JP2019075238A - Method of analyzing electrode material, method of managing quality of electrode material, and method of analyzing deterioration in electrode material - Google Patents

Method of analyzing electrode material, method of managing quality of electrode material, and method of analyzing deterioration in electrode material Download PDF

Info

Publication number
JP2019075238A
JP2019075238A JP2017199508A JP2017199508A JP2019075238A JP 2019075238 A JP2019075238 A JP 2019075238A JP 2017199508 A JP2017199508 A JP 2017199508A JP 2017199508 A JP2017199508 A JP 2017199508A JP 2019075238 A JP2019075238 A JP 2019075238A
Authority
JP
Japan
Prior art keywords
electrode material
curve
temperature
secondary battery
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017199508A
Other languages
Japanese (ja)
Other versions
JP6860465B2 (en
Inventor
都世 矢野
Toyo Yano
都世 矢野
東 隆行
Takayuki Azuma
隆行 東
正明 久
Masaaki Hisa
正明 久
木下 肇
Hajime Kinoshita
肇 木下
祐則 藤井
Masanori Fujii
祐則 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2017199508A priority Critical patent/JP6860465B2/en
Publication of JP2019075238A publication Critical patent/JP2019075238A/en
Application granted granted Critical
Publication of JP6860465B2 publication Critical patent/JP6860465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

To provide a method of separately quantifying the abundance of a carbon material, an organic material and an inorganic material which are components constituting an electrode material for a secondary battery and a capacitor, and also to provide a quality management method and deterioration analysis method of an electrode material for a secondary battery and a capacitor.SOLUTION: A method includes: raising the temperature of an electrode material for a secondary battery and a capacitor while controlling the temperature such that a temperature raising rate continuously changes in accordance with a weight change rate in the presence of water vapor; and separately quantifying a carbon material, an organic material and an inorganic material which are components constituting the electrode material.SELECTED DRAWING: Figure 2

Description

本発明は、二次電池およびキャパシタ用電極材料の分析方法に関する。さらに詳しくは、二次電池およびキャパシタ用電極材料に含まれる活物質、導電助剤及びバインダー等の構成成分である炭素材料、有機材料および無機材料をそれぞれ分離定量する方法、二次電池およびキャパシタ用電極材料の分析方法を用いた二次電池およびキャパシタ用電極材料の品質管理方法および劣化解析方法に関する。   The present invention relates to a method of analyzing a secondary battery and an electrode material for a capacitor. More specifically, a method of separating and quantifying each of a carbon material, an organic material and an inorganic material, which are constituent components of a secondary battery and an electrode material for a capacitor, such as an active material, a conductive additive and a binder, for secondary batteries and capacitors The present invention relates to a quality control method and a deterioration analysis method of an electrode material for a secondary battery and a capacitor using an analysis method of an electrode material.

近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化、薄型化、軽量化の観点から、電子機器の電源用の電池や、電子機器のバックアップ用電池として、高エネルギー密度で充電でき、高効率で放電できる二次電池やキャパシタの開発が強く要望されている。   In recent years, with the remarkable development of portable electronic devices, communication devices, etc., as a battery for the power supply of electronic devices and a backup battery of electronic devices from the viewpoint of economy and downsizing, thinning, and weight reduction of devices. There is a strong demand for the development of secondary batteries and capacitors that can be charged with high energy density and discharged with high efficiency.

二次電池は、正極および負極、セパレータと共に電解液から構成される。正極および負極は、電極活物質が配合されて構成され、通常はさらに、導電助剤及びバインダーが配合されて構成される。
なかでも電極活物質は二次電池の容量に関わる重要な因子であり、例えばリチウムイオン二次電池の場合、正極活物質としては、LiCoO2、LiMn24などに代表されるリチウム含有遷移金属酸化物を用い、負極活物質として黒鉛に代表される炭素材料およびリチウム含有珪素複合体を用いている。
The secondary battery is composed of an electrolytic solution together with a positive electrode, a negative electrode, and a separator. The positive electrode and the negative electrode are constituted by blending an electrode active material, and usually are further constituted by blending a conductive auxiliary and a binder.
Among them, the electrode active material is an important factor related to the capacity of the secondary battery. For example, in the case of a lithium ion secondary battery, a lithium-containing transition metal represented by LiCoO 2 , LiMn 2 O 4 or the like as a positive electrode active material Using an oxide, a carbon material typified by graphite and a lithium-containing silicon composite are used as a negative electrode active material.

キャパシタは、一対の電極、セパレータと、それぞれの電極の集電材から構成される。キャパシタの電極には、活性炭やカーボンブラック等の炭素材料が用いられ、キャパシタの性能は電極に使用される炭素材料と大きな相関がある。   The capacitor is composed of a pair of electrodes, a separator, and a current collector of each electrode. Carbon materials such as activated carbon and carbon black are used for the electrodes of the capacitors, and the performance of the capacitors has a large correlation with the carbon materials used for the electrodes.

特許文献1には、天然黒鉛の表面の少なくとも一部に、等方性ピッチの熱処理物を付着させた黒鉛材料を用いて構成されたリチウムイオン二次電池用負極材が開示されており、リチウムイオン二次電池用負極材のラマン分光法による黒鉛材料の定性的な評価について記載されている。また、特許文献2には、X線回折法および示差熱分析により規定されたリチウムイオン二次電池用負極材について開示されている。
しかしながら、これらの特許文献には、リチウムイオン二次電池用負極材の各成分の存在量は、調製時の配合量によってのみ決定されており、最終形態である集電材に塗布した負極材としての成分の存在量の分析および評価は全くなされていない。
Patent Document 1 discloses a negative electrode material for a lithium ion secondary battery constituted by using a graphite material in which a heat-treated product of isotropic pitch is attached to at least a part of the surface of natural graphite. It describes about the qualitative evaluation of the graphite material by the Raman spectroscopy of the negative electrode material for ion secondary batteries. Patent Document 2 discloses a negative electrode material for a lithium ion secondary battery defined by X-ray diffraction and differential thermal analysis.
However, in these patent documents, the amount of each component of the negative electrode material for lithium ion secondary batteries is determined only by the compounding amount at the time of preparation, and it is used as the negative electrode material applied to the current collector in the final form. Analysis and evaluation of the abundance of the components has not been made at all.

特許文献3には、負極活物質としてリチウム含有珪素複合体からなるリチウムイオン二次電池用負極材が開示されており、電極材料のX線回折法による分析が記載されているが、リチウム含有珪素複合体を被覆した炭素量や負極材としての各成分の存在量の分析および評価は全くなされていない。   Patent Document 3 discloses a negative electrode material for a lithium ion secondary battery comprising a lithium-containing silicon composite as a negative electrode active material, and an analysis of the electrode material by an X-ray diffraction method is disclosed. Analysis and evaluation of the amount of carbon coated with the composite and the amount of each component as a negative electrode material have not been made at all.

特許文献4には、ラマン分光法によりグラファイト構造およびダイアモンド構造を定性的に分析したキャパシタ用炭素材料について開示されている。また特許文献5には、X線回折法によりグラファイト構造およびダイアモンド構造を定性的に分析したキャパシタ用炭素材料について開示されている。
しかしながらこれら特許文献には、キャパシタ用電極材料を構成する各成分の存在量は、調製時の配合量によってのみ決定されており、最終形態である集電材に塗布した電極材としての各成分の存在量の分析および評価は全くなされていない。
Patent Document 4 discloses a carbon material for a capacitor in which a graphite structure and a diamond structure are qualitatively analyzed by Raman spectroscopy. Further, Patent Document 5 discloses a carbon material for a capacitor in which a graphite structure and a diamond structure are qualitatively analyzed by an X-ray diffraction method.
However, in these patent documents, the amount of each component constituting the electrode material for capacitor is determined only by the compounding amount at the time of preparation, and the presence of each component as an electrode material applied to the current collecting material as a final form No analysis and evaluation of the quantity has been made.

