auxiliary transmission mechanism 9. T LB indicates the F / F designated capacity of the low brake L / B, and T HC indicates the F / F designated capacity of the high clutch H / C. Times t41 to t42 are preparation phases, times t42 to t43 are torque phases, times t43 to t44 are inertia phases, and times t44 to t45 are end phases. Continuously variable side ratio i p, before starting the change of the subtransmission side ratio i sub, would reach the lowest low (time t42 immediately after). In other words, the continuously variable transmission mechanism 8 ends the shift. Thereafter, at time t43, the downshift (inertia phase) of the auxiliary transmission mechanism 9 starts. Therefore, the change of the transmission gear ratio (total ratio i) as a whole of the automatic transmission 4 becomes discontinuous, causing the change of the deceleration G (around time t42), and the change of the driving force (engine brake) (shock ) May be felt by the driver. Further, in the comparative example, it indicated continuously variable side ratio i p (c) the sum of the instruction subtransmission side ratio i sub (c) is set to be total ratio i. For this reason, when the secondary shift side ratio i sub (instruction secondary shift side ratio i sub (c)) becomes larger than a certain value, the continuously variable transmission ratio i p (the instructed stepless shift ratio) once reached the lowest level. i p (c) decreases in response to the increase of the auxiliary transmission side ratio i sub (the instructed auxiliary transmission side ratio i sub (c)) (before time t44). That is, the continuously variable transmission mechanism 8 upshifts. Therefore, fluctuation of automatic transmission input rotation speed N in (rotation speed of turbine runner 2a of torque converter 2) occurs, and there may be a shock (pushed feeling) due to this rotation fluctuation (inner torque) (time t44) Change in G immediately before In particular, if the continuously variable transmission mechanism 8 is switched from the low side to the upshift instruction actual follow-up is delayed easily the continuously variable side ratio i p for continuously variable side ratio i p (c). Accordingly, auxiliary transmission side ratio i sub shifted timings of change of the timing and the continuously variable side ratio i p of change of variation in total ratio i (automatic transmission input rotational speed N in) occurs, resulting shock Cheap.

これに対し、本実施形態の変速機コントローラ11は、副変速機構9のイナーシャ相が開始した後に無段変速機構8の変速が終了するように、無段変速機構8の変速を制御する。よって、トータルレシオiの変化が連続的となり、車両の駆動力の変化が連続的となる。例えば自動変速機4のダウンシフト時、無段変速機構8のダウンシフトが止まる前に副変速機構9のダウンシフトが開始することから、発生するエンジンブレーキ(による減速度G)が連続的となる。副変速機構9のイナーシャ相の開始が遅れやすいパワーオフダウンシフト時にも、副変速機構9のイナーシャ相の開始後に、無段変速機構8の変速を終了させることができる。   On the other hand, the transmission controller 11 of the present embodiment controls the shift of the continuously variable transmission mechanism 8 so that the shift of the continuously variable transmission mechanism 8 ends after the inertia phase of the auxiliary transmission mechanism 9 starts. Therefore, the change of the total ratio i becomes continuous, and the change of the driving force of the vehicle becomes continuous. For example, at the time of downshifting of the automatic transmission 4, the downshifting of the auxiliary transmission mechanism 9 is started before the downshifting of the continuously variable transmission mechanism 8 stops, so that the generated engine brake (deceleration G due to it) becomes continuous. . Even in the power off downshift where the start of the inertia phase of the auxiliary transmission mechanism 9 is likely to be delayed, the shift of the stepless transmission mechanism 8 can be ended after the start of the inertia phase of the auxiliary transmission mechanism 9.

