JP2019090271A - Management method of verticality of shaft member, and construction method of earth retaining wall - Google Patents

Management method of verticality of shaft member, and construction method of earth retaining wall Download PDF

Info

Publication number
JP2019090271A
JP2019090271A JP2017220719A JP2017220719A JP2019090271A JP 2019090271 A JP2019090271 A JP 2019090271A JP 2017220719 A JP2017220719 A JP 2017220719A JP 2017220719 A JP2017220719 A JP 2017220719A JP 2019090271 A JP2019090271 A JP 2019090271A
Authority
JP
Japan
Prior art keywords
shaft member
verticality
ground
drilling rod
management method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017220719A
Other languages
Japanese (ja)
Other versions
JP6988049B2 (en
Inventor
貴穂 河野
Takao Kono
貴穂 河野
青木 雅路
Masamichi Aoki
雅路 青木
博人 熊谷
Hiroto Kumagai
博人 熊谷
公章 方田
Kimiaki Katada
公章 方田
圭介 永松
Keisuke Nagamatsu
圭介 永松
昭次 山川
Shoji Yamakawa
昭次 山川
光一 豊田
Koichi Toyoda
光一 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2017220719A priority Critical patent/JP6988049B2/en
Publication of JP2019090271A publication Critical patent/JP2019090271A/en
Application granted granted Critical
Publication of JP6988049B2 publication Critical patent/JP6988049B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

To provide a management method of verticality of a shaft member and a construction method of an earth retaining wall which can improve verticality of a hole formed by a shaft member.SOLUTION: A management method of verticality of a shaft member includes a step of making a drilling rod 10 as a shaft member inserted into a ground by a pile driver 16 vertical. A construction method of an earth retaining wall includes: a preceding drilling step of forming a plurality of reference holes 22A to 22E in the ground by the drilling rod 10 as the shaft member by using the management method of verticality of the shaft member; and an earth retaining wall construction step of forming continuous holes whose parts overlap with each other along the plurality of reference holes 22A to 22E and injecting cement milk into the continuous holes.SELECTED DRAWING: Figure 3

Description

本発明は、軸部材の鉛直度管理方法、及び軸部材の鉛直度管理方法を用いた山留め壁の構築方法に関する。   The present invention relates to a method of managing the verticality of a shaft member and a method of constructing a pile wall using the method of managing the verticality of a shaft member.

地盤に形成された掘削孔にセメントミルクを注入することによって構築された山留め壁が知られている。近年、構造物の大深度化に伴って構造物の周囲に構築される山留め壁も大深度化しており、このため地盤深くまで掘削孔を形成する必要がある。しかし、掘削孔の深さが深くなるほど掘削孔の鉛直度を保つことが難しくなり、山留め壁の構築精度が低下する虞があった。   A dam wall constructed by injecting cement milk into a drilled hole formed in the ground is known. In recent years, along with the increase in the depth of structures, the retaining walls built around the structures have also been increased in depth, and for this reason it is necessary to form a drill hole to the ground deep. However, as the depth of the drilled hole increases, it becomes more difficult to maintain the verticality of the drilled hole, and there is a possibility that the construction accuracy of the retaining wall may be lowered.

この問題を解決するため、例えば特許文献1には、掘削孔に預けられた掘削ロッドの注入管に傾斜計を挿入し、傾斜計によって掘削孔の鉛直度を計測しながら掘削を行う掘削精度計測方法が開示されている。   In order to solve this problem, for example, according to Patent Document 1, an inclinometer is inserted into the injection pipe of the drilling rod deposited in the drilling hole, and the drilling accuracy is measured while the verticality of the drilling hole is measured by the inclinometer A method is disclosed.

特許第5912613号公報Patent No. 5912613 gazette

しかし、特許文献1に開示されている掘削精度測定方法では、掘削ロッドによる掘削後に掘削孔の鉛直度を計測するため、掘削ロッドの鉛直度を管理しながら掘削を行うことはできなかった。   However, in the drilling accuracy measurement method disclosed in Patent Document 1, it is not possible to perform drilling while managing the verticality of the drilling rod because the verticality of the drilling hole is measured after drilling by the drilling rod.

本発明は上記事実に鑑み、軸部材によって形成される孔の鉛直度を高めることができる軸部材の鉛直度管理方法及び山留め壁の構築方法を提供することを目的とする。   An object of the present invention is to provide a method of managing the degree of verticality of a shaft member and a method of constructing a retaining wall in which the degree of verticality of a hole formed by the shaft member can be increased.

請求項1に記載の軸部材の鉛直度管理方法は、杭打ち装置により地中へ挿入される軸部材を鉛直とする工程を有する。   The method for managing the degree of verticality of the shaft member according to claim 1 has a step of making the shaft member inserted into the ground by the piling apparatus vertical.

上記構成によれば、軸部材を鉛直とすることで、掘削後の孔の鉛直度を計測することなく、軸部材によって形成される孔の鉛直度を高めることができる。   According to the above configuration, by making the shaft member vertical, it is possible to increase the degree of verticality of the hole formed by the shaft member without measuring the degree of verticality of the hole after excavation.

請求項2に記載の軸部材の鉛直度管理方法は、請求項1に記載の軸部材の鉛直度管理方法であって、前記軸部材を鉛直とする工程は、前記軸部材の地上部分における上下2点の座標を、前記杭打ち装置から離れた地上に設置された少なくとも1つの光学式測定装置によってそれぞれ計測する座標測定工程と、測定された前記座標から、上下2点の平面2軸上のズレ量を算出するズレ算出工程と、前記平面2軸上のズレ量が許容範囲内となるように、前記杭打ち装置を操作して前記軸部材の鉛直度を修正する鉛直度修正工程と、を有する。   The method for managing the verticality of the shaft member according to claim 2 is the method for managing the verticality of the shaft member according to claim 1, wherein in the step of making the shaft member vertical, the upper and lower portions of the above-ground portion of the shaft member A coordinate measuring step of measuring the coordinates of two points by at least one optical measuring device installed on the ground away from the pile driving device, and the measured coordinates on two planar upper and lower two axes A deviation calculating step of calculating an amount of deviation; and a verticality correcting step of correcting the verticalness of the shaft member by operating the pile driving device such that the amounts of deviation on the two planar planes fall within an allowable range; Have.

