JP2019084824A - Powder for ceramic molding, and method for molding ceramic using the same - Google Patents

Powder for ceramic molding, and method for molding ceramic using the same Download PDF

Info

Publication number
JP2019084824A
JP2019084824A JP2018206036A JP2018206036A JP2019084824A JP 2019084824 A JP2019084824 A JP 2019084824A JP 2018206036 A JP2018206036 A JP 2018206036A JP 2018206036 A JP2018206036 A JP 2018206036A JP 2019084824 A JP2019084824 A JP 2019084824A
Authority
JP
Japan
Prior art keywords
powder
laser
organic compound
ceramic
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018206036A
Other languages
Japanese (ja)
Other versions
JP7256630B2 (en
JP2019084824A5 (en
Inventor
薮田 久人
Hisato Yabuta
久人 薮田
安居 伸浩
Nobuhiro Yasui
伸浩 安居
香菜子 大志万
Kanako Oshima
香菜子 大志万
坪山 明
Akira Tsuboyama
明 坪山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to US16/178,906 priority Critical patent/US11285661B2/en
Publication of JP2019084824A publication Critical patent/JP2019084824A/en
Publication of JP2019084824A5 publication Critical patent/JP2019084824A5/ja
Application granted granted Critical
Publication of JP7256630B2 publication Critical patent/JP7256630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Producing Shaped Articles From Materials (AREA)

Abstract

To provide raw material powder for obtaining a ceramic molding having high precision in the additional production of ceramic by a selective laser sintering process or a selective laser melting process, and to provide a method for producing a ceramic structure having high precision.SOLUTION: Provided is powder for ceramic molding for obtaining a structure by repeating serial melting and solidification to powder by the irradiation of a laser beam. The powder includes inorganic compound particles and an organic compound, the organic compound is provided on the surfaces of the inorganic compound particles, and the organic compound has an absorption zone superimposed on the wavelength of the laser beam.SELECTED DRAWING: Figure 4

Description

本発明は、レーザーにより構造物を得るためのセラミックス造形用粉体、およびそれを用いたセラミックスの造形方法に関する。   The present invention relates to a powder for ceramic formation for obtaining a structure by a laser, and a method for forming a ceramic using the same.

近年、レーザー光を用いた付加製造技術(Additive Manufacturing、または3次元造形技術とも言う)が発展し、技術性能が高まっている。特に金属分野では、レーザー描画により原料の金属粉体を思い通りの形状で焼結あるいは熔融させて結着させる、粉末床熔融結合法(粉末積層法)の一種である選択的レーザー焼結法(Selective Laser Sintering:SLS)、あるいは選択的レーザー熔融法(Selective Laser Melting:SLM)により、緻密で多様性のある造形物の製造が実現している。これらの製造方法においては一般的に、YAGレーザーやファイバーレーザーなど、小型高出力かつ低価格な近赤外領域のレーザーがもっぱら用いられている。   In recent years, additional manufacturing technology (also referred to as Additive Manufacturing or three-dimensional modeling technology) using laser light has been developed, and technology performance has been enhanced. In the metal field, in particular, selective laser sintering (Selective laser sintering method), which is a type of powder bed fusion bonding method (powder lamination method), is used to sinter or melt metal powder of the raw material in a desired shape by laser drawing. Laser Sintering (SLS) or Selective Laser Melting (SLM) realizes the production of compact and versatile shaped articles. In these manufacturing methods, generally, small-sized, high-power and low-cost lasers in the near infrared region, such as YAG lasers and fiber lasers, are exclusively used.

SLSあるいはSLMは、原理的にはセラミックスへも適用可能である。ただし、一般的な絶縁性セラミックスは可視から赤外領域の光に対して透過性の高いものが多い。そのため、SLSまたはSLM装置を用いてセラミックスの付加製造を行う場合には、レーザー光は原料となるセラミックス粒子ではほとんど吸収されないため、加工部分の材料の融解に必要な熱エネルギーと比較してかなり大きいパワーのレーザー光を照射する必要がある。また、僅かな吸収による発熱を利用して、セラミックスの融解あるいは焼結による造形を試みても、レーザー光はセラミックス粒子を透過拡散するために、レーザー光のビーム径よりも大きな領域が融解されてしまい、精細な造形を行うことが困難であった。   In principle, SLS or SLM can also be applied to ceramics. However, many common insulating ceramics have high transparency to light in the visible to infrared region. Therefore, when performing additive production of ceramics using SLS or SLM devices, laser light is hardly absorbed by the ceramic particles that are the raw material, so it is considerably larger than the thermal energy required to melt the material of the processing part It is necessary to irradiate power laser light. In addition, even if attempts are made to melt or sinter the ceramic by making use of the heat generated by slight absorption, the laser light transmits and diffuses the ceramic particles, so that a region larger than the beam diameter of the laser light is melted. As a result, it has been difficult to carry out fine shaping.

このような問題点を有する状況において、非特許文献1では、共晶系酸化物セラミックスのレーザー光照射による付加製造が提案されている。具体的には、Al−ZrO共晶系を用いることで融点を下げ、比較的小さいパワーのレーザー光でも熔融させることができるものである。さらに、凝固の際に共晶系特有の微細構造が形成されることにより、高い機械強度を有するセラミックス構造物を造形することができる、というものである。この方法により、ある程度の精細さの向上は見られたが、依然として表面突起物が多数発生するなど、十分に高精細な造形ができなかった。 In the situation which has such a problem, in nonpatent literature 1, addition manufacture by laser beam irradiation of eutectic system oxide ceramics is proposed. Specifically, the melting point can be lowered by using an Al 2 O 3 -ZrO 2 eutectic system, and even a laser beam of relatively small power can be melted. Furthermore, by forming a microstructure unique to a eutectic system during solidification, it is possible to form a ceramic structure having high mechanical strength. By this method, although a certain degree of improvement in definition was observed, still a large number of surface protrusions were generated, and sufficiently high definition formation could not be performed.

Physics Procedia 5 (2010) 587−594Physics Procedia 5 (2010) 587-594

SLSまたはSLM装置でよく用いられているレーザー光源は、YAGレーザーやファイバーレーザーなどの連続発振固体レーザーであり、その波長は1000nm近傍の近赤外領域である。一部でパルス発振固体レーザーを用いる試みもなされているが、レーザーの波長は連続発振固体レーザーと同様である。今後、小型半導体レーザーが高出力化され、SLSまたはSLM装置に適用された場合、その波長は可視光領域と想定される。   A laser light source often used in SLS or SLM devices is a continuous oscillation solid laser such as a YAG laser or a fiber laser, and its wavelength is in the near infrared region near 1000 nm. Although some attempts have been made to use a pulse oscillation solid laser, the wavelength of the laser is similar to that of a continuous oscillation solid laser. In the future, when the output of a small semiconductor laser is increased and applied to an SLS or SLM device, the wavelength is assumed to be in the visible light region.

SLSまたはSLMによるセラミックスの付加製造を行う場合、安価かつ高強度で、人体や環境に影響の少ない上、焼結性あるいは熔融結着性のよいAlやZrOなどが適しているが、これらの材料は可視から近赤外領域の波長の光に対して明瞭な吸収を示さない。そのため、表面構造、不純物および空格子に由来する欠陥準位による僅かな吸収による発熱で、これらの材料を融解あるいは焼結せざるを得ず、大きなパワーでレーザー光を照射しなければならない。その際、レーザー光の大部分はこれらの材料に吸収されずに散乱されるため、レーザー光の照射ビーム径よりも広がった、レーザー加工部と未加工部の境界がいびつな形状の造形物が得られることとなり、所望の精細さを有する造形物が得られないという課題があった。 When adding ceramics with SLS or SLM, Al 2 O 3 and ZrO 2 are suitable because they are inexpensive and have high strength, have little impact on the human body and the environment, and have good sinterability or fusion bondability. These materials do not show distinct absorption for light of wavelengths in the visible to near infrared region. Therefore, heat generation due to slight absorption by surface structure, impurities and defect levels derived from vacancies is required to melt or sinter these materials, and laser light must be irradiated with a large power. At that time, most of the laser light is scattered without being absorbed by these materials, so the shaped object with a distorted shape at the boundary between the laser-processed portion and the non-processed portion is wider than the irradiation beam diameter of the laser light. There is a problem in that a molded object having desired definition can not be obtained.

粉末床熔融結合法(粉末積層法)では1層の造形が完了した後に、その上に新たな未加工の原料粉体を1層敷き、その原料粉体に対してレーザー描画を行い、一層ごとの造形物を積み重ねることで立体的な構造物を造形していく。しかしながら、未加工の原料粉体層に対して照射した大パワーのレーザー光は、原料粉体を透過し散乱され、既に加工済みの造形物の内部にまで侵入して再熔融を起こしてしまい、さらに造形物の精細さを低下させてしまうという課題があった。   In the powder bed fusion bonding method (powder lamination method), after shaping of one layer is completed, a new raw material powder is laid on one layer, laser drawing is performed on the material powder, and The three-dimensional structure is formed by stacking the three-dimensional objects. However, the high power laser beam irradiated to the raw material powder layer penetrates and scatters the raw material powder and penetrates into the inside of the already-processed shaped object, causing remelting. Furthermore, there is a problem that the definition of a shaped object is reduced.

したがって、SLSまたはSLMによるセラミックス造形物の精細さを向上させる為には、原料粉体での照射レーザー光の吸収効率を高めることで、該レーザー光の透過を抑制する必要があった。さらに高精細な造形物を得るためには、レーザー照射により造形が完了した部分に再度レーザー光が照射されても内部で再融解しないことが必要であった。   Therefore, in order to improve the definition of the ceramic shaped article by SLS or SLM, it was necessary to suppress the transmission of the laser light by enhancing the absorption efficiency of the irradiation laser light with the raw material powder. In order to obtain a high-definition shaped object, it is necessary that the portion completed with the laser irradiation is not remelted internally even when the portion is irradiated with the laser light again.

本発明はこれらのような課題を解決するためになされたものであり、SLSまたはSLM装置によるセラミックスの付加製造において、高精細なセラミックス造形物を得るための原料粉体を提供する。また、そのような粉体を用いて造形を行うことで、高精細なセラミックス構造物を製造するための方法を提供する。   The present invention has been made to solve these problems, and provides a raw material powder for obtaining a high-definition ceramic shaped article in additive production of ceramics by an SLS or SLM device. In addition, forming using such powder provides a method for producing a high-definition ceramic structure.

上記課題を解決するための本発明の粉体は、レーザー光の照射により粉体の逐次熔融および凝固を繰り返して構造物を得るためのセラミックス造形用粉体であって、無機化合物粒子および有機化合物を含み、前記有機化合物は前記無機化合物粒子の表面に設けられており、前記有機化合物は前記レーザー光の波長に重なる吸収帯を有することを特徴とする。   The powder of the present invention for solving the above-mentioned problems is a powder for forming a ceramic for obtaining a structure by repeating sequential melting and solidification of the powder by irradiation of a laser beam, which comprises inorganic compound particles and an organic compound And the organic compound is provided on the surface of the inorganic compound particle, and the organic compound has an absorption band overlapping with the wavelength of the laser beam.

また、上記課題を解決するための本発明の製造方法は、上記粉体を用い、その構成物である有機化合物の吸収帯と波長が重なるレーザー光を照射して、上記粉体を逐次熔融および凝固させる工程を繰り返すことでセラミックス構造物を造形することを特徴とする。   Further, in the production method of the present invention for solving the above problems, the powder is irradiated with a laser beam having a wavelength overlapping with the absorption band of the constituent organic compound using the powder to sequentially melt the powder and A ceramic structure is formed by repeating the step of solidifying.

本発明の粉体を用いることにより、高精細なセラミックス構造物を3次元造形によって得ることができる。   By using the powder of the present invention, a high-definition ceramic structure can be obtained by three-dimensional shaping.

本発明の粉体が適用できる造形手法の一例を模式的に示す断面概略図である。It is the cross-sectional schematic which shows typically an example of the modeling method which can apply the powder of this invention. 本発明の粉体が適用できる造形手法の別の例を模式的に示す断面概略図である。It is the cross-sectional schematic which shows typically another example of the modeling method which can apply the powder of this invention. 物質の光吸収スペクトルの一例を示す図である。It is a figure which shows an example of the light absorption spectrum of a substance. 本発明の粉体の望ましい形態の一例を模式的に示す断面概略図である。It is the cross-sectional schematic which shows typically an example of the desirable form of the powder of this invention. 本発明の有機化合物を表面に付置した粉体と有機化合物のない粉体、および、それぞれの隣接部位のレーザー照射時間による温度上昇の振る舞いを示す模式図である。It is a schematic diagram which shows the behavior of the temperature rise by the laser irradiation time of the powder which attached the organic compound of this invention on the surface, the powder which does not have an organic compound, and each adjacent part. レーザー照射領域と未照射領域との境界の振れ幅を観測した図である。It is the figure which observed the fluctuation width of the boundary of a laser irradiation area | region and a non-irradiation area | region.

