JP2019089039A - Selective hydrogenation catalyst, manufacturing method of selective hydrogenation catalyst, and selective hydrogenation method - Google Patents

Selective hydrogenation catalyst, manufacturing method of selective hydrogenation catalyst, and selective hydrogenation method Download PDF

Info

Publication number
JP2019089039A
JP2019089039A JP2017220616A JP2017220616A JP2019089039A JP 2019089039 A JP2019089039 A JP 2019089039A JP 2017220616 A JP2017220616 A JP 2017220616A JP 2017220616 A JP2017220616 A JP 2017220616A JP 2019089039 A JP2019089039 A JP 2019089039A
Authority
JP
Japan
Prior art keywords
selective hydrogenation
hydrogenation catalyst
selectivity
alkene
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017220616A
Other languages
Japanese (ja)
Inventor
隆幸 小嶋
Takayuki Kojima
隆幸 小嶋
聡 亀岡
Satoshi Kameoka
聡 亀岡
安邦 蔡
An Bang Cai
安邦 蔡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2017220616A priority Critical patent/JP2019089039A/en
Publication of JP2019089039A publication Critical patent/JP2019089039A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Catalysts (AREA)

Abstract

To provide a selective hydrogenation catalyst using no noble metal, capable of controlling alkene selectivity depending on reaction conditions, and providing excellent alkene selectivity, a manufacturing method of the selective hydrogenation catalyst, and a selective hydrogenation method.SOLUTION: A selective hydrogenation catalyst consists of a powder Heusler alloy of Co(MnFe)(GaGe) (0≤x≤1, 0≤y≤0.3). The selective hydrogenation catalyst can be manufactured by arc melting a raw material weighted to be a composition of the Heusler alloy, conducting a homogenization treatment at 700°C to 1100°C for 1 hr. to 80 hr. and pulverizing an alloy after the homogenization treatment. Alkyne can be selectively hydrogenated to alkene by contacting alkyne and hydrogen in the presence of the selective hydrogenation catalyst.SELECTED DRAWING: Figure 1

Description

本発明は、選択的水素化触媒、選択的水素化触媒の製造方法および選択的水素化方法に関する。   The present invention relates to a selective hydrogenation catalyst, a method for producing a selective hydrogenation catalyst, and a selective hydrogenation method.

エチレン(C)からポリエチレンを合成するプロセスにおいて、原料のエチレン中にアセチレン(C)不純物が含まれていると、合成が阻害され、ポリエチレンの品質を低下させてしまう。そこで、エチレン中のアセチレンを除去するために、従来、水素ガスとの触媒反応を用いて、アセチレンをエチレンに転化することが行われている。この方法は、プロピレン(C)原料中のプロピン(C)やプロパジエン(C)除去においても利用されている。 In the process of synthesizing polyethylene from ethylene (C 2 H 4 ), if the raw material ethylene contains acetylene (C 2 H 2 ) impurities, the synthesis is inhibited and the quality of the polyethylene is degraded. Therefore, in order to remove acetylene in ethylene, conventionally, catalytic reaction with hydrogen gas is used to convert acetylene to ethylene. This method is also used in the removal of propyne (C 3 H 4 ) and propadiene (C 3 H 4 ) in propylene (C 3 H 6 ) raw materials.

このような、アルキン(アセチレン、プロピンなど)をアルケン(エチレン、プロピレンなど)に転化する反応を、(1)式に示す。
aC2n−2+bH → cC2n+dC2n+2 (1)
(ここで、a,b,c,dは正の整数、nは2以上の整数である。)
Such a reaction for converting an alkyne (acetylene, propyne, etc.) into an alkene (ethylene, propylene, etc.) is shown in formula (1).
aC n H 2n-2 + bH 2 → cC n H 2 n + dC n H 2 n + 2 (1)
(Here, a, b, c, d are positive integers and n is an integer of 2 or more.)

(1)式の反応に用いられる触媒として、アルケン選択性(生成物中のアルケンの割合)を高めるために、パラジウム(Pd)を鉛(Pb)で被毒した市販のリンドラー触媒や、Pd−Ag触媒などのPd系触媒が広く用いられている(例えば、特許文献1乃至3参照)。しかし、これらのPd系触媒では、生成されたアルケンや原料アルケンも水素と反応してアルカン(エタン、プロパンなど)になってしまうため、アルケン選択性が不十分であるという問題があった。   As a catalyst used in the reaction of the formula (1), a commercially available Lindlar catalyst in which palladium (Pd) is poisoned with lead (Pb) in order to increase alkene selectivity (proportion of alkene in the product); Pd-based catalysts such as Ag catalysts are widely used (see, for example, Patent Documents 1 to 3). However, in these Pd-based catalysts, the alkene produced and the raw material alkene also react with hydrogen and become an alkane (ethane, propane, etc.), so there is a problem that the alkene selectivity is insufficient.

そこで、さらにアルケン選択性を高めるための触媒として、NiZn(例えば、非特許文献1参照)、A113Fe(例えば、非特許文献2参照)、NiGaおよびNiSn(例えば、非特許文献3参照)、Cu−Ni−Fe合金(例えば、非特許文献4参照)などの触媒が開発されている。これらの触媒は、原子が特有の規則配列をとる金属間化合物であり、アルケンがアルカンまで転化するサイトを本質的に有していないため、アルケンが水素と反応してアルカンになるのを防ぎ、アルケン選択性を高めることができると考えられる。 Therefore, NiZn 3 (see, for example, Non-patent document 1), A1 13 Fe 4 (see, for example, Non-patent document 2), Ni 3 Ga and Ni 3 Sn 2 (for example, Catalysts such as Cu-Ni-Fe alloy (see, for example, Non-Patent Document 4) have been developed. These catalysts are intermetallic compounds whose atoms have a unique ordered arrangement and prevent the alkene from reacting with hydrogen to form an alkane, since the alkene essentially has no site to convert to an alkane. It is believed that the alkene selectivity can be enhanced.

なお、金属間化合物の元素置換により化合物の価電子数を制御して、d−バンドの電子占有数を変化させ、フェルミレベルにおける電子状態を貴金属や遷移金属錯体に類似した電子状態にすることにより、酸化還元特性を調整し、貴金属や遷移金属錯体と類似の触媒効果を発現させることができる触媒が提案されている(例えば、特許文献4参照)。この触媒にはホイスラー合金も含まれているが、まだ理論的なものであり、この触媒を選択的水素化に使用することや、この触媒による具体的な実験は全く行われていない。   In addition, the valence electron number of the compound is controlled by element substitution of the intermetallic compound to change the electron occupancy number of the d-band to change the electron state at the Fermi level to an electron state similar to a noble metal or a transition metal complex. There is proposed a catalyst capable of adjusting the redox property and expressing a catalytic effect similar to that of a noble metal or a transition metal complex (see, for example, Patent Document 4). Although this catalyst also includes a Heusler alloy, it is still theoretical and neither the use of this catalyst for selective hydrogenation nor the specific experiments with this catalyst have been conducted at all.

特表2013−522018号公報Japanese Patent Publication No. 2013-522018 gazette 特表2004−520932号公報Japanese Patent Publication No. 2004-520932 特開2017−948号公報JP, 2017-948, A 特開2012−223692号公報Unexamined-Japanese-Patent No. 2012-223692

Felix Studt et al., “Identification of Non-Precious Metal Alloy Catalysts for Selective Hydrogenation of Acetylene”, Science, 2008, 320, p.1320-1322Felix Studt et al., “Identification of Non-Precious Metal Alloy Catalysts for Selective Hydrogenation of Acetylene”, Science, 2008, 320, p. 1320-1322 M. Armbruster et al., “Al13Fe4 as a low-cost alternative for palladium in heterogeneous hydrogenation”, Nature Materials, 2012, Vol.11, p.690-693M. Armbruster et al., “Al 13 Fe 4 as a low-cost alternative for palladium in heterogenous hydrogenation”, Nature Materials, 2012, Vol. 11, p. 690-693 Yuxi Liu et al., “Intermetallic NixMy (M = Ga and Sn) Nanocrystals: A Non-precious Metal Catalyst for Semi-Hydrogenation of Alkynes”, Adv. Mater., 2016, 28, p.4747-4754Yuxi Liu et al., “Intermetallic NixMy (M = Ga and Sn) Nanocrystals: A Non-precious Metal Catalyst for Semi-Hydrogenation of Alkynes”, Adv. Mater., 2016, 28, p. 4747-4754 Blaise Bridier and Javier Perez-Ramirez, “Cooperative Effects in Ternary Cu-Ni-Fe Catalysts Lead to Enhanced Alkene Selectivity in Alkyne Hydrogenation”, J. Am. Chem. Soc., 2010, Vol.132, No.12, p.4321-4327Blaise Bridier and Javier Perez-Ramirez, “Cooperative Effects in Ternary Cu-Ni-Fe Catalysts Lead to Enhanced Alkene Selectivity in Alkyne Hydrogenation”, J. Am. Chem. Soc., 2010, Vol. 132, No. 12, p. 4321-4327

特許文献1乃至3に記載のようなPd系触媒は、アルケン選択性が不十分であるだけでなく、希少で高価な貴金属を使用しているため、原料の枯渇や価格高騰のリスクがあるという課題があった。また、非特許文献1乃至4に記載の金属間化合物の触媒は、反応条件によってアルケン選択性が変化してしまうという課題があった。例えば、非特許文献1に記載のNiZn触媒では、原料ガスの条件が工業的な条件とは異なっており、どの程度工業的に有用なのか不明である。また、非特許文献4に記載のCu−Ni−Fe合金触媒では、低水素条件では高いアルケン選択性を示すが、水素の供給量を増やすとアルケン選択性が大きく低下している。 The Pd-based catalysts described in Patent Documents 1 to 3 not only have insufficient alkene selectivity but also use rare and expensive precious metals, so there is a risk of exhaustion of raw materials and price increase. There was a problem. Moreover, the catalyst of the intermetallic compound as described in Non-Patent Documents 1 to 4 has a problem that the alkene selectivity changes depending on the reaction conditions. For example, in the case of the NiZn 3 catalyst described in Non-Patent Document 1, the conditions of the source gas are different from industrial conditions, and it is unclear to what extent industrially useful. In addition, the Cu-Ni-Fe alloy catalyst described in Non-Patent Document 4 exhibits high alkene selectivity under low hydrogen conditions, but the alkene selectivity is greatly reduced when the hydrogen supply amount is increased.