上記構成によれば、軸部材の上下2点の平面2軸上のズレ量を算出して軸部材の鉛直度を修正することで、軸部材によって形成される孔の鉛直度を高めることができる。また、少なくとも1つの光学式測定装置によって杭打ち装置から離れた場所で軸部材の位置を測定することができるため、軸部材の鉛直度を容易に測定することができる。   According to the above configuration, by calculating the amount of deviation of the upper and lower two points on the planar two axes of the shaft member and correcting the verticality of the shaft member, the verticality of the hole formed by the shaft member can be increased. . In addition, since the position of the shaft member can be measured at a place away from the stake driving device by at least one optical measurement device, the verticality of the shaft member can be easily measured.

請求項3に記載の軸部材の鉛直度管理方法は、請求項2に記載の軸部材の鉛直度管理方法であって、前記軸部材が地中へ一定の深度挿入される毎に、前記座標測定工程、前記ズレ算出工程、及び前記鉛直度修正工程を実施する。   The verticality management method of a shaft member according to claim 3 is the verticalness management method of a shaft member according to claim 2, wherein the coordinate is inserted every time the shaft member is inserted into the ground at a constant depth. The measurement process, the deviation calculation process, and the verticality correction process are performed.

上記構成によれば、軸部材が地中へ一定の深度挿入される毎に、座標測定工程、ズレ算出工程、及び鉛直度修正工程を繰り返すことで、軸部材の鉛直度をより高めることができる。   According to the above configuration, it is possible to further increase the verticality of the shaft member by repeating the coordinate measurement process, the deviation calculation process, and the verticality correction process each time the shaft member is inserted into the ground at a constant depth. .

請求項4に記載の軸部材の鉛直度管理方法は、請求項1に記載の軸部材の鉛直度管理方法であって、前記軸部材を鉛直とする工程は、地下階を有する既存建物の地下部分に下部ガイド部材を設置する下部ガイド設置工程と、前記既存建物の地上部分に上部ガイド部材を設置する上部ガイド設置工程と、前記下部ガイド部材と前記上部ガイド部材の平面2軸上の位置を合わせる位置合わせ工程と、前記上部ガイド部材及び前記下部ガイド部材に沿って前記軸部材を建込む軸部材建込み工程と、を有する。   The method for managing the verticality of the shaft member according to claim 4 is the method for managing the verticality of the shaft member according to claim 1, wherein in the step of making the shaft member vertical, the underground of the existing building having the underground floor is The lower guide installation step of installing the lower guide member in the part, the upper guide installation step of installing the upper guide member on the ground part of the existing building, and the positions of the lower guide member and the upper guide member on two planar surfaces It has the alignment process to align, and the axial member erection process of erecting the axial member along the said upper guide member and the said lower guide member.

上記構成によれば、平面2軸上の位置が合わせられた上下一対のガイド部材に沿って軸部材を建込むため、軸部材、及び軸部材によって形成される孔の鉛直度を高めることができる。   According to the above configuration, since the shaft member is erected along the pair of upper and lower guide members aligned on two flat planes, the verticality of the hole formed by the shaft member and the shaft member can be increased. .

ここで、下部ガイド部材が既存建物の地下部分に設置され、上部ガイド部材が既存建物の地上部分に設置されている。このため、特に光学式測定装置によって座標を測定することができない地下部分において、軸部材、及び軸部材によって形成される孔の鉛直度を高めることができる。   Here, the lower guide member is installed in the underground part of the existing building, and the upper guide member is installed on the ground part of the existing building. For this reason, it is possible to increase the verticality of the shaft member and the hole formed by the shaft member, particularly in the underground part where the coordinates can not be measured by the optical measurement device.

請求項5に記載の山留め壁の構築方法は、請求項1〜4のいずれか1項に記載の軸部材の鉛直度管理方法を用い、前記軸部材としての削孔ロッドによって地中に複数の基準孔を形成する先行削孔工程と、一部が重複して連続する連続孔を複数の前記基準孔に沿って形成し、前記連続孔にセメントミルクを注入する山留め壁構築工程と、を有する。   The construction method of the piled wall according to claim 5 uses the method of managing the degree of verticality of the shaft member according to any one of claims 1 to 4 and allows a plurality of drilling rods as the shaft member to enter the ground. It has a pre-drilling step of forming a reference hole, and a piled wall construction step of forming a continuous continuous hole partially overlapping along a plurality of the reference holes and injecting cement milk into the continuous holes. .

上記構成によれば、先行削孔工程で基準孔を形成する際に、請求項1〜4のいずれか1項に記載の軸部材の鉛直度管理方法を用いるため、基準孔の鉛直度を高めることにより、基準孔に沿って構築された山留め壁の構築精度を高めることができる。   According to the above configuration, when the reference hole is formed in the preliminary drilling step, the method of managing the degree of verticality of the shaft member according to any one of claims 1 to 4 is used. By this, it is possible to improve the construction accuracy of the retaining wall constructed along the reference hole.

本発明によれば、軸部材によって形成される孔の鉛直度を高めることができる。   According to the present invention, the verticality of the hole formed by the shaft member can be increased.

(A)〜(C)は第1実施形態の軸部材の鉛直度管理方法における軸部材の地中への挿入手順を示す工程図である。(A)-(C) is process drawing which shows the insertion procedure to the earth of the shaft member in the perpendicularity management method of the shaft member of 1st Embodiment. (A)は座標測定工程における軸部材を示す立面図であり、(B)はその平面図である。(A) is an elevation view which shows the shaft member in a coordinate measurement process, (B) is the top view. (A)は第1実施形態の軸部材の鉛直度管理方法を用いた先行削孔の手順を示す立面図であり、(B)はその平面図である。(A) is an elevation view which shows the procedure of the prior drilling using the perpendicularity management method of the axial member of 1st Embodiment, (B) is the top view. (A)は第1実施形態の軸部材の鉛直度管理方法を用いた山留め壁の構築手順を示す立面図であり、(B)はその平面図である。(A) is an elevation view which shows the construction | assembly procedure of the retaining wall using the perpendicularity management method of the axial member of 1st Embodiment, (B) is the top view. 第2実施形態の軸部材の鉛直度管理方法を示す立面図である。It is an elevation view which shows the perpendicularity management method of the shaft member of 2nd Embodiment. (A)、(B)は変形例の軸部材の鉛直度管理方法を示す立面図である。(A) and (B) are elevations which show the perpendicularity management method of the shaft member of a modification.

<第1実施形態>
以下、本発明の第1実施形態における軸部材の鉛直度管理方法について、図1、図2を用いて説明する。
First Embodiment
Hereinafter, a method of managing the degree of verticality of the shaft member in the first embodiment of the present invention will be described with reference to FIGS. 1 and 2.

