JP2019060006A - Alloy member and article produced using the same - Google Patents

Alloy member and article produced using the same Download PDF

Info

Publication number
JP2019060006A
JP2019060006A JP2017187402A JP2017187402A JP2019060006A JP 2019060006 A JP2019060006 A JP 2019060006A JP 2017187402 A JP2017187402 A JP 2017187402A JP 2017187402 A JP2017187402 A JP 2017187402A JP 2019060006 A JP2019060006 A JP 2019060006A
Authority
JP
Japan
Prior art keywords
alloy member
alloy
ceramic particles
crystal
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017187402A
Other languages
Japanese (ja)
Inventor
美伝 陳
Meichuan Chen
美伝 陳
青田 欣也
Kinya Aota
欣也 青田
正 藤枝
Tadashi Fujieda
藤枝  正
貴大 石嵜
Takahiro Ishizaki
貴大 石嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017187402A priority Critical patent/JP2019060006A/en
Priority to PCT/JP2018/010991 priority patent/WO2019064641A1/en
Publication of JP2019060006A publication Critical patent/JP2019060006A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Abstract

To provide an alloy member having mechanical properties of high strength and high wear resistance, surpassing the conventional alloy members.SOLUTION: An alloy member has a structure of columnar crystal. The columnar crystal has a cross sectional structure that is greatly bent and in a wavy shape. In crystal grains and a crystal grain boundary of the columnar crystal, 100 nm or less of ceramic particles are dispersed.SELECTED DRAWING: Figure 6B

Description

本発明は、セラミックス粒子が分散された合金部材、及びそれを用いた製造物に関する。   The present invention relates to an alloy member in which ceramic particles are dispersed, and a product using the same.

産業の発展につれ、ガスタービン、ベアリング等の機械部品の室温・高温強度、耐磨耗性等の機械特性に対して要求が高くなっており、分散強化を利用した合金開発が進められている。   With the development of industry, demands for mechanical properties such as room temperature and high temperature strength and wear resistance of mechanical parts such as gas turbines and bearings are increasing, and alloy development utilizing dispersion strengthening is being promoted.

分散強化は、よく知られている金属材料の強化法であり、母材に微細なセラミックス粒子を分散させることにより、転位がピンニングされることで母材の機械的性質を向上させる方法である。その微細粒子は、他の金属の酸化物を始め、炭化物、窒化物、ホウ化物など、多くの種類があり、その用途も多岐にわたる。   Dispersion strengthening is a well-known method of strengthening metal materials, and is a method of improving mechanical properties of a base material by pinning dislocations by dispersing fine ceramic particles in the base material. There are many types of fine particles, including oxides of other metals, carbides, nitrides, borides and the like, and their applications are also diverse.

特許文献1は、航空機エンジン、発電ガスタービンなどの高温環境に曝される部品として、酸化物粒子分散強化型Ni超合金を用いることが開示されている。特許文献2は、高温高圧ボイラー等に用いる酸化物分散強化フェライト系耐熱鋼板が開示されている。   Patent Document 1 discloses that an oxide particle dispersion strengthened Ni super alloy is used as a component exposed to a high temperature environment such as an aircraft engine or a power generation gas turbine. Patent Document 2 discloses an oxide dispersion strengthened ferritic heat resistant steel plate used for a high temperature high pressure boiler or the like.

上述のように、これまでに多くの種類のセラミックス粒子が分散された合金部材が開発されている。いずれもメカニカルアロイング及び熱間静水圧プレスによる緻密化により得られており、母材金属の粉末とセラミックス粉末を粉砕混合し、セラミックス粒子が均一分散している母材金属の粉末を固めるという方法で作製されている。   As described above, alloy members in which many types of ceramic particles are dispersed have been developed. All are obtained by mechanical alloying and densification by hot isostatic pressing, and a method of pulverizing and mixing base metal powder and ceramic powder, and solidifying powder of base metal in which ceramic particles are uniformly dispersed. It is made of

特願2015-530883号公報Japanese Patent Application No. 2015-530883 特開平5-51701号公報Unexamined-Japanese-Patent No. 5-51701

上記の通り、メカニカルアロイング及び熱間静水圧プレスにより作製されたセラミックス粒子が分散された合金部材は、セラミック粒子を均一に分散させることは困難である。   As described above, in an alloy member in which ceramic particles produced by mechanical alloying and hot isostatic pressing are dispersed, it is difficult to uniformly disperse the ceramic particles.