本発明は、このような課題に着目してなされたもので、貴金属を使用せず、反応条件に応じてアルケン選択性を制御可能であり、優れたアルケン選択性を得ることができる選択的水素化触媒、選択的水素化触媒の製造方法および選択的水素化方法を提供することを目的とする。   The present invention has been made in view of such problems, and it is possible to control the alkene selectivity according to the reaction conditions without using a noble metal, and to obtain an excellent alkene selectivity. It is an object of the present invention to provide a conversion catalyst, a method of producing a selective hydrogenation catalyst and a method of selective hydrogenation.

本発明者等は、希少な貴金属の代替となる触媒として、金属間化合物(規則合金)のうちのホイスラー合金に着目した。通常の金属間化合物では、置換可能な元素の種類および組成が限られるのに対し、ホイスラー合金では、構成元素の一部を異なる元素で置換可能であり、様々な元素と組成との組み合わせを実現することができる。これにより、ホイスラー合金では、電子状態の制御が可能となり、触媒として精密な材料設計を行うことができると考えられる。本発明者等は、ホイスラー合金の中でも特に、Co(Fe,Mn)(Ga,Ge)合金において、元素と組成との組み合わせにより、触媒活性およびアルケン選択性を制御可能であることを見出し、本発明に至った。 The present inventors focused attention on Heusler alloys among intermetallic compounds (ordered alloys) as catalysts to replace rare metals. While the types and compositions of substitutable elements are limited in ordinary intermetallic compounds, in Heusler alloys, some of the constituent elements can be substituted by different elements, and combinations of various elements and compositions are realized. can do. Thereby, in the Heusler alloy, control of the electronic state is possible, and it is considered that precise material design can be performed as a catalyst. The present inventors have found that, among Heusler alloys, particularly in Co 2 (Fe, Mn) (Ga, Ge) alloys, catalytic activity and alkene selectivity can be controlled by a combination of elements and compositions. The present invention has been achieved.

上記目的を達成するために、本発明に係る選択的水素化触媒は、Co(MnFe1−x)(GaGe1−y) (0≦x≦1、0≦y≦0.3)のホイスラー合金から成ることを特徴とする。 In order to achieve the above object, the selective hydrogenation catalyst according to the present invention is prepared by using Co 2 (Mn x Fe 1 -x ) (Ga y Ge 1-y ) (0 ≦ x ≦ 1, 0 ≦ y ≦ 0. It is characterized by comprising the Heusler alloy of 3).

本発明に係る選択的水素化触媒は、特に、Co(MnFe1−x)Ge (0≦x≦1)、または、CoFe(GaGe1−y) (0≦y≦0.3)のホイスラー合金から成ることが好ましい。また、y=0のとき、0<x<1であってもよい。 The selective hydrogenation catalyst according to the present invention is particularly preferably Co 2 (Mn x Fe 1 -x ) Ge (0 ≦ x ≦ 1), or Co 2 Fe (Ga y Ge 1-y ) (0 ≦ y ≦ Preferably, it comprises a 0.3) Heusler alloy. When y = 0, 0 <x <1 may be satisfied.

本発明に係る選択的水素化触媒は、水素化の活性が高く、優れたアルケン選択性を得ることができる。このため、エチレン中のアセチレンや、プロピレン中のプロピンといった、アルケン原料中の微量アルキンを選択的に水素化して除去することができる。また、本発明に係る選択的水素化触媒は、貴金属を使用しておらず、原料の枯渇や価格高騰のリスクが小さい。   The selective hydrogenation catalyst according to the present invention has high hydrogenation activity and can obtain excellent alkene selectivity. Therefore, it is possible to selectively hydrogenate and remove trace alkynes in the alkene raw material, such as acetylene in ethylene and propyne in propylene. Further, the selective hydrogenation catalyst according to the present invention does not use a noble metal, and the risk of exhaustion of raw materials and price increase is small.

また、本発明に係る選択的水素化触媒は、MnとFe、GaとGeの元素置換により、水素化の活性や、アルケンの選択性が系統的に変化することから、元素置換により、水素化触媒の触媒特性を制御することができる。このため、反応条件に応じてアルケン選択性を制御することができる。また、本発明に係る選択的水素化触媒は、水素過剰条件下であっても、高いアルケン選択性を有し、プロセス条件を問わずに使用することができる。   Further, the selective hydrogenation catalyst according to the present invention can be hydrogenated by elemental substitution because the hydrogenation activity and selectivity of alkene are systematically changed by the elemental substitution of Mn and Fe, and Ga and Ge. The catalytic properties of the catalyst can be controlled. Therefore, the alkene selectivity can be controlled depending on the reaction conditions. In addition, the selective hydrogenation catalyst according to the present invention has high alkene selectivity even under hydrogen excess conditions, and can be used regardless of process conditions.

本発明に係る選択的水素化触媒は、前記ホイスラー合金は粉末状であることが好ましい。この場合、表面積を増やして、触媒活性を高めることができる。   In the selective hydrogenation catalyst according to the present invention, the Heusler alloy is preferably in the form of powder. In this case, the surface area can be increased to enhance the catalytic activity.

また、本発明に係る選択的水素化触媒は、例えば、アルキンの水素化反応で使用され、90%以上の転化率でアルキンを水素化したときでも、65%以上のアルケン選択率を有することが好ましい。さらに、アルケン選択率が78%以上であることが好ましく、アルキンの転化率が98%以上で、アルケン選択率が85%以上であることがより好ましい。これらの場合、アルキンの転化率が高い条件下であっても、高いアルケン選択性を有し、プロセス条件を問わずに使用することができる。   In addition, the selective hydrogenation catalyst according to the present invention is, for example, used in the hydrogenation reaction of alkyne, and has an alkene selectivity of 65% or more even when the alkyne is hydrogenated at a conversion of 90% or more preferable. Furthermore, the alkene selectivity is preferably 78% or more, more preferably 98% or more, and the alkene selectivity is 85% or more. In these cases, even under conditions of high alkyne conversion, they have high alkene selectivity and can be used regardless of process conditions.

本発明に係る選択的水素化触媒の製造方法は、本発明に係る選択的水素化触媒を製造するための方法であって、前記ホイスラー合金の組成となるよう秤量した原料を溶解混合した後、700℃乃至1100℃で1時間乃至80時間の均質化処理を行い、均質化処理後の合金を粉砕してもよい。また、前記ホイスラー合金の組成となるよう秤量した原料を圧粉成形した後、700℃乃至1100℃で24時間乃至168時間の焼結処理を行い、焼結処理後の合金を粉砕してもよい。   The method for producing a selective hydrogenation catalyst according to the present invention is a method for producing the selective hydrogenation catalyst according to the present invention, and after dissolving and mixing raw materials weighed to have the composition of the Heusler alloy, The homogenization treatment may be performed at 700 ° C. to 1100 ° C. for 1 hour to 80 hours to grind the alloy after the homogenization treatment. Alternatively, the raw material weighed to have the composition of the Heusler alloy may be compacted, and then subjected to a sintering process at 700 ° C. to 1100 ° C. for 24 hours to 168 hours to crush the alloy after the sintering process. .

本発明に係る選択的水素化触媒の製造方法は、本発明に係る選択的水素化触媒を好適に製造することができる。均質化処理は、700℃乃至800℃で24時間乃至80時間、800℃乃至1000℃で1時間乃至72時間、1000℃乃至1100℃で1時間乃至24時間であることが好ましい。また、焼結処理は、72時間乃至168時間であることが好ましい。これらの場合、触媒活性やアルケン選択性が特に高い水素化触媒を得ることができる。また、合金の規則化を促進するよう、均質化処理や焼結処理の後、500℃乃至600℃で60時間乃至150時間の熱処理を行ってもよい。なお、溶解混合は、原料を溶解すると共に混合可能であればいかなる方法で行われてもよく、例えば、高周波溶解やアーク溶解、高温電気炉による溶解などの方法で実施することができる。   The method for producing a selective hydrogenation catalyst according to the present invention can suitably produce the selective hydrogenation catalyst according to the present invention. The homogenization treatment is preferably performed at 700 ° C. to 800 ° C. for 24 hours to 80 hours, at 800 ° C. to 1000 ° C. for 1 hour to 72 hours, and at 1000 ° C. to 1100 ° C. for 1 hour to 24 hours. The sintering process is preferably performed for 72 hours to 168 hours. In these cases, a hydrogenation catalyst having particularly high catalytic activity and alkene selectivity can be obtained. Further, heat treatment may be performed at 500 ° C. to 600 ° C. for 60 hours to 150 hours after the homogenization treatment or the sintering treatment so as to promote ordering of the alloy. The melting and mixing may be performed by any method as long as the raw materials are melted and mixed, and can be performed by, for example, a method such as high frequency melting, arc melting, or melting with a high temperature electric furnace.