(構造)
図1(A)〜図1(C)に示すように、本実施形態で用いられる軸部材は、一例として地盤を掘削して孔を形成する削孔ロッド10とされている。削孔ロッド10は、ロッド本体12と、ロッド本体12の外周面に螺旋状に取付けられたスクリュー翼14と、を有している。
(Construction)
As shown to FIG. 1 (A)-FIG.1 (C), the shaft member used by this embodiment is taken as the drilling rod 10 which excavates a ground and forms a hole as an example. The drilling rod 10 has a rod body 12 and a screw wing 14 spirally attached to the outer peripheral surface of the rod body 12.

地上には、削孔ロッド10を地中に挿入する杭打ち装置16が設置されている。杭打ち装置16は一般的なオーガ機やパイルドライバであり、杭打ち装置16によって削孔ロッド10の上端部及び下部をそれぞれ支持しつつ削孔ロッド10を回転させることにより、削孔ロッド10の下端に設けられた図示しないオーガヘッドで地盤を掘削し、地中に孔18を形成する。   On the ground, a piling apparatus 16 for inserting the drilling rod 10 into the ground is installed. The pile driving device 16 is a general auger or pile driver, and by rotating the drilling rod 10 while supporting the upper end portion and the lower portion of the drilling rod 10 by the pile driving device 16, The ground is excavated with an auger head (not shown) provided at the lower end to form a hole 18 in the ground.

また、地上における杭打ち装置16から離れた場所には、1つの光学式測定装置20が設置されている。光学式測定装置20は、一例としてノンプリズム光波距離計であり、レーザ光を対象物である削孔ロッド10に照射して反射光を受光することにより、光学式測定装置20と削孔ロッド10との間の距離、すなわち削孔ロッド10の位置が測定可能とされている。   In addition, one optical measuring device 20 is installed at a location away from the stake driving device 16 on the ground. The optical measuring device 20 is, for example, a non-prism optical distance meter, and emits laser light to the drilling rod 10 as an object to receive reflected light, thereby the optical measuring device 20 and the drilling rod 10 And the position of the drilling rod 10 can be measured.

(軸部材の鉛直度管理方法)
本実施形態の軸部材の鉛直度管理方法は、杭打ち装置16により地中へ挿入される削孔ロッド10を鉛直とする工程を有している。また、削孔ロッド10を鉛直とする工程は、座標測定工程と、ズレ算出工程と、鉛直度修正工程と、を有している。
(How to manage verticality of shaft members)
The method of managing the degree of verticality of the shaft member according to the present embodiment includes the step of making the drilling rod 10 inserted into the ground by the pile driving device 16 vertical. Moreover, the process which makes the drilling rod 10 vertical has a coordinate measurement process, a deviation calculation process, and a perpendicularity correction process.

まず、座標測定工程では、図1(A)に示すように、光学式測定装置20から削孔ロッド10の地上部分における上下2点に向かってレーザ光L1、L2をそれぞれ照射することで、削孔ロッド10の地上部分における上下2点の座標をそれぞれ計測する。なお、削孔ロッド10の上下2点の位置は、なるべく離れていることが好ましい。   First, in the coordinate measurement step, as shown in FIG. 1A, the laser beam L1 and L2 are respectively irradiated from the optical measurement device 20 toward upper and lower two points on the ground portion of the drilling rod 10 to cut Coordinates of upper and lower two points on the ground portion of the hole rod 10 are respectively measured. In addition, it is preferable that the positions of two upper and lower points of the drilling rod 10 be as far apart as possible.

ここで、図2(A)及び図2(B)を用いて削孔ロッド10の座標について詳しく説明する。なお、図2(A)及び図2(B)では、削孔ロッド10を円柱形状として模式的に示す。   Here, the coordinates of the drilling rod 10 will be described in detail with reference to FIGS. 2 (A) and 2 (B). 2 (A) and 2 (B), the drilling rod 10 is schematically shown as a cylindrical shape.

図2に示すように、削孔ロッド10を初期位置に設置した場合、すなわち挿入予定位置に鉛直に設置した場合における削孔ロッド10の平面2軸上の中心座標の位置を、光学式測定装置20によって予め測定しておき、その座標を基準点(x0、y0)とする。   As shown in FIG. 2, when the drilling rod 10 is installed at the initial position, that is, when it is installed vertically at the planned insertion position, the position of the center coordinates on two planar axes of the drilling rod 10 is measured by an optical measuring device It measures beforehand by 20 and sets the coordinate as a reference point (x0, y0).

そして、削孔ロッド10の地中への挿入前及び挿入中において、光学式測定装置20によって削孔ロッド10の高さz1、z2の上下2点における平面2軸上の表面座標(x1、y1)、(x2、y2)をそれぞれ測定し、その表面座標を削孔ロッド10の中心座標とする(近似する)。   Then, before and during the insertion of the drilling rod 10 into the ground, the surface measurement (x1, y1) of the drilling rod 10 at two points above and below the heights z1 and z2 of the drilling rod 10 by the optical measuring device 20 And (x2, y2) are respectively measured, and their surface coordinates are made (approximated) as the center coordinates of the drilling rod 10.

次に、ズレ算出工程では、上述した座標測定工程で測定された削孔ロッド10の座標(中心座標)から、高さz1、z2の上下2点における平面2軸上のズレ量(Δx、Δy)を算出する。   Next, in the deviation calculation step, from the coordinates (center coordinates) of the drilling rod 10 measured in the above-described coordinate measurement step, the amounts of deviation (Δx, Δy) on two planar planes at the upper and lower two points of the heights z1 and z2. Calculate).

なお、削孔ロッド10の高さz1、z2の上下2点における平面2軸上のズレ量(Δx、Δy)を算出することにより、削孔ロッド10の傾きθ(鉛直度)を算出することができる。また、削孔ロッド10の座標(中心座標)に基き、基準点(x0、y0)からのズレ量を算出することもできる。   In addition, the inclination θ (vertical degree) of the drilling rod 10 is calculated by calculating the amount of deviation (Δx, Δy) on the planar two axes at two upper and lower points of the heights z1 and z2 of the drilling rod 10 Can. Further, the amount of deviation from the reference point (x0, y0) can also be calculated based on the coordinates (center coordinates) of the drilling rod 10.

そして、鉛直度修正工程では、上述したズレ算出工程で算出した平面2軸上のズレ量(Δx、Δy)が許容範囲内となるように、図1(A)に示す杭打ち装置16を操作して削孔ロッド10の鉛直度を修正する。   Then, in the verticality correction step, the pile driving device 16 shown in FIG. 1A is operated such that the amounts of deviation (Δx, Δy) on the two planar planes calculated in the above-described deviation calculation step fall within the allowable range. And correct the verticality of the drilling rod 10.

