JP2019082147A - Swash plate - Google Patents

Swash plate Download PDF

Info

Publication number
JP2019082147A
JP2019082147A JP2017210288A JP2017210288A JP2019082147A JP 2019082147 A JP2019082147 A JP 2019082147A JP 2017210288 A JP2017210288 A JP 2017210288A JP 2017210288 A JP2017210288 A JP 2017210288A JP 2019082147 A JP2019082147 A JP 2019082147A
Authority
JP
Japan
Prior art keywords
coating layer
swash plate
grooves
sliding
mating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017210288A
Other languages
Japanese (ja)
Inventor
泰之 多胡
Yasuyuki TAGO
泰之 多胡
後藤 真吾
Shingo Goto
真吾 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP2017210288A priority Critical patent/JP2019082147A/en
Publication of JP2019082147A publication Critical patent/JP2019082147A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

To provide a swash plate enabling reduction in manufacturing cost while suppressing nonuniform wear on a resin coating layer.SOLUTION: The swash plate in one embodiment includes an annular base material including a first surface opposed to a first opposite material on the compression chamber side and a second surface opposed to a second opposite material on the counter compression chamber side, a plurality of first grooves formed in the first surface and extending in a direction non-parallel to a sliding direction in a region where a bearing pressure given by the first opposite material becomes the greatest, and a first resin coating layer formed on the first surface to form a sliding surface with the first opposite material.SELECTED DRAWING: Figure 4

Description

本発明は、斜板式コンプレッサーにおいて用いられる斜板に関する。   The present invention relates to a swash plate used in a swash plate compressor.

基材上に樹脂コーティング層を形成した斜板において、樹脂コーティング層の表面に溝を形成する技術が知られている(例えば特許文献1乃至3)。   In a swash plate in which a resin coating layer is formed on a base material, techniques for forming grooves in the surface of the resin coating layer are known (for example, Patent Documents 1 to 3).

特開2006−266139号公報JP, 2006-266139, A

本願の発明者らは、斜板において基材上にある種の溝を形成すると、その上に形成された樹脂コーティング層において不均一な摩耗が発生するという問題を見いだした。   The inventors of the present application have found the problem that forming certain grooves on the substrate in the swash plate causes non-uniform wear in the resin coating layer formed thereon.

これに対し本発明は、樹脂コーティング層における不均一な摩耗を抑制しつつ、製造コストを低減する技術を提供する。   On the other hand, the present invention provides a technique for reducing manufacturing costs while suppressing uneven wear in the resin coating layer.

本発明は、圧縮室側の第1相手材と対向する第1表面及び反圧縮室側の第2相手材と対向する第2表面を含む環形状を有する基材と、前記第1表面に形成され、前記第1相手材によりかかる面圧が最大となる領域における摺動方向と非平行な方向に延びる複数の第1溝と、前記第1表面に形成され、前記第1相手材との摺動面を形成する第1樹脂コーティング層とを有する斜板を提供する。   The present invention is formed on a base material having an annular shape including a first surface facing a first mating member on the compression chamber side and a second surface facing a second mating member on the anti-compression chamber side, and the first surface And a plurality of first grooves extending in a direction not parallel to the sliding direction in a region where the surface pressure applied by the first mating member is maximum, and the first groove formed on the first surface and sliding with the first mating member Provided is a swash plate having a first resin coating layer forming a dynamic surface.

この斜板は、前記2表面に形成され、前記第2相手材によりかかる面圧が最大となる領域における摺動方向と非平行な方向に延びる複数の第2溝と、前記第2表面に形成され、前記第2相手材との摺動面を形成する第2樹脂コーティング層とを有してもよい。   The swash plate is formed on the two surfaces, and formed on the second surface with a plurality of second grooves extending in a direction not parallel to the sliding direction in a region where the surface pressure exerted by the second mating member is maximum. And a second resin coating layer that forms a sliding surface with the second mating material.

前記第1溝が延びる方向と前記第2溝が延びる方向とが異なっていてもよい。   The direction in which the first groove extends may be different from the direction in which the second groove extends.

前記複数の第1溝は、前記第1相手材によりかかる面圧が最大となる領域における摺動方向と直交する方向に延びてもよい。   The plurality of first grooves may extend in a direction orthogonal to the sliding direction in a region where the surface pressure applied by the first mating member is maximum.

前記複数の第2溝は、前記第2相手材によりかかる面圧が最大となる領域における摺動方向と直交する方向に延びてもよい。   The plurality of second grooves may extend in a direction orthogonal to the sliding direction in a region where the surface pressure applied by the second mating member is maximum.

本発明によれば、樹脂コーティング層における不均一な摩耗を抑制しつつ、製造コストを低減することができる。   According to the present invention, manufacturing costs can be reduced while suppressing uneven wear in the resin coating layer.