図3は、本実施形態の変速機コントローラ11によるパワーオフダウンシフトにおけるタイムチャートを示す。時刻t31〜t32が準備相、時刻t32〜t33がトルク相、時刻t33〜t34がイナーシャ相、時刻t34〜t35が終了相である。無段変速側レシオipは、副変速側レシオisubの変化が開始する時刻t33より後の時刻331に、変化を終了する。よって、トータルレシオiの変化が連続的になることで減速度Gの変動(ショック)が抑制される(時刻t33近傍)。無段変速機構8のダウンシフトと副変速機構9のダウンシフトが連続して行われるため、エンジンブレーキのタイムラグ感や二段感は抑制される(時刻t31〜t34)。なお、変速の進行を促進する(変速の停滞を抑制する)という観点からは、無段変速側レシオipの変化は、副変速機構9のイナーシャ相の前半までに終了することが好ましい。 FIG. 3 shows a time chart in a power off downshift by the transmission controller 11 of the present embodiment. The time t31 to t32 is a preparation phase, the time t32 to t33 is a torque phase, the time t33 to t34 is an inertia phase, and the time t34 to t35 is an end phase. Continuously variable side ratio i p is the time 331 after the time t33 to a change in auxiliary transmission side ratio i sub starts and ends change. Therefore, the change (shock) of the deceleration G is suppressed by the change of the total ratio i becoming continuous (around time t33). Since the downshift of the continuously variable transmission mechanism 8 and the downshift of the auxiliary transmission mechanism 9 are continuously performed, a sense of time lag and a sense of double gear of the engine brake are suppressed (time t31 to t34). From the viewpoint of promoting the progress of the gear shift (suppresses stagnation of shifting), the change of the continuously variable transmission side ratio i p is preferably completed before the first half of the inertia phase of the subtransmission mechanism 9.

また、目標無段変速側レシオip(o)は、目標トータルレシオi(o)と目標副変速側レシオisub(o)とから算出される。変速中、無段変速側レシオipは、目標無段変速側レシオip(o) (無段変速機構8の変速後の変速比)以下となるように制御される。よって、副変速側レシオisubの変化開始前に、無段変速側レシオipが目標無段変速側レシオip(o)を超えて最大変速比に達することが抑制される。図3に示す例では、例えばDレンジからLレンジへの操作によるダウンシフト時にも、無段変速側レシオipが最ローに達することが抑制される。よって、トータルレシオiの変化がより確実に連続的になる。また、比較例(図4における時刻t44の前)のように無段変速側レシオip(指示無段変速側レシオip(c))が最ローから減少に転ずる(アップシフトする)事態も回避されるため、副変速側レシオisubと無段変速側レシオipの変化タイミングがずれる(トータルレシオiの変動が生じる)ことも抑制される。 The target continuously variable side ratio i p (o) is calculated from the target total ratio i and (o) and the target auxiliary transmission side ratio i sub (o). During shifting, the continuously variable side ratio i p is (gear ratio after the shift of the continuously variable transmission mechanism 8) target continuously variable side ratio i p (o) is controlled so as to become less. Therefore, before starting the change of the subtransmission side ratio i sub, the continuously variable side ratio i p reaches the maximum speed ratio exceeds the target continuously variable side ratio i p (o) can be suppressed. In the example shown in FIG. 3, for example, even when a downshift by the operation from the D range to the L range, the continuously variable side ratio i p reaches the uppermost row is suppressed. Therefore, the change of the total ratio i becomes more surely and continuously. In Comparative Example continuously variable side ratio i p as (before time t44 in FIG. 4) (indicated continuously variable side ratio i p (c)) is (upshift) starts to decrease from the lowest-situation also to be avoided, the change timing of the subtransmission side ratio i sub and the continuously variable side ratio i p is shifted (change of total ratio i occurs) is also suppressed that.

さらに、無段変速側レシオipの時間変化率d(iP)/dtが減少する期間(時刻t33〜t331)は、副変速側レシオisubの時間変化率d(isub)/dtが増大する期間(時刻t33〜t331)と重なる。このように無段変速機構8の変速の後期と副変速機構9の変速(イナーシャ相)の前期とを重ね合わせる(両期のタイミングを合わせる)ことによって、自動変速機入力回転数Ninの変動によるショックが抑制される。すなわち、自動変速機入力回転数Ninは、自動変速機出力回転数Noutと無段変速側レシオipと副変速側レシオisubとの積で与えられる。自動変速機出力回転数Noutの変化が十分に微小であると考えると、自動変速機入力回転数Ninの変化率d(Nin)/dtは次の式(1)で与えられる。

Figure 2019090463
但し、d(iP)/dtは無段変速側レシオiPの時間変化率、d(isub)/dtは副変速側レシオisubの時間変化率を示す。 Furthermore, the time rate of change d of the continuously variable transmission side ratio i p (i P) / dt is the period to decrease (time T33~t331) the time rate of change of the subtransmission side ratio i sub d (i sub) / dt is It overlaps with the increasing period (time t33 to t331). Thus, by overlapping the second half of the shift of the continuously variable transmission mechanism 8 and the first half of the shift (inertia phase) of the sub transmission mechanism 9 (variing the timing of the two phases), the fluctuation of the automatic transmission input speed N in Shock is suppressed. That is, the automatic transmission input revolution speed N in is given by the product of the automatic transmission output speed N out and the continuously variable side ratio i p and auxiliary transmission side ratio i sub. Assuming that the change in the automatic transmission output rotational speed N out is sufficiently small, the change rate d (N in ) / dt of the automatic transmission input rotational speed N in is given by the following equation (1).
Figure 2019090463
Here, d (i P ) / dt represents a time change rate of the continuously variable transmission side ratio i P , and d (i sub ) / dt represents a time change rate of the auxiliary transmission side ratio i sub .