本発明に係る選択的水素化方法は、本発明に係る選択的水素化触媒の存在下で、アルキンと水素とを接触させることにより、前記アルキンをアルケンに選択的に水素化することを特徴とする。   The selective hydrogenation method according to the present invention is characterized by selectively hydrogenating the alkyne to an alkene by contacting the alkyne with hydrogen in the presence of the selective hydrogenation catalyst according to the present invention. Do.

本発明に係る選択的水素化方法は、本発明に係る選択的水素化触媒を使用することにより、優れたアルケン選択性を得ることができる。このため、例えば、エチレン中のアセチレンや、プロピレン中のプロピンといった、アルケン原料中の微量アルキンであっても、選択的に水素化して除去することができる。   The selective hydrogenation method according to the present invention can obtain excellent alkene selectivity by using the selective hydrogenation catalyst according to the present invention. For this reason, for example, even a small amount of alkynes in an alkene raw material such as acetylene in ethylene and propyne in propylene can be selectively hydrogenated and removed.

本発明に係る選択的水素化方法は、前記選択的水素化触媒を、水素ガスを用いた熱処理により還元した後、還元後の前記選択的水素化触媒の存在下で、前記アルキンをアルケンに選択的に水素化することが好ましい。この場合、還元して表面酸化物を除去した選択的水素化触媒を使用することができ、選択的水素化触媒の触媒活性を高めて、より優れたアルケン選択性を得ることができる。   In the selective hydrogenation method according to the present invention, after reducing the selective hydrogenation catalyst by heat treatment using hydrogen gas, the alkyne is selected as an alkene in the presence of the selective hydrogenation catalyst after reduction. Hydrogenation is preferred. In this case, a selective hydrogenation catalyst which has been reduced to remove surface oxides can be used, and the catalytic activity of the selective hydrogenation catalyst can be increased to obtain better alkene selectivity.

また、本発明に係る選択的水素化方法は、前記アルキンに対して前記水素を40倍〜1000倍の割合で含む原料ガスを、前記選択的水素化触媒の存在下で反応させて、前記アルキンをアルケンに選択的に水素化してもよい。この場合、水素過剰条件下であっても、優れたアルケン選択性を得ることができる。また、90%以上の転化率で前記アルキンを水素化して、65%以上の選択率でアルケンを得てもよい。このとき、さらに、78%以上の選択率でアルケンを得ることが好ましく、98%以上の転化率でアルキンを水素化して、85%以上の選択率でアルケンを得ることがより好ましい。これらの場合、アルキンの転化率が高い条件下であっても、優れたアルケン選択性を得ることができる。   In the selective hydrogenation method according to the present invention, the alkyne is reacted with a raw material gas containing 40 to 1000 times the hydrogen relative to the alkyne in the presence of the selective hydrogenation catalyst. May be selectively hydrogenated to an alkene. In this case, excellent alkene selectivity can be obtained even under hydrogen excess conditions. Alternatively, the alkyne may be hydrogenated at a conversion of 90% or more to obtain an alkene with a selectivity of 65% or more. At this time, it is preferable to further obtain an alkene with a selectivity of 78% or more, and more preferable to hydrogenate an alkyne with a conversion of 98% or more to obtain an alkene with a selectivity of 85% or more. In these cases, excellent alkene selectivity can be obtained even under conditions of high alkyne conversion.

本発明によれば、貴金属を使用せず、反応条件に応じてアルケン選択性を制御可能であり、優れたアルケン選択性を得ることができる選択的水素化触媒、選択的水素化触媒の製造方法および選択的水素化方法を提供することができる。   According to the present invention, a selective hydrogenation catalyst which can control the alkene selectivity according to the reaction conditions without using a noble metal and can obtain excellent alkene selectivity, and a method for producing the selective hydrogenation catalyst And selective hydrogenation processes can be provided.

本発明の実施の形態の選択的水素化触媒に関し、水素化触媒が(a)CoMnGe、(b)CoMn0.75Fe0.25Ge、(c)CoMn0.5Fe0.5Ge、(d)CoMn0.25Fe0.75Ge、(e)CoFeGeのときの、プロピンの水素化試験結果を示すグラフである。With regard to the selective hydrogenation catalyst according to the embodiment of the present invention, the hydrogenation catalyst is (a) Co 2 MnGe, (b) Co 2 Mn 0.75 Fe 0.25 Ge, (c) Co 2 Mn 0.5 Fe 0.5 Ge, is a graph illustrating the (d) Co 2 Mn 0.25 Fe 0.75 Ge, (e) Co 2 FeGe when the hydrogenation test results propyne. 本発明の実施の形態の選択的水素化触媒に関し、水素化触媒が(a)CoFeGa0.25Ge0.75、(b)CoFeGa0.5Ge0.5、(c)CoFeGa0.75Ge0.25、(d)CoFeGaのときの、プロピンの水素化試験結果を示すグラフである。With regard to the selective hydrogenation catalyst according to the embodiment of the present invention, the hydrogenation catalyst is (a) Co 2 FeGa 0.25 Ge 0.75 , (b) Co 2 FeGa 0.5 Ge 0.5 , (c) Co 2 FeGa 0.75 Ge 0.25, is a graph illustrating the (d) Co 2 FeGa when the hydrogenation test results propyne. 本発明の実施の形態の選択的水素化触媒に関し、水素化触媒が(a)CoMnGa0.5Ge0.5、(b)CoMnGa、(c)CoMn0.5Fe0.5Gaのときの、プロピンの水素化試験結果を示すグラフである。With regard to the selective hydrogenation catalyst according to the embodiment of the present invention, the hydrogenation catalyst is (a) Co 2 MnGa 0.5 Ge 0.5 , (b) Co 2 MnGa, (c) Co 2 Mn 0.5 Fe 0 6 is a graph showing the test results of hydrogenation of propyne at .5 Ga. 本発明の実施の形態の選択的水素化触媒に関し、水素化触媒が(a)CoMnGe、(b)CoMn0.75Fe0.25Ge、(c)CoMn0.5Fe0.5Ge、(d)CoMn0.25Fe0.75Ge、(e)CoFeGeのときの、プロピレンの水素化試験結果を示すグラフである。With regard to the selective hydrogenation catalyst according to the embodiment of the present invention, the hydrogenation catalyst is (a) Co 2 MnGe, (b) Co 2 Mn 0.75 Fe 0.25 Ge, (c) Co 2 Mn 0.5 Fe 0.5 Ge, is a graph illustrating the (d) Co 2 Mn 0.25 Fe 0.75 Ge, (e) Co 2 FeGe when the hydrogenation test results propylene. 本発明の実施の形態の選択的水素化触媒に関し、水素化触媒が(a)CoFeGa0.25Ge0.75、(b)CoFeGa0.5Ge0.5、(c)CoFeGa0.75Ge0.25、(d)CoMnGa0.5Ge0.5のときの、プロピレンの水素化試験結果を示すグラフである。With regard to the selective hydrogenation catalyst according to the embodiment of the present invention, the hydrogenation catalyst is (a) Co 2 FeGa 0.25 Ge 0.75 , (b) Co 2 FeGa 0.5 Ge 0.5 , (c) Co 2 FeGa 0.75 Ge 0.25, is a graph showing the hydrogenation test results propylene when the (d) Co 2 MnGa 0.5 Ge 0.5. 本発明の実施の形態の選択的水素化触媒に関し、水素化触媒が(a)CoMnGe、(b)CoMn0.5Fe0.5Ge、(c)CoFeGe、(d)CoFeGa0.25Ge0.75、(e)CoFeGa0.5Ge0.5、(f)CoFeGaのときの、プロピレン中の微量プロピンの水素化試験結果を示すグラフである。It relates embodiment of the selective hydrogenation catalyst of the present invention, the hydrogenation catalyst (a) Co 2 MnGe, ( b) Co 2 Mn 0.5 Fe 0.5 Ge, (c) Co 2 FeGe, (d) Co 2 FeGa 0.25 Ge 0.75, is a graph illustrating the (e) Co 2 FeGa 0.5 Ge 0.5, (f) Co 2 FeGa when the hydrogenation test results of trace propyne in propylene . 本発明の実施の形態の選択的水素化触媒に関し、リンドラー触媒による(a)プロピレン中の微量プロピンの水素化試験結果を示すグラフ、(b)エチレン中の微量アセチレンの水素化試験結果を示すグラフである。With respect to the selective hydrogenation catalyst according to the embodiment of the present invention, (a) a graph showing the test results of hydrogenation of a small amount of propyne in propylene by Lindlar catalyst, (b) a graph showing a test of hydrogenation of a slight amount of acetylene in ethylene. It is. 本発明の実施の形態の選択的水素化触媒に関し、水素化触媒が(a)CoMnGe、(b)CoMn0.5Fe0.5Ge、(c)CoFeGe、(d)CoFeGa0.5Ge0.5のときの、アセチレンの水素化試験結果を示すグラフである。It relates embodiment of the selective hydrogenation catalyst of the present invention, the hydrogenation catalyst (a) Co 2 MnGe, ( b) Co 2 Mn 0.5 Fe 0.5 Ge, (c) Co 2 FeGe, (d) when the Co 2 FeGa 0.5 Ge 0.5, is a graph showing the hydrogenation test results acetylene. 本発明の実施の形態の選択的水素化触媒に関し、水素化触媒が(a)CoMnGe、(b)CoMn0.5Fe0.5Ge、(c)CoFeGe、(d)CoFeGa0.25Ge0.75、(e)CoFeGa0.5Ge0.5のときの、エチレン中の微量アセチレンの水素化試験結果を示すグラフである。It relates embodiment of the selective hydrogenation catalyst of the present invention, the hydrogenation catalyst (a) Co 2 MnGe, ( b) Co 2 Mn 0.5 Fe 0.5 Ge, (c) Co 2 FeGe, (d) Co 2 FeGa 0.25 Ge 0.75, is a graph showing the, hydrogenation test results of trace acetylene in ethylene when (e) Co 2 FeGa 0.5 Ge 0.5.