以下、図面等を用いて本発明を実施するための形態を説明する。
本発明における、レーザー光の照射部の粉体を逐次熔融、凝固させることを繰り返すことで構造物を得るセラミックス造形手法について、図1および図2を用いて説明する。上述のSLSやSLMがこれに該当する。使用するレーザー光の波長に制限はないが、一般的にSLSまたはSLMに用いられるレーザーは小型高出力で比較的安価なものが用いられる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings and the like.
The ceramic shaping | molding method which obtains a structure by repeating melting and solidifying the powder of the irradiation part of a laser beam one by one in this invention is demonstrated using FIG. 1 and FIG. The above-mentioned SLS and SLM correspond to this. Although the wavelength of the laser beam to be used is not limited, generally, a small size, high output and relatively inexpensive laser is used for the SLS or SLM.

具体的には、上述のとおりファイバーレーザーやYAGレーザーなどの固体レーザーがよく用いられ、たとえば一般的なYb添加ファイバーレーザーやNd添加YAGレーザーの代表的な発振波長は1060nmから1080nmである。それ以外の固体レーザーでは800nmから1200nmの発振波長を用いるものが多い。また、近年では加工用途にも用いられる高出力の半導体レーザーが開発されており、それらは700nmから1000nm程度の範囲内の発振波長を有するものが多い。これらレーザーのいずれも用いることができる。   Specifically, as described above, solid lasers such as fiber lasers and YAG lasers are often used. For example, typical oscillation wavelengths of general Yb-doped fiber lasers and Nd-doped YAG lasers are 1060 nm to 1080 nm. Many other solid lasers use an oscillation wavelength of 800 nm to 1200 nm. In recent years, high-power semiconductor lasers used for processing applications have also been developed, and many of them have oscillation wavelengths within the range of about 700 nm to about 1000 nm. Any of these lasers can be used.

また、レーザー発振の種別が連続発振であってもパルス発振であっても、いずれも用いることができる。高精細な造形物を得るためには、照射されるレーザービームの径は、10μm以上200μm以下であることが望ましい。また、短時間で大きな造形物を得るためには、200μm以上2000μm以下であることが望ましい。そのために、レンズ等を用いて集光することで、照射位置でのレーザービーム径を微細にすることができる。   Further, the type of laser oscillation can be either continuous oscillation or pulse oscillation. In order to obtain a high-definition shaped object, the diameter of the laser beam to be irradiated is desirably 10 μm or more and 200 μm or less. Moreover, in order to obtain a large shaped article in a short time, it is desirable that the thickness be 200 μm or more and 2000 μm or less. Therefore, the laser beam diameter at the irradiation position can be made finer by focusing using a lens or the like.

本発明で用いることが望ましい造形方式である、粉末床熔融結合法(粉末積層法)の一種である選択的レーザー焼結法(SLS)について、図1を一つの例として用いて説明する。SLSは粉末ベッド直接造形方式とも呼ばれる。この方式の造形装置は、粉末升11と造形ステージ部12、リコーター部13、スキャナ部14、レーザー15等から構成される。   A selective laser sintering method (SLS), which is a type of powder bed fusion bonding method (powder lamination method), which is a desirable forming method to be used in the present invention, will be described using FIG. 1 as an example. SLS is also called powder bed direct shaping method. The molding apparatus of this type comprises a powder crucible 11, a molding stage 12, a recoater 13, a scanner 14, a laser 15, and the like.

まず、粉末升11と造形ステージ部12が適宜上下しながらリコーター部13で粉体を操作し、想定している構造物よりも広い領域に所定の厚さで粉体を敷き詰める。続いて、目的の構造物の一断面に対応する部分を、レーザー15とスキャナ部14により粉体層にレーザー光で描画を施す。それにより、原料粉体の焼結、ないし熔融・凝固が生じる。このプロセスを繰り返すことにより、各断面に対応する平面の造形物が積層され、立体的な最終構造物が形成される。   First, the powder is operated by the recoater unit 13 while the powder crucible 11 and the forming stage unit 12 move up and down appropriately, and the powder is spread with a predetermined thickness in a region wider than the assumed structure. Subsequently, a portion corresponding to one cross section of the target structure is drawn on the powder layer with a laser beam by the laser 15 and the scanner unit 14. As a result, sintering, melting or solidification of the raw material powder occurs. By repeating this process, the three-dimensional final structure is formed by stacking the planar shaped objects corresponding to each cross section.

本発明では、指向エネルギー堆積法(または、クラッディング方式とも呼ばれる)も同様に造形に用いることができる。この造形方式について図2を一つの例として用いて説明する。クラッディングノズル21にある複数の粉体供給孔22から粉体を噴出させ、噴出した粉体のビームが焦点を結ぶ領域にレーザー23を照射して、当該所望の場所に付加的に構造物を設けていく手法であり、曲面等への造形も可能な点が特徴となる。   In the present invention, directed energy deposition (also called cladding) can be used for shaping as well. This shaping method will be described using FIG. 2 as an example. The powder is ejected from the plurality of powder supply holes 22 in the cladding nozzle 21 and the laser beam is irradiated to the region where the beam of the ejected powder is focused, and the structure is additionally provided at the desired location. It is a method of providing it, and it is characterized in that it can be shaped on a curved surface or the like.

次に本発明の粉体について説明する。
本発明において粉体とは、孤立した粒の集合体を指す。それぞれの孤立した粒の一部または全部は、無機化合物からなる粒子と、その表面に設けられた有機化合物から構成される。
Next, the powder of the present invention will be described.
In the present invention, powder refers to an aggregate of isolated particles. Some or all of the isolated particles are composed of particles made of an inorganic compound and an organic compound provided on the surface thereof.

本発明における無機化合物とは、水素を除く周期表1族から14族までの元素に、アンチモンおよびビスマスを加えた元素群のうち、1種類以上の元素を含有する酸化物、窒化物、酸窒化物、炭化物、あるいはホウ化物を指す。また、無機化合物からなる粒子は1種類の無機化合物により構成されていてもよく、また、2種類以上の無機化合物が複合化したものでもよい。   The inorganic compounds in the present invention include oxides, nitrides and oxynitrides containing one or more elements in the group of elements obtained by adding antimony and bismuth to elements from Groups 1 to 14 of the periodic table excluding hydrogen. Point, carbide, or boride. In addition, particles made of an inorganic compound may be composed of one type of inorganic compound, and may be a complex of two or more types of inorganic compounds.

この無機化合物を含む粒子は、金属酸化物を主成分とするものからなることが望ましい。金属酸化物が主成分であることで、高強度の造形物がレーザー照射で容易に製造できる。ここで金属酸化物とは上記元素群からホウ素、炭素、ケイ素、ゲルマニウムを除いた元素群のうち、1種類以上の元素を含有する酸化物を指す。その中でも、酸化アルミニウムを含有する物が機械強度や耐熱性や電気絶縁性、および入手容易性や環境適合性などの点で望ましく、また酸化ジルコニウムを含有する物も同様に望ましい。これらは単体で用いるだけでなく、他の物質と複合的に用いることで新たな機能を発現し、さらに望ましくなる場合がある。   It is desirable that the particles containing this inorganic compound be composed mainly of a metal oxide. Since the metal oxide is a main component, a high-strength shaped article can be easily manufactured by laser irradiation. Here, the metal oxide refers to an oxide containing one or more elements out of the above element groups excluding boron, carbon, silicon, and germanium. Among them, those containing aluminum oxide are desirable in terms of mechanical strength, heat resistance, electrical insulation, and availability and environmental compatibility, and those containing zirconium oxide are also desirable. These are not only used alone, but may exhibit new functions by being used in combination with other substances, which may become more desirable.

例えば、酸化アルミニウムと酸化ジルコニウム、および酸化アルミニウムと酸化ガドリニウムや酸化イットリウムなどの希土類金属酸化物の組み合わせでは、共晶を形成するために融解温度が低下し、レーザー照射による熔融が比較的容易になる。同様の理由で、酸化ガドリニウムと、酸化ジルコニウムや酸化イットリウムなどの希土類金属酸化物との組み合わせや、酸化アルミニウムと酸化ジルコニウムと希土類金属酸化物との組み合わせも好ましい。これらの組み合わせを用いると、再凝固した際には共晶組織が発現し、単一の金属酸化物を用いる場合よりも機械強度が増強されることがある。また、上記酸化物と窒化アルミニウムや窒化ホウ素などの窒化物とを組み合わせて用いることで、酸化物のみを用いる場合よりも軽量化かつ高強度化が実現されることがある。   For example, in the combination of aluminum oxide and zirconium oxide, and aluminum oxide and a rare earth metal oxide such as gadolinium oxide or yttrium oxide, the melting temperature is lowered to form a eutectic, and the melting by laser irradiation becomes relatively easy. . For the same reason, a combination of gadolinium oxide and a rare earth metal oxide such as zirconium oxide or yttrium oxide, or a combination of aluminum oxide, zirconium oxide and a rare earth metal oxide is also preferable. With these combinations, a eutectic structure may be developed upon resolidification, and mechanical strength may be enhanced as compared to the case of using a single metal oxide. In addition, by using the above oxide and a nitride such as aluminum nitride or boron nitride in combination, weight reduction and high strength may be realized as compared with the case where only the oxide is used.

無機化合物粒子の形態は結晶であるか、非晶質であるかを問わない。また単相の化合物であるか、複相の混合物であるかの別を問わない。また、金属相や、上述の窒化物、アンチモン化合物およびビスマス化合物を除く15族元素の化合物(ニクタイドまたはプニクタイドとも言う)、上述の酸化物を除く16族元素の化合物(カルコゲナイドとも言う)、および17族元素の化合物(ハライドとも言う)を一部含有してもよい。また、微小粒を結着させるためのバインダーなどの有機化合物を一部含んでもよい。   The form of the inorganic compound particles may be crystalline or amorphous. Further, it may be a single phase compound or a mixture of multiple phases. In addition, compounds of Group 15 elements excluding the metal phase, the above nitrides, antimony compounds and bismuth compounds (also referred to as pnictides or pnictides), compounds of Group 16 elements other than the above oxides (also referred to as chalcogenides), and 17 It may partially contain a compound of a group element (also referred to as a halide). Further, it may partially contain an organic compound such as a binder for binding fine particles.

本発明における有機化合物とは、炭素と水素を主成分としてなる化合物のことである。本発明の粉体に用いられている、無機化合物粒子の表面に設けられる有機化合物は、造形の際に照射するレーザー光の波長に吸収帯を有するものである。図3に物質の光吸収スペクトル、すなわち物質の吸光度の波長依存性のイメージ図を示す。物質はそれぞれ特有の波長範囲の光を吸収する。図3の吸収スペクトルでは最大吸光度Mの10分の1(すなわちM/10)以下をバックグラウンドとし、それ以上の吸収のある波長範囲、すなわち波長Aから波長Bの範囲、および波長Z以下を吸収帯とする。なお、本発明における有機化合物には炭素単体は含まれない。   The organic compound in the present invention is a compound containing carbon and hydrogen as main components. The organic compound provided on the surface of the inorganic compound particle, which is used for the powder of the present invention, has an absorption band at the wavelength of the laser beam irradiated at the time of shaping. FIG. 3 shows the light absorption spectrum of the substance, that is, an image of the wavelength dependency of the absorbance of the substance. Each substance absorbs light of a specific wavelength range. In the absorption spectrum of FIG. 3, one tenth (ie, M / 10) or less of the maximum absorbance M is used as a background, and a wavelength range of higher absorption, ie, a range from wavelength A to wavelength B, and absorption below wavelength Z It will be a band. The organic compound in the present invention does not contain carbon alone.

本発明において、無機化合物粒子の表面に設ける有機化合物としては、使用するレーザー光の波長が、その有機化合物の吸収帯の波長範囲内にあるものを選択して用いる。   In the present invention, as the organic compound provided on the surface of the inorganic compound particle, one having a wavelength of a laser beam to be used is selected and used within the wavelength range of the absorption band of the organic compound.

有機化合物の吸収帯は、分光光度計により有機化合物の吸収スペクトル、すなわち吸光度の波長依存性を測定することで明らかにすることができる。有機化合物の吸収スペクトル測定は、有機化合物を溶媒に溶解し、その溶液の吸光度の波長依存性を測定すればよい。一般的な分光光度計であれば400nmから2000nmほどの波長範囲での測定が可能であるが、目的の波長、すなわち造形に使用するレーザーの波長を基準にして、前後300nmから500nm程度の波長範囲で測定してもよい。   The absorption band of the organic compound can be clarified by measuring the absorption spectrum of the organic compound, that is, the wavelength dependency of the absorbance with a spectrophotometer. The absorption spectrum measurement of the organic compound may be performed by dissolving the organic compound in a solvent and measuring the wavelength dependency of the absorbance of the solution. A typical spectrophotometer can measure in the wavelength range of about 400 nm to 2000 nm, but a wavelength range of about 300 nm to about 500 nm with reference to the target wavelength, that is, the wavelength of the laser used for modeling It may be measured by

有機化合物を溶解する有機溶媒は、例えば、クロロホルム、メチルエチルケトン、トルエン、アセトン、メチルアルコール、エチルアルコール、イソプロピルアルコール、有機酸などであり、測定波長範囲で吸収がない溶媒を選択する。   The organic solvent which dissolves the organic compound is, for example, chloroform, methyl ethyl ketone, toluene, acetone, methyl alcohol, ethyl alcohol, isopropyl alcohol, organic acid and the like, and a solvent which does not absorb in the measurement wavelength range is selected.