上述した各工程により、削孔ロッド10の鉛直度を管理しつつ、削孔ロッド10を地中へ挿入していく。なお、図1(A)〜図1(C)に示すように、座標測定工程、ズレ算出工程、及び鉛直度修正工程は、削孔ロッド10が地中へ一定の深度挿入される毎に繰り返し実施される。   The drilling rod 10 is inserted into the ground while controlling the verticality of the drilling rod 10 by the above-described steps. In addition, as shown to FIG. 1 (A)-FIG. 1 (C), a coordinate measurement process, a shift calculation process, and a perpendicularity correction process are repeated every time the drilling rod 10 is inserted in the earth to a fixed depth. To be implemented.

(山留め壁の構築方法)
次に、本実施形態の軸部材の鉛直度管理方法を用いて山留め壁を構築する工程について、図3及び図4を用いて説明する。
(How to build a retaining wall)
Next, the process of constructing a mountain retaining wall using the vertical degree management method of the shaft member of this embodiment is demonstrated using FIG.3 and FIG.4.

山留め壁を構築する場合、まず、図3(A)及び図3(B)に示すように、上述した鉛直度管理方法を用いて山留め壁の構築予定箇所に複数の基準孔22A〜22Eを形成する先行削孔工程を行う。具体的には、光学式測定装置20を用いて軸部材としての削孔ロッド10の鉛直度を管理しながら、削孔ロッド10によって複数の基準孔22A〜22Eを地中に互いに間隔を空けて形成する。   When constructing a retaining wall, first, as shown in FIG. 3 (A) and FIG. 3 (B), a plurality of reference holes 22A to 22E are formed in the planned building portion of the retaining wall using the above-mentioned verticality control method Perform the prior drilling process. Specifically, while managing the verticality of the drilling rod 10 as the shaft member using the optical measuring device 20, the drilling rod 10 separates a plurality of reference holes 22A to 22E from each other in the ground. Form.

先行削孔工程で地中に基準孔22A〜22Eを予め形成しておくことで、山留め壁の構築予定箇所の地盤を緩めるとともに、基準孔22A〜22Eを山留め壁を構築する際のガイドとすることが可能となる。   By forming the reference holes 22A to 22E in advance in the ground in the preliminary drilling process, the ground at the planned construction site of the retaining wall is loosened and the reference holes 22A to 22E serve as guides for constructing the retaining wall. It becomes possible.

次に、図4(A)及び図4(B)に示すように、杭打ち装置26に支持された軸部材としての3本の削孔ロッド24A〜24Cを用い、上述した軸部材の鉛直度管理方法を用いて山留め壁構築工程を行う。   Next, as shown in FIGS. 4A and 4B, using the three drilling rods 24A to 24C as shaft members supported by the pile driving device 26, the verticality of the above-described shaft members is obtained. We will use the management method to carry out the pile wall construction process.

杭打ち装置26は、3軸オーガ機又は3点式パイルドライバであり、杭打ち装置26によって3本の削孔ロッド24A〜24Cを同時に回転させることにより、地中に壁状の連続孔28を形成する。   The pile driving device 26 is a three-axis auger machine or a three-point pile driver, and by rotating the three drilling rods 24A to 24C simultaneously by the pile driving device 26, the wall-like continuous hole 28 in the ground is obtained. Form.

具体的には、3本の削孔ロッド24A〜24Cのうち例えば左右2本の削孔ロッド24A、24Cについて、光学式測定装置20を用いて鉛直度を管理しながら、3本の削孔ロッド24A〜24Cによって地盤を掘削する。   Specifically, for example, of the two drilling rods 24A to 24C of the three drilling rods 24A to 24C, the three drilling rods while controlling the verticality using the optical measuring device 20. Dig the ground with 24A-24C.

このとき、図4(B)に示すように、まず、基準孔22A及び22Bに沿って実線で示す連続孔28を形成し、基準孔22C及び22Dに沿って連続孔28に対して間隔を空けて破線で示す連続孔30を形成する。その後、連続孔28、30とラップするように、基準孔22B及び22Cに沿って二点鎖線で示す連続孔32を形成することで、一部が重複して連続する連続孔28、30、32を形成する。   At this time, as shown in FIG. 4B, first, continuous holes 28 shown by solid lines are formed along the reference holes 22A and 22B, and intervals are made to the continuous holes 28 along the reference holes 22C and 22D. The continuous hole 30 shown by the broken line is formed. Thereafter, by forming a continuous hole 32 indicated by a two-dot chain line along the reference holes 22B and 22C so as to overlap with the continuous holes 28 and 30, continuous holes 28 30, 32 which are partially continuous and continuous are formed. Form

また、連続孔28、30、32にセメントミルクを注入し、掘削土とセメントミルクとを混合撹拌することにより、連続孔28、30、32内に山留め壁を構築する。なお、上記手順は一例であり、例えば連続孔28、30、32内に山留め壁の芯材として図示しないH形鋼等を挿入する工程等、他の手順が含まれていても構わない。   Also, cement milk is injected into the continuous holes 28, 30, 32 and mixing and stirring of the excavated soil and cement milk is performed to construct a retaining wall in the continuous holes 28, 30, 32. The above procedure is an example, and other procedures may be included, such as a process of inserting an H-shaped steel (not shown) or the like as a core material of the retaining wall into the continuous holes 28, 30, 32.

(作用及び効果)
本実施形態によれば、座標測定工程において光学式測定装置20によって削孔ロッド10の地上部分における上下2点の座標をそれぞれ計測し、ズレ算出工程において上下2点の平面2軸上のズレ量を算出し、鉛直度修正工程において平面2軸上のズレ量が許容範囲内となるように鉛直度を修正している。
(Action and effect)
According to the present embodiment, the coordinates of the upper and lower two points on the ground portion of the drilling rod 10 are measured by the optical measuring device 20 in the coordinate measuring step, and the amount of deviation on the two planar upper and lower points in the deviation calculation In the step of correcting the verticality, the verticality is corrected so that the amount of deviation on two planar axes falls within the allowable range.

上述の各工程により削孔ロッド10の鉛直度を管理しつつ、削孔ロッド10を地中に挿入することで、削孔ロッド10の鉛直度を高めることができ、削孔ロッド10によって形成される孔18の鉛直度を高めることができる。   The verticality of the drilling rod 10 can be increased by inserting the drilling rod 10 into the ground while controlling the verticality of the drilling rod 10 by the above-described steps, and the drilling rod 10 is formed Verticality of the hole 18 can be increased.