以下、試験結果に基づいて、本発明の実施の形態の選択的水素化触媒、選択的水素化触媒の製造方法および選択的水素化方法について説明する。
本発明の実施の形態の選択的水素化触媒は、Co(MnFe1−x)(GaGe1−y) (0≦x≦1、0≦y≦0.3)の粉末状のホイスラー合金から成る。
The selective hydrogenation catalyst, the method for producing the selective hydrogenation catalyst and the selective hydrogenation method according to the embodiment of the present invention will be described below based on the test results.
The selective hydrogenation catalyst according to the embodiment of the present invention is a powdery form of Co 2 (Mn x Fe 1 -x ) (Ga y Ge 1-y ) (0 ≦ x ≦ 1, 0 ≦ y ≦ 0.3). Of Heusler alloy.

本発明の実施の形態の選択的水素化触媒は、貴金属を使用しておらず、原料の枯渇や価格高騰のリスクが小さい。なお、本発明の実施の形態の選択的水素化触媒は、特に、Co(MnFe1−x)Ge (0≦x≦1)、または、CoFe(GaGe1−y) (0≦y≦0.3)のホイスラー合金から成ることが好ましい。 The selective hydrogenation catalyst according to the embodiment of the present invention does not use a noble metal, and the risk of exhaustion of raw materials and price increase is small. The selective hydrogenation catalyst according to the embodiment of the present invention is, in particular, Co 2 (Mn x Fe 1 -x ) Ge (0 ≦ x ≦ 1) or Co 2 Fe (Ga y Ge 1-y ). It is preferable to consist of a Heusler alloy of (0 <= y <= 0.3).

本発明の実施の形態の選択的水素化触媒は、本発明の実施の形態の選択的水素化触媒の製造方法により好適に製造される。すなわち、本発明の実施の形態の選択的水素化触媒の製造方法は、まず、所望のホイスラー合金の組成となるよう秤量した原料を溶解混合した後、700℃乃至1100℃で1時間乃至80時間の均質化処理を行い、均質化処理後の合金を、20μm〜63μmの大きさに粉砕して粉末状にする。また、溶解混合の代わりに圧粉成形した後、700℃乃至1100℃で24時間乃至168時間の焼結処理を行い、焼結処理後の合金を粉砕してもよい。   The selective hydrogenation catalyst of the embodiment of the present invention is suitably produced by the method of producing the selective hydrogenation catalyst of the embodiment of the present invention. That is, in the method for producing the selective hydrogenation catalyst according to the embodiment of the present invention, first, the raw materials weighed to obtain the desired Heusler alloy composition are dissolved and mixed, and then the reaction is performed at 700 ° C. to 1100 ° C. for 1 hour to 80 hours. The homogenization treatment is carried out, and the alloy after the homogenization treatment is pulverized into a powder of 20 .mu.m to 63 .mu.m in size. Alternatively, after compacting instead of melting and mixing, sintering may be performed at 700 ° C. to 1100 ° C. for 24 hours to 168 hours to grind the alloy after the sintering treatment.

[水素化試験の方法]
水素化触媒として、本発明の実施の形態の選択的水素化触媒の製造方法を用いて製造された、Co(MnFe1−x)(GaGe1−y) (0≦x≦1、0≦y≦1)の粉末状のホイスラー合金を用いて、各種の水素化試験を行った。なお、試験に使用した水素化触媒は、原料をアーク溶解した後、1000℃で72時間の均質化処理を行い、さらに600℃で72時間および500℃で72時間の規則化熱処理を行い、これらの熱処理で得られた合金を粉砕して粉末状にしたものである。
[Hydrogenation test method]
Co 2 (Mn x Fe 1-x ) (Ga y Ge 1-y ) (0 ≦ x ≦) manufactured using the method for producing a selective hydrogenation catalyst according to the embodiment of the present invention as a hydrogenation catalyst Various hydrogenation tests were conducted using a powdery Heusler alloy in which 1 and 0 ≦ y ≦ 1). The hydrogenation catalyst used in the test was arc-melted the raw material, then subjected to homogenization treatment at 1000 ° C. for 72 hours, and further subjected to ordered heat treatment for 72 hours at 600 ° C. and 72 hours at 500 ° C. The alloy obtained by the heat treatment of was crushed into a powder.

試験では、反応容器中に水素化触媒を入れておき、その反応容器中に、水素化する各種の原料と水素(H)とヘリウム(He)とを混合した原料ガスを通過させて反応させた。原料ガスは、水素を40%とし、試験毎に水素化する原料の配合割合を変え、残部をヘリウムとした。水素化触媒は、表面積を0.1m/g以下、重量を400mg、体積を0.1cc以下とした。また、混合ガスの流量を30ccmとし、反応の空間速度SVを20000h−1とした。なお、水素化触媒は、試験前に、水素ガスのフロー下で、600℃で1時間の熱処理を行って還元し、表面酸化物を除去している。 In the test, a hydrogenation catalyst is placed in a reaction vessel, and in the reaction vessel, a raw material gas obtained by mixing various raw materials to be hydrogenated, hydrogen (H 2 ) and helium (He) is passed and reacted The The source gas was hydrogen at 40%, and the mixing ratio of the source to be hydrogenated was changed in each test, and the balance was helium. The hydrogenation catalyst had a surface area of 0.1 m 2 / g or less, a weight of 400 mg, and a volume of 0.1 cc or less. Further, the flow rate of the mixed gas was set to 30 ccm, and the space velocity SV of the reaction was set to 20000 h −1 . Before the test, the hydrogenation catalyst is reduced by heat treatment at 600 ° C. for 1 hour under a flow of hydrogen gas to remove surface oxides.

また、試験では、水素化触媒として、x=0,0.25,0.5,0.75,1の5通り、y=0,0.25,0.5,0.75,1の5通りの中から、xとyを組合せたものを使用した。容器内の温度(反応温度)は、25℃(室温)から250℃までとし、各温度での反応後の原料の転化率(Conversion)や、転化後の所定の化合物への選択率(Selectivity)を求めた。   Also, in the test, five ways of x = 0, 0.25, 0.5, 0.75, 1 and 5 of y = 0, 0.25, 0.5, 0.75, 1 as hydrogenation catalysts. From the street, a combination of x and y was used. The temperature in the vessel (reaction temperature) is from 25 ° C. (room temperature) to 250 ° C., and the conversion of the raw material after reaction at each temperature (Conversion), and the selectivity (Selectivity) to the predetermined compound after conversion I asked for.

[プロピンの水素化試験]
プロピンの水素化に関する試験を行った。プロピン(C)をプロピレン(C)に転化する反応を、(2)式に示す。
aC+bH → cC+dC (2)
(ここで、a,b,c,dは正の整数である。)
[Propine Hydrogenation Test]
Tests were conducted on the hydrogenation of propyne. The reaction for converting propyne (C 3 H 4 ) into propylene (C 3 H 6 ) is shown in equation (2).
aC 3 H 4 + bH 2 → cC 3 H 6 + dC 3 H 8 (2)
(Here, a, b, c, d are positive integers.)

まず、(2)式に従って、プロピンを水素化する試験を行った。試験では、水素化する原料をC(プロピン)とし、これを0.1%混合させた原料ガスを用いた。試験結果として、反応後のCの転化率=100×C消費量/C供給量 [%]と、Cの選択率=100×C生成量/(C生成量+C生成量) [%]とを求めた。 First, a test for hydrogenating propyne was performed according to equation (2). In the test, a raw material gas to be hydrogenated was C 3 H 4 (propyne), and 0.1% of this was mixed. As the test results, the conversion of C 3 H 4 after reaction = 100 × C 3 H 4 consumption / C 3 H 4 supply [%] and the selectivity of C 3 H 6 = 100 × C 3 H 6 formation Amount / (C 3 H 6 production amount + C 3 H 8 production amount) [%] was determined.

水素化触媒が、CoMnGe、CoMn0.75Fe0.25Ge、CoMn0.5Fe0.5Ge、CoMn0.25Fe0.75Ge、CoFeGe(x=0〜1,y=0)の結果を図1に、CoFeGa0.25Ge0.75、CoFeGa0.5Ge0.5、CoFeGa0.75Ge0.25、CoFeGa(x=0,y=0.25〜1)の結果を図2に、CoMnGa0.5Ge0.5、CoMnGa、CoMn0.5Fe0.5Ga(x=0.5〜1,y=0.5〜1)の結果を図3に示す。 The hydrogenation catalyst includes Co 2 MnGe, Co 2 Mn 0.75 Fe 0.25 Ge, Co 2 Mn 0.5 Fe 0.5 Ge, Co 2 Mn 0.25 Fe 0.75 Ge, Co 2 FeGe (x The results of (0 to 1, y = 0) are shown in FIG. 1; Co 2 FeGa 0.25 Ge 0.75 , Co 2 FeGa 0.5 Ge 0.5 , Co 2 FeGa 0.75 Ge 0.25 , Co The results of 2 FeGa (x = 0, y = 0.25 to 1) are shown in FIG. 2 as Co 2 MnGa 0.5 Ge 0.5 , Co 2 MnGa, Co 2 Mn 0.5 Fe 0.5 Ga (x The results of = 0.5 to 1 and y = 0.5 to 1) are shown in FIG.