以上から、本発明の目的は、従来材を凌駕する高強度且つ高耐摩耗性の機械的性質を備えた合金部材を提供することである。   From the above, it is an object of the present invention to provide an alloy member having mechanical properties of high strength and high wear resistance which surpass conventional materials.

上記課題に鑑みて、本発明の合金部材は、柱状晶の組織を有し、その柱状晶の断面組織は、大きく湾曲され、波打つ形状であり、柱状晶の結晶粒内及び結晶粒界に100nm以下のセラミックス粒子が分散された構造とする。   In view of the above problems, the alloy member of the present invention has a columnar crystal structure, the cross-sectional structure of the columnar crystal is greatly curved and has a corrugated shape, and 100 nm in the crystal grains of the columnar crystal and at grain boundaries. The following ceramic particles are dispersed.

本発明は、従来材を凌駕する高強度且つ高耐摩耗性の機械的性質を備えた合金部材を提供できる。   The present invention can provide an alloy member having mechanical properties of high strength and high wear resistance, which are superior to conventional materials.

本発明に係る合金部材の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the alloy member which concerns on this invention. 本発明の合金部材を製造する選択的レーザ溶融法の粉末積層造形装置の一構成例を示す図である。It is a figure which shows one structural example of the powder layer-layer-formation apparatus of the selective laser melting method which manufactures the alloy member of this invention. Zrを添加したSUS304材の化学組成を示す図である。It is a figure which shows the chemical composition of SUS304 material which added Zr. Zrを添加したSUS304材の合金積層造形体の外観写真を示した図である。It is the figure which showed the external appearance photograph of the alloy lamination molded object of the SUS304 material which added Zr. 本発明の合金部材の柱状晶組織の一例を示す図である。It is a figure which shows an example of the columnar-crystal structure | tissue of the alloy member of this invention. 図5Aの柱状晶組織の結晶粒界近傍の高倍像を示す図である。It is a figure which shows the high-magnification image of the grain boundary vicinity of the columnar-crystal structure | tissue of FIG. 5A. 本発明の合金部材の微細組織の一例を示す図である。It is a figure which shows an example of the microstructure of the alloy member of this invention. 図6Aの微細組織の結晶粒界近傍の高倍像を示す図である。It is a figure which shows the high-magnification image of crystal grain boundary vicinity of the microstructure of FIG. 6A. 本発明の合金部材のセラミックス粒子分散組織を透過型電子顕微鏡で撮像した図である。It is the figure which imaged the ceramic particle dispersion structure of the alloy member of this invention with the transmission electron microscope. 本発明の合金部材の室温における0.2%耐力、引張強さの試験結果を示した図である。It is the figure which showed the 0.2% proof stress at room temperature of the alloy member of this invention, and the test result of tensile strength.

(本発明の基本思想)
本発明は、金属粉末積層造形法により作製したセラミックス粒子が分散された合金部材に関する。
(Basic thought of the present invention)
The present invention relates to an alloy member in which ceramic particles produced by a metal powder lamination molding method are dispersed.

以下、本発明の実施形態について、図面を参照しながらセラミックス粒子が分散された合金部材の製造手順に沿って説明する。ただし、本発明は、ここで取り上げた組成、母材に限定されるものではなく、その発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。   Hereinafter, an embodiment of the present invention will be described according to the manufacturing procedure of an alloy member in which ceramic particles are dispersed, with reference to the drawings. However, the present invention is not limited to the composition and the base material taken up here, and appropriate combinations and improvements can be made without departing from the technical concept of the invention.