特に本実施形態では、削孔ロッド10の上下2点における平面2軸上の座標(中心座標)をそれぞれ測定するため、削孔ロッド10の傾きθ(鉛直度)を算出することができるだけでなく、基準点(x0、y0)からのズレ量を算出することもできる。これにより、杭打ち装置16を操作して削孔ロッド10の挿入位置を初期位置(挿入予定位置)に修正することが可能となる。   In particular, in the present embodiment, in order to measure the coordinates (center coordinates) on planar two axes at two upper and lower points of the drilling rod 10, not only it is possible to calculate the inclination θ (vertical degree) of the drilling rod 10 The deviation amount from the reference point (x0, y0) can also be calculated. Thereby, it becomes possible to operate the stake driving device 16 and to correct the insertion position of the drilling rod 10 to the initial position (predetermined insertion position).

また、座標測定工程において、1つの光学式測定装置20によって杭打ち装置16から離れた場所で削孔ロッド10の位置を測定することができるため、削孔ロッド10の鉛直度を容易に測定することができる。   Further, in the coordinate measurement step, since the position of the drilling rod 10 can be measured at a place away from the pile driving device 16 by one optical measuring device 20, the verticality of the drilling rod 10 is easily measured. be able to.

さらに、本実施形態の鉛直度管理方法によれば、削孔ロッド10が地中へ一定の深度挿入される毎に、座標測定工程、ズレ算出工程、及び鉛直度修正工程が繰り返し実施される。このため、各工程を1度のみ実施する方法と比較して、削孔ロッド10の鉛直度をより高めることができる。   Furthermore, according to the perpendicularity management method of the present embodiment, the coordinate measurement process, the deviation calculation process, and the verticality correction process are repeatedly performed each time the drilling rod 10 is inserted into the ground at a constant depth. For this reason, compared with the method of implementing each process only once, the perpendicularity of drilling rod 10 can be raised more.

また、本実施形態の山留め壁の構築方法によれば、先行削孔工程において削孔ロッド10の鉛直度を管理しつつ地中に複数の基準孔22A〜22Eを形成し、山留め壁構築工程において基準孔22A〜22Eに沿って連続孔28、30、32を形成している。   Further, according to the method for constructing a retaining wall of the present embodiment, a plurality of reference holes 22A to 22E are formed in the ground while managing the verticality of the drilling rod 10 in the preliminary drilling step, and The continuous holes 28, 30, 32 are formed along the reference holes 22A to 22E.

これにより、基準孔22A〜22Eを形成する際に削孔ロッド10の鉛直度を管理することで、基準孔22A〜22Eの鉛直度を高めることができ、基準孔22A〜22Eに沿って構築された山留め壁の構築精度を高めることができる。   Thereby, when forming the reference holes 22A to 22E, the verticalness of the reference holes 22A to 22E can be increased by managing the vertical degree of the drilling rod 10, and the construction is performed along the reference holes 22A to 22E. It is possible to improve the construction accuracy of the retaining wall.

<第2実施形態>
次に、本発明の第2実施形態における軸部材の鉛直度管理方法について、図5を用いて説明する。なお、第1実施形態と同様の構成については、同じ符号を付して説明を省略する。
Second Embodiment
Next, a method of managing the degree of verticality of the shaft member in the second embodiment of the present invention will be described with reference to FIG. In addition, about the structure similar to 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

(構造)
図5に示すように、本実施形態では、既存建物38の地下階のみが残されており、その地上部分に杭打ち装置16が設置されている。本実施形態の軸部材としての削孔ロッド40は、第1実施形態の削孔ロッド10と同一の構成とされており、杭打ち装置16によって支持され、既存建物38の地下底版38Aを貫通して地下底版38Aの下部の地中に挿入されている。
(Construction)
As shown in FIG. 5, in the present embodiment, only the basement floor of the existing building 38 is left, and the piling apparatus 16 is installed on the above-ground part. The drilling rod 40 as the shaft member of the present embodiment has the same configuration as the drilling rod 10 of the first embodiment, is supported by the piling apparatus 16, and penetrates the underground floor slab 38A of the existing building 38. Is inserted into the ground in the lower part of the underground plate 38A.

また、削孔ロッド40の周囲には、上部ガイド部材42A及び下部ガイド部材42Bがそれぞれ設けられている。上部ガイド部材42A及び下部ガイド部材42Bは、高さが1.5m程度の円筒状の部材であり、既存建物38の地上部分に上部ガイド部材42A、既存建物38の地下部分に下部ガイド部材42Bがそれぞれ設置されている。   In addition, an upper guide member 42A and a lower guide member 42B are provided around the drilling rod 40, respectively. The upper guide member 42A and the lower guide member 42B are cylindrical members having a height of about 1.5 m, and the upper guide member 42A is located above the existing building 38 and the lower guide member 42B is located below the existing building 38. Each is installed.

(軸部材の鉛直度管理方法)
本実施形態の軸部材の鉛直度管理方法は、杭打ち装置16により地中へ挿入される削孔ロッド40を鉛直とする工程を有している。また、削孔ロッド40を鉛直とする工程は、下部ガイド設置工程と、上部ガイド設置工程と、位置合わせ工程と、軸部材建込み工程と、を有している。
(How to manage verticality of shaft members)
The method of managing the degree of verticality of the shaft member according to the present embodiment includes the step of making the drilling rod 40 inserted into the ground by the pile driving device 16 vertical. Moreover, the process which makes the drilling rod 40 vertical has a lower guide installation process, an upper guide installation process, an alignment process, and a shaft member insertion process.

まず、下部ガイド設置工程では、地下底版38A上に図示しない一対の鋼材を設置し、一対の鋼材間に下部ガイド部材42Bを載置する。また、地下底版38A及び鋼材の下部ガイド設置予定位置にマーキング(墨出し)を行っておく。   First, in the lower guide installation step, a pair of steel materials (not shown) is installed on the underground floor plate 38A, and the lower guide member 42B is placed between the steel materials. In addition, marking (marking out) is performed on the lower floor guide plate 38A and the lower guide installation planned position of the steel material.

次に、上部ガイド設置工程では、下部ガイド設置工程と同様に、地上部分に図示しない一対の鋼材を設置し、一対の鋼材間に上部ガイド部材42Aを載置する。また、地上部分及び鋼材における下部ガイド設置予定位置のマーキングに対応する位置に、マーキング(墨出し)を行っておく。   Next, in the upper guide installation step, similarly to the lower guide installation step, a pair of steel members (not shown) is installed on the ground portion, and the upper guide member 42A is placed between the pair of steel members. In addition, marking (marking out) is performed on the ground portion and the position corresponding to the marking on the planned position of the lower guide in the steel material.