図1(a)〜(e)に示すように、水素化触媒がCo(MnFe1−x)Ge (0≦x≦1、y=0)のとき、反応温度が125℃〜150℃以上で、Cの転化率がほぼ100%となっており、Cの水素化が活性化していることが確認された。また、反応温度が50℃〜250℃で、Cの選択率が90%以上、Cの転化率がほぼ100%のときでもCの選択率が90%以上と高くなっていることが確認された。 As shown in FIGS. 1 (a) to 1 (e), when the hydrogenation catalyst is Co 2 (Mn x Fe 1-x ) Ge (0 ≦ x ≦ 1, y = 0), the reaction temperature is 125 ° C. to 150 ° The conversion of C 3 H 4 is almost 100% at temperatures higher than ° C., confirming that C 3 H 4 hydrogenation is activated. Further, the reaction temperature is 50 ℃ ~250 ℃, C 3 selectivity of H 6 90% or more, C 3 selectivity of C 3 H 6 even when H 4 conversion rate of almost 100% is less than 90% and It was confirmed to be higher.

図1(e)および図2(a)〜(d)に示すように、水素化触媒がCoFe(GaGe1−y) (x=0、0≦y≦1)のとき、GeをGaで置換していくに従って、Cの転化率がほぼ100%となるときの最低温度が150℃から75℃まで低下していき、Cの水素化の活性が向上することが確認された。また、GeをGaで置換していくに従って、反応温度が75℃以上の高温側で、Cの選択率が低下していくことが確認された。反応温度が50℃〜250℃で、Cの選択率が90%以上、Cの転化率がほぼ100%のときにCの選択率が90%以上と高いのは、図1(a)〜(e)および図2(a)であった。 As shown in FIGS. 1 (e) and 2 (a) to 2 (d), when the hydrogenation catalyst is Co 2 Fe (Ga y Ge 1-y ) (x = 0, 0 ≦ y ≦ 1), Ge The lowest temperature at which the conversion of C 3 H 4 becomes almost 100% decreases from 150 ° C. to 75 ° C. as Ga is replaced with Ga, and the activity of C 3 H 4 hydrogenation is improved. That was confirmed. Moreover, it was confirmed that the selectivity of C 3 H 6 decreases at the reaction temperature of 75 ° C. or higher as Ge is replaced with Ga. When the reaction temperature is 50 ° C to 250 ° C, the selectivity of C 3 H 6 is 90% or more, and the conversion of C 3 H 4 is almost 100%, the selectivity of C 3 H 6 is as high as 90% or more 1 (a) to (e) and 2 (a).

図3(a)〜(c)に示すように(図1(a)および(c)も参照)、水素化触媒がCo(MnFe1−x)(GaGe1−y) (0.5≦x≦1、0.5≦y≦1)のとき、図2と同様に、GeをGaで置換していくに従って、Cの転化率がほぼ100%以上となるときの最低温度が低下していき、Cの水素化の活性が向上することが確認された。また、GeをGaで置換していくに従って、反応温度が75℃以上の高温側で、Cの選択率が低下していくことも確認された。なお、反応温度が50℃〜250℃で、Cの選択率が90%以上と高いものは確認されなかった。 As shown in FIG. 3 (a) ~ (c) ( see also FIGS. 1 (a) and (c)), the hydrogenation catalyst is Co 2 (Mn x Fe 1- x) (Ga y Ge 1-y) ( When 0.5 ≦ x ≦ 1, 0.5 ≦ y ≦ 1), the conversion of C 3 H 4 becomes almost 100% or more as Ge is replaced with Ga as in FIG. It was confirmed that the C 3 H 4 hydrogenation activity was improved. Moreover, it was also confirmed that the selectivity of C 3 H 6 decreases at a high temperature side where the reaction temperature is 75 ° C. or higher as Ge is replaced with Ga. In the reaction temperature is 50 ° C. to 250 DEG ° C., the selectivity of C 3 H 6 is was not confirmed more than 90% and high.

図1〜図3の結果から、MnとFe、GaとGeの元素置換により、Cの水素化の活性や、Cの選択性が系統的に変化することが確認された。このことから、元素置換により、アルケン選択性などの水素化触媒の触媒特性の制御が可能であると考えられる。 From the results of FIGS. 1 to 3, it was confirmed that the element substitution of Mn and Fe and Ga and Ge systematically changes the hydrogenation activity of C 3 H 4 and the selectivity of C 3 H 6 . From this, it is considered that the element substitution enables control of the catalyst properties of the hydrogenation catalyst such as alkene selectivity.

[プロピレンの水素化試験]
(2)式に従って生成されたプロピレン(アルケン)が、さらに水素と反応してプロパンなど(アルカン)になってしまうと、プロピレン(アルケン)選択性が低下してしまう。そこで、この反応を調べるため、プロピレンの水素化試験を行った。試験では、水素化する原料をC(プロピレン)とし、これを0.1%混合させた原料ガスを用いた。試験結果として、反応後のCの転化率=100×C消費量/C供給量 [%]を求めた。
[The hydrogenation test of propylene]
When propylene (alkene) produced according to the formula (2) is further reacted with hydrogen to form propane or the like (alkane), propylene (alkene) selectivity is lowered. Therefore, in order to investigate this reaction, a hydrogenation test of propylene was conducted. In the test, a raw material gas to be hydrogenated was C 3 H 6 (propylene), and 0.1% of this was mixed. As a test result, the conversion ratio of C 3 H 6 after reaction = 100 × C 3 H 6 consumption / C 3 H 6 supply [%] was determined.

水素化触媒が、CoMnGe、CoMn0.75Fe0.25Ge、CoMn0.5Fe0.5Ge、CoMn0.25Fe0.75Ge、CoFeGe(x=0〜1,y=0)の結果を図4に、CoFeGa0.25Ge0.75、CoFeGa0.5Ge0.5、CoFeGa0.75Ge0.25(x=0,y=0.25〜0.75)の結果を図5(a)〜(c)に、CoMnGa0.5Ge0.5(x=1,y=0.5)の結果を図5(d)に示す。 The hydrogenation catalyst includes Co 2 MnGe, Co 2 Mn 0.75 Fe 0.25 Ge, Co 2 Mn 0.5 Fe 0.5 Ge, Co 2 Mn 0.25 Fe 0.75 Ge, Co 2 FeGe (x The results of (0 to 1, y = 0) are shown in FIG. 4; Co 2 FeGa 0.25 Ge 0.75 , Co 2 FeGa 0.5 Ge 0.5 , Co 2 FeGa 0.75 Ge 0.25 (x Figures 5 (a) to 5 (c) show the results for = 0, y = 0.25 to 0.75, and the results for Co 2 MnGa 0.5 Ge 0.5 (x = 1, y = 0.5). Is shown in FIG. 5 (d).

図4(a)〜(e)に示すように、水素化触媒がCo(MnFe1−x)Ge (0≦x≦1、y=0)のとき、反応温度が25℃〜250℃で、Cの転化率が概ね10%以下となっており、Cはほとんど水素化されていないことが確認された。また、図4(a)、(e)および図5(a)〜(d)に示すように、水素化触媒がCoMn(GaGe1−y) (x=1、0≦y≦0.5)およびCoFe(GaGe1−y) (x=0、0≦y≦0.75)のとき、GeをGaで置換していくに従って、Cの転化率が上昇していき、Cの水素化の活性が向上することが確認された。反応温度が25℃〜250℃で、Cの転化率が概ね20%以下となるのは、図4(a)〜(e)および図5(a)であった。 As shown in FIGS. 4 (a) to 4 (e), when the hydrogenation catalyst is Co 2 (Mn x Fe 1-x ) Ge (0 ≦ x ≦ 1, y = 0), the reaction temperature is 25 ° C. to 250 ° C. The C 3 H 6 conversion rate was approximately 10% or less at ° C., and it was confirmed that C 3 H 6 was hardly hydrogenated. In addition, as shown in FIGS. 4 (a) and 4 (e) and FIGS. 5 (a) to 5 (d), the hydrogenation catalyst is Co 2 Mn (Ga y Ge 1-y ) (x = 1, 0 ≦ y ≦ In the case of 0.5) and Co 2 Fe (Ga y Ge 1-y ) (x = 0, 0 ≦ y ≦ 0.75), the conversion of C 3 H 6 changes as Ge is replaced by Ga. As it went up, it was confirmed that the activity of C 3 H 6 hydrogenation was improved. The reaction temperatures of 25 ° C. to 250 ° C. and the C 3 H 6 conversion rate of approximately 20% or less are shown in FIGS. 4 (a) to 4 (e) and 5 (a).

図1〜図5の結果から、プロピンの水素化でCの選択性が良かった水素化触媒(図1(a)〜(e)、図2(a)参照)は、プロピレンをほとんど水素化しない(図4(a)〜(e)、図5(a)参照)ことが確認された。このことから、これらの水素化触媒は、たとえ水素過剰条件下であっても、高いアルケン選択性を有しており、プロセス条件を問わずに使用できると考えられる。 From the results of FIG. 1 to FIG. 5, the hydrogenation catalyst (see FIG. 1 (a) to (e) and FIG. 2 (a)) in which the C 3 H 6 selectivity was good in the hydrogenation of propyne was mostly propylene. It was confirmed that they were not hydrogenated (see FIGS. 4 (a) to 4 (e) and 5 (a)). From this, it is considered that these hydrogenation catalysts have high alkene selectivity even under hydrogen excess conditions and can be used regardless of process conditions.