有機化合物が無機化合物粒子の表面に設けられた状態である場合、有機化合物の吸収スペクトルを測定するには、有機化合物を溶解する有機溶媒は測定波長範囲で吸収がないものを選択することはもとより、無機化合物粒子を溶解しないものを選択する必要がある。そうでないと、無機化合物の吸収帯も含めて測定することになり、有機化合物の吸収帯を特定するのに支障があるからである。   In the case where the organic compound is provided on the surface of the inorganic compound particle, to measure the absorption spectrum of the organic compound, it is of course to select an organic solvent which dissolves the organic compound which does not absorb in the measurement wavelength range. It is necessary to select one that does not dissolve inorganic compound particles. Otherwise, it is necessary to measure including the absorption band of the inorganic compound, which makes it difficult to specify the absorption band of the organic compound.

上述のように、現在一般的に造形に用いられるレーザー波長の範囲は700nmから1200nmの範囲内であり、特に1000nmから1100nmの近赤外領域の波長が用いられる。よって、この波長領域に吸収帯を有する有機化合物を用いることが望ましい。そのような有機化合物としては、ジイモニウム系化合物、シアニン系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、スクアリウム系化合物、ジチオレン金属錯体系化合物、アミニウム系化合物、などが挙げられる。その中でも、吸収能、化学的安定性、入手容易性、価格などの観点から、ジイモニウム系化合物またはシアニン色素が含有されるものであることが望ましい。   As described above, the range of laser wavelengths currently generally used for shaping is in the range of 700 nm to 1200 nm, and in particular, wavelengths in the near infrared region of 1000 nm to 1100 nm are used. Therefore, it is desirable to use an organic compound having an absorption band in this wavelength range. Examples of such organic compounds include dimonium compounds, cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, squalium compounds, dithiolene metal complex compounds, aminium compounds, and the like. Among them, from the viewpoint of absorption capacity, chemical stability, availability, cost and the like, it is preferable that the diimonium compound or cyanine dye is contained.

ジイモニウム系化合物の例としては、例えば、下記一般式[1]で表わされる塩化合物が挙げられる。

Figure 2019084824
式[1]中、Xは陰イオンを示し、例えば、Cl、Br、I、F、ClO 、BF 、SbF 、CFSO 、CHSO などが挙げられる。RからRは水素原子、アルキル基、アリール基、アルケニル基、またはアルキニル基を示し、それぞれ同じであっても異なっていてもよい。また、RからR12は水素原子、ハロゲン原子、アミノ基、シアノ基、ニトロ基、カルボキシル基、アルキル基、またはアルコキシ基を示し、それぞれ同じであっても、異なっていてもよい。XやRからR12の選択により、様々な波長域に吸収帯を持つ化合物となるので、使用するレーザー光波長などの条件により化合物を選択することが可能である。 As an example of a dimonium type compound, the salt compound represented by the following general formula [1] is mentioned, for example.
Figure 2019084824
Wherein [1], X - represents an anion, e.g., Cl -, Br -, I -, F -, ClO 4 -, BF 4 -, SbF 6 -, CF 3 SO 3 -, CH 3 C 6 H 4 SO 3 − and the like. R 1 to R 8 each represent a hydrogen atom, an alkyl group, an aryl group, an alkenyl group or an alkynyl group, and they may be the same or different. R 9 to R 12 each represent a hydrogen atom, a halogen atom, an amino group, a cyano group, a nitro group, a carboxyl group, an alkyl group or an alkoxy group, and they may be the same or different. By selecting X and R 1 to R 12 , a compound having an absorption band in various wavelength ranges can be obtained, so it is possible to select a compound depending on conditions such as the wavelength of a laser beam to be used.

シアニン色素とは、例えば、岩波理化学辞典第5版の552ページで説明されているように、2個の含窒素複素環を奇数個のメチン基−CH=で結合し、1個の窒素は第3級アミン、他の1個は第4級アンモニウム構造をもつ色素(有機化合物)である。これも、分子構造、特にメチン基の数により様々な波長域に吸収帯を持つ化合物となるので、レーザー光波長などの条件により化合物を選択することが可能である。   For example, two cyanine-containing heterocycles are linked by an odd number of methine groups -CH = as described on page 552 of Iwanami Physical Chemistry Dictionary 5th Edition, for example, and one nitrogen is a cyanine dye. Tertiary amines and the other one are dyes (organic compounds) having a quaternary ammonium structure. Since this is also a compound having absorption bands in various wavelength ranges depending on the molecular structure, particularly the number of methine groups, it is possible to select the compound depending on the conditions such as the laser light wavelength.

これらの有機化合物を無機化合物粒子の表面に設ける際、無機化合物粒子の多くに高い被覆率で有機化合物を付着させることが望ましい。さらに、図4にあるように、造形原料の粉体に含まれる粒子のうち、30%以上の粒子の表面に有機化合物が付着しているのが好ましく、有機化合物が付着した粒子の割合は、50%以上がより好ましく、90%以上がさらに好ましい。ここで、造形原料の粉体に有機化合物が付着した粒子の割合は、次の方法で求めることができる。面内に粉体を分散させ、視野に複数(50個以上)の粒子が含まれる倍率にて光学顕微鏡で観察し、視野内に存在する粒子の数に対する、有機化合物が付着した粒子の数の割合を算出する。有機化合物が付着した粒子の表面積の50%以上を有機化合物が被覆しているのが好ましく、90%以上を有機化合物が被覆しているのがより好ましい。このように有機化合物を付着させるためには、接着性の観点から、高分子化合物中にこれらの有機化合物を分散させ、それを無機化合物表面に付置してもよい。その場合、これら有機化合物は効率よく無機化合物粒子に付着し、条件を最適化することで無機化合物粒子表面の大部分あるいは全面を覆うように設けることが可能となる。   When providing these organic compounds on the surface of an inorganic compound particle, it is desirable to make an organic compound adhere to many of the inorganic compound particles with a high coverage. Furthermore, as shown in FIG. 4, it is preferable that the organic compound is attached to the surface of the particles of 30% or more among the particles contained in the powder of the forming raw material, and the ratio of the particles to which the organic compound is attached is 50% or more is more preferable, and 90% or more is more preferable. Here, the ratio of particles in which the organic compound is attached to the powder of the shaping raw material can be determined by the following method. The powder is dispersed in the plane, and observed with an optical microscope at a magnification at which a plurality of (50 or more) particles are included in the field of view, the number of particles to which the organic compound adheres to the number of particles present in the field of view. Calculate the ratio. It is preferable that 50% or more of the surface area of the particles to which the organic compound is attached be coated with the organic compound, and it is more preferable that 90% or more be coated with the organic compound. In order to attach the organic compound in this manner, from the viewpoint of adhesiveness, these organic compounds may be dispersed in a polymer compound, and the organic compounds may be placed on the surface of the inorganic compound. In such a case, these organic compounds adhere to the inorganic compound particles efficiently, and by optimizing the conditions, it is possible to cover most or all of the surface of the inorganic compound particles.

用いる高分子化合物としては、無機化合物、特に金属酸化物への付着性のよい、ポリビニルブチラールやポリビニルアルコール、ポリメタクリル酸メチルやポリスチレンなどを用いることが望ましい。有機化合物と高分子化合物を同時に有機溶媒に溶解し、その溶液と無機化合物粒子を混合した上で溶液中の溶媒を揮発させることで、無機化合物粒子表面に被覆性よく有機化合物を付置することができる。   As the polymer compound to be used, it is desirable to use polyvinyl butyral, polyvinyl alcohol, polymethyl methacrylate, polystyrene and the like which have good adhesion to inorganic compounds, particularly metal oxides. The organic compound and the polymer compound are simultaneously dissolved in the organic solvent, and the solution and the inorganic compound particle are mixed, and then the solvent in the solution is evaporated to place the organic compound on the surface of the inorganic compound particle with good coverage. it can.

有機化合物を無機化合物粒子の表面に設ける際の処理として、無機化合物粒子の表面を改質することで有機化合物の濡れ性および接着性を改善し、被覆性よく付置させることもできる。表面改質の方法としては、例えば、無機化合物粒子表面への紫外線照射による疎水性化処理が挙げられる。またはシランカップリング剤やホスホン酸誘導体などの表面改質剤の塗布、または浸漬処理による無機化合物粒子表面の疎水性化処理が挙げられる。これらの処理により、無機化合物表面での有機化合物の濡れ性および接着性が改善され、被覆性よく有機化合物を付置させることができる。   As a treatment for providing the organic compound on the surface of the inorganic compound particle, the wettability and adhesiveness of the organic compound can be improved by modifying the surface of the inorganic compound particle, and the film can be placed with good coverage. As a method of surface modification, for example, a hydrophobicizing treatment by irradiating the surface of inorganic compound particles with ultraviolet light can be mentioned. Alternatively, application of a surface modifier such as a silane coupling agent or a phosphonic acid derivative, or a treatment for making the surface of the inorganic compound particles hydrophobic by immersion may be mentioned. By these treatments, the wettability and adhesion of the organic compound on the surface of the inorganic compound are improved, and the organic compound can be deposited with good coverage.

無機化合物粒子表面に付置する有機化合物の量は、照射されたレーザー光を、無機化合物粒子を融解させる契機となるほどの熱に変換し、その熱を無機化合物に移動させるのに適した量でなければならない。ゆえに、粉体として平均的に見たとき、無機化合物の質量に対する有機化合物の質量が、0.1%以上10%以下であることが望ましく、1%以上10%以下であることがより望ましく、1%以上5%以下であることがさらに望ましい。   The amount of organic compound to be deposited on the surface of the inorganic compound particle should be an amount suitable to convert the irradiated laser light into heat enough to cause the inorganic compound particle to melt and transfer the heat to the inorganic compound. You must. Therefore, the mass of the organic compound relative to the mass of the inorganic compound is desirably 0.1% or more and 10% or less, and more desirably 1% or more and 10% or less, when viewed as a powder on average. More preferably, it is 1% or more and 5% or less.

次に、レーザー光を用いた付加製造技術によるセラミックス構造物の造形プロセスにおいて、本発明の粉体が効果を示す機構を説明する。ここではSLSまたはSLMによる造形プロセスを例に取り説明する。   Next, the mechanism by which the powder of the present invention exhibits an effect in the process of shaping a ceramic structure by the additive manufacturing technique using a laser beam will be described. Here, the shaping process by SLS or SLM will be described as an example.

使用するレーザー光の波長に対して吸収帯を有さない無機化合物粒子を単独で造形材料として用いる場合、無機化合物粒子のレーザー光の吸収が小さいため、粒子を融解する熱量を発生させるためには大きなパワーのレーザー光を照射しなければならない。融解させたい粒子に大きなパワーのレーザー光を照射した時の、レーザー照射時間に対する融解目的粒子の温度上昇の振る舞いは、図5の実線のように、レーザー照射時間に対してほぼ線形に温度上昇し、粒子の融解温度に達したとき粒子が融解する。この時、レーザー光の大半は目的の粒子を透過し、散乱されるため、例えばすでに造形済みであるセラミックスなどの隣接する部位(粒子あるいは造形物)に、レーザー光が若干の減衰を伴って到達する。レーザー光パワーの減衰はわずかであるので、図5の一点鎖線で示すように、散乱光が到達した部位も照射時間と共に温度上昇し、遂には融点以上になり融解してしまう。そのため、融解を目的としない粒子まで融解してしまう、または一度融解し造形した部位を再融解してしまう、という現象が生じる。結果、造形物の境界部、すなわちレーザー加工部と未加工部の境界が、いびつな形状となり、精細さを欠く造形となってしまう。   When an inorganic compound particle which does not have an absorption band with respect to the wavelength of a laser beam to be used alone is used as a shaping material, the absorption of the laser beam of the inorganic compound particle is small. It must be irradiated with a large power laser beam. When the particles to be melted are irradiated with a laser beam of large power, the behavior of temperature rise of the target particles for melting with the laser irradiation time increases almost linearly with the laser irradiation time as shown by the solid line in FIG. The particles melt when they reach their melting temperature. At this time, most of the laser light passes through the target particles and is scattered, so that the laser light reaches the adjacent portion (particles or shaped object) such as ceramic that has already been shaped, with some attenuation. Do. Since the attenuation of the laser light power is slight, as indicated by the one-dot chain line in FIG. 5, the temperature of the portion reached by the scattered light also rises with the irradiation time, and finally reaches the melting point and melts. As a result, a phenomenon occurs in which particles not intended for melting are melted or a portion melted and formed once is remelted. As a result, the boundary between the three-dimensional object, that is, the boundary between the laser-processed portion and the non-processed portion, becomes irregularly shaped, resulting in the formation lacking in definition.