特許文献6には、示差走査熱量測定を行うことにより、電極活物質の活性化エネルギーを測定し、電池の劣化原因が電極活物質に由来するか否かを判断する電池の劣化分析方法について開示されている。また特許文献7には、X線回折法による分析により二次電池正極材の劣化要因に関する記載がある。
しかしながら、示差走査熱量測定では電極活物質の定量的な評価はできるが、電極材料を構成する各成分の存在量の変化を分析するものではない。またX線回折法による分析では電極活物質の結晶構造の変化を見ることができるが、電極材の構成成分がどの程度劣化しているのかを定量的に分析することができない。
Patent Document 6 discloses a method for analyzing battery deterioration by measuring activation energy of an electrode active material by performing differential scanning calorimetry and determining whether the cause of battery deterioration is derived from the electrode active material. It is done. In addition, Patent Document 7 describes the deterioration factor of the secondary battery positive electrode material by analysis by the X-ray diffraction method.
However, although differential scanning calorimetry can quantitatively evaluate the electrode active material, it does not analyze changes in the amount of each component constituting the electrode material. In addition, although the change in the crystal structure of the electrode active material can be observed in the analysis by the X-ray diffraction method, it can not be quantitatively analyzed how much the components of the electrode material are degraded.

特開2016−81816号公報JP, 2016-81816, A 特開2016−131150号公報JP, 2016-131150, A 特開2017−63056号公報JP, 2017-63056, A 特開2017−147338号公報JP, 2017-147338, A 特開2016−76673号公報JP, 2016-76673, A 特開2015−53249号公報JP, 2015-53249, A 特開2007−134049号公報Japanese Patent Application Publication No. 2007-134049

本発明の目的は、二次電池およびキャパシタ用電極材料に含まれる成分である炭素材料、有機材料および無機材料をそれぞれ分離定量する方法を提供することにある。
さらに本発明の目的は、二次電池およびキャパシタ用電極材料に含まれる構成成分の分離定量方法を用いて、前記電極材料の品質を管理する二次電池およびキャパシタ用電極材料の品質管理方法および劣化解析方法を提供することにある。
An object of the present invention is to provide a method for separating and quantifying each of a carbon material, an organic material and an inorganic material which are components contained in a secondary battery and a capacitor electrode material.
Furthermore, it is an object of the present invention to provide a method of controlling the quality of a secondary battery and an electrode material for a capacitor, and a method for controlling the quality of the electrode material using the method of separating and quantifying components contained in the secondary battery and the electrode material for a capacitor. It is to provide an analysis method.

上記課題を解決するべく本発明者らが鋭意検討した結果、二次電池およびキャパシタ用電極材料を水蒸気の存在下で重量変化速度に応じてその昇温速度が連続的に変化するように制御して昇温し、前記電極材に含まれる構成成分である炭素材料、有機材料および無機材料を分離することにより、前記炭素材料、有機材料および無機材料を定量できることを見出した。   As a result of intensive studies by the present inventors to solve the above problems, the electrode materials for the secondary battery and the capacitor are controlled so that the temperature rising rate changes continuously according to the weight change rate in the presence of water vapor. It has been found that the carbon material, the organic material and the inorganic material can be quantified by separating the carbon material, the organic material and the inorganic material which are constituent components contained in the electrode material by raising the temperature.

すなわち、本発明は、以下の構成からなることを特徴とする。
〔1〕二次電池およびキャパシタ用電極材料の分析方法であって、水蒸気の存在下で前記電極材料を加熱ガス化し、電極材料の重量変化速度に応じて電極材料の昇温速度が連続的に変化するように電極材料の温度を制御して熱重量変化曲線(TG曲線)を求め、この曲線に基づいて、電極材料に含まれる活物質、導電助剤及びバインダーの構成成分である炭素材料、有機材料および無機材料をそれぞれ分離定量することを特徴とする二次電池およびキャパシタ用電極材料の分析方法。
〔2〕前記電極材料の重量変化速度に応じて電極材料の昇温速度を連続的に変化させ電極材料の温度を制御して熱重量変化曲線(TG曲線)を求める方法は、
(A)あらかじめ任意の定速昇温条件を決めて定速昇温して定速昇温熱重量分析によりTG曲線を測定し、TG曲線より決定される又はTG曲線の微分曲線(DTG曲線)より推定される炭素材料もしくは有機材料のガス化開始温度におけるDTG値(重量変化速度)の絶対値より小さい値を制御目標値に設定する工程と、
(B)工程(A)の定速昇温条件と同一又はその前後の条件でもって定速昇温して定速昇温熱重量分析し、電極材料の重量変化速度が前記重量変化速度の制御目標値よりもゆるやかなときには、昇温速度は前記定速昇温条件と同一、電極材料の重量変化速度が前記重量変化速度の制御目標値よりも急激なときには、昇温を停止もしくは昇温速度をゆるやかに制御して熱重量変化曲線(TG曲線)を求める工程
を含むことを特徴とする〔1〕に記載の二次電池およびキャパシタ用電極材料の分析方法
〔3〕前記TG曲線に基づいて、前記電極材料に含まれる炭素材料、有機材料および無機材料を分離定量する方法は、
得られたTG曲線を用いて、各成分のガス化開始温度を決定し、各成分のガス化開始温度で区分される温度範囲における各成分の存在量を決定することを特徴とする〔1〕又は〔2〕に記載の二次電池およびキャパシタ用電極材料の分析方法
〔4〕〔1〕〜〔3〕のいずれかに記載の二次電池およびキャパシタ用電極材料の分析方法を用いて、二次電池およびキャパシタ用電極材料の品質を管理する二次電池およびキャパシタ用電極材料の品質管理方法
〔5〕〔1〕〜〔3〕のいずれかに記載の二次電池およびキャパシタ用電極材料の分析方法を用いて、二次電池およびキャパシタ用電極材料の劣化状態を解析する二次電池およびキャパシタ用電極材料の劣化解析方法
That is, the present invention is characterized by the following constitution.
[1] A method of analyzing an electrode material for a secondary battery and a capacitor, wherein the electrode material is heated and gasified in the presence of water vapor, and the temperature rising rate of the electrode material is continuously adjusted according to the weight change rate of the electrode material The temperature of the electrode material is controlled to change and a thermogravimetric change curve (TG curve) is determined, and based on this curve, a carbon material which is a component of an active material, a conductive additive and a binder contained in the electrode material An analysis method of an electrode material for a secondary battery and a capacitor, characterized by separating and quantifying each of an organic material and an inorganic material.
[2] A method of continuously changing the temperature rising rate of the electrode material according to the weight change rate of the electrode material and controlling the temperature of the electrode material to obtain a thermogravimetric change curve (TG curve),
(A) Arbitrary constant temperature rising conditions are determined beforehand, constant temperature rising, TG curve is measured by constant temperature rising thermogravimetric analysis, determined from TG curve or from differential curve (DTG curve) of TG curve Setting a control target value to a value smaller than the absolute value of the DTG value (weight change rate) at the gasification start temperature of the estimated carbon material or organic material;
(B) Constant temperature rising temperature is carried out under the same conditions as or before and after constant temperature rising conditions of step (A), constant temperature rising thermogravimetric analysis, weight change rate of electrode material is control target of said weight change rate If the temperature rise rate is the same as the constant rate temperature rise condition and the weight change rate of the electrode material is more rapid than the control target value of the weight change rate, the temperature rise is stopped or the temperature rise rate is The method of analyzing the electrode material for the secondary battery and the capacitor according to [1], comprising the step of obtaining the thermogravimetric change curve (TG curve) in a controlled manner slowly [3] based on the TG curve, A method of separating and quantifying a carbon material, an organic material and an inorganic material contained in the electrode material is
The gasification start temperature of each component is determined using the obtained TG curve, and the abundance of each component in the temperature range divided by the gasification start temperature of each component is determined [1] Or [2] using the analysis method of the secondary battery and capacitor electrode material according to any one of [4] [1] to [3]. Analysis of secondary battery and capacitor electrode material according to any one of secondary battery and capacitor electrode material quality control method [5] [1] to [3] controlling quality of secondary battery and capacitor electrode material Method of analyzing deterioration of secondary battery and electrode material for capacitor using the method for analyzing deterioration condition of electrode material for secondary battery and capacitor

本発明の二次電池およびキャパシタ用電極材料の分析方法によれば、前記電極材料の構成成分である炭素材料、有機材料および無機材料の存在量を求めることができる。   According to the analysis method of the secondary battery and the electrode material for a capacitor of the present invention, the abundance of the carbon material, the organic material and the inorganic material which are the constituent components of the electrode material can be determined.

本発明の二次電池およびキャパシタ用電極材料の品質管理方法によれば、電極材料の製造工程の品質管理手法として用いることができる。例えば、ある特定の成分が特定の存在量範囲内であった場合、好適な電極材料であると判定することができる。   According to the quality control method of the secondary battery and the electrode material for a capacitor of the present invention, it can be used as a quality control method of the manufacturing process of the electrode material. For example, when a specific component is within a specific amount range, it can be determined to be a suitable electrode material.