一実施形態に係るコンプレッサー1の構造を示す断面模式図。BRIEF DESCRIPTION OF THE DRAWINGS The cross-sectional schematic diagram which shows the structure of the compressor 1 which concerns on one Embodiment. 斜板3の形状を例示する図。The figure which illustrates the shape of the swash plate 3. 斜板3の断面構造を例示する図。The figure which illustrates the cross-section of the swash plate 3. 基材31の表面形状を例示する図。The figure which illustrates the surface shape of the base material 31. FIG. 溝312の形状を例示する図。The figure which illustrates the shape of the groove | channel 312. FIG. コーティング層32の表面形状を例示する図。The figure which illustrates the surface shape of the coating layer 32. FIG. 特異な摩耗を説明する図。Diagram illustrating unusual wear. 斜板3の製造方法を例示するフローチャート。The flowchart which illustrates the manufacturing method of swash plate 3. FIG. 実施例及び比較例における基材31の表面形状を示す図。The figure which shows the surface shape of the base material 31 in an Example and a comparative example. 摩耗試験後における樹脂コーティング層の表面写真。The surface photograph of the resin coating layer after an abrasion test.

1.構成
図1は、一実施形態に係るコンプレッサー1の構造を示す断面模式図である。コンプレッサー1は、いわゆる斜板式コンプレッサーである。コンプレッサー1は、シャフト2、斜板3、ピストン4、及びシュー5を有する。シャフト2は、ハウジング(図示略)に対して回転可能に支持されている。斜板3は、シャフト2の回転軸に対して斜めに固定されている。斜板3は、本発明に係る摺動部材の一例である。ピストン4は、ハウジングに設けられたシリンダボア(図示略)内を往復運動する。シュー5は、斜板3とピストン4との間に設けられており、斜板3及びピストン4とそれぞれ摺動する。シュー5において、斜板3と摺動する面はほぼ平坦であり、ピストン4と摺動する面はドーム状(半球状)の形状を有している。シュー5は、本発明に係る摺動部材と摺動する相手材の一例である。シャフト2の回転は、斜板3によりピストン4の往復運動に変換される。なお図示は省略しているが、コンプレッサー1の圧縮室は図1の右側に存在する。
1. Configuration FIG. 1 is a schematic cross-sectional view showing the structure of a compressor 1 according to an embodiment. The compressor 1 is a so-called swash plate type compressor. The compressor 1 has a shaft 2, a swash plate 3, a piston 4 and a shoe 5. The shaft 2 is rotatably supported relative to a housing (not shown). The swash plate 3 is obliquely fixed to the rotation axis of the shaft 2. The swash plate 3 is an example of the sliding member according to the present invention. The piston 4 reciprocates in a cylinder bore (not shown) provided in the housing. The shoe 5 is provided between the swash plate 3 and the piston 4 and slides with the swash plate 3 and the piston 4 respectively. In the shoe 5, the surface sliding with the swash plate 3 is substantially flat, and the surface sliding with the piston 4 has a dome-like (hemispherical) shape. The shoe 5 is an example of a mating member that slides on the sliding member according to the present invention. The rotation of the shaft 2 is converted to the reciprocating motion of the piston 4 by the swash plate 3. Although not shown, the compression chamber of the compressor 1 is on the right side of FIG.

図2は、斜板3の形状を例示する図である。図2は、摺動面に垂直な方向から見た図である。斜板3は、全体として中央部に孔39を有する円板形状(ドーナツ形状又は環形状)を有する。斜板3から見ると、シュー5は、摺動面上を回転運動している。ここで回転運動とは、斜板3に対してシュー5が円弧状又は円状の軌跡を描く運動をいう。例えば圧縮室側の摺動面を考えたとき、ピストン4が最も引き出された位置(圧縮率最低)から最も押し込まれた位置(圧縮率最高)までは圧縮室に向かって力がかかるので、シュー5は斜板3と摺動している。しかし、ピストン4が最も押し込まれた位置から最も引き出された位置に向かうときには圧縮室と反対側に力がかかるので、シュー5が斜板3の摺動面から浮き上がる場合がある。軌跡を円弧状というのはこのためである。なお、孔39はシャフト2を受けるための孔である。   FIG. 2 is a view illustrating the shape of the swash plate 3. FIG. 2 is a view as seen from the direction perpendicular to the sliding surface. The swash plate 3 has a disk shape (donut shape or ring shape) having a hole 39 in the center as a whole. When viewed from the swash plate 3, the shoe 5 is in rotational movement on the sliding surface. Here, the rotational movement is a movement in which the shoe 5 draws a circular or circular trajectory with respect to the swash plate 3. For example, when considering the sliding surface on the compression chamber side, a force is applied to the compression chamber from the position where the piston 4 is pulled out the most (compression ratio lowest) to the position pressed the most (compression ratio highest). 5 is in sliding contact with the swash plate 3. However, when the piston 4 moves from the most depressed position to the most withdrawn position, a force is applied to the side opposite to the compression chamber, so the shoe 5 may be lifted from the sliding surface of the swash plate 3. That is why the locus is arc-shaped. The hole 39 is a hole for receiving the shaft 2.