(材料の製造方法)
図1は、本発明に係る合金部材の製造方法の一例を示す工程図である。図1に示したように、本発明の製造方法は、原料混合溶解工程1とアトマイズ工程2と積層造形工程3と取出工程4を有する。以下、本発明の実施形態をより具体的に説明する。
(Method of manufacturing material)
FIG. 1: is process drawing which shows an example of the manufacturing method of the alloy member which concerns on this invention. As shown in FIG. 1, the manufacturing method of the present invention has a raw material mixing and dissolving step 1, an atomizing step 2, a layer forming step 3 and a removal step 4. Hereinafter, embodiments of the present invention will be described more specifically.

(原料混合溶解工程)
図1に示したように、まず、所望のセラミックスが分散された合金部材となるように母材及びセラミックス粒子を形成する元素を混合及び溶解して溶湯10を形成する原料混合溶解工程1を行う。原料の混合方法や溶解方法に特段の限定はなく、高強度・高耐食性合金の製造における従前の方法を利用できる。例えば、溶解方法として真空溶解を好適に利用できる。
(Raw material mixing and dissolution process)
As shown in FIG. 1, first, the raw material mixing and dissolution step 1 of mixing and dissolving the base material and the elements forming the ceramic particles to form an alloy member in which a desired ceramic is dispersed is performed. . There is no particular limitation on the mixing method and melting method of the raw materials, and a conventional method in the production of a high strength and high corrosion resistance alloy can be used. For example, vacuum dissolution can be suitably used as the dissolution method.

(アトマイズ工程)
次に、溶湯10から合金粉末11を形成するアトマイズ工程2を行う。アトマイズ方法に特段の限定はなく、従前の方法を利用できる。例えば、高純度・均質組成・球形状粒子が得られるガスアトマイズ法や遠心力アトマイズ法を好ましく用いることができる。
(Atomizing process)
Next, the atomizing step 2 of forming the alloy powder 11 from the molten metal 10 is performed. There is no particular limitation on the atomizing method, and a conventional method can be used. For example, a gas atomizing method or a centrifugal atomizing method which can obtain high purity, homogeneous composition and spherical particles can be preferably used.

合金粉末11の平均粒径は、ハンドリング性や充填性の観点から、10μm以上1 mm以下が好ましく、20μm以上500μm以下がより好ましい。平均粒径が10μm未満になると、次工程の積層造形工程3において合金粉末11が舞い上がり易くなり、合金積層造形体の形状精度が低下する要因となる。一方、平均粒径が1 mm超になると、次工程の積層造形工程3において合金積層造形体の表面粗さが増加したり合金粉末11の溶融が不十分になったりする要因となる。   The average particle diameter of the alloy powder 11 is preferably 10 μm or more and 1 mm or less, and more preferably 20 μm or more and 500 μm or less from the viewpoint of handling property and filling property. When the average particle diameter is less than 10 μm, the alloy powder 11 tends to fly up in the subsequent lamination molding process 3, which causes the shape accuracy of the alloy lamination molded body to decrease. On the other hand, when the average particle diameter is more than 1 mm, the surface roughness of the alloy laminate molded body increases in the laminate molding process 3 of the next process, and the melting of the alloy powder 11 becomes insufficient.

(積層造形工程)
次に、上記で用意した合金粉末11を用いた金属粉末積層造形法により、所望形状を有する合金積層造形体101を形成する積層造形工程3を行う。焼結ではなく溶融・凝固によってニアネットシェイプの金属部材を造形する金属粉末積層造形法の適用により、鋳造材と同等以上の硬度とともに、複雑形状を有する三次元部材を作製することができる。積層造形方法に特段の限定はなく、従前の方法を利用できる。例えば、電子ビーム溶融(Electron Beam Melting:EBM)法や選択的レーザ溶融(Selective Laser Melting:SLM)法を用いた金属粉末積層造形法を好適に利用できる。
(Laminated molding process)
Next, a lamination molding process 3 for forming an alloy lamination molded body 101 having a desired shape is performed by the metal powder lamination molding method using the alloy powder 11 prepared above. A three-dimensional member having a complicated shape with hardness equal to or higher than that of a cast material can be produced by applying metal powder lamination molding method of forming a near net shape metal member by melting and solidification instead of sintering. There is no particular limitation on the additive manufacturing method, and a conventional method can be used. For example, a metal powder lamination molding method using an electron beam melting (EBM) method or a selective laser melting (SLM) method can be suitably used.