さらに本発明の二次電池およびキャパシタ用電極材料の劣化解析方法によれば、劣化後の二次電池およびキャパシタの電極材料を構成する各成分の存在量を分析することにより、二次電池およびキャパシタの劣化要因が、電極材料を構成するどの成分に起因するか解析することができる。   Furthermore, according to the degradation analysis method of the secondary battery and the electrode material for a capacitor of the present invention, the secondary battery and the capacitor are analyzed by analyzing the abundance of each component constituting the electrode material of the secondary battery and the capacitor after degradation. It is possible to analyze which component of the electrode material is caused by the deterioration factor of

定速昇温熱重量分析結果Constant temperature rising temperature thermogravimetric analysis results 重量変化速度を制御した手法により測定した熱重量分析結果Thermogravimetric analysis results measured by a method with controlled weight change rate 二次電池負極材の水蒸気ガス化前の電子顕微鏡写真Electron micrograph of secondary battery anode material before steam gasification 水蒸気ガス化450℃時点における二次電池負極材の電子顕微鏡写真Electron micrograph of secondary battery negative electrode material at 450 ° C of water vapor gasification 水蒸気ガス化1000℃時点における二次電池負極材の電子顕微鏡写真Electron micrograph of secondary battery negative electrode material at water vapor gasification at 1000 ° C

本発明の二次電池およびキャパシタ用電極材料の分析方法は、前記電極材料を水蒸気の存在下で重量変化速度に応じてその昇温速度が連続的に変化するように制御して昇温し、電極材料を構成する成分である炭素材料、有機材料および無機材料を分離定量することにより、二次電池およびキャパシタ用電極材料を構成する成分である炭素材料、有機材料および無機材料の存在量を分析する方法である。   In the method of analyzing an electrode material for a secondary battery and a capacitor according to the present invention, the temperature of the electrode material is controlled so that the temperature rising rate changes continuously according to the weight change rate in the presence of water vapor, By separating and quantifying the carbon material, organic material and inorganic material that are the components that make up the electrode material, we analyze the amount of carbon material, organic material and the inorganic material that are the components that make up the electrode material for secondary batteries and capacitors. How to

二次電池およびキャパシタ用電極材料には、炭素材料、有機材料および無機材料と多種多様な材料が使用されており、各材料の物性や組み合わせは、デバイスの特性および信頼性に大きく反映されるため、各材料の正確な評価が求められている。例えば、二次電池の電池容量は活物質の存在量の影響を直接反映するため、電極材料に含まれる活物質の存在量および導電助剤やバインダー等の材料の存在量を正確に測定することが重要である。   Carbon materials, organic materials, inorganic materials and a wide variety of materials are used for electrode materials for secondary batteries and capacitors, and the physical properties and combination of each material are greatly reflected in the characteristics and reliability of the device. , Accurate evaluation of each material is required. For example, since the battery capacity of the secondary battery directly reflects the influence of the amount of the active material, accurately measure the amount of the active material contained in the electrode material and the amount of the material such as the conductive additive and the binder. is important.

本発明における電極材料は、電気化学反応を行う電極を構成する電極材料を含み、具体的には、二次電池の正極材、負極材およびキャパシタの電極材等を挙げることができる。   The electrode material in the present invention includes an electrode material that constitutes an electrode that performs an electrochemical reaction, and specific examples thereof include a positive electrode material of a secondary battery, a negative electrode material, and an electrode material of a capacitor.

二次電池用正極材および負極材は、一般的に正極活物質もしくは負極活物質に導電助剤及びバインダー等が配合されて構成されている。キャパシタ用電極材は、活性炭やカーボンブラック等の炭素材料に導電助剤及びバインダー等が配合されて構成されている。   Generally, a positive electrode material and a negative electrode material for a secondary battery are constituted by blending a conductive support agent, a binder and the like into a positive electrode active material or a negative electrode active material. The capacitor electrode material is configured by blending a conductive auxiliary agent, a binder, and the like with a carbon material such as activated carbon and carbon black.

正極活物質には、LiCoO、LiNiO、LiMn等のリチウム含有遷移金属酸化物、LiFePOなどのオリビン化合物、Vなどの遷移金属酸化物に代表される無機材料が使用される場合が多いが、イオウ化合物、導電性高分子など有機材料を用いる場合もある。
負極活物質には、高結晶性カーボンである黒鉛材料(天然黒鉛、人造黒鉛等)や低結晶性カーボン(ソフトカーボン、ハードカーボン)に代表される炭素材料、および珪素及び錫等のリチウムと合金可能な元素、およびこれら元素を含む化合物、リチウム含有チタン酸化物に代表される無機材料が使用されている場合が多いが、導電性高分子など有機材料が用いられる場合もある。
As the positive electrode active material, a lithium-containing transition metal oxide such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4, an olivine compound such as LiFePO 4, or an inorganic material represented by a transition metal oxide such as V 2 O 5 is used In many cases, organic materials such as sulfur compounds and conductive polymers may be used.
Negative electrode active materials include carbon materials typified by graphite materials (natural graphite, artificial graphite and the like) which are high crystalline carbon and low crystalline carbon (soft carbon, hard carbon), and alloys with lithium such as silicon and tin In many cases, possible elements, compounds containing these elements, and inorganic materials represented by lithium-containing titanium oxides are used in many cases, but organic materials such as conductive polymers may be used.

導電助剤には、一般にアセチレンブラック(AB)やケッチェンブラック(CB)等のカーボンブラック、黒鉛粉及び炭素繊維などの炭素材料が使用されており、これらは単独で使用されることも、複数種を混合して使用されることもある。あるいは、導電助剤には、導電性を有する材料である、金属等が使用されることも、導電性高分子等が使用されることもある。
バインダー(結着材)には、SBR(スチレンブタジエン系ゴム)、エチレンプロピレンジエン等のゴム系樹脂やポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂が使用されている。さらに、増粘剤としてCMC(カルボキシメチルセルロース)等を添加する場合もある。
In general, carbon materials such as acetylene black (AB), ketjen black (CB) and the like, and carbon materials such as graphite powder and carbon fiber are used as the conductive aid, and these may be used alone or in combination. It may be used by mixing species. Alternatively, a metal or the like, which is a material having conductivity, or a conductive polymer or the like may be used as the conductive aid.
As a binder (binder), rubber resins such as SBR (styrene butadiene rubber), ethylene propylene diene, and fluorine resins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE) are used. . Furthermore, CMC (carboxymethyl cellulose) etc. may be added as a thickener.

本発明で分析対象とする電極材料に含まれる電極活物質は、前記炭素材料、有機材料および無機材料のいずれであってもよく、またこれらの混合物であってももよい。
さらに本発明で分析対象とする電極材に含まれる導電助剤は、前記炭素材料、有機材料および無機材料(金属)のいずれであってもよく、さらにはこれらの混合物でもよい。
また、本発明で分析対象とする電極材料に含まれるバインダーは、前記ゴム系樹脂もしくはフッ素系樹脂のいずれであってもよく、さらにはこれらの混合物や前記増粘剤が混合されていてもよい。
The electrode active material contained in the electrode material to be analyzed in the present invention may be any of the above-mentioned carbon material, organic material and inorganic material, or may be a mixture thereof.
Furthermore, the conductive support agent contained in the electrode material to be analyzed in the present invention may be any of the above-mentioned carbon material, organic material and inorganic material (metal), and may be a mixture thereof.
Further, the binder contained in the electrode material to be analyzed in the present invention may be any of the rubber-based resin or the fluorine-based resin, and further, a mixture thereof or the thickener may be mixed. .

本発明の二次電池およびキャパシタ用電極材料に含まれる各成分を分離定量するためには、水蒸気の存在下で電極材料を加熱ガス化し、電極材料の重量変化速度に応じて電極材料の昇温速度が連続的に変化するように電極材料の温度を制御して電極材料の加熱昇温時のガス化反応による重量変化量を計測することにより熱重量変化曲線(TG曲線)を求め、この曲線を解析することから求めることができる。   In order to separate and quantify each component contained in the secondary battery and the electrode material for a capacitor of the present invention, the electrode material is heated and gasified in the presence of water vapor, and the temperature rise of the electrode material according to the weight change rate of the electrode material The thermogravimetric change curve (TG curve) is determined by controlling the temperature of the electrode material so that the velocity changes continuously and measuring the weight change amount due to the gasification reaction at the time of heating temperature rise of the electrode material. Can be obtained from analyzing the

電極材料のガス化は、温度制御可能な電気炉中に電極材料を入れた開放型の反応容器を設置し、水蒸気を流通させた雰囲気下で、炉内温度を昇温させることにより電極材料を加熱してガス化させる。
水蒸気を電気炉中に流通させることにより、水蒸気を連続供給でき、且つ、炭素からガス化したガスや発生するタール成分等を連続除去することが可能となり、再現性の高いガス化量の測定が実現できる。
For gasification of the electrode material, an open-type reaction vessel containing the electrode material in a temperature-controllable electric furnace is installed, and the electrode material is heated by raising the temperature in the furnace under an atmosphere in which water vapor is circulated. Heat to gasify.
By circulating steam in the electric furnace, steam can be continuously supplied, and it is possible to continuously remove gas gasified from carbon, generated tar components, etc., and measurement of the amount of gasification with high reproducibility is possible. realizable.