図3は、斜板3の断面構造を例示する図である。図3は、シュー5との摺動面に垂直な断面における構造を示す模式図である。斜板3は、基材31、コーティング層32、及びコーティング層33を有する。コーティング層32及びコーティング層33はいずれもシュー5と摺動する。コーティング層32及びコーティング層33は、いずれも、本発明に係る樹脂コーティング層の一例である。基材31は、中央部に孔を有する円板形状を有しており、要求される特性を満たす金属、例えば、鉄系、銅系、又はアルミニウム系の合金により形成される。シュー5との凝着を防ぐ観点から、基材31はシュー5とは異なる材料で形成されることが好ましい。   FIG. 3 is a view illustrating the cross-sectional structure of the swash plate 3. FIG. 3 is a schematic view showing a structure in a cross section perpendicular to the sliding surface with the shoe 5. The swash plate 3 has a substrate 31, a coating layer 32, and a coating layer 33. The coating layer 32 and the coating layer 33 both slide on the shoe 5. The coating layer 32 and the coating layer 33 are both examples of the resin coating layer according to the present invention. The base material 31 has a disk shape having a hole in the central part, and is formed of a metal satisfying the required characteristics, for example, an iron-based, copper-based, or aluminum-based alloy. From the viewpoint of preventing adhesion with the shoe 5, the substrate 31 is preferably formed of a material different from that of the shoe 5.

コーティング層32は、斜板3の摺動面の特性を改善するために設けられている。コーティング層32は、少なくともバインダー樹脂を含む。この点からコーティング層32は樹脂コーティング層の一例である。バインダー樹脂は、例えば熱硬化性樹脂により形成される。熱硬化性樹脂としては、例えば、ポリアミドイミド(PAI)、ポリアミド(PA)、及びポリイミド(PI)、エポキシ、ポリエーテルエーテルケトン(PEEK)、及びフェノール系樹脂の少なくとも1種が用いられる。コーティング層32は、添加剤として固体潤滑剤を含んでもよい。固体潤滑剤は、潤滑特性を改善するため、すなわち摩擦係数を低減するために添加される。コーティング層32は、例えば、20〜70vol%の固体潤滑材を含む。固体潤滑剤としては、例えば、MoS2、グラファイト(Gr)、カーボン、フッ素系樹脂(ポリテトラフルオロエチレン(PTFE)等)、軟質金属(Sn,Bi等)、WS2、及びh−BNの少なくとも1種が用いられる。コーティング層32は、添加剤として硬質粒子を含んでもよい。硬質粒子としては、例えば、酸化物、窒化物、炭化物、及び硫化物の少なくとも1種が用いられる。   The coating layer 32 is provided to improve the characteristics of the sliding surface of the swash plate 3. The coating layer 32 contains at least a binder resin. The coating layer 32 is an example of a resin coating layer from this point. The binder resin is formed of, for example, a thermosetting resin. As the thermosetting resin, for example, at least one of polyamideimide (PAI), polyamide (PA), polyimide (PI), epoxy, polyetheretherketone (PEEK), and phenol resin is used. The coating layer 32 may contain a solid lubricant as an additive. Solid lubricants are added to improve the lubricating properties, ie to reduce the coefficient of friction. The coating layer 32 contains, for example, 20 to 70 vol% of a solid lubricant. The solid lubricant includes, for example, at least one of MoS2, graphite (Gr), carbon, fluorine-based resin (polytetrafluoroethylene (PTFE), etc.), soft metal (Sn, Bi, etc.), WS2, and h-BN. Is used. The coating layer 32 may contain hard particles as an additive. As hard particles, for example, at least one of an oxide, a nitride, a carbide, and a sulfide is used.

コーティング層32の摩滅を防止する観点から、コーティング層32の厚さは10μm以上であることが好ましく、15μm以上であることがより好ましく、20μm以上であることがさらに好ましい。例えば、コーティング層32の厚さが5μm未満であると、コーティング層32が摩耗して基材31が露出してしまう場合がある。基材31が露出すると、摩擦係数が増大したり、シュー5と凝着したりする問題が発生する。また、コーティング層32の膜厚が厚すぎるとかえって耐焼付性が低下する場合があることから、50μm以下であることが好ましい。コーティング層33の材料及び厚さについては、コーティング層32と同様である。   From the viewpoint of preventing abrasion of the coating layer 32, the thickness of the coating layer 32 is preferably 10 μm or more, more preferably 15 μm or more, and still more preferably 20 μm or more. For example, if the thickness of the coating layer 32 is less than 5 μm, the coating layer 32 may be worn and the substrate 31 may be exposed. When the substrate 31 is exposed, problems such as an increase in the coefficient of friction and adhesion with the shoe 5 occur. In addition, when the film thickness of the coating layer 32 is too thick, the seizure resistance may be reduced rather, so the thickness is preferably 50 μm or less. The material and thickness of the coating layer 33 are the same as those of the coating layer 32.

図4は、基材31の表面形状を例示する図である。図4(A)は、後面(圧縮室側:図1の右側)においてシュー5(第1相手材の一例)対向する表面315(第1表面の一例)を、図4(B)は、前面(反圧縮室側:図1の左側)においてシュー5(第2相手材の一例)と対向する表面311(第2表面の一例)を、それぞれ示す。   FIG. 4 is a view illustrating the surface shape of the substrate 31. As shown in FIG. 4A shows the surface 315 (an example of the first surface) opposed to the shoe 5 (an example of the first mating member) on the rear surface (the compression chamber side: the right side of FIG. 1), and FIG. A surface 311 (an example of a second surface) opposed to the shoe 5 (an example of a second counter member) on the side (anti-compression chamber side: left side in FIG. 1) is shown.