上記式(1)から分かるように、自動変速機入力回転数Ninの変化率d(Nin)/dtは、無段変速側レシオiPの変化率d(iP)/dtの項と、副変速側レシオisubの変化率d(isub)/dtの項との足し合わせとなる。例えば自動変速機4のダウンシフト時、自動変速機入力回転数Ninの上昇による(エンジンブレーキによる)減速度Gは、自動変速機入力回転数Ninの変化率d(Nin)/dt(と回転要素の慣性モーメントとの積であるイナーシャトルク)により決まる。変化率d(Nin)/dtの変動が小さければ減速度Gの変動も小さい。よって、上記のように無段変速側レシオipの変化率d(iP)/dtの減少期間と副変速側レシオisubの変化率d(isub)/dtの増大期間とが重なることで、両変化率の項の足し合わせである自動変速機入力回転数Ninの変化率d(Nin)/dtの変動が抑制されるため、イナーシャトルクによる減速度Gの変動も抑制される(時刻t33〜t331)。なお、変化率d(iP)/dtの減少期間(無段変速機構8の変速の後期)と変化率d(isub)/dtの増大期間(副変速機構9のイナーシャ相の前期)とが互いに一部でも重なっていればよい。本実施形態では、両期間が好ましくは一致する。すなわち、両期間の始点と両期間の終点がそれぞれ一致するように指示無段変速側レシオip(c)が設定される。よって、上記作用効果を向上できる。なお、両期間の始点と終点のいずれか一方のみが一致してもよい。 As can be seen from the above equation (1), the rate of change d (N in ) / dt of the automatic transmission input rotational speed N in corresponds to the term of the rate of change d (i P ) / dt of the continuously variable transmission side ratio i P And the change rate d (i sub ) / dt of the auxiliary transmission side ratio i sub . For example during a downshift of the automatic transmission 4, (by the engine braking) deceleration G due to an increase of the automatic transmission input revolution speed N in the rate of change of the automatic transmission input revolution speed N in d (N in) / dt ( It is determined by the innerr shuttle which is the product of the moment of inertia of the rotating element. The smaller the change in the rate of change d (N in ) / dt, the smaller the change in the deceleration G. Therefore, the continuously variable side ratio i p of the rate of change d (i P) as described above / dt decreasing period and the subtransmission side ratio i sub rate of change d (i sub) of / dt increase period and may overlap the Since the change in the change rate d (N in ) / dt of the automatic transmission input rotational speed N in , which is the sum of the two change rate terms, is suppressed, the change in the deceleration G due to the inertia torque is also suppressed. (Time t33 to t331). In addition, the decrease period of change rate d (i P ) / dt (the second half of the shift of continuously variable transmission mechanism 8) and the increase period of change rate d (i sub ) / dt (the first period of inertia phase of sub transmission mechanism 9) Should be partially overlapping each other. In this embodiment, both periods preferably coincide. That is, instruction continuously variable side ratio i p as the end point of the start point and both periods of both periods coincide respectively (c) is set. Therefore, the said effect can be improved. Note that only one of the start point and the end point of both periods may match.