SLM法による積層造形工程3を説明する。図2は、SLM法の粉末積層造形装置100の構成を示す模式図である。造形しようとする合金積層造形体101の1層厚さ分(例えば、約20〜50μm)でステージ102を下降させる。ステージ102上面上のベースプレート103上にパウダー供給用コンテナ104から合金粉末105を供給し、リコータ106により合金粉末105を平坦化して粉末床107(層状粉末)を形成する(粉末床形成工程)。   The layered manufacturing process 3 by the SLM method will be described. FIG. 2: is a schematic diagram which shows the structure of the powder lamination molding apparatus 100 of a SLM method. The stage 102 is lowered by one layer thickness (for example, about 20 to 50 μm) of the laminated alloy molded object 101 to be formed. The alloy powder 105 is supplied from the powder supply container 104 onto the base plate 103 on the upper surface of the stage 102, and the alloy powder 105 is flattened by the recoater 106 to form a powder bed 107 (layered powder) (powder bed forming step).

次に、造形しようとする合金積層造形体101の3D-CADデータから変換された2Dスライスデータに基づいて、レーザ発信器108から出力されるレーザ109をガルバノメーターミラー110を通してベースプレート103上の未溶融の粉末へ照射し、微小溶融池を形成すると共に、微小溶融池を移動・逐次凝固させることにより、2Dスライス形状の凝固層112を形成する(局所溶融・凝固層形成工程)。なお、未溶融粉末は回収用コンテナ111に回収される。この操作を繰り返して積層することにより、合金積層造形体101を製作する。   Next, based on 2D slice data converted from 3D-CAD data of the alloy laminate molded object 101 to be formed, the laser 109 outputted from the laser transmitter 108 is not melted on the base plate 103 through the galvanometer mirror 110. The powder is irradiated to form a micro molten pool, and the micro molten pool is moved and successively solidified to form a 2D slice-shaped solidified layer 112 (local melting / solidified layer forming step). The unmelted powder is collected in the collection container 111. By repeating this operation and laminating, the alloy laminate molded body 101 is manufactured.

(取出工程)
上記工程で造形した合金積層造形体101は仮焼結体中に埋没しているため、次に、合金積層造形体を取り出す取出工程4を行う。合金積層造形体101の取り出し方法(合金積層造形体101と仮焼結体との分離方法、合金積層造形体101とベースプレート102との分離方法)に特段の限定はなく、従前の方法を利用できる。
(Extracting process)
Since the alloy laminate molded body 101 shaped in the above process is buried in the temporary sintered body, next, the take-out process 4 for taking out the alloy laminate molded body is performed. There is no particular limitation on the method of taking out the alloy laminate molded body 101 (the method of separating the alloy laminate molded body 101 and the temporary sintered body, the method of separating the alloy laminate molded body 101 and the base plate 102), and the conventional method can be used. .

取出工程後の合金積層造形体101から微細組織観察用の試料を採取し、光学顕微鏡および電子顕微鏡を用いて、該試料の微細組織を観察した。   A sample for fine structure observation was taken from the alloy laminate molded body 101 after the taking out step, and the fine structure of the sample was observed using an optical microscope and an electron microscope.