そして、位置合わせ工程では、マーキングの位置に従って上部ガイド部材42A及び下部ガイド部材42Bの平面2軸上の位置を合わせ、固定具によって鋼材上に上部ガイド部材42A及び下部ガイド部材42Bをそれぞれ固定する。   Then, in the alignment step, the positions of the upper guide member 42A and the lower guide member 42B on the flat two axes are aligned according to the position of the marking, and the upper guide member 42A and the lower guide member 42B are fixed on the steel by the fixing tool.

その後、軸部材建込み工程では、位置合わせされた上部ガイド部材42A及び下部ガイド部材42B内に削孔ロッド40を挿入することで、上部ガイド部材42A及び下部ガイド部材42Bに沿って削孔ロッド40を地中に建込み、地中に孔44を形成する。   Thereafter, in the shaft member assembling step, the drilling rod 40 is inserted into the aligned upper guide member 42A and lower guide member 42B, whereby the drilling rod 40 along the upper guide member 42A and the lower guide member 42B. Into the ground and form holes 44 in the ground.

なお、第1実施形態と同様に、削孔ロッド40によって孔44を複数形成し、複数の孔44を基準孔として基準孔に沿って図示しない連続孔を形成することで、地下底版38Aの下部に山留め壁を構築することが可能である。   As in the first embodiment, a plurality of holes 44 are formed by the drilling rod 40, and a plurality of holes 44 are used as reference holes to form continuous holes (not shown) along the reference holes, whereby the lower portion of the underground bottom plate 38A is formed. It is possible to construct a retaining wall.

(作用及び効果)
本実施形態によれば、下部ガイド設置工程、上部ガイド設置工程、及び位置合わせ工程によって平面2軸上の位置が合わせられた上部ガイド部材42A及び下部ガイド部材42Bを設置している。
(Action and effect)
According to the present embodiment, the upper guide member 42A and the lower guide member 42B whose positions on the flat two axes are aligned in the lower guide installation step, the upper guide installation step, and the alignment step are installed.

また、上部ガイド部材42A及び下部ガイド部材42Bに沿って削孔ロッド40を建込むことで、地中に孔44を形成している。このため、削孔ロッド40の鉛直度、及び削孔ロッド40によって形成された孔44の鉛直度を高めることができる。   Further, the hole 44 is formed in the ground by erecting the drilling rod 40 along the upper guide member 42A and the lower guide member 42B. Therefore, the verticality of the drilling rod 40 and the verticality of the hole 44 formed by the drilling rod 40 can be increased.

特に本実施形態のように、既存建物38の地下底版38Aの下部に孔44を形成する場合、地上に設置された光学式測定装置のレーザ光を地下底版38A上(孔44の上端部)に照射することができないため、第1実施形態のような光学式測定装置20を用いた鉛直度管理方法をそのまま適用することが困難である。   Particularly when the hole 44 is formed in the lower part of the underground floor plate 38A of the existing building 38 as in the present embodiment, the laser light of the optical measuring device installed on the ground is on the underground floor plate 38A (upper end of the hole 44). Since irradiation can not be performed, it is difficult to directly apply the verticality management method using the optical measurement device 20 as in the first embodiment.

ここで、本実施形態によれば、上部ガイド部材42A及び下部ガイド部材42Bに沿って削孔ロッド40を建込むことで、光学式測定装置を用いずに削孔ロッド40の鉛直度を高めることが可能となる。すなわち、光学式測定装置のレーザ光を軸部材の上下2点に照射することが困難な現場での軸部材の鉛直度管理に、特に有用な方法となる。   Here, according to the present embodiment, by erecting the drilling rod 40 along the upper guide member 42A and the lower guide member 42B, the verticality of the drilling rod 40 can be increased without using the optical measuring device. Is possible. That is, it is a particularly useful method for managing the degree of verticality of the shaft member at a site where it is difficult to irradiate the upper and lower two points of the shaft member with the laser beam of the optical measuring device.

<その他の実施形態>
以上、本発明について第1、第2実施形態を説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能である。また、第1、第2実施形態の構成は適宜組み合わせることが可能である。
<Other Embodiments>
The first and second embodiments of the present invention have been described above, but the present invention is not limited to such embodiments, and various other embodiments are possible within the scope of the present invention. The configurations of the first and second embodiments can be combined as appropriate.

例えば、第1実施形態では、光学式測定装置20を用いて削孔ロッド10の鉛直度管理を行い、第2実施形態では、上部ガイド部材42A及び下部ガイド部材42Bを用いて削孔ロッド40の鉛直度管理を行っていた。しかし、図6(A)及び図6(B)に示すように、光学式測定装置とガイド部材とを併用して削孔ロッドの鉛直度管理を行ってもよい。   For example, in the first embodiment, the verticality management of the drilling rod 10 is performed using the optical measuring device 20, and in the second embodiment, the drilling guide rod 40 is manufactured using the upper guide member 42A and the lower guide member 42B. I was managing verticality. However, as shown in FIG. 6 (A) and FIG. 6 (B), the perpendicularity management of the drilling rod may be performed by using the optical measuring device and the guide member in combination.

具体的には、図6(A)に示すように、既存建物48の地下底版48A上にガイド部材50を設置し、地上に光学式測定装置52を設置してもよい。又は図6(B)に示すように、既存建物58の地下底版58A上に光学式測定装置60を設置し、地上にガイド部材62を設置してもよい。   Specifically, as shown in FIG. 6A, the guide member 50 may be installed on the underground floor plate 48A of the existing building 48, and the optical measurement device 52 may be installed on the ground. Or as shown to FIG. 6 (B), the optical measurement apparatus 60 may be installed on the underground floor plate 58A of the existing building 58, and the guide member 62 may be installed on the ground.

上記構成によれば、ガイド部材50、62によって削孔ロッド70の上端及び下端の一方を位置決めしつつ、光学式測定装置52、60によって削孔ロッド70の上端及び下端の他方の位置を測定することができる。これにより、削孔ロッド70の上端及び下端の平面2軸上のズレ量を算出し、ズレ量が許容範囲内となるように鉛直度を修正することで、削孔ロッド70の鉛直度、及び削孔ロッド70によって形成された孔72の鉛直度を高めることができる。   According to the above-mentioned configuration, while one of the upper end and the lower end of the drilling rod 70 is positioned by the guide members 50, 62, the other position of the upper end and the lower end of the drilling rod 70 is measured by the optical measuring device 52, 60. be able to. Thereby, the amount of deviation on the planar two axes of the upper end and the lower end of the hole forming rod 70 is calculated, and the degree of perpendicularity is corrected so that the amount of deviation falls within the allowable range. The degree of verticality of the hole 72 formed by the drilling rod 70 can be increased.