基材31の表面315には、複数の溝316(第1溝の一例)が形成される。この例において、複数の溝316は、全て同じ方向に延びる、互いに平行な溝である。複数の溝316は、表面315上の点Pm1における摺動方向と非平行な方向(この例においては点Pm1における摺動方向と垂直な方向)に延びる。点Pm1は、領域317の代表点である。領域317は、コンプレッサーの運転において摩耗が発生しやすい領域、すなわちシュー5から受ける面圧が最大となる領域である。具体的には、圧縮率が最高となる運転状態においてシュー5と摺動する位置の周辺領域(この位置を含む領域)である。圧縮率が最高の運転状態におけるシュー5の位置を0°として、中心Csとなす角により、表面311上の位置を極座標で表すと、領域317はθ=0°〜150°及び210°〜360°であることが好ましく、θ=0°〜90°及び270°〜360°であることがより好ましく、θ=0°〜60°及び300°〜360°であることがさらに好ましい。点Pm1は、例えば、領域317の重心である。あるいは、点Pm1は、圧縮率が最高となる運転状態においてシュー5と摺動する位置であってもよい。なおこの例において溝316は表面315の全面においてほぼ均一に形成されているが、表面315の一部において溝316が形成されていない領域が存在してもよい。   A plurality of grooves 316 (an example of a first groove) are formed on the surface 315 of the base 31. In this example, the plurality of grooves 316 are grooves parallel to one another, all extending in the same direction. The plurality of grooves 316 extend in a direction not parallel to the sliding direction at point Pm1 on the surface 315 (in this example, the direction perpendicular to the sliding direction at point Pm1). The point Pm1 is a representative point of the area 317. The area 317 is an area where wear is apt to occur in the operation of the compressor, that is, an area where the surface pressure received from the shoe 5 is maximum. Specifically, it is a peripheral region (a region including this position) of a position sliding on the shoe 5 in the operating state where the compression rate is the highest. Region 317 is θ = 0 ° to 150 ° and 210 ° to 360 ° when the position on surface 311 is represented in polar coordinates by the angle with the center Cs, where the position of shoe 5 at the highest compression ratio is 0 °. It is preferable that it is °, more preferably θ = 0 ° to 90 ° and 270 ° to 360 °, and still more preferably θ = 0 ° to 60 ° and 300 ° to 360 °. The point Pm1 is, for example, the center of gravity of the area 317. Alternatively, the point Pm1 may be a position sliding on the shoe 5 in the operating state where the compression rate is the highest. In this example, the grooves 316 are formed substantially uniformly over the entire surface 315, but there may be a region where the grooves 316 are not formed in a part of the surface 315.

基材31の表面311には、複数の溝312(第2溝の一例)が形成される。この例において、複数の溝312は、全て同じ方向に延びる、互いに平行な溝である。複数の溝312は、表面311上の点Pm2における摺動方向と非平行な方向(この例においては点Pm2における摺動方向と垂直な方向)に延びる。点Pm2は、領域313の代表点である。領域313は、コンプレッサーの運転において摩耗が発生しやすい領域、すなわちシュー5から受ける面圧が最大となる領域である。具体的には、圧縮率が最低となる運転状態においてシュー5と摺動する位置の周辺領域(この位置を含む領域)である。領域313はθ=150°〜210°であることが好ましい。点Pm2は、例えば、領域313の重心である。あるいは、点Pm2は、圧縮率が最高となる運転状態においてシュー5と摺動する位置であってもよい。なおこの例において溝312は表面311の全面においてほぼ均一に形成されているが、表面311の一部において溝312が形成されていない領域が存在してもよい。   A plurality of grooves 312 (an example of a second groove) are formed on the surface 311 of the base 31. In this example, the plurality of grooves 312 are parallel grooves, all extending in the same direction. The plurality of grooves 312 extend in a direction not parallel to the sliding direction at point Pm2 on the surface 311 (in this example, the direction perpendicular to the sliding direction at point Pm2). The point Pm2 is a representative point of the area 313. The area 313 is an area where wear is apt to occur in the operation of the compressor, that is, an area where the surface pressure received from the shoe 5 is maximum. Specifically, it is a peripheral region (a region including this position) of the position sliding on the shoe 5 in the operating state where the compression rate is the lowest. The region 313 preferably has θ = 150 ° to 210 °. The point Pm2 is, for example, the center of gravity of the area 313. Alternatively, the point Pm2 may be a position sliding on the shoe 5 in the operating state where the compression rate is the highest. In this example, the groove 312 is formed substantially uniformly over the entire surface 311, but a region where the groove 312 is not formed may be present in part of the surface 311.