熱分析装置に導入する電極材料の形状は、測定容器に導入できれば特に限定されないが、均一な状態であることが好ましい。また、装置に導入する電極材料の形状、重量、寸法もしくは体積は装置内の天秤および/または試料容器に導入できれば特に限定されない。   The shape of the electrode material introduced into the thermal analysis device is not particularly limited as long as it can be introduced into the measurement container, but is preferably in a uniform state. Also, the shape, weight, size or volume of the electrode material introduced into the device is not particularly limited as long as it can be introduced into the balance and / or the sample container in the device.

TG曲線は、水蒸気の存在下で電極材料を加熱ガス化し、電極材料の減量速度に応じて電極材料の昇温速度が連続的に変化するように電極材料の昇温速度を制御することによって測定する。   The TG curve is measured by heating and gasifying the electrode material in the presence of water vapor and controlling the temperature rising rate of the electrode material so that the temperature rising rate of the electrode material changes continuously according to the weight loss rate of the electrode material Do.

電極材料の重量変化速度に応じて電極材料の昇温速度を連続的に変化するように電極材料の温度を制御する方法は、昇温方法を段階的もしくは連続的に変化させることができる。
段階的に変化させる方法としては、例えば、測定の初期は早い昇温速度で加熱し、重量変化が観測される評価温度付近では昇温速度を5〜20℃/minの間で段階的に制御する方法を挙げることができる。
In the method of controlling the temperature of the electrode material so as to continuously change the temperature rising rate of the electrode material according to the weight change rate of the electrode material, the temperature rising method can be changed stepwise or continuously.
As a method of changing stepwise, for example, heating is performed at an early temperature rising rate at the initial stage of measurement, and temperature rising rate is controlled stepwise between 5 to 20 ° C./min around evaluation temperature where weight change is observed Can be mentioned.

ここで、昇温速度が遅すぎると、分析に時間がかかり迅速な分析法にはならない。一方、昇温速度が速すぎると、目的の炭素材料もしくは有機材料のガス化反応が完了するより前に、他方の炭素材料もしくは有機材料のガス化反応が開始するため、炭素材料および有機材料の分離が困難となる。
上記の理由より、昇温速度は5〜20℃/minであることが好ましい。
Here, if the heating rate is too slow, analysis takes time and it can not be a rapid analysis method. On the other hand, if the heating rate is too fast, the gasification reaction of the other carbon material or organic material starts before the gasification reaction of the target carbon material or organic material is completed. It becomes difficult to separate.
From the above reasons, the temperature rising rate is preferably 5 to 20 ° C./min.

電極材料の加熱ガス化に用いる水蒸気は、不活性ガスと混合して用いることが好ましい。水蒸気分圧は特に限定されないが、0.1〜60kPaが好ましい。
水蒸気分圧が高くなると、ガス流路および熱重量同時測定装置内にて結露することがある。装置内にて結露が生じるとガス化量の測定が困難になる。
さらに、水蒸気分圧が小さすぎるとガス化反応速度が遅くなり、また一定の測定時間におけるガス化量が小さくなり測定が困難となるため、可能な範囲で高いことが望ましい。
The water vapor used for heating and gasifying the electrode material is preferably mixed with an inert gas. The water vapor partial pressure is not particularly limited, but is preferably 0.1 to 60 kPa.
When the water vapor partial pressure becomes high, condensation may occur in the gas flow path and the thermogravimetry simultaneous measurement apparatus. If dew condensation occurs in the apparatus, measurement of the gasification amount becomes difficult.
Furthermore, if the water vapor partial pressure is too small, the gasification reaction rate will be slow, and the amount of gasification in a certain measurement time will be small, making measurement difficult, so it is desirable to be as high as possible.

上記の理由より、水蒸気分圧は分析する全温度域および装置内において結露しない水蒸気分圧で、且つ高い水蒸気分圧であることが好ましく、1〜60kPaがより好ましく、5〜50kPaの水蒸気分圧がさらに好ましい。   From the above reasons, the steam partial pressure is preferably a steam partial pressure that does not cause condensation in the entire temperature range to be analyzed and in the apparatus, and is preferably a high steam partial pressure, more preferably 1 to 60 kPa, and a steam partial pressure of 5 to 50 kPa. Is more preferred.

不活性ガスへの水蒸気の混合は、いかなる手法により実施してもよい。例えば、一定温度の水に不活性ガスをバブリングさせ、その温度における飽和蒸気圧分の水蒸気を付与する方法、またはシリンジポンプ等を用いて定量的に水をガス流に添加し、加熱により気化する方法などが利用できる。   The mixing of the water vapor into the inert gas may be carried out in any manner. For example, a method of bubbling an inert gas in water at a constant temperature and applying water vapor at a saturated vapor pressure at that temperature, or quantitatively adding water to a gas stream using a syringe pump etc. Methods etc. can be used.

電極材料に含まれる各成分のうち、水蒸気によりガス化除去される成分は、炭素材料および有機材料である。電極材料に含まれる各成分の存在量を求めるためには、電極材料に含まれる炭素材料および有機材料のガス化開始温度および存在量を求める必要がある。   Among the components contained in the electrode material, the components to be gasified and removed by water vapor are carbon materials and organic materials. In order to determine the abundance of each component included in the electrode material, it is necessary to determine the gasification start temperature and the abundance of the carbon material and the organic material included in the electrode material.

より好ましい、電極材料の重量変化速度に応じて電極材料の昇温速度を連続的に変化するように電極材料の温度を制御する方法は、以下のような方法を例示することができる。   The following method can be illustrated as a method of controlling the temperature of an electrode material so that the temperature rising rate of an electrode material may be continuously changed according to the weight change rate of an electrode material more preferable.

すなわち、電極材料の重量変化速度に応じて電極材料の昇温速度を連続的に変化させ電極材料の温度を制御するより好ましい方法は、(A)あらかじめ定速昇温熱重量分析によりTG曲線を測定し、TG曲線より決定される又はTG曲線の微分曲線(DTG曲線)より推定される炭素材料もしくは有機材料のガス化開始温度におけるDTG値(重量変化速度)の絶対値より小さい値を昇温速度の制御目標値とする工程と、(B)電極材料の減量速度が前記の制御目標値よりもゆるやかなときには、昇温速度は定速昇温条件と同一、電極材料の減量速度が前記の制御目標値よりも急激なときには、昇温を停止もしくは昇温速度をゆるやかに制御することにより、電極材料の昇温速度を制御する工程を含む方法である。   That is, a more preferable method of continuously changing the temperature rising rate of the electrode material and controlling the temperature of the electrode material according to the weight change rate of the electrode material is (A) measuring the TG curve in advance by constant temperature rising thermogravimetric analysis The temperature rise rate is a value smaller than the absolute value of the DTG value (weight change rate) at the gasification start temperature of the carbon material or organic material determined from the TG curve or estimated from the derivative curve (DTG curve) of the TG curve And (B) when the weight loss rate of the electrode material is slower than the control target value, the temperature rise rate is the same as the constant temperature rise condition, and the weight loss rate of the electrode material is controlled as described above. When the temperature is steeper than the target value, the method includes the step of controlling the temperature rising rate of the electrode material by stopping the temperature rising or slowly controlling the temperature rising rate.

TG曲線は、昇温時における電極材料の温度(℃)と熱重量(g)との関係を示すものであり、このTGを微分した微分熱重量曲線(Derivative Thermo Gravimetry、以下、DTGと略す)は、温度と熱重量変化速度(g/秒)との関係を示すものである。
なお、TG曲線およびDTG曲線の測定は、熱重量測定が可能な公知の熱分析装置を用いることができる。
The TG curve shows the relationship between the temperature (° C.) of the electrode material at the time of temperature rise and the thermogravimetric weight (g), and a differential thermogravimetric curve (hereinafter referred to as DTG) obtained by differentiating this TG. Shows the relationship between the temperature and the thermal weight change rate (g / sec).
The TG curve and the DTG curve can be measured using a known thermal analyzer capable of thermogravimetric measurement.