同様に、第1実施形態では、光学式測定装置20によって削孔ロッド10の地上部分における上下2点の位置を測定することで削孔ロッド10の鉛直度管理を行っていた。しかし、ガイド部材によって削孔ロッド10の地上部分における下端を位置決めしつつ、光学式測定装置20によって削孔ロッド10の上端の位置を測定することで削孔ロッド10の鉛直度管理を行ってもよい。   Similarly, in the first embodiment, the perpendicularity management of the drilling rod 10 is performed by measuring the positions of the upper and lower two points on the ground portion of the drilling rod 10 by the optical measuring device 20. However, the vertical control of the drilling rod 10 is performed by measuring the position of the upper end of the drilling rod 10 by the optical measuring device 20 while positioning the lower end of the drilling rod 10 above the ground by the guide member. Good.

また、第1実施形態では、1つの光学式測定装置20によって削孔ロッド10の上下2点の位置を測定していたが、複数の光学式測定装置によって削孔ロッド10の上下2点の位置をそれぞれ測定してもよい。   Moreover, in 1st Embodiment, although the position of two upper and lower points of the drilling rod 10 was measured by one optical measuring device 20, the position of two upper and lower points of the drilling rod 10 is measured by several optical measuring devices. Of each may be measured.

また、第1、第2実施形態では、軸部材として削孔ロッド10、40が用いられていたが、軸部材は削孔ロッド10、40には限られず、例えば地中に建込まれるスクリュー翼付きの杭等であってもよい。   Moreover, in 1st, 2nd embodiment, although the drilling rod 10 and 40 was used as a shaft member, a shaft member is not restricted to the drilling rod 10 and 40, For example, the screw blade built in the ground It may be a stake or the like.

また、第1実施形態の山留め壁の構築手順では、鉛直度管理方法を用いて先行削孔工程及び山留め壁構築工程が実施されていた。しかし、先行削孔工程のみ鉛直度管理方法を用い、山留め壁構築工程については本発明の鉛直度管理方法を用いずに実施してもよい。   Moreover, in the construction procedure of the piled wall of 1st Embodiment, the pre-drilling process and the piled wall construction process were implemented using the perpendicularity management method. However, it may be carried out using the verticality control method only in the advance drilling process, and without using the verticality control method of the present invention in the pile retaining wall construction process.

少なくとも先行削孔工程において鉛直度管理方法を用いることで、削孔ロッド10の鉛直度及び基準孔22A〜22Eの鉛直度を高めることができ、山留め壁構築工程において鉛直度の高い基準孔22A〜22Eに沿って連続孔28、30、32を形成することで、鉛直度の高い山留め壁を得ることができる。   By using the verticality management method at least in the preliminary drilling process, the verticality of the drilling rod 10 and the verticality of the reference holes 22A to 22E can be increased, and the reference holes 22A to 22D having a high verticality in the mountain retaining wall construction process By forming the continuous holes 28, 30, 32 along 22E, it is possible to obtain a vertical wall retaining wall.

また、第1実施形態の山留め壁の構築手順では、3本の削孔ロッド24A〜24Cが用いられていたが、削孔ロッド24A〜24Cの数は3本には限られず、例えば5本の削孔ロッドを有する5軸オーガを用いてもよい。5軸オーガの場合、少なくとも両端の2本の削孔ロッドの鉛直度を管理することで、削孔ロッドによって形成される連続孔及び山留め壁の鉛直度を高めることが可能である。   Moreover, in the construction procedure of the retaining wall of the first embodiment, although three drilling rods 24A to 24C are used, the number of drilling rods 24A to 24C is not limited to three, for example, five. A 5-axis auger with a drilling rod may be used. In the case of a 5-axis auger, it is possible to increase the verticality of the continuous hole and the piled wall formed by the drilling rod by managing the verticality of at least two drilling rods at both ends.

10、24A、24B、24C、40、70 削孔ロッド
16、26 杭打ち装置
20、52、60 光学式測定装置
22A、22B、22C、22D、22E 基準孔
28、30、32 連続孔
38、48、58 既存建物
42A 上部ガイド部材
42B 下部ガイド部材
10, 24A, 24B, 24C, 40, 70 drilling rods 16, 26 pile driving devices 20, 52, 60 optical measuring devices 22A, 22B, 22C, 22D, 22E reference holes 28, 30, 32 continuous holes 38, 48 , 58 Existing Building 42A Upper Guide Member 42B Lower Guide Member

Claims (5)

杭打ち装置により地中へ挿入される軸部材を鉛直とする工程を有する、軸部材の鉛直度管理方法。   The perpendicularity management method of an axial member which has the process of making the axial member inserted into the ground by a stake driving device vertical. 前記軸部材を鉛直とする工程は、
前記軸部材の地上部分における上下2点の座標を、前記杭打ち装置から離れた地上に設置された少なくとも1つの光学式測定装置によってそれぞれ計測する座標測定工程と、
測定された前記座標から、上下2点の平面2軸上のズレ量を算出するズレ算出工程と、
前記平面2軸上のズレ量が許容範囲内となるように、前記杭打ち装置を操作して前記軸部材の鉛直度を修正する鉛直度修正工程と、
を有する、
請求項1に記載の軸部材の鉛直度管理方法。
In the step of making the shaft member vertical,
A coordinate measurement step of measuring coordinates of two upper and lower points on the ground portion of the shaft member by at least one optical measurement device installed on the ground distant from the pile driving device;
A deviation calculating step of calculating an amount of deviation on two planar upper and lower two points from the measured coordinates;
A verticality correction step of operating the pile driving device to correct the verticalness of the shaft member such that the amount of displacement on the two planar planes falls within an allowable range;
Have
The perpendicularity management method of the shaft member according to claim 1.
前記軸部材が地中へ一定の深度挿入される毎に、前記座標測定工程、前記ズレ算出工程、及び前記鉛直度修正工程を実施する、請求項2に記載の軸部材の鉛直度管理方法。   The shaft member verticality management method according to claim 2, wherein the coordinate measurement step, the deviation calculation step, and the verticality correction step are performed each time the shaft member is inserted to a certain depth into the ground. 前記軸部材を鉛直とする工程は、
地下階を有する既存建物の地下部分に下部ガイド部材を設置する下部ガイド設置工程と、
前記既存建物の地上部分に上部ガイド部材を設置する上部ガイド設置工程と、
前記下部ガイド部材と前記上部ガイド部材の平面2軸上の位置を合わせる位置合わせ工程と、
前記上部ガイド部材及び前記下部ガイド部材に沿って前記軸部材を建込む軸部材建込み工程と、
を有する、
請求項1に記載の軸部材の鉛直度管理方法。
In the step of making the shaft member vertical,
Lower guide installation process of installing a lower guide member in an underground part of an existing building having an underground floor,
An upper guide installation step of installing an upper guide member on the ground portion of the existing building;
Aligning the positions of the lower guide member and the upper guide member on two planar axes;
An axial member assembling step of assembling the axial member along the upper guide member and the lower guide member;
Have
The perpendicularity management method of the shaft member according to claim 1.
請求項1〜4のいずれか1項に記載の軸部材の鉛直度管理方法を用い、前記軸部材としての削孔ロッドによって地中に複数の基準孔を形成する先行削孔工程と、
一部が重複して連続する連続孔を複数の前記基準孔に沿って形成し、前記連続孔にセメントミルクを注入する山留め壁構築工程と、
を有する山留め壁の構築方法。
The prior drilling step of forming a plurality of reference holes in the ground by the drilling rod as the shaft member, using the method of managing the degree of verticality of the shaft member according to any one of claims 1 to 4;
A retaining wall construction step of forming continuous continuous holes partially overlapping and forming a plurality of reference holes and injecting cement milk into the continuous holes;
How to construct a retaining wall with.
JP2017220719A 2017-11-16 2017-11-16 How to manage the verticality of the shaft member and how to build the retaining wall Active JP6988049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017220719A JP6988049B2 (en) 2017-11-16 2017-11-16 How to manage the verticality of the shaft member and how to build the retaining wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017220719A JP6988049B2 (en) 2017-11-16 2017-11-16 How to manage the verticality of the shaft member and how to build the retaining wall