溝312と溝316とは基材31の表裏にそれぞれ形成されるが、互いに異なる方向に延びていてもよい。溝の方向は各表面に適した方向に設定することができる。   The grooves 312 and the grooves 316 are formed on the front and back of the substrate 31, respectively, but may extend in different directions. The direction of the grooves can be set to the direction suitable for each surface.

図5は、溝312の形状を例示する図である。図5は、溝312を表面311に垂直な方向から見た模式図である。この例において、溝312は、レーザー加工により形成される。レーザー加工とは、レーザー光のエネルギーを利用した加工技術をいう。具体的には、溝312は、基材31に対し、レーザー光をパルス照射しつつ、照射位置を移動することにより形成される。パルス1回のレーザー光照射により、ほぼ円形の凹部(穴)が形成される。照射位置を移動させることにより、所望の形状の溝312が形成される。溝312が延びる方向に垂直な断面において、複数の溝312はほぼ円弧形状を有する。隣り合う溝312の底部の間隔p1は例えば10〜100μmであり、溝312の開口部の幅w1は例えば10〜100μmである。この例において、間隔p1と幅w1とはほぼ等しい。一例において、間隔p1は40〜80μmである。なお、間隔p1は幅w1よりも大きくてもよい。溝312が延びる方向に平行な断面において、溝312は平坦では無く、レーザー光のスポットに起因する微小の凹凸を有する。一例において、この凹凸の間隔p2は、10〜30μmである。なお、溝316の構造も溝312と同様である。   FIG. 5 is a view illustrating the shape of the groove 312. As shown in FIG. FIG. 5 is a schematic view of the groove 312 as seen from the direction perpendicular to the surface 311. In this example, the grooves 312 are formed by laser processing. Laser processing refers to processing technology that utilizes the energy of laser light. Specifically, the groove 312 is formed by moving the irradiation position to the base material 31 while applying a pulse to the laser light. A substantially circular recess (hole) is formed by one pulse of laser light irradiation. By moving the irradiation position, a groove 312 having a desired shape is formed. The plurality of grooves 312 have a substantially arc shape in a cross section perpendicular to the direction in which the grooves 312 extend. The distance p1 between the bottoms of adjacent grooves 312 is, for example, 10 to 100 μm, and the width w1 of the opening of the grooves 312 is, for example, 10 to 100 μm. In this example, the spacing p1 and the width w1 are approximately equal. In one example, the spacing p1 is 40-80 μm. The interval p1 may be larger than the width w1. In a cross section parallel to the direction in which the grooves 312 extend, the grooves 312 are not flat and have minute asperities due to the spots of laser light. In one example, the interval p2 of the unevenness is 10 to 30 μm. The structure of the groove 316 is similar to that of the groove 312.

図6は、コーティング層32の表面形状を例示する図である。コーティング層32の表面321は、シュー5と摺動する摺動面となる。表面321には、複数の溝322が形成される。この例において、溝322は、孔39の中心Csから表面321に垂直な方向に移動した位置にある視点から見て、孔39と中心を共通にする同心円の形状を有する。複数の溝322において、隣り合う溝322の底部の間隔p2及び溝322の幅w2は、それぞれ間隔p1及び幅w1と同程度である。なお、間隔p2及び幅w2は、間隔p1及び幅w1と異なっていてもよい。   FIG. 6 is a view illustrating the surface shape of the coating layer 32. As shown in FIG. The surface 321 of the coating layer 32 is a sliding surface that slides on the shoe 5. A plurality of grooves 322 are formed on the surface 321. In this example, the groove 322 has the shape of a concentric circle having a center in common with the hole 39 when viewed from a position moved in a direction perpendicular to the surface 321 from the center Cs of the hole 39. In the plurality of grooves 322, the distance p2 between the bottoms of adjacent grooves 322 and the width w2 of the grooves 322 are approximately the same as the distance p1 and the width w1, respectively. The interval p2 and the width w2 may be different from the interval p1 and the width w1.

ここで、本願発明が解決しようとする課題について詳細に説明する。本願の発明者らは、従来、ショットブラストにより行われていた基材31の表面311の粗面化処理を、レーザー加工で代替すべく開発を進めていた。まず、表面311に、孔39の中心と中心を共通とする同心円状の溝を有する基材31を試作した。この基材31の上に樹脂コーティング層を形成した斜板に対して摩耗試験を行ったところ、発明者らは特異な摩耗が発生することを発見した。   Here, problems to be solved by the present invention will be described in detail. The inventors of the present application have been developing to replace the roughening treatment of the surface 311 of the base material 31 conventionally performed by shot blasting with laser processing. First, on the surface 311, a base material 31 having a concentric groove having the same center as the center of the hole 39 was made on a trial basis. When a wear test was performed on a swash plate on which a resin coating layer was formed on the substrate 31, the inventors discovered that a unique wear occurred.