電極材料に含まれる炭素材料および有機材料のガス化開始温度および存在量を求めるには、電極材料に含まれる各成分の種類により、ガス化する温度および速度(DTG)が異なる点を利用する。電極材料中に存在する炭素材料および有機材料は、炭素材料の結晶性の差もしくは有機材料の分子構造によりガス化する温度および速度(DTG)が異なる。
例えば、結晶性炭素質と非結晶性炭素質からなる炭素材料の場合、非結晶性炭素質の方がより低い温度、もしくは早い速度でガス化反応が進行する。さらに例えば、酸素などのヘテロ原子をより多く含む有機材料と炭化水素などのヘテロ原子を含まない有機材料の場合、酸素などのヘテロ原子をより多く含む有機材料の方がより低い温度、もしくは早い速度でガス化反応が進行する。また、類似した構造からなる有機材料の場合は、より低分子量の有機材料の方がより低い温度、もしくは早い速度でガス化反応が進行する。
In order to determine the gasification start temperature and the abundance of the carbon material and the organic material contained in the electrode material, the temperature and the rate (DTG) to be gasified are different depending on the type of each component contained in the electrode material. The carbon material and the organic material present in the electrode material differ in gasification temperature and rate (DTG) depending on the difference in crystallinity of the carbon material or the molecular structure of the organic material.
For example, in the case of a carbon material composed of crystalline carbonaceous matter and non-crystalline carbonaceous matter, the gasification reaction proceeds at a lower temperature or faster rate in the non-crystalline carbonaceous matter. Further, for example, in the case of an organic material containing more hetero atoms such as oxygen and an organic material not containing hetero atoms such as hydrocarbon, the temperature or lower speed is lower in the organic material containing more hetero atoms such as oxygen. The gasification reaction proceeds in In addition, in the case of organic materials having a similar structure, the gasification reaction proceeds at a lower temperature or at a higher rate in the case of lower molecular weight organic materials.

すなわち、加熱昇温時のTG曲線およびDTG曲線を解析することにより、電極材料に含まれる結晶性の異なるもしくは分子構造の異なる炭素材料および有機材料のガス化反応を分離することができ、該当する重量変化量を計測することにより、各成分の存在量を分析することができる。   That is, by analyzing the TG curve and the DTG curve at the time of heating and heating, it is possible to separate the gasification reactions of carbon materials and organic materials having different crystallinity or different molecular structures contained in the electrode material. The abundance of each component can be analyzed by measuring the amount of weight change.

上記(A)の工程におけるあらかじめ定速昇温熱重量分析によりTG曲線を測定する方法は、ガス化剤の存在下で電極材料を一定の昇温速度で加熱ガス化し、TG曲線を測定する。ここで、前述の理由より、昇温速度は5〜20℃/minであることが好ましい。測定の温度範囲は、電極材料中の各成分のガス化反応が計測できる温度範囲であればよい。具体的には、低温側は装置内にて水蒸気が結露しない温度である70℃付近から、高温側は結晶性炭素材料(例えば、黒鉛材料)のガス化反応が生じる1600℃付近までの温度範囲を測定すればよい。   In the method of measuring the TG curve in advance in the step (A) by constant temperature rising temperature thermogravimetric analysis, the electrode material is heated at a constant temperature rising rate in the presence of a gasifying agent, and the TG curve is measured. Here, from the above-mentioned reason, it is preferable that a temperature rising rate is 5-20 degrees C / min. The temperature range of measurement should just be a temperature range which can measure gasification reaction of each ingredient in electrode material. Specifically, a temperature range from about 70 ° C. at which the water vapor does not condense in the apparatus on the low temperature side to about 1600 ° C. at which the gasification reaction of the crystalline carbon material (eg, graphite material) occurs on the high temperature side Should be measured.

電極材料中に存在する複数の結晶性もしくは分子構造の異なる炭素材料および有機材料(例えば、結晶性の低い順に成分1、成分2、成分3とする)のガス化開始温度は近いことが多く、各成分のガス化反応が連続して生じることが多い。この場合は、定速昇温によって得られるTG曲線の解析からは成分2、成分3のガス化開始温度を決定することは困難である。   The gasification start temperatures of carbon materials and organic materials (for example, component 1, component 2 and component 3 in ascending order of crystallinity) of different crystalline or molecular structures present in the electrode material are often close to each other, The gasification reaction of each component often occurs continuously. In this case, it is difficult to determine the gasification start temperature of the component 2 and the component 3 from the analysis of the TG curve obtained by the constant temperature rise.

得られたTG曲線より決定される又はTG曲線の微分曲線(DTG曲線)より推定される炭素材料もしくは有機材料のガス化開始温度におけるDTG値(重量変化速度)の絶対値より小さい値を昇温速度の制御目標値とする方法は、以下のような方法により例示できる。
TG曲線を微分することによりDTG曲線を描き、各成分のガス化開始温度におけるDTG値を求め、その絶対値より小さい値を昇温速度の制御目標値に設定することができる。
Increase the temperature smaller than the absolute value of the DTG value (weight change rate) at the gasification start temperature of the carbon material or organic material determined from the obtained TG curve or estimated from the derivative curve (DTG curve) of the TG curve The method of setting the speed control target value can be exemplified by the following method.
By differentiating the TG curve, a DTG curve can be drawn, a DTG value at the gasification start temperature of each component can be obtained, and a value smaller than the absolute value can be set as a control target value of the temperature rise rate.

上記(B)の工程では、重量変化速度が前記の制御目標値よりもゆるやかなときには、昇温速度は(A)の工程における定速昇温条件と同一、電極材料の重量変化速度が前記の制御目標値よりも急激なときには、昇温を停止もしくは昇温速度をゆるやかに制御し、TG曲線を測定する。   In the step (B), when the weight change rate is slower than the control target value, the temperature rise rate is the same as the constant temperature rise condition in the step (A), and the weight change rate of the electrode material is the above When the temperature is steeper than the control target value, the temperature rise is stopped or the temperature rise rate is controlled gradually, and the TG curve is measured.

ここで、昇温速度の制御目標値は、試行錯誤により決定した値であっても良いが、(A)の工程に記載された手法により、定速昇温熱重量分析により測定したTG曲線の微分曲線(DTG曲線)より推定される炭素材料もしくは有機材料のガス化開始温度におけるDTG値(重量変化速度)の絶対値より小さい値を制御目標値することがより好ましい。
定速昇温熱重量分析により前記の制御目標値を決定することにより、異なる電極材料の分析をより正確に進めることが可能となる。そして、前記の制御目標値を、ガス化開始温度におけるDTG値(重量変化速度)の絶対値に近づけることにより、より迅速に異なる電極材料の分析を進めることが可能となる。
Here, although the control target value of the temperature rising rate may be a value determined by trial and error, the derivative of the TG curve measured by constant temperature rising temperature thermogravimetric analysis by the method described in the step (A) It is more preferable to set a control target value to a value smaller than the absolute value of the DTG value (weight change rate) at the gasification start temperature of the carbon material or the organic material estimated from the curve (DTG curve).
By determining the control target value by constant temperature rising temperature thermogravimetric analysis, analysis of different electrode materials can be more accurately advanced. Then, by bringing the control target value close to the absolute value of the DTG value (weight change rate) at the gasification start temperature, it becomes possible to advance analysis of different electrode materials more quickly.

続いて、TG曲線に基づいて、電極材料に含まれる複数の結晶性もしくは分子構造の異なる炭素材料および有機材料を分離定量する。
電極材料に含まれる炭素材料および有機材料を分離定量する方法は、得られたTG曲線を用いて、各成分のガス化開始温度を決定し、各成分のガス化開始温度で区分される温度範囲における各成分の存在量を測定することでできる。
Subsequently, based on the TG curve, carbon materials and organic materials having different crystalline or molecular structures contained in the electrode material are separated and quantified.
The method of separating and quantifying the carbon material and the organic material contained in the electrode material determines the gasification start temperature of each component using the obtained TG curve, and the temperature range divided by the gasification start temperature of each component By measuring the abundance of each component in

各成分のガス化開始温度は、試料重量の減少が開始する温度もしくは試料重量の減少速度が変化する温度より決定することができるが、各成分の試料重量の減少が開始する温度によるのが好ましい。
また、ここで各成分の存在量の算出は、各成分がガス化する特定された温度域における試料の重量変化量より算出するのが好ましいが、発生ガスに含まれる炭素量を計測する等により行ってもよい。
The gasification start temperature of each component can be determined from the temperature at which the sample weight reduction starts or the temperature at which the sample weight reduction rate changes, preferably the temperature at which the sample weight reduction of each component starts .
Moreover, although it is preferable to calculate the abundance of each component here from the weight change of the sample in the specified temperature range where each component gasifies, it is possible to measure the amount of carbon contained in the generated gas etc. You may go.