Publications (2)

Publication Number Publication Date
JP2019090271A true JP2019090271A (en) 2019-06-13
JP6988049B2 JP6988049B2 (en) 2022-01-05

Family

ID=66837255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017220719A Active JP6988049B2 (en) 2017-11-16 2017-11-16 How to manage the verticality of the shaft member and how to build the retaining wall

Country Status (1)

Country Link
JP (1) JP6988049B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021038553A (en) * 2019-09-02 2021-03-11 株式会社竹中工務店 Guide device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06167013A (en) * 1992-06-04 1994-06-14 Aida Tekko Kk Drilling engineering method for continuous wall forming hole and drilling device used in the drilling method
JPH11148236A (en) * 1997-11-14 1999-06-02 Takenaka Komuten Co Ltd Erected pipe for forming pile
JP2002206237A (en) * 2001-01-09 2002-07-26 Toshihiko Fujii Execution method for pile
JP2004250884A (en) * 2003-02-18 2004-09-09 Teito Rapid Transit Authority Construction method for soil cement column or soil cement wall by recycling slurry
JP2004279190A (en) * 2003-03-14 2004-10-07 Nippon Sharyo Seizo Kaisha Ltd Instrument for measuring obliquity of foundation pillar as against verticality and construction controller
JP2005097843A (en) * 2003-09-22 2005-04-14 Takenaka Komuten Co Ltd Foundation reinforcing method for existing structure in artesian groundwater
JP5912613B2 (en) * 2012-02-07 2016-04-27 株式会社竹中工務店 Excavation hole excavation accuracy measuring device and excavation hole excavation accuracy measuring method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06167013A (en) * 1992-06-04 1994-06-14 Aida Tekko Kk Drilling engineering method for continuous wall forming hole and drilling device used in the drilling method
JPH11148236A (en) * 1997-11-14 1999-06-02 Takenaka Komuten Co Ltd Erected pipe for forming pile
JP2002206237A (en) * 2001-01-09 2002-07-26 Toshihiko Fujii Execution method for pile
JP2004250884A (en) * 2003-02-18 2004-09-09 Teito Rapid Transit Authority Construction method for soil cement column or soil cement wall by recycling slurry
JP2004279190A (en) * 2003-03-14 2004-10-07 Nippon Sharyo Seizo Kaisha Ltd Instrument for measuring obliquity of foundation pillar as against verticality and construction controller
JP2005097843A (en) * 2003-09-22 2005-04-14 Takenaka Komuten Co Ltd Foundation reinforcing method for existing structure in artesian groundwater
JP5912613B2 (en) * 2012-02-07 2016-04-27 株式会社竹中工務店 Excavation hole excavation accuracy measuring device and excavation hole excavation accuracy measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021038553A (en) * 2019-09-02 2021-03-11 株式会社竹中工務店 Guide device
JP7320410B2 (en) 2019-09-02 2023-08-03 株式会社竹中工務店 guide instrument

Also Published As

Publication number Publication date
JP6988049B2 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
KR102640695B1 (en) Auger type vertical drilling system with path correction device
CN102628266A (en) Construction method of long spiral cast-in-situ bored pile
JP2012082676A (en) Displacement controlling method
KR20100043600A (en) Underground excuvation pile construction method using percussion rotary drill
JP2009174178A (en) Method of constructing underground structure
CN110306531A (en) High water level erratic boulder stratum construction of diaphragm wall technique
JP2013079511A (en) Construction method of earth-retaining timbering, and earth-retaining timbering
CN106545020A (en) A kind of construction method of deep foundation pit support
KR100955753B1 (en) The method of vertical construction by leaving of the pile in advanced construction
JP2011106229A (en) Method for constructing temporary pile
JP2019090271A (en) Management method of verticality of shaft member, and construction method of earth retaining wall
JP2016132856A (en) Construction method for concrete foundation pile
KR102494824B1 (en) CIP retaining wall and water barrier construction method using PHC-pile
JP2020183617A (en) Construction method of earth retaining concrete wall, earth retaining concrete wall, and shaft guide device
JP2019210711A (en) Method for reinforcing existing structure in ground
KR102325623B1 (en) Construction method of retaining wall
JP2019173278A (en) Cutoff wall construction method
JP7096480B2 (en) How to build a structure Shinbashira using ready-made piles
JP2007107233A (en) Construction method for earth retaining structure
CN109235453B (en) Deep foundation pit PRC pipe pile assembled supporting method
JP2017197910A (en) Construction method of earth retaining wall structure, and earth retaining wall structure
CN112065433A (en) Pipe jacking working well supporting and water stopping assembly and construction method
KR102601336B1 (en) PRD method proceeding from the upper part of the underground structure and casing guide device
JP2013167114A (en) Underground structure and construction method thereof
JP2019203319A (en) Method for constructing precast piles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211112

R150 Certificate of patent or registration of utility model

Ref document number: 6988049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150