図7は、特異な摩耗を説明する図である。図7(A)が通常の摩耗を、図7(B)が特異な摩耗を、それぞれ示している。通常の摩耗において、使用後の摺動面はほぼ平坦である。これに対し、特異な摩耗において、コーティング層32の表面は、基材31の表面311に形成された溝にならって摩耗する。すなわち、コーティング層32において、溝に相当する部分は他の部分よりも深く摩耗する。このような不均一な摩耗により、使用後の摺動面には、基材31の表面311に形成された溝にならった凹凸(溝)が形成される。   FIG. 7 is a figure explaining a specific wear. FIG. 7A shows normal wear and FIG. 7B shows unique wear. In normal wear, the sliding surface after use is nearly flat. On the other hand, in the specific wear, the surface of the coating layer 32 wears along the grooves formed on the surface 311 of the substrate 31. That is, in the coating layer 32, the portion corresponding to the groove wears deeper than the other portions. Due to such nonuniform wear, asperities (grooves) following the grooves formed on the surface 311 of the base 31 are formed on the sliding surface after use.

予期せぬ不具合を回避するため、このような不均一な摩耗を低減することが望まれる。不均一な摩耗が発生する原因について、本願の発明者らは以下の仮説を立てた。同心円状の溝を有する基材31を用いた例では、コーティング層32において摺動方向の凹凸が少ないため、摺動方向に発生するせん断力に対抗する力が働きにくい。そのため溝に沿った方向すなわち摺動方向への摩耗が進行しやすい。さらに、摩耗は、相手材から受ける力が強い位置において最も進行しやすい。この仮説に基づき、本願の発明者らは、摺動方向に発生するせん断力に対抗する力が働きやすい表面構造を着想した。   It is desirable to reduce such non-uniform wear in order to avoid unexpected failures. The inventors of the present application made the following hypothesis about the cause of the occurrence of uneven wear. In the example using the base material 31 which has a concentric groove, since the unevenness | corrugation of the sliding direction is few in the coating layer 32, the force which opposes the shear force generate | occur | produced in a sliding direction does not act easily. Therefore, the wear in the direction along the groove, ie, the sliding direction tends to progress. Furthermore, wear is most likely to progress at a position where the force received from the mating material is strong. Based on this hypothesis, the inventors of the present application have conceived a surface structure in which a force against the shear force generated in the sliding direction is likely to act.

2.製造方法
図8は、斜板3の製造方法を例示するフローチャートである。ステップS1において、基材31が準備される。基材31の準備には、例えば、表面の研削及び洗浄液を用いた洗浄を含む。ステップS2において、基材31の表面311に溝312が形成される。溝312は、例えばレーザー加工により形成される。ステップS3において、表面311の洗浄が行われる。この洗浄は、例えば、アルコール等の洗浄液を用いずにエアブローにより行われる。ステップS4において、基材31上にコーティング層32の前駆体物質が塗布される。前駆体物質の塗布は、例えば、ロールコート又はパッド印刷による行われる。ステップS5において、コーティング層32が乾燥及び焼成される。ステップS6において、コーティング層32の表面321に溝322が形成される。溝322は、例えば切削加工により形成される。
2. Manufacturing Method FIG. 8 is a flowchart illustrating a method of manufacturing the swash plate 3. In step S1, a base 31 is prepared. Preparation of the substrate 31 includes, for example, grinding of the surface and cleaning with a cleaning solution. In step S 2, grooves 312 are formed on the surface 311 of the base 31. The grooves 312 are formed, for example, by laser processing. In step S3, the surface 311 is cleaned. This cleaning is performed, for example, by air blow without using a cleaning liquid such as alcohol. In step S 4, a precursor substance of the coating layer 32 is applied onto the substrate 31. The application of the precursor material is performed, for example, by roll coating or pad printing. In step S5, the coating layer 32 is dried and fired. In step S6, the groove 322 is formed on the surface 321 of the coating layer 32. The groove 322 is formed, for example, by cutting.

3.実施例
(1)試料の準備
図9は、実施例及び比較例における基材31の表面形状を示す図である。比較例(図9(A))においては、レーザー加工を用いて同心円状の溝312が形成された。レーザー光のパルス照射により形成される凹部の、加工処理の進行方向(この場合、進行方向はほぼ摺動方向に等しい)における間隔は10〜30μmであり、進行方向と垂直な方向における間隔は40〜80μmであった。摺動方向に沿った、加工後の表面粗さは約8μm(RzJIS)であった。実施例(図9(B))においては、レーザー加工を用いて放射状の溝312が形成された。加工後の表面粗さは、約6μm(RzJIS)であった。
3. Example (1) Preparation of Sample FIG. 9 is a view showing the surface shape of the base 31 in Examples and Comparative Examples. In the comparative example (FIG. 9A), concentric grooves 312 were formed using laser processing. The distance between recesses formed by pulse irradiation of laser light in the processing direction (in this case, the direction of travel is approximately equal to the sliding direction) is 10 to 30 μm, and the distance in the direction perpendicular to the direction of travel is 40 It was -80 micrometers. The surface roughness after processing along the sliding direction was about 8 μm (Rz JIS). In the example (FIG. 9 (B)), radial grooves 312 were formed using laser processing. The surface roughness after processing was about 6 μm (Rz JIS).