以上、本発明における試料の重量変化速度に応じて昇温速度を連続的に変化させる制御方法による熱重量測定を用いることにより、異なる成分のガス化反応による重量減少の境界が明瞭に計測でき、炭素材料および有機材料の存在量の分離定量が精度良く測定できる。   As described above, the boundary of weight loss due to the gasification reaction of different components can be clearly measured by using thermogravimetry by the control method in which the heating rate is continuously changed according to the weight change rate of the sample in the present invention, The separated and quantified amounts of carbon material and organic material can be measured accurately.

前記のようにして測定した電極材料の炭素材料、有機材料の存在量を用いて、無機材料の存在量を算出することができる。すなわち、無機材料の存在量は、
1−Σ(炭素材料の存在量+有機材料の存在量)
により決定できる。
The abundance of the inorganic material can be calculated using the abundance of the carbon material and the organic material of the electrode material measured as described above. That is, the amount of inorganic material present is
1-.SIGMA. (Amount of carbon material + amount of organic material)
It can be determined by

本発明により分析した電極材料の炭素材料、有機材料および無機材料の存在量を用いることにより、電極材料の製造工程における電極材料の品質管理が可能となる。
例えば、本発明を用いて分析した電極材料中の特定成分の存在量が、特定の範囲内である場合、その電極材料は好適な電極材料であると判断できる。
By using the amounts of the carbon material, the organic material and the inorganic material of the electrode material analyzed according to the present invention, quality control of the electrode material in the manufacturing process of the electrode material becomes possible.
For example, when the abundance of a specific component in an electrode material analyzed using the present invention is within a specific range, it can be determined that the electrode material is a suitable electrode material.

さらに劣化後の二次電池およびキャパシタの電極材料を分析し、得られた電極材料中の各成分の存在量を劣化前の存在量と比較することにより、電極材料を構成するどの成分がどの程度劣化しているのかを定量的に分析する等、劣化解析が可能となる。   Furthermore, by analyzing the electrode material of the secondary battery and capacitor after deterioration, and comparing the amount of each component in the obtained electrode material with the amount before deterioration, how much of which component constituting the electrode material is It becomes possible to analyze deterioration, such as quantitatively analyzing deterioration.

以下、実施例をもって本発明の電極材料の分析方法について説明する。
なおこれら実施例は、それぞれ、本発明をより具体的に例示するために記載されたものであって、本発明の趣旨を逸脱しない範囲において種々変更が可能であり、本発明は、以下の記載に限定されるものではない。
Hereafter, the analysis method of the electrode material of this invention is demonstrated using an Example.
Note that these examples are each described in order to illustrate the present invention more specifically, and various modifications can be made without departing from the scope of the present invention. It is not limited to

(評価試料)
以下の組成を有するリチウムイオン二次電池用負極材を評価試料とした。リチウムイオン二次電池用負極材は、公知の方法により作製した。
負極活物質1:非晶質炭素被覆天然黒鉛、78.2重量%
負極活物質2:酸化ケイ素(SiO)、13.8重量%
導電助剤 :AB(アセチレンブラック)、4.0重量%
バインダー :SBR(スチレンブタジエン系ゴム)、2.5重量%
増粘剤 :CMC(カルボキシメチルセルロース)、1.5重量%
(Evaluation sample)
An anode material for a lithium ion secondary battery having the following composition was used as an evaluation sample. The negative electrode material for lithium ion secondary batteries was produced by a known method.
Negative electrode active material 1: Amorphous carbon-coated natural graphite, 78.2% by weight
Negative electrode active material 2: Silicon oxide (SiO), 13.8% by weight
Conducting assistant: AB (acetylene black), 4.0% by weight
Binder: SBR (styrene-butadiene rubber), 2.5% by weight
Thickener: CMC (Carboxymethyl cellulose), 1.5% by weight

(熱重量分析装置)
熱重量測定装置には、水蒸気作動型示差熱天秤(株式会社リガク製TG−DTA/HUM−1)を用いた。
(Thermogravimetric analyzer)
For the thermogravimetric measurement apparatus, a water vapor-operated differential thermal balance (TG-DTA / HUM-1 manufactured by Rigaku Corporation) was used.

(電子顕微鏡観察)
試料の電子顕微鏡観察は、電界放出形走査電子顕微鏡FE−SEM(日本電子株式会社製JSM−6700F)を用いて実施した。
(Electron microscopy)
Electron microscopic observation of the sample was performed using a field emission scanning electron microscope FE-SEM (JSM-6700F manufactured by JEOL Ltd.).

(各成分のガス化開始温度の決定)
評価試料を構成する成分のうち、ガス化反応を生じる炭素材料(負極活物質1、導電助剤)および有機材料(バインダー、増粘剤)のガス化開始温度を計測した。
各成分単体をおよそ5mg、0.01mgまで精秤し、熱重量測定装置に導入した。ここにガス化剤として水蒸気と窒素を混合したガスを300ml/min流した。このときの水蒸気分圧は20kPaとした。ガス化剤を流通した条件で、10℃/minの昇温速度で1300℃まで定速昇温し、TG曲線およびDTG曲線を計測した。
試料重量が減少し始める温度より決定した負極活物質1、導電助剤、バインダーおよび増粘剤のガス化開始温度は、それぞれ1045℃、1028℃、324℃、278℃であった。
(Determination of gasification start temperature of each component)
The gasification start temperature of the carbon material (negative electrode active material 1 and conductive support agent) which produces gasification reaction, and the organic material (binder, thickener) was measured among the components which comprise an evaluation sample.
Each component alone was precisely weighed to about 5 mg and 0.01 mg and introduced into a thermogravimetric measuring apparatus. Here, 300 ml / min of a mixed gas of steam and nitrogen was flowed as a gasifying agent. The water vapor partial pressure at this time was 20 kPa. The temperature was raised to 1300 ° C. at a heating rate of 10 ° C./min under the conditions where the gasifying agent was circulated, and the TG curve and the DTG curve were measured.
The gasification start temperatures of the negative electrode active material 1, the conductive aid, the binder and the thickener determined from the temperature at which the sample weight starts to decrease were 1045 ° C., 1028 ° C., 324 ° C. and 278 ° C., respectively.

〔実施例1〕
評価試料をおよそ5mg、0.01mgまで精秤し、熱重量測定装置に導入した。ここにガス化剤として水蒸気と窒素を混合したガスを300ml/min流した。このときの水蒸気分圧は20kPaとした。ガス化剤を流通した条件で、10℃/min昇温速度で1300℃まで定速昇温し、TG曲線およびDTG曲線を計測した。得られたTG曲線を図1に示した。
得られたTG曲線は、4段階の重量減少を示した。すなわち4種類の成分、炭素材料(負極活物質1、導電助剤)および有機材料(バインダー、増粘剤)のガス化反応が計測された。それぞれの試料重量が減少し始める温度もしくは重量減少が終了する温度で区分される温度範囲における各成分の存在量を算出した結果を表1に示した。しかしながら、1300℃までの定速昇温測定では、成分1のガス化反応は完結しなかったため、成分1の存在量を算出することができなかった。
Example 1
The evaluation sample was precisely weighed to approximately 5 mg and 0.01 mg and introduced into a thermogravimetric measurement apparatus. Here, 300 ml / min of a mixed gas of steam and nitrogen was flowed as a gasifying agent. The water vapor partial pressure at this time was 20 kPa. The temperature was raised to 1300 ° C. at a heating rate of 10 ° C./min under the conditions where the gasifying agent was circulated, and the TG curve and the DTG curve were measured. The obtained TG curve is shown in FIG.
The obtained TG curve showed 4 stages of weight loss. That is, the gasification reaction of four types of components, a carbon material (anode active material 1 and a conductive additive) and an organic material (binder, thickener) was measured. Table 1 shows the results of calculating the abundance of each component in the temperature range divided by the temperature at which each sample weight starts to decrease or the temperature at which weight reduction ends. However, in the constant-speed temperature measurement up to 1300 ° C., the gasification reaction of component 1 was not completed, so the amount of component 1 could not be calculated.