[プロピレン中の微量プロピンの水素化試験]
プロピレン中に微量のプロピンが存在する条件で、水素化試験を行った。試験では、水素化する原料を、C(プロピレン)とC(プロピン)とし、Cを10%、Cを0.1%混合させた原料ガスを用いた。試験結果として、反応後のCの転化率=100×C消費量/C供給量 [%]と、Cの選択率=100×C消費量/(C消費量+C生成量) [%]とを求めた。Cの選択率は、消費したCが全てCになったと仮定して求めている。
[Hydrogenation test of trace propyne in propylene]
The hydrogenation test was conducted under the condition that a small amount of propyne was present in propylene. Use in the test, a raw material for hydrogenation, and C 3 H 6 and (propylene) C 3 H 4 and (propyne), the C 3 H 6 10%, a raw material gas and the C 3 H 4 are mixed 0.1% It was. As a test result, conversion of C 3 H 4 after reaction = 100 × C 3 H 4 consumption / C 3 H 4 supply [%] and C 3 H 6 selectivity = 100 × C 3 H 4 consumption Amount / (C 3 H 4 consumption amount + C 3 H 8 generation amount) [%] was determined. Selectivity of C 3 H 6 is, C 3 H 4 consumed is determined by assuming that all became C 3 H 6.

水素化触媒が、CoMnGe、CoMn0.5Fe0.5Ge、CoFeGe(x=0〜1,y=0)の結果を図6(a)〜(c)に、CoFeGa0.25Ge0.75、CoFeGa0.5Ge0.5、CoFeGa(x=0,y=0.25〜1)の結果を図6(d)〜(f)に示す。なお、比較のため、同じ条件下で、従来のリンドラー触媒(5wt%Pd(Pb被毒)/CaCO)で水素化を行った結果を、図7(a)に示す。使用するリンドラー触媒の重量は、約0.1mgとした。 As the hydrogenation catalyst, the results of Co 2 MnGe, Co 2 Mn 0.5 Fe 0.5 Ge, Co 2 FeGe (x = 0 to 1, y = 0) are shown in FIGS. The results of 2 FeGa 0.25 Ge 0.75 , Co 2 FeGa 0.5 Ge 0.5 , and Co 2 FeGa (x = 0, y = 0.25 to 1) are shown in FIGS. 6 (d) to 6 (f). Show. For comparison, under the same conditions, the results of hydrogenation in conventional Lindlar catalyst (5wt% Pd (Pb poisoning) / CaCO 3), shown in Figure 7 (a). The weight of Lindlar catalyst used was about 0.1 mg.

図6(a)〜(c)に示すように、水素化触媒がCo(MnFe1−x)Ge (0≦x≦1、y=0)のとき、反応温度が175℃〜200℃以上で、Cの転化率がほぼ90%以上となっており、Cの水素化が活性化していることが確認された。また、反応温度が100℃〜250℃で、Cの選択率が85%以上、Cの転化率がほぼ90%以上のときでもCの選択率が85%以上と高くなっていることが確認された。 As shown in FIGS. 6A to 6C, when the hydrogenation catalyst is Co 2 (Mn x Fe 1-x ) Ge (0 ≦ x ≦ 1, y = 0), the reaction temperature is 175 ° C. to 200 ° C. The conversion rate of C 3 H 4 is almost 90% or more above ° C., and it is confirmed that the hydrogenation of C 3 H 4 is activated. In addition, even when the reaction temperature is 100 ° C. to 250 ° C., the C 3 H 6 selectivity is 85% or more, and the C 3 H 4 conversion is almost 90% or more, the C 3 H 6 selectivity is 85% or more And was confirmed to be high.

図6(c)〜(f)に示すように、水素化触媒がCoFe(GaGe1−y) (x=0、0≦y≦1)のとき、GeをGaで置換していくに従って、Cの転化率がほぼ100%となるときの最低温度が200℃から100℃まで低下していき、Cの水素化の活性が向上することが確認された。また、GeをGaで置換していくに従って、反応温度が75℃以上の高温側で、Cの選択率が低下していくことが確認された。反応温度が100℃〜250℃で、Cの選択率が80%以上、Cの転化率がほぼ90%以上のときにCの選択率が80%以上と高いのは、図6(a)〜(d)であった。 As shown in FIGS. 6 (c) to 6 (f), when the hydrogenation catalyst is Co 2 Fe (Ga y Ge 1-y ) (x = 0, 0 ≦ y ≦ 1), Ge is replaced by Ga. It was confirmed that the minimum temperature at which the conversion of C 3 H 4 reaches almost 100% gradually decreases from 200 ° C. to 100 ° C., and the activity of C 3 H 4 hydrogenation is improved. Moreover, it was confirmed that the selectivity of C 3 H 6 decreases at the reaction temperature of 75 ° C. or higher as Ge is replaced with Ga. When the reaction temperature is 100 ° C. to 250 ° C., the C 3 H 6 selectivity is as high as 80% or more when the C 3 H 6 selectivity is 80% or more and the C 3 H 4 conversion is approximately 90% or more 6 (a)-(d).

図6に示すように、プロピレン中に微量のプロピンが存在する条件であっても、図1〜図3に示すプロピンの水素化試験と同様のCの選択性を示しており、プロピンの水素化でCの選択性が良かった水素化触媒(図1(a)〜(e)、図2(a)参照)は、プロピレン中に微量のプロピンが存在する条件であっても、Cの選択性が良いこと(図6(a)〜(d)参照)が確認された。このことから、これらの水素化触媒は、アルケン原料中の微量アルキンを選択的に水素化して除去できると考えられる。 As shown in FIG. 6, even under the condition that a small amount of propyne is present in propylene, it shows the C 3 H 6 selectivity similar to the hydrogenation test of propyne shown in FIGS. The hydrogenation catalyst (Fig. 1 (a) to (e), Fig. 2 (a)), in which the selectivity of C 3 H 6 was good in the hydrogenation of (see FIG. It was also confirmed that C 3 H 6 selectivity is good (see FIGS. 6 (a) to (d)). From this, it is thought that these hydrogenation catalysts can selectively hydrogenate and remove trace alkynes in the alkene raw material.

また、図7(a)に示すリンドラー触媒による水素化試験では、反応温度が50℃〜250℃で、Cの転化率がほぼ100%となっており、Cの水素化が非常に活性化しているが、Cの選択率は50%以下と低くなっている。この結果から、図6(a)〜(d)の水素化触媒は、図7(a)に示すリンドラー触媒と比べても、Cの選択性が良いことが確認された。 Moreover, in the hydrogenation test by Lindlar catalyst shown in FIG. 7A, the reaction temperature is 50 ° C. to 250 ° C., and the conversion of C 3 H 4 is almost 100%, and the hydrogenation of C 3 H 4 is performed. However, the selectivity of C 3 H 6 is as low as 50% or less. From these results, it was confirmed that the hydrogenation catalysts shown in FIGS. 6 (a) to 6 (d) have better selectivity for C 3 H 6 than the Lindlar catalysts shown in FIG. 7 (a).

[アセチレンの水素化試験]
アセチレンの水素化に関する試験を行った。アセチレン(C)をエチレン(C)に転化する反応を、(3)式に示す。
aC+bH → cC+dC (3)
(ここで、a,b,c,dは正の整数である。)
[Hydrogenation test of acetylene]
Tests were conducted on the hydrogenation of acetylene. The reaction for converting acetylene (C 2 H 2 ) to ethylene (C 2 H 4 ) is shown in equation (3).
aC 2 H 2 + bH 2 → cC 2 H 4 + dC 2 H 6 (3)
(Here, a, b, c, d are positive integers.)

まず、(3)式に従って、アセチレンを水素化する試験を行った。試験では、水素化する原料をC(アセチレン)とし、これを0.1%混合させた原料ガスを用いた。試験結果として、反応後のCの転化率=100×C消費量/C供給量 [%]と、Cの選択率=100×C生成量/(C生成量+C生成量) [%]とを求めた。 First, a test to hydrogenate acetylene was conducted according to the equation (3). In the test, a raw material gas to be hydrogenated was used as C 2 H 2 (acetylene) mixed with 0.1% of the raw material gas. As a test result, conversion of C 2 H 2 after reaction = 100 × C 2 H 2 consumption / C 2 H 2 supply [%] and C 2 H 4 selectivity = 100 × C 2 H 4 formation Amount / (C 2 H 4 formation amount + C 2 H 6 formation amount) [%] was determined.

水素化触媒が、CoMnGe(x=1,y=0)、CoMn0.5Fe0.5Ge(x=0.5,y=0)、CoFeGe(x=0,y=0)、CoFeGa0.5Ge0.5(x=0,y=0.5)の結果を、それぞれ図8(a)〜(d)に示す。 The hydrogenation catalyst includes Co 2 MnGe (x = 1, y = 0), Co 2 Mn 0.5 Fe 0.5 Ge (x = 0.5, y = 0), Co 2 FeGe (x = 0, y) The results of = 0) and Co 2 FeGa 0.5 Ge 0.5 (x = 0, y = 0.5) are shown in FIGS. 8A to 8D, respectively.

図8(a)〜(c)に示すように、水素化触媒がCo(MnFe1−x)Ge (0≦x≦1、y=0)のとき、反応温度が175℃〜200℃以上で、Cの転化率がほぼ100%となっており、Cの水素化が活性化していることが確認された。また、反応温度が100℃〜250℃で、Cの選択率が85%以上、Cの転化率がほぼ100%のときでもCの選択率が85%以上と高くなっていることが確認された。 As shown in FIGS. 8A to 8C, when the hydrogenation catalyst is Co 2 (Mn x Fe 1-x ) Ge (0 ≦ x ≦ 1, y = 0), the reaction temperature is 175 ° C. to 200 ° C. The conversion of C 2 H 2 is almost 100% above 0 C, and it is confirmed that the hydrogenation of C 2 H 2 is activated. In addition, when the reaction temperature is 100 ° C. to 250 ° C., and the C 2 H 4 selectivity is 85% or more, and the C 2 H 2 conversion is almost 100%, the C 2 H 4 selectivity is 85% or more It was confirmed to be higher.