一方、上記の無機化合物粒子の表面に、レーザー光の波長に吸収帯を有する有機化合物を設けた粒子を原料粉体として用いた場合、粒子表面の有機化合物が効率よくレーザー光を吸収するため、比較的低いパワーのレーザー光であっても、粒子の温度は急激に上昇する。図5にその時の粒子温度の時間経過の例を示すが、図中の破線で示すように、レーザー照射からわずかな時間で急激に温度が上昇する。有機化合物は無機化合物粒子の融点以下の温度で分解消失してしまうが、それまでに吸収したレーザー光のエネルギーにより、無機化合物粒子を融解する契機となる熱量を発生し、無機化合物粒子にその熱量を与えることで、無機化合物は融解に至る。そして有機化合物が分解消失した後にレーザー光のさらなる照射があったとしても、照射レーザー光のパワーは低いため、むき出しの無機化合物粒子の発熱は小さく、放熱と釣り合う程度であれば、さらなる温度上昇はほとんどない。この時、有機化合物が無機化合物粒子の表面を十分な被覆率で付置されているとすると、表面の有機化合物が分解消失されるまではレーザー光は融解する目的の粒子をほとんど透過しないので、隣接する粒子へのレーザー光の影響は少ない。   On the other hand, when particles having an organic compound having an absorption band at the wavelength of laser light provided on the surface of the above-mentioned inorganic compound particles are used as raw material powder, the organic compounds on the particle surface efficiently absorb the laser light. Even with relatively low power laser light, the temperature of the particles rises rapidly. FIG. 5 shows an example of the time course of the particle temperature at that time, but as indicated by the broken line in the figure, the temperature rises rapidly in a short time after the laser irradiation. The organic compound decomposes and disappears at a temperature below the melting point of the inorganic compound particles, but the energy of the laser light absorbed up to that time generates a heat amount that triggers the melting of the inorganic compound particles, and the heat amount is generated in the inorganic compound particles Inorganic compounds lead to melting. And even if there is further irradiation of laser light after decomposition and disappearance of the organic compound, the power of the irradiated laser light is low, so the heat generation of the bare inorganic compound particles is small, and the temperature rise will be further rare. At this time, assuming that the organic compound is deposited on the surface of the inorganic compound particle with a sufficient coverage, the laser beam hardly transmits the particles for melting until the organic compound on the surface is decomposed and disappeared, so adjacent The influence of the laser light on the particles to be

図5の二点鎖線で示すように、有機化合物が分解消失した後ではレーザー光が目的粒子を透過し、隣接部位に散乱光が到達するようになるが、照射レーザー光のパワーが低く抑えられているため、隣接部位の散乱光による温度上昇は小さく融解に至ることはない。このような機構で、本発明の原料粉体を用いた場合には目的の粒子のみの融解を誘起し、融解目的でない隣接部位が散乱光によって融解することがないため、高精細なレーザー造形が可能となる。   As shown by the two-dot chain line in FIG. 5, after the organic compound decomposes and disappears, the laser beam transmits the target particle and the scattered light reaches the adjacent part, but the power of the irradiation laser beam is suppressed low. Therefore, the temperature rise due to the scattered light at the adjacent part is small and does not lead to melting. With such a mechanism, when the raw material powder of the present invention is used, melting of only the target particles is induced, and adjacent portions which are not for melting are not melted by the scattered light, so that high definition laser shaping is performed. It becomes possible.

レーザー光の波長に吸収帯を有する有機化合物は金属元素を含まないものが望ましい。なぜなら、有機化合物はレーザー光を吸収、発熱した上ですべて分解し、その分解生成物は(必要に応じて酸化などの化学プロセスを経て)すべて気化消失し、その発熱により融解し、再凝固した無機化合物に有機化合物の残差が残らないことが好ましいからである。あるいは、金属元素を含有していても、分解生成物の一部として気化消失するものであってもよい。このような特徴を有する有機化合物を用いることで、所望する組成の無機化合物粒子を原料紛体に用いることで、所望する組成の無機化合物によるセラミックス造形物が得られる。   The organic compound having an absorption band at the wavelength of the laser light is preferably one containing no metal element. Because the organic compound absorbs laser light, generates heat and decomposes completely, the decomposition products are all vaporized (through chemical processes such as oxidation if necessary), and the heat generates melting and resolidification This is because it is preferable that the residual of the organic compound does not remain in the inorganic compound. Alternatively, it may contain a metal element or may evaporate and disappear as part of the decomposition product. By using the inorganic compound particle of a desired composition for a raw material powder by using the organic compound which has such a characteristic, the ceramic shaped article by the inorganic compound of a desired composition is obtained.

このように、レーザー光照射による融解の際の有機化合物と無機化合物の相互作用は、理想的には熱のやり取りのみであり、化学的な反応、すなわち原子のやり取りはない。そのため、無機化合物の組成は付置する有機化合物の種類によらず選択することができる。   Thus, the interaction between the organic compound and the inorganic compound at the time of melting by laser light irradiation is ideally only the exchange of heat, and there is no chemical reaction, that is, no exchange of atoms. Therefore, the composition of the inorganic compound can be selected regardless of the type of the organic compound to be placed.

レーザー光を用いた付加製造技術において、レーザー光のビーム径は100μm程度あるいはそれ以下で用いることが多い。その時に用いる原料粉体はレーザービーム径より大きいと粉体の一部のみの融解が起こり、融解残渣が生じることでムラのある造形物となるおそれがある。そのため、粉体の粒子径はレーザービーム径より小さいことが望ましい。   In the additive manufacturing technology using laser light, the beam diameter of the laser light is often used at about 100 μm or less. When the raw material powder used at that time is larger than the diameter of the laser beam, only a part of the powder is melted, and a melting residue is generated, which may result in uneven shaped objects. Therefore, the particle diameter of the powder is desirably smaller than the laser beam diameter.

また、図1に示すようなSLSにおいても、図2に示すクラッディング方式にしても、原料粉体には十分な流動性(例えば40秒/50g以下)が求められる。この流動性を満たし、取り扱いの容易性を考慮すると、原料粉体の平均粒子径は5μm以上であることが望まれる。すなわち、原料粉体の平均粒子径は5μm以上100μm以下であることが望ましい。本発明における平均粒子径は、個数基準分布から求めた値をいい、光散乱法を用いて測定することができる。   Also in the SLS as shown in FIG. 1 and in the cladding method shown in FIG. 2, sufficient fluidity (for example, 40 seconds / 50 g or less) is required for the raw material powder. The average particle diameter of the raw material powder is desirably 5 μm or more in consideration of satisfying the flowability and the ease of handling. That is, the average particle diameter of the raw material powder is desirably 5 μm or more and 100 μm or less. The average particle diameter in the present invention is a value determined from a number-based distribution, and can be measured using a light scattering method.

原料粉体の流動性を考慮すると、粉体は真球に近い球形であることが望ましいが、必要とされる流動性さえ満たせば、球形でなくてもよい。   In view of the flowability of the raw material powder, it is desirable that the powder has a spherical shape close to a true sphere, but it may not be spherical as long as the required flowability is satisfied.

本発明の原料粉体およびその比較対象となる原料粉体を用い、SLSによる造形試作を実施した。本発明で用いたSLS装置に備えられたレーザーは、最大出力100WのYb添加ファイバーレーザーであり、その波長は1065nmであった。レンズの焦点を調節することで、粉体へのレーザー照射位置でのレーザービーム径は100μmになるように調節した。原料粉体はアルミナセラミックス基板上に約100μmの厚さで敷設した。レーザー光はガルバノミラーによりスキャンすることで、原料粉体上をレーザー描画し、造形物を製造した。その際にレーザーパワーとスキャン速度を調節することで粉体に照射されるパワー密度を所望の大きさになるよう調節した。   Using the raw material powder of the present invention and the raw material powder to be compared with the raw material powder, a modeling trial using SLS was performed. The laser provided in the SLS apparatus used in the present invention was a Yb-doped fiber laser with a maximum output of 100 W, and its wavelength was 1065 nm. By adjusting the focus of the lens, the laser beam diameter at the laser irradiation position to the powder was adjusted to be 100 μm. The raw material powder was laid on an alumina ceramic substrate with a thickness of about 100 μm. The laser beam was scanned by a galvano mirror to draw a laser on the raw material powder, thereby producing a shaped object. At that time, the power density irradiated to the powder was adjusted to a desired size by adjusting the laser power and the scanning speed.

[実施例1および実施例2]
無機化合物粒子として、平均粒子径20μmの酸化アルミニウム(Al)粒子を用意した。Al粒子は肉眼観察では白色であったが、100倍以上の光学顕微鏡観察では各粒子が透明であった。
[Example 1 and Example 2]
As the inorganic compound particles, aluminum oxide (Al 2 O 3 ) particles having an average particle diameter of 20 μm were prepared. The Al 2 O 3 particles were white in visual observation, but each particle was transparent in optical microscope observation of 100 times or more.

有機化合物として、近赤外領域に吸収帯を有する市販のジイモニウム系化合物である、日本化薬(株)製KAYASORB IRG−069を用意した。このジイモニウム化合物をクロロホルムに溶解し、分光光度計によりこの溶液の吸収スペクトルを測定したところ、波長1190nmに吸光度の極大値を示し、波長1065nmの吸光度は1190nmでの極大値の10分の9程度の値であった。このことから、このジイモニウム化合物は使用するレーザー波長である1065nmに吸収帯を有する化合物であることが確認できた。   As an organic compound, Nippon Kayaku Co., Ltd. product KAYASORB IRG-069 which is a commercially available dimonium compound having an absorption band in the near infrared region was prepared. The diimmonium compound was dissolved in chloroform, and the absorption spectrum of this solution was measured with a spectrophotometer. The absorbance showed a maximum at a wavelength of 1190 nm, and the absorbance at a wavelength of 1065 nm was about 9/10 of the maximum at 1190 nm. It was a value. From this, it was confirmed that this dimonium compound is a compound having an absorption band at 1065 nm which is a laser wavelength to be used.

このジイモニウム化合物を100mg秤量し、30gのクロロホルムに溶解させた。この溶液を底面積の大きな容器に入れ、そこに前記Al粒子10gを投入して溶液に浸漬し、よく攪拌した上でクロロホルムを揮発させ、乾燥させた。 100 mg of this dimonium compound was weighed and dissolved in 30 g of chloroform. This solution was placed in a container with a large bottom area, and 10 g of the Al 2 O 3 particles were placed therein to immerse in the solution, well stirred, and then chloroform was evaporated and dried.

得られた粒子のうち200個を光学顕微鏡で観察したところ、半数以上の粒子には褐色のジイモニウム系化合物が粒子の表面積の二分の一以上の面積に付置されていた。   When 200 particles among the obtained particles were observed with an optical microscope, a brown diimmonium compound was attached to a half or more of the surface area of the particles in half or more of the particles.

次に得られた粉体をクロロホルムに浸漬し、粉体中の粒子の表面付置物をクロロホルムに再度溶解し、その溶液の吸収スペクトルを測定したところ、波長1190nmに吸光度の極大値を示し、波長1065nmの吸光度は極大値の10分の9程度の値であった。このことから、この紛体中の粒子表面の付置物は、使用するレーザー波長である1065nmに吸収帯を有する化合物であることが確認できた。   Next, the obtained powder is immersed in chloroform, the surface attachment of particles in the powder is redissolved in chloroform, and the absorption spectrum of the solution is measured. The absorbance shows a maximum at a wavelength of 1190 nm. The absorbance at 1065 nm was about 9/10 of the maximum value. From this, it can be confirmed that the attachment of the particle surface in this powder is a compound having an absorption band at 1065 nm which is a laser wavelength to be used.

この紛体を波長1065nmのレーザーによるレーザー造形用原料粉体として用いて、100μmの厚さの粉末層を1層形成し、表1に示す条件で、ビーム径100μmのレーザービームにより長さ2mmの直線を50μmピッチで40本描画することで、2mm×2mmの範囲にレーザーを照射したものを、それぞれ実施例1および2の(平面状)造形物とした。   This powder is used as a raw material powder for laser shaping by a laser with a wavelength of 1065 nm, one powder layer of 100 μm thickness is formed, and under the conditions shown in Table 1, a straight line of 2 mm in length by a laser beam with a beam diameter of 100 μm. By drawing 40 of these at a pitch of 50 μm, the (planar) shaped objects of Examples 1 and 2 were obtained by irradiating the laser in a range of 2 mm × 2 mm.

[実施例3]
無機化合物粒子として、平均粒子径20μmの酸化アルミニウム(Al)粒子の他に、平均粒子径30μmの酸化ジルコニウム(ZrO)を用意した。ZrO粒子は肉眼観察では白色であったが、100倍以上の光学顕微鏡観察では各粒子が透明であった。これらのAl粒子とZrO粒子を質量比で6対4の比率で混合した。
[Example 3]
As inorganic compound particles, in addition to aluminum oxide (Al 2 O 3 ) particles having an average particle diameter of 20 μm, zirconium oxide (ZrO 2 ) having an average particle diameter of 30 μm was prepared. The ZrO 2 particles were white in visual observation, but each particle was transparent in optical microscope observation of 100 times or more. These Al 2 O 3 particles and ZrO 2 particles were mixed at a mass ratio of 6 to 4.

有機化合物としては、実施例1と同様に日本化薬(株)製KAYASORB IRG−069を用いた。このジイモニウム化合物を100mg秤量し、30gのクロロホルムに溶解させた。この溶液を底面積の大きな容器に入れ、そこに前記のAl−ZrO混合粒子10gを投入して溶液に浸漬し、よく攪拌した上でクロロホルムを揮発させ、乾燥させた。 As the organic compound, KAYASORB IRG-069 manufactured by Nippon Kayaku Co., Ltd. was used in the same manner as Example 1. 100 mg of this dimonium compound was weighed and dissolved in 30 g of chloroform. This solution was placed in a large container with a bottom area, and 10 g of the Al 2 O 3 -ZrO 2 mixed particles were charged into the solution and immersed in the solution, well stirred, and then chloroform was evaporated and dried.