以上説明したように、第1実施形態にあっては、以下の作用効果を奏する。
(1)自動変速機4(変速機)の変速機コントローラ11(制御装置)であって、
自動変速機4は、
エンジン1(車両の駆動源)と車輪7との間にあり、
変速比を無段階的に変更可能な無段変速機構8と、
ローブレーキL/B、ハイクラッチH/C及びリバースブレーキR/B(複数の締結要素)の締結と解放を切り替えることで変速比を段階的に変更可能な副変速機構9(有段変速機構)とを有し、
変速機コントローラ11は、無段変速機構8及び副変速機構9を変速させて自動変速機4の目標トータルレシオi(o)(目標変速比)を実現する際、副変速機構9のイナーシャ相が開始した後に無段変速機構8の変速が終了するように、無段変速機構8の変速を制御する。
よって、トータルレシオiの変化が連続的となり、車両の駆動力の変化が連続的となるため、運転者の違和感を抑制することができる。
As described above, in the first embodiment, the following effects can be obtained.
(1) The transmission controller 11 (control device) of the automatic transmission 4 (transmission)
The automatic transmission 4 is
Between engine 1 (drive source of vehicle) and wheels 7
A continuously variable transmission mechanism 8 capable of changing the gear ratio steplessly;
Auxiliary transmission mechanism 9 (geared transmission mechanism) that can change the gear ratio in stages by switching between engagement and release of low brake L / B, high clutch H / C and reverse brake R / B (plural fastening elements) Have and
When the transmission controller 11 shifts the stepless transmission mechanism 8 and the auxiliary transmission mechanism 9 to realize the target total ratio i (o) (target gear ratio) of the automatic transmission 4, the inertia phase of the auxiliary transmission mechanism 9 The shifting of the continuously variable transmission mechanism 8 is controlled so that the shifting of the continuously variable transmission mechanism 8 is completed after the start.
Therefore, the change of the total ratio i becomes continuous, and the change of the driving force of the vehicle becomes continuous, so that the driver's discomfort can be suppressed.

(2)エンジン1(駆動源)の側から自動変速機4へ入力されるトルク(無段変速側入力トルクTp_in)が所定のパワーオン判定値Tp_in*(閾値)より大きい状態をパワーオン状態、無段変速側入力トルクTp_inがパワーオン判定値Tp_in*以下である状態をパワーオフ状態とするとき、
変速機コントローラ11(制御装置)は、パワーオフ状態で自動変速機4をダウンシフトさせる際、副変速機構9(有段変速機構)のイナーシャ相が開始した後に無段変速機構8の変速が終了するように、無段変速機構8の変速を制御する。
よって、副変速機構9のイナーシャ相の開始が遅れやすいパワーオフダウンシフト時にも、副変速機構9のイナーシャ相の開始後に、無段変速機構8の変速を終了させることができる。
(2) A state where the torque (continuously variable transmission side input torque T p_in ) input from the engine 1 (drive source) side to the automatic transmission 4 is larger than a predetermined power on determination value T p_in * (threshold) is power on When the state where the continuously variable transmission side input torque Tp_in is equal to or less than the power-on determination value Tp_in * is set as the power-off state,
When downshifting the automatic transmission 4 in the power-off state, the transmission controller 11 (control device) ends the shift of the continuously variable transmission mechanism 8 after the inertia phase of the auxiliary transmission mechanism 9 (stepped transmission mechanism) starts. As described above, the shift control of the continuously variable transmission mechanism 8 is controlled.
Therefore, even in the power off downshift where the start of the inertia phase of the auxiliary transmission mechanism 9 is likely to be delayed, the shift of the stepless transmission mechanism 8 can be ended after the start of the inertia phase of the auxiliary transmission mechanism 9.

(3) 変速機コントローラ11(制御装置)は、上記変速中は、目標無段変速側レシオip(o) (無段変速機構8の目標変速比:変速後の変速比)以下となるように、無段変速機構8の変速比(無段変速側レシオip)を制御する。
よって、副変速側レシオisubの変化開始前に、無段変速側レシオipが目標無段変速側レシオip(o)を超えて最大変速比に達することが抑制されるため、トータルレシオiの変化をより確実に連続的にすることができる。
(3) the transmission controller 11 (controller) during the shifting, the target continuously variable side ratio i p (o) (target gear ratio of the continuously variable transmission mechanism 8: gear ratio after the shift) follows so as to, controlling the gear ratio of the continuously variable transmission mechanism 8 (continuously variable side ratio i p).
Thus, since before starting the change of the subtransmission side ratio i sub, the continuously variable side ratio i p reaches the maximum speed ratio exceeds the target continuously variable side ratio i p (o) is suppressed, total ratio The change of i can be made continuous more reliably.

(4) 変速機コントローラ11(制御装置)は、無段変速機構8の変速の終了時において無段変速機構8の変速比の変化率d(iP)/dtが減少する期間が、副変速機構9(有段変速機構)の変速の開始時において副変速機構9の変速比の変化率d(isub)/dtが増大する期間と重なるように、無段変速機構8の変速を制御する。
よって、イナーシャトルク(自動変速機入力回転数Nin)の変動によるショックを抑制できる。
(4) The transmission controller 11 (control device) controls the speed change ratio d (i P ) / dt of the continuously variable transmission mechanism 8 at the end of the shift of the continuously variable transmission mechanism 8 during the subshift The shift control of the continuously variable transmission mechanism 8 is controlled so as to overlap with the period in which the change ratio d (i sub ) / dt of the gear ratio of the auxiliary transmission mechanism 9 increases at the start of the shift of the mechanism 9 (stepped transmission mechanism). .
Therefore, it is possible to suppress the shock due to the fluctuation of the inertia torque (automatic transmission input rotational speed N in ).