図8(c)および(d)に示すように、水素化触媒がCoFe(GaGe1−y) (x=0、0≦y≦0.5)のとき、Geの50%をGaで置換すると、Cの転化率がほぼ100%となるときの最低温度が200℃から150℃まで低下し、Cの水素化の活性が向上することが確認された。また、Geの50%をGaで置換すると、反応温度が150℃以上の高温側で、Cの選択率が80%程度まで低下することが確認された。 As shown in FIGS. 8C and 8D, when the hydrogenation catalyst is Co 2 Fe (Ga y Ge 1-y ) (x = 0, 0 ≦ y ≦ 0.5), 50% of Ge is contained. When substituted by Ga, it was confirmed that the minimum temperature at which the conversion of C 2 H 2 is almost 100% is lowered from 200 ° C. to 150 ° C., and the activity of C 2 H 2 hydrogenation is improved. In addition, it was confirmed that when 50% of Ge is replaced with Ga, the C 2 H 4 selectivity decreases to about 80% at a high temperature side where the reaction temperature is 150 ° C. or higher.

図8に示すように、アセチレンの場合でも、図1〜図3に示すプロピンの水素化試験と同様のアルケン(エチレン)選択性を示しており、プロピンの水素化でCの選択性が良かった水素化触媒(図1(a)〜(e)、図2(a)参照)は、Cの選択性も良いこと(図8(a)〜(c)参照)が確認された。 As shown in FIG. 8, even in the case of acetylene, alkene (ethylene) selectivity similar to that of propyne hydrogenation test shown in FIGS. 1 to 3 is shown, and C 3 H 6 selectivity in propyne hydrogenation is shown. It is confirmed that the hydrogenation catalyst (see Figs. 1 (a) to 1 (e) and 2 (a)) had good selectivity for C 2 H 4 (see Figs. 8 (a) to 8 (c)). It was done.

また、図8の結果から、MnとFe、GaとGeの元素置換により、Cの水素化の活性や、Cの選択性が系統的に変化することが確認された。このことから、元素置換により、アルケン選択性などの水素化触媒の触媒特性の制御が可能であると考えられる。 From the results of FIG. 8, the element substitution of Mn and Fe, Ga and Ge, the or the activity of the hydrogenation C 2 H 2, the selectivity of C 2 H 4 was confirmed to be systematically varied. From this, it is considered that the element substitution enables control of the catalyst properties of the hydrogenation catalyst such as alkene selectivity.

[エチレン中の微量アセチレンの水素化試験]
エチレン中に微量のアセチレンが存在する条件で、水素化試験を行った。試験では、水素化する原料を、C(エチレン)とC(アセチレン)とし、Cを10%、Cを0.1%混合させた原料ガスを用いた。試験結果として、反応後のCの転化率=100×C消費量/C供給量 [%]と、Cの選択率=100×C消費量/(C消費量+C生成量) [%]とを求めた。Cの選択率は、消費したCが全てCになったと仮定して求めている。
[Hydrogenation test of trace amount of acetylene in ethylene]
The hydrogenation test was conducted under the condition that a trace amount of acetylene is present in ethylene. Use in the test, a raw material for hydrogenation, and C 2 H 4 (ethylene) and C 2 H 2 (acetylene), the C 2 H 4 10%, the raw material gas and the C 2 H 2 was mixed 0.1% It was. As a test result, conversion of C 2 H 2 after reaction = 100 × C 2 H 2 consumption / C 2 H 2 supply [%] and C 2 H 4 selectivity = 100 × C 2 H 2 consumption Amount / (C 2 H 2 consumption amount + C 2 H 6 generation amount) [%] was determined. Selectivity of C 2 H 4 is consumed C 2 H 2 is determined by assuming that all became C 2 H 4.

水素化触媒が、CoMnGe、CoMn0.5Fe0.5Ge、CoFeGe(x=0〜1,y=0)の結果を図9(a)〜(c)に、CoFeGa0.25Ge0.75、CoFeGa0.5Ge0.5(x=0,y=0.25〜0.5)の結果を図9(d)および(e)に示す。なお、比較のため、同じ条件下で、従来のリンドラー触媒(5wt%Pd(Pb被毒)/CaCO)で水素化を行った結果を、図7(b)に示す。使用するリンドラー触媒の重量は、約0.1mgとした。 As the hydrogenation catalyst, the results of Co 2 MnGe, Co 2 Mn 0.5 Fe 0.5 Ge, Co 2 FeGe (x = 0 to 1, y = 0) are shown in FIGS. 2 FeGa 0.25 Ge 0.75, shows the results of Co 2 FeGa 0.5 Ge 0.5 (x = 0, y = 0.25~0.5) in FIG. 9 (d) and (e). For comparison, under the same conditions, the results of hydrogenation in conventional Lindlar catalyst (5wt% Pd (Pb poisoning) / CaCO 3), shown in FIG. 7 (b). The weight of Lindlar catalyst used was about 0.1 mg.

図9(a)〜(c)に示すように、水素化触媒がCo(MnFe1−x)Ge (0≦x≦1、y=0)のとき、反応温度が200℃以上で、Cの転化率がほぼ100%となっており、Cの水素化が活性化していることが確認された。また、反応温度が100℃〜250℃で、Cの選択率が78%以上、Cの転化率がほぼ100%のときでもCの選択率が78%以上と高くなっていることが確認された。 As shown in FIGS. 9A to 9C, when the hydrogenation catalyst is Co 2 (Mn x Fe 1-x ) Ge (0 ≦ x ≦ 1, y = 0), the reaction temperature is 200 ° C. or higher The C 2 H 2 conversion rate was almost 100%, and it was confirmed that the C 2 H 2 hydrogenation was activated. Further, the reaction temperature is 100 ℃ ~250 ℃, C 2 H 4 selectivity of 78% or more, the selectivity of C 2 even when of H 2 conversion rate of almost 100% C 2 H 4 78% or more and It was confirmed to be higher.

図9(c)〜(e)に示すように、水素化触媒がCoFe(GaGe1−y) (x=0、0≦y≦0.5)のとき、GeをGaで置換していくに従って、Cの転化率がほぼ100%となるときの最低温度が225℃から175℃まで低下していき、Cの水素化の活性が向上することが確認された。また、GeをGaで置換していくに従って、反応温度が200℃以上の高温側で、Cの選択率が低下していくことが確認された。反応温度が100℃〜250℃で、Cの選択率が65%以上、Cの転化率がほぼ100%のときにCの選択率が65%以上と高いのは、図9(c)と(d)であった。 As shown in FIGS. 9 (c) to 9 (e), when the hydrogenation catalyst is Co 2 Fe (Ga y Ge 1-y ) (x = 0, 0 ≦ y ≦ 0.5), Ge is replaced by Ga. It is confirmed that the lowest temperature at which the conversion of C 2 H 2 becomes almost 100% gradually decreases from 225 ° C. to 175 ° C. as the conversion of C 2 H 2 progresses, and the activity of C 2 H 2 hydrogenation is improved. The Moreover, it was confirmed that the selectivity of C 2 H 4 decreases at the reaction temperature of 200 ° C. or higher as Ge is replaced with Ga. In the reaction temperature is 100 ° C. to 250 DEG ° C., C 2 H 4 selectivity of 65% or more, the selectivity of C 2 H 4 is as high as 65% or more when the conversion rate C 2 H 2 is substantially 100% 9 (c) and 9 (d).

図9に示すように、エチレン中に微量のアセチレンが存在する条件であっても、図1〜図3に示すプロピンの水素化試験や図8に示すアセチレンの水素化試験と同様のアルケン(エチレン、プロピレン)の選択性を示しており、プロピンの水素化でCの選択性が良かった水素化触媒(図1(a)〜(e)、図2(a)参照)や、アセチレンの水素化でCの選択性が良かった水素化触媒(図8(a)および(b)参照)は、エチレン中に微量のアセチレンが存在する条件であっても、Cの選択性が良いこと(図9(a)〜(d)参照)が確認された。このことから、これらの水素化触媒は、アルケン原料中の微量アルキンを選択的に水素化して除去できると考えられる。 As shown in FIG. 9, alkenes (ethylene) similar to the hydrogenation test of propyne shown in FIGS. 1 to 3 and the hydrogenation test of acetylene shown in FIG. And propylene, which exhibited a selectivity for propylene and a selectivity for C 3 H 6 in hydrogenation of propyne (see FIGS. 1 (a) to (e) and 2 (a)), and acetylene. The hydrogenation catalyst (see Fig. 8 (a) and (b)), which had good selectivity for C 2 H 4 in the hydrogenation of (see Fig. 8 (a) and (b)), showed that C 2 H 4 It was confirmed that the selectivity of (see FIGS. 9A to 9D) was good. From this, it is thought that these hydrogenation catalysts can selectively hydrogenate and remove trace alkynes in the alkene raw material.

また、図7(b)に示すリンドラー触媒による水素化試験では、反応温度が100℃〜250℃で、Cの転化率がほぼ90%以上となっており、Cの水素化が非常に活性化しているが、Cの選択率は、反応温度が50℃〜200℃で、40%以下と低くなっている。この結果から、図9(a)〜(d)の水素化触媒は、図7(b)に示すリンドラー触媒と比べても、Cの選択性が良いことが確認された。
Moreover, in the hydrogenation test by Lindlar catalyst shown in FIG. 7 (b), the reaction temperature is 100 ° C. to 250 ° C., the conversion of C 2 H 2 is almost 90% or more, and hydrogen of C 2 H 2 However, the selectivity of C 2 H 4 is as low as 40% or less at a reaction temperature of 50 ° C. to 200 ° C. From these results, it was confirmed that the hydrogenation catalysts of FIGS. 9 (a) to 9 (d) had better selectivity for C 2 H 4 than the Lindlar catalysts shown in FIG. 7 (b).