得られた粒子のうち約200個を光学顕微鏡で観察したところ、半数以上の粒子には褐色のジイモニウム系化合物が粒子の表面積の二分の一以上の面積に付置されていた。得られた粉体をレーザー造形用原料粉体として用い、表1に示す条件でレーザーを照射することにより、実施例1と同様にして、実施例3の造形物を形成した。   As a result of observing about 200 of the obtained particles with an optical microscope, a brown diimonium compound was attached to a half or more of the surface area of the particles in more than half of the particles. The obtained powder was used as a raw material powder for laser shaping, and the shaped article of Example 3 was formed in the same manner as in Example 1 by irradiating a laser under the conditions shown in Table 1.

[実施例4および実施例5]
無機化合物粒子として、実施例1および2で用いたものと同様の平均粒子径20μmの酸化アルミニウム(Al)粒子を用意した。有機化合物としては、シアニン色素のひとつである、2−[(1E)−3−[(1E)−5,5−ジメチル−3−[(1E)−3−[(2E)−1,3,3−トリメチル−2,3−ジヒドロ−1H−インドール−2−イリデン]プロパ−1−エン−1−イル]シクロヘキサ−2−エン−1−イリデン]プロパ−1−エン−1−イル]−1,3,3−トリメチル−3H−インドール−1−イウム(2−[(1E)−3−[(1E)−5,5−dimethyl−3−[(1E)−3−[(2E)−1,3,3−trimethyl−2,3−dihydro−1H−indol−2−ylidene]prop−1−en−1−yl]cyclohex−2−en−1−ylidene]prop−1−en−1−yl]−1,3,3−trimethyl−3H−indol−1−ium); トリフルオロ[(トリフルオロメタンスルホニルアザニジル)スルホニル]メタン(trifluoro[(trifluoromethanesulfonylazanidyl)sulfonyl]methane)(組成式 C3843、Spectro Info社製S09441)を用意した。
[Example 4 and Example 5]
As inorganic compound particles, aluminum oxide (Al 2 O 3 ) particles having an average particle diameter of 20 μm similar to those used in Examples 1 and 2 were prepared. As the organic compound, 2-[(1E) -3-[(1E) -5,5-dimethyl-3-[(1E) -3-[(2E) -1,3,] which is one of cyanine dyes. 3-trimethyl-2,3-dihydro-1H-indol-2-ylidene] prop-1-en-1-yl] cyclohex-2-en-1-ylidene] prop-1-en-1-yl] -1 2,3,3-Trimethyl-3H-indol-1-ium (2-[(1E) -3-[(1E) -5,5-dimethyl-3-[(1E) -3-[(2E) -1] , 3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene] prop-1-en-1-yl] cyclohex-2-en-1-ylidene] prop-1-en-1-yl ] -1,3,3-tri ethyl-3H-indol-1- ium); trifluoro [(trifluoromethanesulfonyl azabicyclic Jill) sulfonyl] methane (trifluoro [(trifluoromethanesulfonylazanidyl) sulfonyl] methane) ( composition formula C 38 H 43 F 6 N 3 O 4 S 2 , Spectro Info S09441) were prepared.

この化合物をクロロホルムに溶解し、分光光度計によりこの溶液の吸収スペクトルを測定したところ、波長870nmに吸光度の極大値を示し、波長1065nmの吸光度は870nmでの極大値の5分の1程度の値であった。このことから、このシアニン色素は使用するレーザー波長である1065nmに吸収帯を有する化合物であることが確認できた。   The compound is dissolved in chloroform, and the absorption spectrum of this solution is measured by a spectrophotometer. The absorbance shows a maximum at a wavelength of 870 nm, and the absorbance at a wavelength of 1065 nm is about one fifth of the maximum at 870 nm. Met. From this, it can be confirmed that this cyanine dye is a compound having an absorption band at 1065 nm which is a laser wavelength to be used.

このシアニン色素を100mg秤量し、30gのクロロホルムに溶解させた。この溶液を底面積の大きな容器に入れ、そこに前記Al粒子10gを投入して溶液に浸漬し、よく攪拌した上でクロロホルムを揮発させ、乾燥させた。得られた粒子のうち約200個を光学顕微鏡で観察したところ、半数以上の粒子には緑色のシアニン色素が粒子の表面積の二分の一以上の面積に付置されていた。得られた粉体をレーザー造形用原料粉体として用い、レーザーパワーおよびレーザースキャン速度を変化させ、表1に示す条件でレーザーを照射することにより、実施例1および2と同様にして、実施例4および5の造形物を形成した。 100 mg of this cyanine dye was weighed and dissolved in 30 g chloroform. This solution was placed in a container with a large bottom area, and 10 g of the Al 2 O 3 particles were placed therein to immerse in the solution, well stirred, and then chloroform was evaporated and dried. As a result of observing about 200 of the obtained particles with an optical microscope, a green cyanine dye was attached to a half or more of the surface area of the particles in half or more of the particles. The obtained powder is used as a raw material powder for laser shaping, the laser power and the laser scanning speed are changed, and the laser is irradiated under the conditions shown in Table 1 in the same manner as in Examples 1 and 2; 4 and 5 shaped objects were formed.

[実施例6]
無機化合物粒子として、実施例1および2で用いたものと同様の平均粒子径20μmの酸化アルミニウム(Al)粒子を用意した。有機化合物としては、実施例4および5で用いたものと同じシアニン色素(Spectro Info社製S09441)を用意した。このシアニン色素を100mg秤量し、30gのクロロホルムに溶解させた。さらに300mgのポリビニルブチラール(PVB)を溶液に投入し溶解させた。この溶液を底面積の大きな容器に入れ、そこに前記Al粒子10gを投入して溶液に浸漬し、よく攪拌した上でクロロホルムを揮発させ、乾燥させた。得られた粒子のうち200個を光学顕微鏡で観察したところ、半数以上の粒子には緑色のシアニン色素がその表面積のほぼ全面を覆うように付置されていた。得られた粉体をレーザー造形用原料粉体として用い、表1に示す条件でレーザーを照射することにより、実施例1および2と同様にして、実施例6の造形物を形成した。
[Example 6]
As inorganic compound particles, aluminum oxide (Al 2 O 3 ) particles having an average particle diameter of 20 μm similar to those used in Examples 1 and 2 were prepared. As the organic compound, the same cyanine dye (S09441 manufactured by Spectro Info) as that used in Examples 4 and 5 was prepared. 100 mg of this cyanine dye was weighed and dissolved in 30 g chloroform. Further, 300 mg of polyvinyl butyral (PVB) was added to the solution and dissolved. This solution was placed in a container with a large bottom area, and 10 g of the Al 2 O 3 particles were placed therein to immerse in the solution, well stirred, and then chloroform was evaporated and dried. When 200 particles among the obtained particles were observed with an optical microscope, it was found that a green cyanine dye was placed on half or more of the particles so as to cover almost the entire surface area. The obtained powder was used as a raw material powder for laser shaping, and by irradiating a laser under the conditions shown in Table 1, a shaped article of Example 6 was formed in the same manner as in Examples 1 and 2.

[比較例1および比較例2]
無機化合物粒子として、実施例1および2で用いたものと同様の平均粒子径20μmの酸化アルミニウム(Al)粒子を用意した。このAl粒子を、有機化合物を付置させることなく、レーザー造形用原料粉体として用い、表1に示す条件でレーザーを照射することにより、実施例1および2と同様にして、比較例1および2の造形物を形成した。
[Comparative Example 1 and Comparative Example 2]
As inorganic compound particles, aluminum oxide (Al 2 O 3 ) particles having an average particle diameter of 20 μm similar to those used in Examples 1 and 2 were prepared. This Al 2 O 3 particle is used as a raw material powder for laser shaping without placing an organic compound, and a laser is irradiated under the conditions shown in Table 1 in the same manner as in Examples 1 and 2 to obtain a comparative example. One and two shaped objects were formed.

[比較例3]
無機化合物粒子として、実施例3で用いたものと同様の平均粒子径20μmの酸化アルミニウム(Al)粒子と平均粒子径30μmの酸化ジルコニウム(ZrO)を用意した。これらのAl粒子とZrO粒子を質量比で6対4の比率で混合した。このAl−ZrO混合粒子に有機化合物を付置させることなく、レーザー造形用原料粉体として用い、表1に記載の条件でレーザーを照射することにより、実施例3と同様にして、比較例3の造形物を形成した。
Comparative Example 3
As inorganic compound particles, aluminum oxide (Al 2 O 3 ) particles having an average particle diameter of 20 μm and zirconium oxide (ZrO 2 ) having an average particle diameter of 30 μm similar to those used in Example 3 were prepared. These Al 2 O 3 particles and ZrO 2 particles were mixed at a mass ratio of 6 to 4. By using an Al 2 O 3 -ZrO 2 mixed particle as a raw material powder for laser shaping without attaching an organic compound to the Al 2 O 3 -ZrO 2 mixed particle and irradiating a laser under the conditions described in Table 1, in the same manner as Example 3. The shaped article of Comparative Example 3 was formed.

実施例1から6、比較例1から3それぞれの作製に用いた粉体と造形条件とその結果を表1に示す。   The powder used for preparation of each of Examples 1 to 6 and Comparative Examples 1 to 3 and the shaping conditions are shown in Table 1.

[境界部の輪郭振れ幅の評価]
造形物の精細さの指標として、図6で示すようにレーザー照射部42と未照射部41の境界の顕微鏡写真から縦幅(レーザー照射方向に垂直な方向の幅)100μmの画像を切り出し、境界部の輪郭振れ幅の最大値を評価した。この輪郭振れ幅の値が小さいほうが、高精細な描画となる。図6に示すとおり、本発明の原料粉体を用いた実施例2では、比較例2および3と比べて輪郭振れ幅の小さい、高精細な造形物が得られた。
[Evaluation of contour runout at the boundary]
As an index of fineness of a shaped object, as shown in FIG. 6, an image of 100 μm in vertical width (width in the direction perpendicular to the laser irradiation direction) is cut out from a micrograph of the boundary between the laser irradiated part 42 and the unirradiated part 41 The maximum value of the outline fluctuation width of the part was evaluated. The smaller the value of the contour fluctuation width, the higher the resolution. As shown in FIG. 6, in Example 2 in which the raw material powder of the present invention was used, a high-definition shaped object having a smaller outline deviation width than in Comparative Examples 2 and 3 was obtained.

この輪郭振れ幅の他に、造形物の凹凸や加工ムラなどを総合的に見て、造形の良し悪しを、良いほうから順番に、A、B、C、Dの4段階で評価し、表1に示した。具体的には、光学顕微鏡観察による評価により、輪郭振れ幅20μm以下、造形部分の表面の凹凸が未加工の原料粉体粒子の平均粒子径の半分以下、およびレーザー照射した部分に造形に影響を与える程度の原料粉体粒子形状を残した部分がない、という3条件を評価対象とした。そのうち、すべてを満たすものをA、2条件を満たすものをB、1条件のみ満たすものをC、1条件も満たさないものをDとした。   In addition to the contour fluctuation width, the irregularities of the object, processing unevenness and the like are comprehensively evaluated, and the quality of the object is evaluated in the four stages of A, B, C and D in order from the better side. Shown in 1. Specifically, the evaluation by optical microscope observation has an influence on the shaping of the contour fluctuation width 20 μm or less, the unevenness of the surface of the shaping portion is half or less of the average particle diameter of the raw material powder particle, and the portion irradiated with the laser. Three conditions were considered for evaluation, in which there was no part that left the raw material powder particle shape of a given degree. Among them, those satisfying all were A, those satisfying two were B, those satisfying only one were C, and those not satisfying one were D.

これらの条件を満たさないものは、精細さの低下により見た目が損なわれるばかりでなく、機械強度の低下の原因にもなりうるので、2条件以上満たすことが望ましく、3条件とも満たしたものが最も望ましい。   Those which do not satisfy these conditions are not only impaired in appearance due to the reduction in fineness, but may also cause a reduction in mechanical strength. Therefore, it is desirable to satisfy two or more conditions. desirable.

Figure 2019084824
Figure 2019084824

実施例1の造形物は少し黒く着色したものとなったが、有機化合物に起因した着色ではなく、レーザー加熱による酸素欠損によるものと思われる。輪郭振れ幅は11μm程度であり、わずかに粒子形状残留物があったものの造形に影響を与えるものではなく、表面凹凸は小さかった。これにより、境界部が明瞭な平坦性のよい造形物が得られた。   The shaped article of Example 1 turned a little black, but it was not due to the organic compound but due to oxygen deficiency due to laser heating. The deviation of the contour was about 11 μm, and although there were slight particle shape residues, it did not affect the formation, and the surface asperity was small. This resulted in a well-shaped object with a clear boundary.