以上、本発明を実施するための形態を実施形態に基づいて説明したが、本発明の具体的な構成は、実施形態に示した構成に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。例えば、駆動源は、エンジン(内燃機関)に限らず、電動機等であってもよい。無段変速機構は、ベルト式に限らず、動力伝達部材としてチェーンがプーリ間に掛け回されたものや、トロイダル式であってもよいし、油圧で駆動されるものに限らず電気的に駆動されるものあってもよい。副変速機構(有段変速機構)は、前進用の変速段として3段以上を有してもよいし、通常の遊星歯車機構を用いてもよいし、ギア比の異なる複数の歯車列で構成される複数の動力伝達経路と、これら動力伝達経路を切り換える摩擦締結要素とによって構成されてもよい。実施形態では、運転者がエンジンブレーキ力を得るためにするセレクトレバー操作として、DレンジからLレンジへの切り替えを例示したが、Mレンジ(マニュアルモード)への切り替え等であってもよい。   As mentioned above, although the form for implementing this invention was demonstrated based on embodiment, the specific structure of this invention is not limited to the structure shown to embodiment, The range which does not deviate from the summary of invention Even if there is a design change or the like, the present invention is included in the present invention. For example, the drive source is not limited to the engine (internal combustion engine), and may be an electric motor or the like. The continuously variable transmission mechanism is not limited to the belt type, and may be a power transmission member in which a chain is wound between pulleys, or may be a toroidal type, or is not limited to one driven by oil pressure and electrically driven. There may be The auxiliary transmission mechanism (stepped transmission mechanism) may have three or more gears as forward gear stages, may use a normal planetary gear mechanism, and is configured by a plurality of gear trains having different gear ratios. It may be constituted by a plurality of power transmission paths, and a frictional engagement element which switches these power transmission paths. In the embodiment, switching from the D range to the L range is exemplified as the select lever operation for the driver to obtain the engine braking force, but switching to the M range (manual mode) or the like may be performed.

1 エンジン(駆動源)
4 自動変速機(変速機)
7 車輪
8 無段変速機構
9 副変速機構(有段変速機構)
11 変速機コントローラ(制御装置)
L/B ローブレーキ(締結要素)
H/C ハイクラッチ(締結要素)
R/B リバースブレーキ(締結要素)
1 Engine (drive source)
4 Automatic transmission (transmission)
7 wheel 8 continuously variable transmission mechanism 9 auxiliary transmission mechanism (stepped transmission mechanism)
11 Transmission controller (control device)
L / B low brake (fastening element)
H / C high clutch (fastening element)
R / B reverse brake (fastening element)

Claims (4)