Claims (11)

Co(MnFe1−x)(GaGe1−y) (0≦x≦1、0≦y≦0.3)のホイスラー合金から成ることを特徴とする選択的水素化触媒。 A selective hydrogenation catalyst comprising a Heusler alloy of Co 2 (Mn x Fe 1 -x ) (Ga y Ge 1-y ) (0 ≦ x ≦ 1, 0 ≦ y ≦ 0.3). Co(MnFe1−x)Ge (0≦x≦1)のホイスラー合金から成ることを特徴とする選択的水素化触媒。 A selective hydrogenation catalyst comprising a Heusler alloy of Co 2 (Mn x Fe 1 -x ) Ge (0 ≦ x ≦ 1). CoFe(GaGe1−y) (0≦y≦0.3)のホイスラー合金から成ることを特徴とする選択的水素化触媒。 A selective hydrogenation catalyst comprising a Heusler alloy of Co 2 Fe (Ga y Ge 1-y ) (0 ≦ y ≦ 0.3). 前記ホイスラー合金は粉末状であることを特徴とする請求項1乃至3のいずれか1項に記載の選択的水素化触媒。   The selective hydrogenation catalyst according to any one of claims 1 to 3, wherein the Heusler alloy is in the form of powder. アルキンの水素化反応で使用され、90%以上の転化率でアルキンを水素化したとき、65%以上のアルケン選択率を有することを特徴とする請求項1乃至4のいずれか1項に記載の選択的水素化触媒。   The alkyne hydrogenation reaction according to any one of claims 1 to 4, characterized in that it has an alkene selectivity of 65% or more when it is hydrogenated at a conversion of 90% or more. Selective hydrogenation catalyst. 請求項1乃至5のいずれか1項に記載の選択的水素化触媒の製造方法であって、
前記ホイスラー合金の組成となるよう秤量した原料を溶解混合した後、700℃乃至1100℃で1時間乃至80時間の均質化処理を行い、均質化処理後の合金を粉砕することを特徴とする選択的水素化触媒の製造方法。
A method for producing a selective hydrogenation catalyst according to any one of claims 1 to 5, which is:
The raw materials weighed to obtain the composition of the Heusler alloy are dissolved and mixed, and then the homogenization treatment is performed at 700 ° C. to 1100 ° C. for 1 hour to 80 hours, and the alloy after the homogenization treatment is crushed. Method of selective hydrogenation catalyst.
請求項1乃至5のいずれか1項に記載の選択的水素化触媒の製造方法であって、
前記ホイスラー合金の組成となるよう秤量した原料を圧粉成形した後、700℃乃至1100℃で24時間乃至168時間の焼結処理を行い、焼結処理後の合金を粉砕することを特徴とする選択的水素化触媒の製造方法。
A method for producing a selective hydrogenation catalyst according to any one of claims 1 to 5, which is:
The raw material weighed to have the composition of the Heusler alloy is compacted, and then sintered at 700 ° C. to 1100 ° C. for 24 hours to 168 hours to grind the alloy after the sintering treatment. Process for the production of selective hydrogenation catalysts.
請求項1乃至5のいずれか1項に記載の選択的水素化触媒の存在下で、アルキンと水素とを接触させることにより、前記アルキンをアルケンに選択的に水素化することを特徴とする選択的水素化方法。   A selective hydrogenation characterized in that the alkyne is selectively hydrogenated to an alkene by contacting the alkyne with hydrogen in the presence of the selective hydrogenation catalyst according to any one of claims 1 to 5. Hydrogenation method. 前記選択的水素化触媒を、水素ガスを用いた熱処理により還元した後、還元後の前記選択的水素化触媒の存在下で、前記アルキンをアルケンに選択的に水素化することを特徴とする請求項8記載の選択的水素化方法。   The present invention is characterized in that the selective hydrogenation catalyst is reduced by heat treatment using hydrogen gas, and then the alkyne is selectively hydrogenated to an alkene in the presence of the reduced selective hydrogenation catalyst. 9. A selective hydrogenation method according to item 8. 前記アルキンに対して前記水素を40倍〜1000倍の割合で含む原料ガスを、前記選択的水素化触媒の存在下で反応させて、前記アルキンをアルケンに選択的に水素化することを特徴とする請求項8または9記載の選択的水素化方法。   A source gas containing the hydrogen at a ratio of 40 to 1000 times that of the alkyne is reacted in the presence of the selective hydrogenation catalyst to selectively hydrogenate the alkyne to an alkene. The selective hydrogenation method according to claim 8 or 9, wherein 90%以上の転化率で前記アルキンを水素化して、65%以上の選択率でアルケンを得ることを特徴とする請求項8乃至10のいずれか1項に記載の選択的水素化方法。
11. A selective hydrogenation process according to any one of claims 8 to 10, wherein the alkyne is hydrogenated at a conversion of 90% or more to obtain an alkene with a selectivity of 65% or more.
JP2017220616A 2017-11-16 2017-11-16 Selective hydrogenation catalyst, manufacturing method of selective hydrogenation catalyst, and selective hydrogenation method Pending JP2019089039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017220616A JP2019089039A (en) 2017-11-16 2017-11-16 Selective hydrogenation catalyst, manufacturing method of selective hydrogenation catalyst, and selective hydrogenation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017220616A JP2019089039A (en) 2017-11-16 2017-11-16 Selective hydrogenation catalyst, manufacturing method of selective hydrogenation catalyst, and selective hydrogenation method

Publications (1)

Publication Number Publication Date
JP2019089039A true JP2019089039A (en) 2019-06-13

Family

ID=66835527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017220616A Pending JP2019089039A (en) 2017-11-16 2017-11-16 Selective hydrogenation catalyst, manufacturing method of selective hydrogenation catalyst, and selective hydrogenation method

Country Status (1)

Country Link
JP (1) JP2019089039A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529560A (en) * 2006-03-15 2009-08-20 マックス−プランク−ゲゼルシャフト ツール フェルデルング デア ヴィッセンシャフテン エー. ファオ. Hydrogenation method using catalyst containing ordered intermetallic compound
WO2017029165A1 (en) * 2015-08-17 2017-02-23 Basf Se Ternary intermetallic x2yz compound catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529560A (en) * 2006-03-15 2009-08-20 マックス−プランク−ゲゼルシャフト ツール フェルデルング デア ヴィッセンシャフテン エー. ファオ. Hydrogenation method using catalyst containing ordered intermetallic compound
WO2017029165A1 (en) * 2015-08-17 2017-02-23 Basf Se Ternary intermetallic x2yz compound catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ACS OMEGA, vol. 2, JPN7021003062, 19 January 2017 (2017-01-19), pages 147 - 153, ISSN: 0004566477 *

Similar Documents

Publication Publication Date Title
JP5302693B2 (en) Hydrogenation method using catalyst containing ordered intermetallic compound
Cui et al. Electrocatalytic activity of high-entropy alloys toward oxygen evolution reaction
JP6724253B2 (en) Dry reforming catalyst using metal oxide support and method for producing synthesis gas using the same
JP6257767B2 (en) Catalysts for ammonia synthesis and ammonia decomposition
JP2021503430A5 (en)
WO2017111028A1 (en) Transition-metal-supporting intermetallic compound, supported metallic catalyst, and ammonia producing method
CN112044434B (en) Single-atom noble metal/transition metal oxide composite material and preparation method and application thereof
CN106660020A (en) Use of olivine catalysts for carbon dioxide reforming of methane
Cui et al. Theory-guided design of nanoporous CuMn alloy for efficient electrocatalytic nitrogen reduction to ammonia
Liu et al. Effect of Cu-doping on the structure and performance of molybdenum carbide catalyst for low-temperature hydrogenation of dimethyl oxalate to ethanol
CN102355948A (en) Nickel/lanthana catalyst for producing syngas
JP2004000900A (en) Catalyst for reforming hydrocarbon and method for reforming hydrocarbon
JP5398082B2 (en) Method for preparing ruthenium catalyst for cycloolefin production, method for producing cycloolefin, and production apparatus
JP2011213534A (en) Material for synthesizing ammonia and method for synthesizing ammonia
JP2017525647A (en) Production method of silane trichloride
JP7023457B2 (en) Ammonia synthesis catalyst and ammonia synthesis method using the catalyst
JP2019089039A (en) Selective hydrogenation catalyst, manufacturing method of selective hydrogenation catalyst, and selective hydrogenation method
JP7285024B2 (en) Method for producing metal oxyhydride, metal oxyhydride, and method for synthesizing ammonia using the same
JP2016155123A (en) Ammonia synthesis catalyst and production method thereof
US8129304B2 (en) Intermetallic compound Ni3Al catalyst for reforming methanol and methanol reforming method using same
Kojima et al. Screening of ternary intermetallic catalysts is possible using metallurgical synthesis: demonstration on Heusler alloys
CN113019394B (en) Ammonia decomposition hydrogen production Ni-Pt/CeO2Catalyst, preparation method and application thereof
WO2017047709A1 (en) Laves phase intermetallic compound, catalyst using intermetallic compound, and method for producing ammonia
JP7418849B2 (en) Oxynitrogen hydride, metal support containing oxynitrogen hydride, and catalyst for ammonia synthesis
Bhavani et al. Synthesis of single phase LaMn1− XNiXO3 perovskite material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220222