〔実施例2〕
実施例1において、昇温時に試料重量が減少し始める温度(各成分のガス化開始温度)およびDTG値(重量変化速度)の絶対値は、成分1のガス化反応において0.0015%/秒であった。このため、0.001%/秒を昇温速度の制御値に設定した。すなわち、重量変化速度の絶対値が制御値0.001%/秒になるように昇温速度を制御して、評価試料の熱重量測定を実施し、各成分の存在量を求めた。
まず評価試料をおよそ5mg、0.01mgまで精秤し、熱重量測定装置に導入した。ここにガス化剤として水蒸気と窒素を混合したガスを300ml/min流した。このときの水蒸気分圧は20kPaとした。ガス化剤を流通した条件で、重量変化速度の絶対値が制御値0.001%/秒よりも小さいときは10℃/minの昇温速度で昇温し、重量変化速度の絶対値が制御値0.001%/秒以上の場合には昇温を停止するように昇温速度を制御して、TG曲線を計測した。得られたTG曲線を図2に示した。
Example 2
In Example 1, the absolute value of the temperature at which the sample weight starts to decrease at the temperature rise (gasification start temperature of each component) and the DTG value (weight change rate) is 0.0015% / sec in the gasification reaction of component 1. Met. Therefore, 0.001% / sec was set as the control value of the temperature rise rate. That is, the temperature rising rate was controlled so that the absolute value of the weight change rate became a control value of 0.001% / sec, the thermogravimetric measurement of the evaluation sample was performed, and the abundance of each component was determined.
First, an evaluation sample was precisely weighed to approximately 5 mg and 0.01 mg and introduced into a thermogravimetric measurement apparatus. Here, 300 ml / min of a mixed gas of steam and nitrogen was flowed as a gasifying agent. The water vapor partial pressure at this time was 20 kPa. If the absolute value of the weight change rate is smaller than the control value of 0.001% / sec under the conditions where the gasifying agent is circulated, the temperature is raised at a temperature increase rate of 10 ° C / min, and the absolute value of the weight change rate is controlled When the value was 0.001% / sec or more, the temperature rising rate was controlled to stop the temperature rising, and the TG curve was measured. The obtained TG curve is shown in FIG.

得られたTG曲線は、実施例1と同様に4段階の重量減少を示した。それぞれの試料重量が減少し始める温度もしくは重量減少が終了する温度で区分される温度範囲における各成分の存在量を算出し、表1に示した。
測定した各成分の存在量は設計値と良い一致を示した。
The obtained TG curve showed four stages of weight loss as in Example 1. The amount of each component in the temperature range divided by the temperature at which each sample weight starts to decrease or the temperature at which weight reduction ends is calculated and is shown in Table 1.
The abundance of each measured component showed a good agreement with the design value.

〔実施例3〕
実施例2と同様に評価試料を水蒸気の存在下、450℃まで昇温し、増粘剤(成分4)およびバインダー(成分3)のみをガス化除去した。450℃到達後、ドライ窒素ガスを流通した状態で100℃以下まで冷却し試料を回収した。
水蒸気ガス化前の評価試料の電子顕微鏡写真を図3に、水蒸気ガス化450℃時点における評価試料の電子顕微鏡写真を図4に示した。電子顕微鏡写真の比較より、黒鉛粒子を覆っていた増粘剤(成分4)およびバインダー(成分3)の除去が確認でき、且つ黒鉛(成分1)および微粒子状の導電助剤(成分2)は、変化せずに残存していることが確認できた。
[Example 3]
The evaluation sample was heated to 450 ° C. in the presence of steam in the same manner as in Example 2, and only the thickener (component 4) and the binder (component 3) were removed by gasification. After reaching 450 ° C., the sample was cooled by cooling to 100 ° C. or less while flowing dry nitrogen gas.
The electron micrograph of the evaluation sample before steam gasification is shown in FIG. 3, and the electron micrograph of the evaluation sample at steam gasification at 450 ° C. is shown in FIG. From the comparison of electron micrographs, the removal of the thickener (component 4) and the binder (component 3) covering the graphite particles can be confirmed, and the graphite (component 1) and the particulate conductive aid (component 2) It could be confirmed that it remained without change.

〔実施例4〕
実施例3と同様に評価試料を水蒸気の存在下、1000℃まで昇温し、増粘剤(成分4)、バインダー(成分3)および導電助剤(成分2)をガス化除去した試料を回収した。回収した試料の電子顕微鏡写真を図5に示した。電子顕微鏡写真の比較より、黒鉛粒子と共存していた微粒子状の導電助剤(成分2)の除去が確認でき、且つ黒鉛(成分1)が変化せずに残存していることが確認できた。
Example 4
The evaluation sample is heated up to 1000 ° C. in the presence of steam in the same manner as in Example 3 to recover a sample from which the thickener (component 4), the binder (component 3) and the conductive additive (component 2) have been gasified and removed did. An electron micrograph of the collected sample is shown in FIG. From the comparison of electron micrographs, the removal of the particulate conductive aid (component 2) coexisting with the graphite particles can be confirmed, and it can be confirmed that the graphite (component 1) remains without change. .

本発明の手法を用いることにより、二次電池負極材中を構成する成分である炭素材料、有機材料および無機材料の存在量を精度高く計測できることが確認できた。
すなわち本発明の手法は、二次電池およびキャパシタの電極材料製造工程における品質管理手法として有効であることが確認できた。
By using the method of the present invention, it has been confirmed that the amounts of the carbon material, the organic material and the inorganic material which are components constituting the secondary battery negative electrode material can be measured with high accuracy.
That is, it has been confirmed that the method of the present invention is effective as a quality control method in the process of manufacturing electrode materials of secondary batteries and capacitors.

さらに劣化後の二次電池およびキャパシタの電極材料を分析し、得られた電極材料中の各成分の存在量を劣化前の存在量と比較することにより、電極材を構成するどの成分がどの程度劣化しているのかを定量的に分析する等、劣化解析が可能であることが確認できた。   Further, the electrode materials of the secondary battery and capacitor after deterioration are analyzed, and the amounts of each component in the obtained electrode material are compared with the amounts before deterioration to determine which component of the electrode material is It has been confirmed that degradation analysis is possible, such as quantitatively analyzing whether degradation has occurred.

本発明の手法を用いることにより、二次電池およびキャパシタ用電極材料を構成する成分である炭素材料、有機材料および無機材料の存在量を分離定量でき、二次電池およびキャパシタ用電極材料の製造工程における簡便かつ正確な品質管理手法を提供することができ、生産性の向上を期待することができる。また本発明の手法は二次電池およびキャパシタの劣化解析に用いることができる。


By using the method of the present invention, it is possible to separate and quantify the amounts of carbon material, organic material and inorganic material which are components constituting an electrode material for a secondary battery and a capacitor, and a manufacturing process of an electrode material for a secondary battery and a capacitor. Can provide a simple and accurate quality control method, and can expect improvement in productivity. Further, the method of the present invention can be used for the degradation analysis of secondary batteries and capacitors.


Claims (5)