実施例2では実施例1と比較してレーザーパワーを低下させた一方で、スキャン速度を低下させた条件での造形物の製造例である。造形物は着色なく透明であった。振れ幅は10μm以下で、表面凹凸はほとんど見られず、粒子形状残留物は見当たらなかった。これにより、さらに境界部が明瞭な平坦性のよい造形物が得られた。   Example 2 is an example of manufacturing a shaped article under the conditions in which the laser power is reduced as compared with Example 1 and the scanning speed is reduced. The shaped object was transparent without coloring. The swing width was 10 μm or less, almost no surface unevenness was observed, and no particle shape residue was found. As a result, a well-shaped object with even clearer boundaries is obtained.

実施例3ではAlとZrOの混合粒子を用いて、実施例1と同様の条件により製造した造形物の例である。実施例1の造形物と同様に、造形物は少し黒く着色したものとなったが、有機化合物に起因した着色ではなく、レーザー加熱による酸素欠損によるものと思われる。振れ幅は10μm以下で、表面凹凸はほとんど見られず、粒子形状残留物は見当たらなかった。これはAlとZrOの混合により、AlとZrOの共晶温度で融解が始まるため、実施例1のAlよりも低い温度で融解したためと考えられる。これにより、境界部が明瞭な平坦性のよい造形物が得られた。 Example 3 is an example of a shaped article manufactured under the same conditions as Example 1 using mixed particles of Al 2 O 3 and ZrO 2 . Similar to the shaped article of Example 1, although the shaped article was slightly blackened, it is considered to be not due to the organic compound but due to oxygen deficiency due to laser heating. The swing width was 10 μm or less, almost no surface unevenness was observed, and no particle shape residue was found. This by mixing Al 2 O 3 and ZrO 2, since the melt at the eutectic temperature of Al 2 O 3 and ZrO 2 begins, presumably because melted at a temperature lower than the Al 2 O 3 of Example 1. This resulted in a well-shaped object with a clear boundary.

実施例4および実施例5はそれぞれ実施例1と実施例2に対して有機化合物をジイモニウム化合物(IRG−069)からシアニン色素(S09441)に変更した造形の例である。有機化合物の違い以外は実施例1および2と同じである。出来上がった実施例4および5の造形物はそれぞれ実施例1および2と同様の、境界部が明瞭な平坦性のよい造形物となった。   Example 4 and Example 5 are examples of shaping in which the organic compound is changed from the dimonium compound (IRG-069) to the cyanine dye (S09441) in Example 1 and Example 2, respectively. The same as Examples 1 and 2 except for the difference in organic compounds. The resulting shaped articles of Examples 4 and 5 were similar to those of Examples 1 and 2, respectively, and had well-defined features with clear boundaries.

実施例6の造形物は実施例5と同じ条件であるが、有機化合物を高分子化合物中に分散させたものを無機化合物粒子に付置させたものを用いており、有機化合物の無機化合物粒子表面への被覆率は実施例5よりも高い。この表面被覆率の高さに起因して、実施例5の輪郭振れ幅よりもさらに狭い振れ幅の造形物が製造できた。また、実施例5と同様に、粒子状残留物はなく、表面凹凸はほとんど見られなかった。これにより、境界部が明瞭な平坦性のよい造形物が得られた。   The shaped product of Example 6 has the same conditions as Example 5, except that the one in which the organic compound is dispersed in the polymer compound is attached to the inorganic compound particle, and the inorganic compound particle surface of the organic compound is used. The coverage to the film is higher than that of Example 5. Due to the height of the surface coverage, it was possible to produce a shaped article having a further narrower swing than the contour swing of Example 5. Further, as in Example 5, there were no particulate residue, and almost no surface unevenness was observed. This resulted in a well-shaped object with a clear boundary.

比較例1および2は、有機化合物を付置させていないAl粒子に対する造形の試行である。まず、その予備検討として、実施例1と同様の造形条件(レーザーパワーおよびレーザースキャン速度によるエネルギー密度の調整)で造形を試行したところ、Al粒子はほとんど融解せず、部分的に一部のみ融解物が現れるものであった。これは使用したレーザー光をAlはほとんど吸収しないため、融解に十分な熱量が発生せず、所々に存在した欠陥や不純物に対してレーザー光の吸収に起因する発熱があったためと考えられる。 Comparative Examples 1 and 2 are trials of shaping on Al 2 O 3 particles not having an organic compound attached. First, as a preliminary examination, when modeling was tried under the same modeling conditions as in Example 1 (adjustment of energy density by laser power and laser scanning speed), Al 2 O 3 particles were hardly melted, and partially The melt only appeared in part. This is thought to be because Al 2 O 3 hardly absorbs the used laser light, so that a sufficient amount of heat for melting does not occur, and heat is generated due to absorption of the laser light with respect to defects and impurities present in some places. Be

この結果より、まずレーザー光照射に対して有機化合物を付置させていないAl粒子の大半が融解する造形条件の探索を行ったところ、実施例1の2倍のエネルギー密度となる造形条件で融解することを確認した。 From these results, first of all, when searching for forming conditions under which most of the Al 2 O 3 particles not having an organic compound attached to the laser light are melted, the forming conditions with an energy density twice that of Example 1 It confirmed that it thawed.

比較例1ではこの条件で実施例1と同様のレーザー造形を実施したところ、実施例1の造形物と同様に、酸素欠損に起因すると思われる黒く着色した造形物が得られた。ただし、輪郭振れ幅は約50μmと大きな値となった。これは原料粉体である有機化合物を付置させていないAl粒子はレーザー光をほとんど吸収せずに、減衰の少ないままのレーザー散乱光が周囲の未加工の粒子を融解したためと考えられる。一方で、レーザー光のエネルギー密度は高い状態でありながら、不均一に融解が起こっており、所々融け残りが発生していた。それに起因して表面凹凸は大きく、粒子形状残留物もところどころに見受けられた。よって、造形物としては望ましいものではなく、精細さに欠け、加工ムラの大きなものとなった。 In Comparative Example 1, the same laser shaping as in Example 1 was carried out under these conditions. As a result, as in the case of the shaped article of Example 1, a black-colored shaped article thought to be caused by oxygen deficiency was obtained. However, the contour deviation width was as large as about 50 μm. It is considered that this is because the Al 2 O 3 particles not loaded with the organic compound, which is the raw material powder, hardly absorb the laser light, and the laser scattered light with little attenuation melts the surrounding unprocessed particles. . On the other hand, although the energy density of the laser light was high, melting occurred unevenly, and some unmelted parts were generated. Due to that, the surface irregularities were large, and particle shape residues were also found in some places. Therefore, it was not desirable as a three-dimensional object, it was lacking in definition, and it became a large thing of processing unevenness.

比較例2では、比較例1と同様の有機化合物を付置させていないAl粒子を造形用原料粉体とし、融け残りの無いようにレーザー光のエネルギー密度をさらに2倍にする条件で造形を試行したものである。比較例1と同様に黒く着色した造形物が得られた。しかし、輪郭振れ幅は若干改善したものの、約40μmと大きな値のままであった。レーザー光のエネルギー密度が高いため、融解が十分に行われ、融け残りの少ないなめらかな表面の造形物が得られたが、やはり融解の不均一性があり、わずかに融け残りおよび粒子形状残留物が認められ、それに起因した表面凹凸が認められた。よって、造形物としては同様に望ましいものではなく、精細さに欠け、加工ムラの大きなものとなった。 In Comparative Example 2, Al 2 O 3 particles not having the same organic compound as Comparative Example 1 attached thereto are used as raw material powders for shaping under the condition that the energy density of the laser light is further doubled so that there is no melting residue. It is a trial of modeling. A black-colored shaped object was obtained in the same manner as in Comparative Example 1. However, although the outline fluctuation width improved slightly, it remained a large value of about 40 μm. Due to the high energy density of the laser light, melting was sufficiently performed, and a smooth surface shaped object with little unmelted was obtained, but there was also uneven melting, slight unmelted and particle shape residue Were observed, and surface irregularities resulting from it were observed. Therefore, it was not desirable as a three-dimensional object, and it was lacking in fineness, resulting in large processing unevenness.

比較例3においては、比較例1と同様の造形条件により、Al粒子よりも融解温度が低下するAl−ZrO混合粒子を、有機化合物を付置させることなく造形用原料粉体として用い、レーザー造形の試行を実施したものである。融解温度の低下に起因して、比較例1よりもなめらかな表面を有する、凹凸の小さい造形物が得られた。輪郭振れ幅も改善したが、依然、約30μmの幅があり、比較的大きい値のままであった。また、わずかに粒子形状残留物が認められた。よって、改善したとはいえ、造形物としては望ましいものではなく、精細さに欠け、加工ムラの大きなものとなった。 In Comparative Example 3, under the same shaping conditions as Comparative Example 1, Al 2 O 3 -ZrO 2 mixed particles whose melting temperature is lower than that of Al 2 O 3 particles are used as raw material powders for shaping without attaching an organic compound. It was used as a body, and a trial of laser shaping was performed. Due to the lowering of the melting temperature, a three-dimensional object having a smoother surface than that of Comparative Example 1 was obtained. The profile runout also improved, but still had a width of about 30 μm and remained relatively large. Also, slight particle shape residue was observed. Therefore, although it improved, it was not desirable as a shaped object, and it was lacking in fineness, resulting in large processing unevenness.

[実施例7]
これまでは粉体1層のみの造形物について説明してきたが、以降、積層造形物について説明する。
図1に示すSLS装置を用いて、レーザー光を照射し、セラミックス造形用粉体を熔解、凝固させることを繰り返すことによるセラミックスの構造物の製造を実施した。原料粉体は実施例1および2で用いた平均粒子径20μmの酸化アルミニウム(Al)粒子および市販のジイモニウム系化合物である、日本化薬(株)製KAYASORB IRG−069を用いて、実施例1と同様の製法で作製したものを用いた。レーザーパワーおよびレーザースキャン速度などの造形条件は実施例2と同様の条件を用いた。
[Example 7]
So far, the three-dimensional object with only one layer of powder has been described, and hereinafter, the three-dimensional object will be described.
Using the SLS apparatus shown in FIG. 1, a ceramic structure was manufactured by repeating laser light irradiation to melt and solidify the powder for ceramic formation. Raw material powders were prepared using aluminum oxide (Al 2 O 3 ) particles having an average particle diameter of 20 μm used in Examples 1 and 2 and commercially available dimonium-based compounds, using KAYASORB IRG-069 manufactured by Nippon Kayaku Co., Ltd. What was produced by the manufacturing method similar to Example 1 was used. The same conditions as Example 2 were used as modeling conditions, such as laser power and laser scanning speed.

まず、図1に示す粉末升11に上記原料粉体を充填し、リコーター部13により造形ステージ12に配置したアルミナ基板上に20μmの厚さで粉末を敷き詰めた。レーザー15から発せられるレーザー光の波長は1065nmであり、焦点の調整などにより粉体表面でのレーザービーム径は100μmになるように調節した。このレーザーをスキャナ部14によりスキャンし、長さ20mmの直線を50μmピッチで400本描画することで、20mm×20mmの平面1層造形物を得た。その上にさらにリコーター部13により粉末升11に充填された原料粉体を造形ステージ部12の高さを調整することで、前記平面1層造形物の上に20μmの厚さで敷き詰めた。その粉体をレーザー描画することで、積層造形物を得た。この積層造形工程を400回繰り返すことにより、400層の造形物が結着した積層造形物を得た。   First, the raw material powder was filled in the powder crucible 11 shown in FIG. 1, and the powder was spread with a thickness of 20 μm on the alumina substrate disposed on the modeling stage 12 by the recoater unit 13. The wavelength of the laser beam emitted from the laser 15 is 1065 nm, and the diameter of the laser beam on the powder surface is adjusted to 100 μm by adjusting the focus and the like. The laser was scanned by the scanner unit 14 and 400 straight lines of 20 mm in length were drawn at a pitch of 50 μm to obtain a 20 mm × 20 mm flat one-layer model. Furthermore, the raw material powder with which the powder crucible 11 was filled by the recoater part 13 was spread by thickness of 20 micrometers on the said planar 1-layer molded article by adjusting the height of the modeling stage part 12. The layered product was obtained by laser drawing the powder. By repeating this lamination molding process 400 times, a lamination molded article in which 400 layers of a molded object were bound was obtained.

[境界部の輪郭振れ幅の評価]
得られた造形物の精細さの指標として、図6で示したのと同様に、最上層のレーザー照射部42と未照射部41の境界の顕微鏡写真から幅100μmの画像を切り出し、境界部の輪郭振れ幅を評価した。この輪郭振れ幅の値が小さいほうが、高精細な造形となる。この輪郭振れ幅の他に、造形物の凹凸や加工ムラなどを総合的に見て、造形の良し悪しを、良いほうから順番に、A、B、C、Dの4段階で評価した。具体的には光学顕微鏡観察による評価により、輪郭振れ幅20μm以下、造形部分の凹凸が未加工の原料粉体粒子の平均粒子径の半分以下、およびレーザー照射した部分に造形に影響を与える程度の原料粉体粒子形状を残した部分がない、という3条件を評価対象とした。そのうち、すべてを満たすものをA、2条件を満たすものをB、1条件のみ満たすものをC、1条件も満たさないものをDとした。
[Evaluation of contour runout at the boundary]
As an index of the fineness of the obtained three-dimensional object, an image having a width of 100 μm is cut out from the micrograph of the boundary between the laser-irradiated part 42 and the unirradiated part 41 in the top layer as shown in FIG. Contour runout was evaluated. The smaller the value of the contour fluctuation width, the higher the definition. In addition to the contour fluctuation width, the irregularities of the object, the processing unevenness and the like were comprehensively evaluated, and the quality of the object was evaluated in four stages of A, B, C and D in order from the better side. Specifically, the evaluation by optical microscope observation shows that the outline fluctuation width is 20 μm or less, the unevenness of the formed portion is half or less of the average particle diameter of the raw material powder particle, and the extent to which the laser irradiated portion is affected. The evaluation was made on the three conditions that there was no part where the raw material powder particle shape was left. Among them, those satisfying all were A, those satisfying two were B, those satisfying only one were C, and those not satisfying one were D.