上記の表面加工がされた基材31の上に、樹脂コーティング層が形成された。バインダー樹脂としてはPAIが用いられ、固体潤滑剤としてMoS2及びグラファイトが用いられた。   A resin coating layer was formed on the surface-treated substrate 31 described above. PAI was used as a binder resin, and MoS2 and graphite were used as solid lubricants.

(2)摩耗試験
以下の条件(いわゆる貧潤滑条件)で摩耗試験を行った。
潤滑方式:オイルミスト噴霧
潤滑量:0.22mg/min
周速:4.2m/s
面圧:3.2MPa
試験時間:20min
雰囲気:大気中
(2) Wear Test A wear test was conducted under the following conditions (so-called poor lubrication conditions).
Lubrication method: Oil mist spray Lubrication amount: 0.22 mg / min
Speed: 4.2 m / s
Surface pressure: 3.2 MPa
Test time: 20 min
Atmosphere: in the atmosphere

(3)試験結果
図10は、摩耗試験後における樹脂コーティング層の表面状態を示す模式図である。図10(A)は実施例の結果を、図10(B)は比較例の結果を、それぞれ示す。比較例においては、摺動方向に垂直な方向において、試料の表面(摺動面)に基材31上の溝312と同等の間隔で、約約2〜3μmの深さの溝が存在した。すなわち、不均一な摩耗が発生した。一方で、実施例においては、試料の表面に溝は存在せずほぼ平坦(0.3μmRa程度)であった。このように、実施例によれば、不均一な摩耗を抑制することができる。
(3) Test Results FIG. 10 is a schematic view showing the surface state of the resin coating layer after the abrasion test. FIG. 10 (A) shows the result of the example, and FIG. 10 (B) shows the result of the comparative example. In the comparative example, grooves having a depth of about 2 to 3 μm were present on the surface (sliding surface) of the sample at intervals equivalent to the grooves 312 on the substrate 31 in the direction perpendicular to the sliding direction. That is, uneven wear occurred. On the other hand, in the example, no groove was present on the surface of the sample and the surface was almost flat (about 0.3 μm Ra). Thus, according to the embodiment, nonuniform wear can be suppressed.

この実施例によれば、基材31において摺動方向と直交する(すなわち非平行な)溝を形成することにより、不均一な摩耗を抑制することが分かった。実施例の試験では摺動面に与えられる面圧は一定であったが、実際のコンプレッサーにおいては斜板3にかかる面圧は一定ではなく周方向の位置に依存して異なっており、面圧が高い領域(例えば領域317及び領域313)において摩耗が起こりやすいと考えられる。したがって、面圧が高い領域において、基材31に形成される溝が摺動方向と非平行(例えば直交)であればよい。例えば、図9(B)のように放射状の溝を形成する例と比較すると、図4の溝312は一方向のみを向いている(全て平行である)。溝316についても同様である。このように基材31の各表面に形成される溝の方向を一方向に揃えることにより、放射状のように他方向の溝を形成する例と比較して製造コストを低減することができる。   According to this embodiment, it has been found that by forming grooves in the base material 31 perpendicular to the sliding direction (that is, non-parallel), nonuniform wear is suppressed. In the tests of the embodiment, the surface pressure applied to the sliding surface was constant, but in an actual compressor, the surface pressure applied to the swash plate 3 is not constant but differs depending on the circumferential position, and the surface pressure It is believed that wear is likely to occur in areas where there is a high (eg, area 317 and area 313). Therefore, in the region where the surface pressure is high, the groove formed in the base material 31 may be nonparallel (for example, perpendicular) to the sliding direction. For example, compared with the example which forms a radial groove like FIG. 9 (B), the groove | channel 312 of FIG. 4 is facing only one direction (all parallel). The same applies to the groove 316. By aligning the direction of the grooves formed on each surface of the substrate 31 in one direction in this manner, the manufacturing cost can be reduced as compared with an example in which the grooves in the other direction are formed radially.

実施例に係る斜板は、樹脂コーティング層の不均一な摩耗を抑制できる。   The swash plate according to the embodiment can suppress uneven wear of the resin coating layer.

4.変形例
本発明は上述の実施形態に限定されるものではなく、種々の変形実施が可能である。以下、変形例をいくつか説明する。以下の変形例のうち2つ以上のものが組み合わせて用いられてもよい。
4. Modifications The present invention is not limited to the embodiments described above, and various modifications are possible. Hereinafter, some modified examples will be described. Two or more of the following modifications may be used in combination.

溝322の形状は実施形態において例示したものに限定されない。例えば、溝322は、同心円、渦巻き、又は格子など他の形状を有してもよい。   The shape of the groove 322 is not limited to the one exemplified in the embodiment. For example, the grooves 322 may have other shapes, such as concentric circles, spirals, or lattices.

基材31は単一の材料で形成されたものに限定されない。例えば、鋼製の裏金の上に銅合金のライニング層が形成された2層構造のもの、さらには3層以上の構造のものが用いられてもよい。   The substrate 31 is not limited to one formed of a single material. For example, a two-layer structure in which a copper alloy lining layer is formed on a steel back metal, or a three or more-layer structure may be used.