変速機の制御装置であって、
前記変速機は、
車両の駆動源と車輪との間にあり、
変速比を無段階的に変更可能な無段変速機構と、
複数の締結要素の締結と解放を切り替えることで変速比を段階的に変更可能な有段変速機構と
を有し、
前記制御装置は、前記無段変速機構及び前記有段変速機構を変速させて前記変速機の目標変速比を実現する際、前記有段変速機構のイナーシャ相が開始した後に前記無段変速機構の変速が終了するように、前記無段変速機構の変速を制御する、
変速機の制御装置。
A control device for a transmission,
The transmission is
Between the vehicle's drive source and the wheels,
Continuously variable transmission mechanism that can change gear ratio steplessly,
It has a step change gear mechanism that can change the gear ratio in stages by switching the fastening and releasing of multiple fastening elements,
When the control device shifts the continuously variable transmission mechanism and the stepped transmission mechanism to achieve a target gear ratio of the transmission, the controller performs the stepless transmission mechanism after the inertia phase of the stepped transmission mechanism starts. Control the shifting of the continuously variable transmission mechanism so that the shifting is completed,
Transmission control device.
請求項1に記載の変速機の制御装置において、
前記駆動源の側から前記変速機へ入力されるトルクが所定の閾値より大きい状態をパワーオン状態、前記駆動源の側から前記変速機へ入力されるトルクが前記閾値以下である状態をパワーオフ状態とするとき、
前記制御装置は、前記パワーオフ状態で前記変速機をダウンシフトさせる際、前記有段変速機構のイナーシャ相が開始した後に前記無段変速機構の変速が終了するように、前記無段変速機構の変速を制御する
ことを特徴とする変速機の制御装置。
In the transmission control device according to claim 1,
The state where the torque input from the drive source side to the transmission is greater than a predetermined threshold is a power on state, and the state where the torque input from the drive source side to the transmission is less than the threshold is a power off state When it is in the state,
When downshifting the transmission in the power-off state, the control device is configured such that the shift of the continuously variable transmission mechanism is ended after the inertia phase of the stepped transmission mechanism is started. A control device for a transmission characterized by controlling a shift.
請求項2に記載の変速機の制御装置において、
前記制御装置は、前記変速中は、前記無段変速機構の目標変速比以下となるように、前記無段変速機構の変速比を制御することを特徴とする変速機の制御装置。
In the transmission control device according to claim 2,
A control device for a transmission, wherein the control device controls a transmission gear ratio of the continuously variable transmission mechanism so as to be equal to or less than a target transmission gear ratio of the continuously variable transmission mechanism during the shift.
請求項1ないし3のいずれかに記載の変速機の制御装置において、
前記制御装置は、前記無段変速機構の変速の終了時において前記無段変速機構の変速比の変化率が減少する期間が、前記有段変速機構の変速の開始時において前記有段変速機構の変速比の変化率が増大する期間と重なるように、前記無段変速機構の変速を制御する
ことを特徴とする変速機の制御装置。
In the control device for a transmission according to any one of claims 1 to 3.
The control device is configured such that the period during which the change ratio of the transmission ratio of the continuously variable transmission mechanism decreases at the end of the transmission of the continuously variable transmission mechanism is at the start of the transmission of the stepped transmission mechanism. A control device for a transmission, comprising controlling a shift of the continuously variable transmission mechanism so as to overlap with a period in which a change ratio of a transmission ratio increases.
JP2017218814A 2017-11-14 2017-11-14 Transmission controller Active JP6910732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017218814A JP6910732B2 (en) 2017-11-14 2017-11-14 Transmission controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017218814A JP6910732B2 (en) 2017-11-14 2017-11-14 Transmission controller

Publications (2)

Publication Number Publication Date
JP2019090463A true JP2019090463A (en) 2019-06-13
JP6910732B2 JP6910732B2 (en) 2021-07-28

Family

ID=66836853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017218814A Active JP6910732B2 (en) 2017-11-14 2017-11-14 Transmission controller

Country Status (1)

Country Link
JP (1) JP6910732B2 (en)

Also Published As

Publication number Publication date
JP6910732B2 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
KR101647513B1 (en) Continuously variable transmission and method of controlling the same
JP4774108B2 (en) Control device for automatic transmission
EP2161482B1 (en) Control device for vehicle and control method thereof
KR101669676B1 (en) Control apparatus for automatic transmission
US8180536B2 (en) Automatic transmission control apparatus and method
EP2428710B1 (en) Continuously variable transmission and control method therefore
KR101676036B1 (en) Control apparatus for automatic transmission
KR20110007976A (en) Control apparatus for continuously variable transmission for vehicle
KR20150046123A (en) Continuously variable transmission and control method therefor
US10371259B2 (en) Control device for continuously variable transmission equipped with auxiliary transmission
KR100440849B1 (en) Apparatus and method for controlling gear shift for automatic transmission
KR101533117B1 (en) Shift control apparatus for automatic transmission
JP2002089701A (en) Shift control device of automatic transmission
KR101828724B1 (en) Control device for continuously variable transmission equipped with auxiliary transmission
JP3872640B2 (en) Shift control device for automatic transmission
JP6910732B2 (en) Transmission controller
JP6960537B2 (en) Control device and control method for automatic transmission
JP7246130B2 (en) gearbox controller
JP6535268B2 (en) Control device of automatic transmission and control method of automatic transmission
JPH10131778A (en) Controller for automatic transmission
JP6177215B2 (en) Control device for automatic transmission
JP6500085B2 (en) Control device for continuously variable transmission and control method therefor
JP5977271B2 (en) Continuously variable transmission and control method thereof
JP6780199B2 (en) Control device for automatic transmission
JP3937123B2 (en) Shift control device for automatic transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210706

R150 Certificate of patent or registration of utility model

Ref document number: 6910732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150