これらの条件を満たさないものは、精細さの低下により見た目が損なわれるばかりでなく、機械強度の低下の原因になりうるので、2条件以上満たすことが望ましく、3条件とも満たしたものが最も望ましい。   Those which do not satisfy these conditions are not only impaired in appearance due to the reduction in fineness, but may also cause a decrease in mechanical strength. Therefore, it is desirable to satisfy two or more conditions, and those satisfying all three conditions are most desirable .

得られた積層造形物の厚さは約4mmであり、造形させた各層の平面造形物は融解により、敷き詰めた粉体の厚さの約半分の厚さになることが分かった。本実施例の原料粉体、造形条件、および造形結果を表2に示す。造形物最上層の輪郭振れ幅は実施例2の平面1層造形の結果より若干の広がりがあるものの、同様に高精細な造形物が得られたことが見て取れた。最上層の表面凹凸は実施例2の平面1層造形物と比較してわずかに大きくなっているが、十分なめらかな表面であり、粒子形状残留物も認められなかった。これにより、境界部が明瞭な、表面平坦性がよく、加工均一性のよい、高精細な造形物が得られた。   The thickness of the obtained layered three-dimensional object was about 4 mm, and it was found that the two-dimensional three-dimensional object of each layer formed becomes about half the thickness of the paved powder by melting. The raw material powder of this example, shaping conditions, and shaping results are shown in Table 2. Although the outline fluctuation width of the top layer of the shaped article is slightly wider than the result of the flat single-layer shaping of Example 2, it can be seen that a high-definition shaped article was similarly obtained. The surface unevenness of the top layer is slightly larger than that of the flat single-layer structure of Example 2, but it is a sufficiently smooth surface, and no particle shape residue was observed. As a result, a high-definition shaped object having a clear boundary, good surface flatness, and good processing uniformity was obtained.

[比較例4]
実施例7と同じSLS装置および積層造形プロセスを用い、比較例1および2で用いた有機化合物の付置のない平均粒子径20μmの酸化アルミニウム(Al)粒子を造形用原料粉体として用いたセラミックスの構造物の製造を実施した。レーザーパワーおよびレーザースキャン速度などの造形条件は比較例2と同様の条件を用いた。また積層工程および積層条件は上記実施例7と同様にして実施した。
Comparative Example 4
Using aluminum oxide (Al 2 O 3 ) particles having an average particle diameter of 20 μm without placing of the organic compound used in Comparative Examples 1 and 2 as a raw material powder for modeling using the same SLS apparatus and additive manufacturing process as in Example 7 The manufacture of the ceramic structure was carried out. The same conditions as in Comparative Example 2 were used as the shaping conditions such as the laser power and the laser scanning speed. The lamination process and the lamination conditions were carried out in the same manner as in Example 7 above.

得られた積層造形物の厚さは4mm強であり、造形させた各層の平面造形物は融解により約半分の厚さになるものの、有機化合物を付置した原料粉体を用いて造形を行った実施例7よりは若干厚くなることが分かった。本比較例の原料粉体、造形条件、および造形結果を表2に示す。   Although the thickness of the obtained layered three-dimensional object is 4 mm or more, although the two-dimensional three-dimensional object of each layer formed becomes about half the thickness by melting, it was formed using the raw material powder to which the organic compound was attached. It turned out that it becomes a little thicker than Example 7. The raw material powder of this comparative example, modeling conditions, and a modeling result are shown in Table 2.

造形物最上層の輪郭振れ幅は比較例2の平面1層造形の結果と同様に大きく、精細さを欠く造形物が得られたことが見て取れた。最上層の表面凹凸は比較例2の平面1層造形物と比較して大きくなっており、いびつな表面であった。また、不均一なレーザー融解が見られ、所々に粒子形状残留物が認められた。よって、造形物としては望ましいものではなく、精細さに欠け、加工ムラの大きなものとなった。   It can be seen that the contour deviation width of the top layer of the shaped object is as large as the result of the planar single-layer shaping of Comparative Example 2, and a shaped object lacking in definition is obtained. The surface asperity of the uppermost layer was larger than that of the flat single-layer shaped article of Comparative Example 2, and was a irregular surface. In addition, uneven laser melting was observed, and particle shape residue was observed in some places. Therefore, it was not desirable as a three-dimensional object, it was lacking in definition, and it became a large thing of processing unevenness.

Figure 2019084824
Figure 2019084824

[実施例8−10]
無機化合物粒子として、実施例1と同様の平均粒子径20μmの酸化アルミニウム(Al)粒子を用意した。有機化合物としては、実施例1と同様に日本化薬(株)製KAYASORB IRG−069を用いた。このジイモニウム化合物を10mg、500mg、および1000mg秤量し、それぞれを30gのクロロホルムに溶解させた。これらの溶液を底面積の大きな容器に入れ、そこに前記Al粒子10gをそれぞれ投入して溶液に浸漬し、よく攪拌した上でクロロホルムを揮発させ、乾燥させた。これにより、実施例1の原料粉体の無機化合物に対する有機化合物の質量比(以下、有機/無機質量比と記載)が1質量%であるのに対して、有機/無機質量比が0.1質量%、5質量%、および10質量%である実施例8から10の原料粉体を作製した。
[Example 8-10]
As inorganic compound particles, aluminum oxide (Al 2 O 3 ) particles having an average particle diameter of 20 μm similar to that of Example 1 were prepared. As the organic compound, KAYASORB IRG-069 manufactured by Nippon Kayaku Co., Ltd. was used in the same manner as Example 1. 10 mg, 500 mg, and 1000 mg of this dimonium compound were weighed and each was dissolved in 30 g chloroform. These solutions were placed in a container having a large bottom area, and 10 g of the Al 2 O 3 particles were respectively charged therein and immersed in the solution, well stirred, and then chloroform was evaporated and dried. As a result, the mass ratio of the organic compound to the inorganic compound of the raw material powder of Example 1 (hereinafter referred to as organic / inorganic mass ratio) is 1 mass%, while the organic / inorganic mass ratio is 0.1. Raw material powders of Examples 8 to 10, which are mass%, 5 mass%, and 10 mass%, were produced.

得られた粒子のうち約200個を光学顕微鏡で観察したところ、半数以上の粒子には褐色のジイモニウム系化合物が粒子の表面積の二分の一以上の面積に付置されていた。これらの原料粉体をレーザー造形用原料粉体として用い、レーザー照射条件も含め実施例1と同様にして、実施例8から10を形成した。
実施例8から10の作製に用いた粉体と造形条件とその結果を表3に示す。
As a result of observing about 200 of the obtained particles with an optical microscope, a brown diimonium compound was attached to a half or more of the surface area of the particles in more than half of the particles. These raw material powders were used as raw material powders for laser shaping, and Examples 8 to 10 were formed in the same manner as Example 1 including the laser irradiation conditions.
The powder used for preparation of Examples 8 to 10, the forming conditions, and the results are shown in Table 3.

[境界部の輪郭振れ幅の評価]
得られた造形物の精細さの指標として、実施例1と同様の評価を行った。具体的には、図6で示したのと同様に、最上層のレーザー照射部42と未照射部41の境界の顕微鏡写真から幅100μmの画像を切り出し、境界部の輪郭振れ幅を評価した。この輪郭振れ幅の値が小さいほうが、高精細な造形となる。この輪郭振れ幅の他に、造形物の凹凸や加工ムラなどを総合的に見て、造形の良し悪しを、良いほうから順番に、A、B、C、D、の4段階で評価した。具体的には光学顕微鏡観察による評価により、輪郭振れ幅20μm以下、造形部分の凹凸が未加工の原料粉体粒子の平均粒子径の半分以下、およびレーザー照射した部分に造形に影響を与える程度の原料粉体粒子形状を残した部分がない、という3条件を評価対象とした。そのうち、すべてを満たすものをA、2条件を満たすものをB、1条件のみ満たすものをC、1条件も満たさないものをDとした。
これらの条件を満たさないものは、精細さの低下により見た目を損なうばかりでなく、機械強度の低下の原因になりうるので、2条件以上満たすことが望ましく、3条件とも満たしたものが最も望ましい。
[Evaluation of contour runout at the boundary]
Evaluation similar to Example 1 was performed as a parameter | index of the definition of the obtained molded article. Specifically, as in the case shown in FIG. 6, an image with a width of 100 μm was cut out from a micrograph of the boundary between the laser-irradiated part 42 and the unirradiated part 41 in the uppermost layer, and the outline runout of the boundary was evaluated. The smaller the value of the contour fluctuation width, the higher the definition. In addition to the contour fluctuation width, the irregularities and the processing unevenness of the object were comprehensively evaluated, and the quality of the object was evaluated in four stages of A, B, C and D in order from the better side. Specifically, the evaluation by optical microscope observation shows that the outline fluctuation width is 20 μm or less, the unevenness of the formed portion is half or less of the average particle diameter of the raw material powder particle, and the extent to which the laser irradiated portion is affected. The evaluation was made on the three conditions that there was no part where the raw material powder particle shape was left. Among them, those satisfying all were A, those satisfying two were B, those satisfying only one were C, and those not satisfying one were D.
Those not satisfying these conditions not only impair the appearance due to the reduction of fineness but also cause the reduction of mechanical strength, so it is desirable to satisfy two or more conditions, and it is most desirable to satisfy all three conditions.

Figure 2019084824
Figure 2019084824

実施例8の造形物は少し黒く着色したものとなったが、有機化合物に起因した着色ではなく、レーザー加熱による酸素欠損によるものと思われる。輪郭振れ幅は17μm程度であり、多少の粒子形状残留物があり、造形物をすると外観あるいは強度に影響する可能性があったものの表面凹凸は未加工の原料粉体粒子の平均粒子径の半分より小さいものであった。これにより、境界部が明瞭な平坦性のよい造形物が得られた。   The shaped article of Example 8 turned a little black, but it was thought that it was not due to the organic compound but due to oxygen deficiency due to laser heating. The deviation of the outline is about 17 μm, and there are some particle shape residues, and there is a possibility of affecting the appearance or strength when the object is shaped, but the surface unevenness is half the average particle diameter of the raw material powder particles. It was smaller. This resulted in a well-shaped object with a clear boundary.

実施例9および10では実施例1および8の造形物と同様に、造形物は少し黒く着色したものとなったが、有機化合物に起因した着色ではなく、レーザー加熱による酸素欠損によるものと思われる。振れ幅は9から10μm程度で、表面凹凸はほとんど見られず、粒子形状残留物は見当たらなかった。これは有機/無機質量比が大きいため、有機化合物がむらなくレーザー光を吸収したことにより、無機化合物粒子がむらなく融解したためと考えられる。これにより、境界部が明瞭な平坦性のよい造形物が得られた。   In Examples 9 and 10, similar to the shaped articles of Examples 1 and 8, the shaped articles turned a little black, but not due to the organic compound but due to oxygen deficiency due to laser heating . The swing width was about 9 to 10 μm, almost no surface unevenness was observed, and no particle shape residue was found. This is considered to be due to the fact that the inorganic compound particles melted uniformly because the organic compound absorbed the laser light uniformly because the organic / inorganic mass ratio is large. This resulted in a well-shaped object with a clear boundary.

実施例1および8〜10の比較から、有機化合物が、無機化合物の0.1質量%以上10質量%以下含まれているのが好ましく、1質量%以上10質量%以下含まれているのがより好ましいことがわかる。ただし、無機化合物粒子に設けるのに適した有機化合物のジイモニウム系化合物やシアニン色素は非常に高価であるため、材料コストを考慮すると、有機化合物が、無機化合物の1質量%以上5質量%以下含まれているのが特に好ましい。   From the comparison of Examples 1 and 8 to 10, it is preferable that the organic compound is contained in an amount of 0.1% by mass to 10% by mass of the inorganic compound, and 1% by mass to 10% by mass It turns out that it is more preferable. However, since diimonium-based compounds and cyanine dyes of organic compounds suitable for provision to inorganic compound particles are very expensive, the organic compounds are contained in an amount of 1% by mass or more and 5% by mass or less of the inorganic compounds It is particularly preferred that

本発明のセラミック造形用粉体を用いれば、精細なセラミック造形物を3次元造形によって得ることができ、複雑形状を必要とするセラミックス部品分野において利用可能である。   By using the powder for ceramic formation of the present invention, a fine ceramic object can be obtained by three-dimensional formation, and can be used in the field of ceramic parts requiring complicated shapes.