1…コンプレッサー、2…シャフト、3…斜板、4…ピストン、5…シュー、31…基材、32…コーティング層、33…コーティング層、39…孔、311…表面、312…溝、321…表面、322…溝 DESCRIPTION OF SYMBOLS 1 ... compressor, 2 ... shaft, 3 ... swash plate, 4 ... piston, 5 ... shoe, 31 ... base material, 32 ... coating layer, 33 ... coating layer, 39 ... hole, 311 ... surface, 312 ... groove, 321 ... 321 Surface, 322 ... groove

Claims (5)

圧縮室側の第1相手材と対向する第1表面及び反圧縮室側の第2相手材と対向する第2表面を含む環形状を有する基材と、
前記第1表面に形成され、前記第1相手材によりかかる面圧が最大となる領域における摺動方向と非平行な方向に延びる複数の第1溝と、
前記第1表面に形成され、前記第1相手材との摺動面を形成する第1樹脂コーティング層と
を有する斜板。
A base material having an annular shape including a first surface facing the first mating member on the compression chamber side and a second surface facing the second mating member on the non-compression chamber side,
A plurality of first grooves formed on the first surface and extending in a direction not parallel to the sliding direction in a region where the surface pressure exerted by the first mating member is maximum;
A swash plate having a first resin coating layer formed on the first surface and forming a sliding surface with the first mating member.
前記第2表面に形成され、前記第2相手材によりかかる面圧が最大となる領域における摺動方向と非平行な方向に延びる複数の第2溝と、
前記第2表面に形成され、前記第2相手材との摺動面を形成する第2樹脂コーティング層と
を有する請求項1に記載の斜板。
A plurality of second grooves formed on the second surface and extending in a direction not parallel to the sliding direction in a region where the surface pressure exerted by the second mating member is maximum;
The second resin coating layer formed on the second surface and forming a sliding surface with the second mating member.
前記第1溝が延びる方向と前記第2溝が延びる方向とが異なっている
請求項2に記載の斜板。
The swash plate according to claim 2, wherein a direction in which the first groove extends and a direction in which the second groove extends are different.
前記複数の第1溝は、前記第1相手材によりかかる面圧が最大となる領域における摺動方向と直交する方向に延びる
請求項1乃至3のいずれか一項に記載の斜板。
The swash plate according to any one of claims 1 to 3, wherein the plurality of first grooves extend in a direction orthogonal to a sliding direction in a region where the surface pressure applied by the first mating member is maximum.
前記複数の第2溝は、前記第2相手材によりかかる面圧が最大となる領域における摺動方向と直交する方向に延びる
請求項2乃至4のいずれか一項に記載の斜板。
The swash plate according to any one of claims 2 to 4, wherein the plurality of second grooves extend in a direction orthogonal to a sliding direction in a region where the surface pressure applied by the second mating member is maximum.
JP2017210288A 2017-10-31 2017-10-31 Swash plate Pending JP2019082147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017210288A JP2019082147A (en) 2017-10-31 2017-10-31 Swash plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017210288A JP2019082147A (en) 2017-10-31 2017-10-31 Swash plate

Publications (1)

Publication Number Publication Date
JP2019082147A true JP2019082147A (en) 2019-05-30

Family

ID=66669462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017210288A Pending JP2019082147A (en) 2017-10-31 2017-10-31 Swash plate

Country Status (1)

Country Link
JP (1) JP2019082147A (en)

Similar Documents

Publication Publication Date Title
JP5903391B2 (en) Manufacturing method of sliding member
US9551419B2 (en) Coated sliding element
JP2006307724A (en) Sliding device
WO2014168088A1 (en) Hemispherical shoe for swash plate compressor, and swash plate compressor
JP6177852B2 (en) Swash plate for compressor and compressor having the same
WO2019088163A1 (en) Swash plate
JP2019082147A (en) Swash plate
JP2019082149A (en) Swash plate
JP2007327632A (en) Rolling sliding member and rolling device
JP2019082216A (en) Sliding member
JP2017141709A (en) Swash plate for compressor, and swash plate type compressor
JP6706184B2 (en) Swash plate for compressor
JP6928454B2 (en) Manufacturing method of sliding member, sliding member, swash plate for compressor using sliding member
JP6313683B2 (en) Swash plate compressor hemispherical shoe and swash plate compressor
JP6654056B2 (en) Swash plate and swash plate compressor for compressor
JP6571960B2 (en) Swash plate compressor hemispherical shoe and swash plate compressor
JP6466754B2 (en) Swash plate compressor hemispherical shoe and swash plate compressor
WO2007091564A1 (en) Swash plate for swash plate-type compressor and swash plate-type compressor
WO2020202687A1 (en) Swash-plate for compressor
JP6313681B2 (en) Swash plate compressor hemispherical shoe and swash plate compressor
JP2008133814A (en) Swash plate of swash plate-type compressor, and swash plate-type compressor
JP6379381B2 (en) Swash plate compressor
JP2007231941A (en) Swash plate of swash plate compressor, and swash plate compressor
JP4784829B2 (en) Sliding member manufacturing method and sliding member
JP2005133593A (en) Swash plate of swash plate type compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210810