二次電池およびキャパシタ用電極材料の分析方法であって、水蒸気の存在下で前記電極材料を加熱ガス化し、電極材料の重量変化速度に応じて電極材料の昇温速度が連続的に変化するように電極材料の温度を制御して熱重量変化曲線(TG曲線)を求め、この曲線に基づいて、電極材料に含まれる活物質、導電助剤及びバインダーの構成成分である炭素材料、有機材料および無機材料をそれぞれ分離定量することを特徴とする二次電池およびキャパシタ用電極材料の分析方法。   A method of analyzing an electrode material for a secondary battery and a capacitor, wherein the electrode material is heated and gasified in the presence of water vapor, and the temperature rising rate of the electrode material changes continuously according to the weight change rate of the electrode material. The temperature of the electrode material is controlled to obtain a thermogravimetric change curve (TG curve), and based on this curve, a carbon material, an organic material, and a component of an active material, a conductive additive and a binder contained in the electrode material A method of analyzing an electrode material of a secondary battery and a capacitor, comprising separating and quantifying each of the inorganic materials. 前記電極材料の重量変化速度に応じて電極材料の昇温速度を連続的に変化させ電極材料の温度を制御して熱重量変化曲線(TG曲線)を求める方法は、
(A)あらかじめ任意の定速昇温条件を決めて定速昇温して定速昇温熱重量分析によりTG曲線を測定し、TG曲線より決定される又はTG曲線の微分曲線(DTG曲線)より推定される炭素材料もしくは有機材料のガス化開始温度におけるDTG値(重量変化速度)の絶対値より小さい値を制御目標値に設定する工程と、
(B)工程(A)の定速昇温条件と同一又はその前後の条件でもって定速昇温して定速昇温熱重量分析し、電極材料の重量変化速度が前記重量変化速度の制御目標値よりもゆるやかなときには、昇温速度は前記定速昇温条件と同一、電極材料の重量変化速度が前記重量変化速度の制御目標値よりも急激なときには、昇温を停止もしくは昇温速度をゆるやかに制御して熱重量変化曲線(TG曲線)を求める工程
を含むことを特徴とする請求項1に記載の二次電池およびキャパシタ用電極材料の分析方法
According to the method of determining the thermal weight change curve (TG curve) by continuously changing the temperature rising rate of the electrode material in accordance with the weight change rate of the electrode material and controlling the temperature of the electrode material,
(A) Arbitrary constant temperature rising conditions are determined beforehand, constant temperature rising, TG curve is measured by constant temperature rising thermogravimetric analysis, determined from TG curve or from differential curve (DTG curve) of TG curve Setting a control target value to a value smaller than the absolute value of the DTG value (weight change rate) at the gasification start temperature of the estimated carbon material or organic material;
(B) Constant temperature rising temperature is carried out under the same conditions as or before and after constant temperature rising conditions of step (A), constant temperature rising thermogravimetric analysis, weight change rate of electrode material is control target of said weight change rate If the temperature rise rate is the same as the constant rate temperature rise condition and the weight change rate of the electrode material is more rapid than the control target value of the weight change rate, the temperature rise is stopped or the temperature rise rate is 2. A method of analyzing an electrode material for a secondary battery and a capacitor according to claim 1, further comprising the step of slowly controlling to obtain a thermogravimetric change curve (TG curve).
前記TG曲線に基づいて、前記電極材料に含まれる炭素材料、有機材料および無機材料を分離定量する方法は、
得られたTG曲線を用いて、各成分のガス化開始温度を決定し、各成分のガス化開始温度で区分される温度範囲における各成分の存在量を決定することを特徴とする請求項1又は請求項2に記載の二次電池およびキャパシタ用電極材料の分析方法
A method of separating and quantifying a carbon material, an organic material and an inorganic material contained in the electrode material based on the TG curve is:
The gasification start temperature of each component is determined using the obtained TG curve, and the abundance of each component in the temperature range divided by the gasification start temperature of each component is determined. Or a method of analyzing an electrode material for a secondary battery and a capacitor according to claim 2
請求項1〜3のいずれかに記載の二次電池およびキャパシタ用電極材料の分析方法を用いて、二次電池およびキャパシタ用電極材料の品質を管理する二次電池およびキャパシタ用電極材料の品質管理方法   The quality control of the secondary battery and the electrode material for capacitors which manage the quality of the electrode material for secondary batteries and capacitors using the analysis method of the electrode material for secondary batteries and capacitors according to any one of claims 1 to 3. Method 請求項1〜3のいずれかに記載の二次電池およびキャパシタ用電極材料の分析方法を用いて、二次電池およびキャパシタ用電極材料の劣化状態を解析する二次電池およびキャパシタ用電極材料の劣化解析方法

Deterioration of secondary battery and electrode material for capacitor using the method of analyzing electrode material for secondary battery and capacitor according to any one of claims 1 to 3 analysis method

JP2017199508A 2017-10-13 2017-10-13 Electrode material analysis method, electrode material quality control method, and electrode material deterioration analysis method Active JP6860465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017199508A JP6860465B2 (en) 2017-10-13 2017-10-13 Electrode material analysis method, electrode material quality control method, and electrode material deterioration analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017199508A JP6860465B2 (en) 2017-10-13 2017-10-13 Electrode material analysis method, electrode material quality control method, and electrode material deterioration analysis method

Publications (2)

Publication Number Publication Date
JP2019075238A true JP2019075238A (en) 2019-05-16
JP6860465B2 JP6860465B2 (en) 2021-04-14

Family

ID=66543266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017199508A Active JP6860465B2 (en) 2017-10-13 2017-10-13 Electrode material analysis method, electrode material quality control method, and electrode material deterioration analysis method

Country Status (1)

Country Link
JP (1) JP6860465B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08105831A (en) * 1994-10-03 1996-04-23 Rigaku Corp Thermogravimeric analysis
JPH11281556A (en) * 1998-03-26 1999-10-15 Sony Corp Quantitative analytical method for carbon black
JP2005274502A (en) * 2004-03-26 2005-10-06 Matsushita Electric Ind Co Ltd Method for evaluating trapped quantity of trapping member
JP2005274415A (en) * 2004-03-25 2005-10-06 Rigaku Corp Thermal analysis apparatus and its water vapor generating apparatus
JP2014007037A (en) * 2012-06-22 2014-01-16 Toyota Motor Corp Method for manufacturing nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery manufactured by the method
JP2014099419A (en) * 2000-03-16 2014-05-29 Sony Corp Negative electrode and secondary battery
JP2015149267A (en) * 2013-03-14 2015-08-20 株式会社東芝 Nonaqueous electrolyte battery and battery pack

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08105831A (en) * 1994-10-03 1996-04-23 Rigaku Corp Thermogravimeric analysis
JPH11281556A (en) * 1998-03-26 1999-10-15 Sony Corp Quantitative analytical method for carbon black
JP2014099419A (en) * 2000-03-16 2014-05-29 Sony Corp Negative electrode and secondary battery
JP2005274415A (en) * 2004-03-25 2005-10-06 Rigaku Corp Thermal analysis apparatus and its water vapor generating apparatus
JP2005274502A (en) * 2004-03-26 2005-10-06 Matsushita Electric Ind Co Ltd Method for evaluating trapped quantity of trapping member
JP2014007037A (en) * 2012-06-22 2014-01-16 Toyota Motor Corp Method for manufacturing nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery manufactured by the method
JP2015149267A (en) * 2013-03-14 2015-08-20 株式会社東芝 Nonaqueous electrolyte battery and battery pack

Also Published As

Publication number Publication date
JP6860465B2 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
JP2020510972A (en) Natural graphite-based modified composite material, method for producing the same, and lithium ion secondary battery including the modified composite material
TWI623138B (en) Composite powder for use in an anode of a lithium ion battery, method for manufacturing a composite powder and lithium ion battery
US20120295159A1 (en) Lithium ion secondary battery negative electrode slurry composition, a lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP2014029874A (en) Manufacturing method of graphite material for lithium ion battery electrode material
EP3171430B1 (en) Electrode material, lithium-sulfur battery electrode, lithium-sulfur battery and battery material production method
TW201934481A (en) N-doped Si/C composite and manufacturing method thereof
CN111969204B (en) Lithium ion battery electrode containing nano-grade graphene coated single crystal cathode material
TW201640719A (en) Powder, electrode and battery comprising such a powder
JP2016139579A (en) Negative electrode material for lithium ion secondary battery, paste for lithium ion secondary battery negative electrode, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN107764681A (en) A kind of fast appraisement method of burnt raw material
CN103303896A (en) Surface-modified hard-carbon negative electrode material and preparation method thereof
JP6592156B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
McCormac et al. Preparation of porous Si and TiO2 nanofibres using a sulphur‐templating method for lithium storage
JP2003173774A (en) Anode material for lithium ion secondary battery and its manufacturing method and lithium ion secondary battery using same anode material
CN114982009A (en) Negative electrode material, negative electrode plate, electrochemical device comprising negative electrode plate, and electronic device
JP5078047B2 (en) Carbon material, production method thereof and use thereof
CN112881925B (en) Method for testing quick charge performance of anode material
JP6299248B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode and lithium ion secondary battery
JP2021144955A (en) Lithium ion battery electrodes including graphenic carbon particles
TWI805421B (en) Particles of silicon-carbon composite material and method of manufacturing the same
JP6860465B2 (en) Electrode material analysis method, electrode material quality control method, and electrode material deterioration analysis method
CN114094077A (en) Negative electrode material and negative plate containing same
CN112811418A (en) Fast-charging composite graphite material, preparation method and application thereof, and lithium ion battery
WO2020105599A1 (en) Composite carbon particles, method for producing same, and lithium ion secondary battery
CN115485875A (en) Nonaqueous electrolyte storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210108

A603 Late request for extension of time limit during examination

Free format text: JAPANESE INTERMEDIATE CODE: A603

Effective date: 20210108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210326

R150 Certificate of patent or registration of utility model

Ref document number: 6860465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250