11 粉末升
12 造形ステージ部
13 リコーター部
14 スキャナ部
15 レーザー
21 クラッディングノズル
22 粉体供給孔
23 レーザー
41 未照射部
42 レーザー照射部
DESCRIPTION OF SYMBOLS 11 Powder bottle 12 Modeling stage part 13 Recoater part 14 Scanner part 15 Laser 21 Cladding nozzle 22 Powder supply hole 23 Laser 41 Non-irradiated part 42 Laser irradiated part

Claims (12)

レーザー光の照射により粉体の逐次熔融および凝固を繰り返して構造物を得るためのセラミックス造形用粉体であって、
前記粉体は無機化合物粒子および有機化合物を含み、
前記有機化合物は前記無機化合物粒子の表面に設けられており、
前記有機化合物は前記レーザー光の波長に重なる吸収帯を有する、
ことを特徴とするセラミックス造形用粉体。
It is a powder for ceramic shaping for obtaining a structure by repeating sequential melting and solidification of powder by irradiation of laser light.
The powder comprises inorganic compound particles and an organic compound,
The organic compound is provided on the surface of the inorganic compound particle,
The organic compound has an absorption band overlapping with the wavelength of the laser light,
Powder for ceramic molding characterized by
前記無機化合物粒子が、金属酸化物を主成分とすることを特徴とする、請求項1に記載のセラミックス造形用粉体。   The powder for ceramic formation according to claim 1, wherein the inorganic compound particles contain a metal oxide as a main component. 前記金属酸化物が、酸化アルミニウムを含有することを特徴とする、請求項2に記載のセラミックス造形用粉体。   The powder for ceramic formation according to claim 2, wherein the metal oxide contains aluminum oxide. 前記金属酸化物が、さらに酸化ジルコニウムを含有することを特徴とする、請求項2または3に記載のセラミックス造形用粉体。   The powder for ceramic formation according to claim 2, wherein the metal oxide further contains zirconium oxide. 前記レーザー光の波長が、700nmから1200nmの範囲にあることを特徴とする、請求項1から4のいずれか一項に記載のセラミックス造形用粉体。   The powder for ceramic formation according to any one of claims 1 to 4, wherein a wavelength of the laser light is in a range of 700 nm to 1200 nm. 前記有機化合物が、前記無機化合物粒子の0.1質量%以上10質量%以下含まれていることを特徴とする、請求項1から5のいずれか一項に記載のセラミックス造形用粉体。   The powder for ceramic formation according to any one of claims 1 to 5, wherein the organic compound is contained in an amount of 0.1% by mass to 10% by mass of the inorganic compound particles. 前記有機化合物が、ジイモニウム系化合物またはシアニン色素を含有することを特徴とする、請求項1から6のいずれか一項に記載のセラミックス造形用粉体。   The powder for ceramic formation according to any one of claims 1 to 6, wherein the organic compound contains a dimonium compound or a cyanine dye. 前記無機化合物粒子の表面に設けられた前記有機化合物が、高分子化合物中に分散していることを特徴とする、請求項1から7のいずれか一項に記載のセラミックス造形用粉体。   The powder for ceramic formation according to any one of claims 1 to 7, wherein the organic compound provided on the surface of the inorganic compound particle is dispersed in a polymer compound. 前記セラミックス造形用粉体の平均粒子径が5μmから100μmであることを特徴とする、請求項1から8のいずれか一項に記載のセラミックス造形用粉体。   The powder for ceramic formation according to any one of claims 1 to 8, wherein an average particle diameter of the powder for ceramic formation is 5 μm to 100 μm. 請求項1から9のいずれか一項に記載のセラミックス造形用粉体に、前記有機化合物のレーザー光の吸収帯と波長が重なるレーザー光を照射して、前記セラミックス造形用粉体を熔解、凝固させることを繰り返すことでセラミックスの構造物を得ることを特徴とする、セラミックスの造形方法。   The powder for ceramic formation according to any one of claims 1 to 9 is irradiated with a laser beam having a wavelength overlapping the absorption band of the laser beam of the organic compound to melt and solidify the powder for ceramic formation. A ceramic molding method characterized in that a ceramic structure is obtained by repeating repeating. 前記レーザー光の波長が、700nmから1200nmの範囲にあることを特徴とする、請求項10に記載の方法。   The method according to claim 10, wherein the wavelength of the laser light is in the range of 700 nm to 1200 nm. 前記レーザー光のビーム径が10μm以上200μm以下であることを特徴とする、請求項10または11に記載の方法。   The method according to claim 10, wherein a beam diameter of the laser beam is 10 μm or more and 200 μm or less.
JP2018206036A 2017-11-08 2018-10-31 Ceramic molding powder and ceramic molding method using the same Active JP7256630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/178,906 US11285661B2 (en) 2017-11-08 2018-11-02 Powder for ceramic shaping and ceramic shaping method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017215381 2017-11-08
JP2017215381 2017-11-08

Publications (3)

Publication Number Publication Date
JP2019084824A true JP2019084824A (en) 2019-06-06
JP2019084824A5 JP2019084824A5 (en) 2021-12-09
JP7256630B2 JP7256630B2 (en) 2023-04-12

Family

ID=66761976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018206036A Active JP7256630B2 (en) 2017-11-08 2018-10-31 Ceramic molding powder and ceramic molding method using the same

Country Status (1)

Country Link
JP (1) JP7256630B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195183A1 (en) * 2019-03-26 2020-10-01 パナソニックIpマネジメント株式会社 Composite member, and heat generation device, building member and light emitting device, each of which uses same
CN112441834A (en) * 2020-11-22 2021-03-05 西北工业大学 Selective laser melting for preparing Al2O3-GdAlO3-ZrO2Method for preparing ternary eutectic ceramics
KR20210097908A (en) * 2020-01-31 2021-08-10 한양대학교 산학협력단 Ceramic paste for light sintering and light sintering method of ceramics
CN116332636A (en) * 2023-03-29 2023-06-27 常州大学 Special material for carbon-doped bismuth oxide powder injection molding and method for preparing bismuth oxide ceramic by laser irradiation sintering

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727976A (en) * 1980-06-13 1982-02-15 Feldmuehle Ag Ceramic formed body having eutectic structure ingredient and manufacture thereof
JP2001294480A (en) * 2000-04-10 2001-10-23 Chokoon Zairyo Kenkyusho:Kk Ceramic composite material
JP2001328871A (en) * 2000-05-17 2001-11-27 Univ Osaka Method for procucing formed moldings comprising high- melting point material
JP2004091271A (en) * 2002-08-30 2004-03-25 Rikogaku Shinkokai Transparent or translucent ceramics and production method therefor
WO2010058745A1 (en) * 2008-11-18 2010-05-27 東ソー株式会社 Sintered colored alumina of high toughness and high translucency, and manufacturing method and uses therefor
JP2011143615A (en) * 2010-01-14 2011-07-28 Asahi Kasei E-Materials Corp Method for manufacturing three-dimensional structure, and three-dimensional structure
JP2014518589A (en) * 2011-04-12 2014-07-31 ダイパワー Sintering method for metal oxide compounds
JP2016223005A (en) * 2015-03-18 2016-12-28 株式会社リコー Powder material for stereo molding, kit for stereo molding, green body for stereo molding, manufacturing method of stereo molded article and green body for stereo molding, manufacturing device of stereo molded article and green body for stereo molding
WO2017015241A1 (en) * 2015-07-18 2017-01-26 Vulcanforms Inc. Additive manufacturing by spatially controlled material fusion
JP2017113952A (en) * 2015-12-22 2017-06-29 株式会社フジミインコーポレーテッド Molding material to be used for powder laminate molding
CN108516805A (en) * 2018-06-21 2018-09-11 西北工业大学 The preparation method of eutectic composition oxide ceramics spheric granules
JP2018154039A (en) * 2017-03-17 2018-10-04 株式会社リコー Method for producing three-dimensionally shaped object, three-dimensional shaping material set, and apparatus for producing three-dimensionally shaped object

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727976A (en) * 1980-06-13 1982-02-15 Feldmuehle Ag Ceramic formed body having eutectic structure ingredient and manufacture thereof
JP2001294480A (en) * 2000-04-10 2001-10-23 Chokoon Zairyo Kenkyusho:Kk Ceramic composite material
JP2001328871A (en) * 2000-05-17 2001-11-27 Univ Osaka Method for procucing formed moldings comprising high- melting point material
JP2004091271A (en) * 2002-08-30 2004-03-25 Rikogaku Shinkokai Transparent or translucent ceramics and production method therefor
WO2010058745A1 (en) * 2008-11-18 2010-05-27 東ソー株式会社 Sintered colored alumina of high toughness and high translucency, and manufacturing method and uses therefor
JP2011143615A (en) * 2010-01-14 2011-07-28 Asahi Kasei E-Materials Corp Method for manufacturing three-dimensional structure, and three-dimensional structure
JP2014518589A (en) * 2011-04-12 2014-07-31 ダイパワー Sintering method for metal oxide compounds
JP2016223005A (en) * 2015-03-18 2016-12-28 株式会社リコー Powder material for stereo molding, kit for stereo molding, green body for stereo molding, manufacturing method of stereo molded article and green body for stereo molding, manufacturing device of stereo molded article and green body for stereo molding
WO2017015241A1 (en) * 2015-07-18 2017-01-26 Vulcanforms Inc. Additive manufacturing by spatially controlled material fusion
JP2018524476A (en) * 2015-07-18 2018-08-30 ヴァルカンフォームズ インコーポレイテッド Additive manufacturing by melting of space-controlled materials
JP2017113952A (en) * 2015-12-22 2017-06-29 株式会社フジミインコーポレーテッド Molding material to be used for powder laminate molding
JP2018154039A (en) * 2017-03-17 2018-10-04 株式会社リコー Method for producing three-dimensionally shaped object, three-dimensional shaping material set, and apparatus for producing three-dimensionally shaped object
CN108516805A (en) * 2018-06-21 2018-09-11 西北工业大学 The preparation method of eutectic composition oxide ceramics spheric granules

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195183A1 (en) * 2019-03-26 2020-10-01 パナソニックIpマネジメント株式会社 Composite member, and heat generation device, building member and light emitting device, each of which uses same
KR20210097908A (en) * 2020-01-31 2021-08-10 한양대학교 산학협력단 Ceramic paste for light sintering and light sintering method of ceramics
KR102414881B1 (en) 2020-01-31 2022-06-30 한양대학교 산학협력단 Ceramic paste for light sintering and light sintering method of ceramics
CN112441834A (en) * 2020-11-22 2021-03-05 西北工业大学 Selective laser melting for preparing Al2O3-GdAlO3-ZrO2Method for preparing ternary eutectic ceramics
CN116332636A (en) * 2023-03-29 2023-06-27 常州大学 Special material for carbon-doped bismuth oxide powder injection molding and method for preparing bismuth oxide ceramic by laser irradiation sintering
CN116332636B (en) * 2023-03-29 2024-04-02 常州大学 Special material for carbon-doped bismuth oxide powder injection molding and method for preparing bismuth oxide ceramic by laser irradiation sintering

Also Published As

Publication number Publication date
JP7256630B2 (en) 2023-04-12

Similar Documents

Publication Publication Date Title
JP2019084824A (en) Powder for ceramic molding, and method for molding ceramic using the same
US11884008B2 (en) System and method of making printed articles
JP7383738B2 (en) Powder for ceramic modeling, ceramic modeling, and manufacturing method thereof
TWI392110B (en) Method for producing luminescence-conversion led
JP4766723B2 (en) Method for forming three-dimensional object using homogenization of components
RU2469851C2 (en) Method of producing 3d structure layer-by-layer
CN108348998B (en) Additive manufacturing method and apparatus
JP5535589B2 (en) Glass welding method and glass layer fixing method
US20100323301A1 (en) Method and apparatus for making three-dimensional parts
CN1894611A (en) Method for producing photon crystal and controllable defect therein
JP2005536324A (en) Laser sintering method with increased processing accuracy and particles used in the method
CN101612793A (en) Make the method and apparatus of 3 D workpiece
JP2019081357A (en) Method for producing ceramic molding
US11285661B2 (en) Powder for ceramic shaping and ceramic shaping method using the same
JP2023168446A (en) Ceramic powder, ceramic powder production method and production method of ceramic structure using ceramic powder
JP2019084824A5 (en)
CN113233892A (en) Zirconia ceramic slurry doped with up-conversion luminescent material and photocuring 3D printing device and method thereof
CN113165207B (en) Method for manufacturing ceramic product and ceramic product
CN106626379B (en) The method and apparatus that laser manufactures polyamide three-dimension object
EP2263861A1 (en) Method and apparatus for making three-dimensional parts
TW202146357A (en) Method for manufacturing sintered body
RU2716863C2 (en) Hybrid nanocomposite material, laser scanning system and use thereof for volumetric projection of image
WO2020116568A1 (en) Ceramic article production method and ceramic article
US20040075197A1 (en) Method for rapid forming of a ceramic green part
WO2019083042A1 (en) Ceramic molded object production method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211028

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211028

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20220630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230331

R151 Written notification of patent or utility model registration

Ref document number: 7256630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151