その結果、合金積層造形体101の母相は、微細な柱状晶(平均粒幅10μm以下)が合金積層造形体101の積層方向に沿って林立した組織(いわゆる、急冷凝固組織)を有していた。   As a result, the matrix of the alloy laminate molded body 101 has a structure (so-called rapid solidification structure) in which fine columnar crystals (average grain width 10 μm or less) stand along the lamination direction of the alloy laminate molded body 101 The

さらに詳細に観察したところ、合金積層造形体101は、その母相結晶中に100nm以下のセラミックス粒子が分散析出している様子が観察された。なお、セラミック粒子は均一に分散されていることが望ましい。   Furthermore, when observed in detail, it was observed that in the matrix of the alloy laminate molded body 101, ceramic particles of 100 nm or less were dispersed and precipitated in the crystal of the parent phase. Preferably, the ceramic particles are uniformly dispersed.

また、セラミックス粒子がマトリックス中に分散することにより、結晶粒界の成長がピン止めされた結果、断面組織において粒界が湾曲する形態を呈し、そして微細な結晶粒径を有する組織が得られた。   In addition, as a result of the ceramic grain being dispersed in the matrix, the growth of grain boundaries was pinned, so that the grain boundaries were curved in the cross-sectional structure, and a structure having a fine grain size was obtained. .

以上から、本発明では、セラミックス粒子分散強化型合金の組織制御の検討を進めた結果、結晶、そして結晶粒界の形状、セラミックス粒子の分散状態等を制御することにより、強度、耐磨耗性等の機械的性質を向上できることを見出した。   From the above, in the present invention, as a result of studying the control of the structure of the ceramic particle dispersion strengthened alloy, as a result of controlling the shape of crystal and grain boundaries, the dispersion state of ceramic particles, etc., strength and wear resistance It has been found that mechanical properties such as can be improved.

すなわち、本発明では、セラミックス粒子形成元素を添加した母材粉末を用い、金属粉末積層造形により合金部材を作製する。金属粉末積層造形の局所溶融、急冷凝固により、セラミックス粒子が均一、かつ微細なままマトリックス中に分散させることができた。均一分散したセラミックス粒子のピンニング効果により、結晶粒界の移動が阻害されるため、結晶粒の成長も抑制され、結晶粒径微細化により母材の強度・耐磨耗性を向上させることができた。そして、結晶粒が成長(結晶粒界が移動)する過程において、結晶粒界がセラミックス粒子のピンニングにより大きく湾曲され、結晶粒界が波打つ形状になっていることで、粒界割れの進展を抑制できた。さらに、造形方向に沿った柱状組織を有するため、造形方向のクリープ強度、耐疲労特性をさらに向上できた。   That is, in the present invention, an alloy member is manufactured by metal powder lamination molding using base material powder to which a ceramic particle forming element is added. Local melting and rapid solidification of metal powder laminate molding allowed the ceramic particles to be dispersed uniformly and finely in the matrix. Since the movement of grain boundaries is inhibited by the pinning effect of the uniformly dispersed ceramic particles, the growth of crystal grains is also suppressed, and the strength and wear resistance of the base material can be improved by grain size reduction. The And, in the process of growing crystal grains (moving the grain boundaries), the grain boundaries are greatly curved by the pinning of the ceramic particles, and the grain boundaries have a wavy shape, thereby suppressing the development of intergranular cracks. did it. Furthermore, since it has a columnar structure along the shaping direction, the creep strength in the shaping direction and the fatigue resistance can be further improved.

以下具体的な実施例について説明する。   Specific examples will be described below.

母材SUS304に0.7wt%のZrを添加した合金を適用して、化学組成を図3に示す。この合金粉末をガスアトマイズ法により作製した。平均粒径は26μmであった。取出工程後の合金積層造形体101から図4に示す微細組織観察用の試料を採取した。図中の積層方向はベースプレート102の移動方向を指す。   The chemical composition is shown in FIG. 3 by applying an alloy obtained by adding 0.7 wt% of Zr to the base material SUS304. This alloy powder was produced by gas atomization. The average particle size was 26 μm. The sample for fine structure observation shown in FIG. 4 was extract | collected from the alloy lamination-fabrication molded object 101 after a taking-out process. The stacking direction in the drawing indicates the moving direction of the base plate 102.

図5Aは、本発明の合金部材の柱状晶組織の一例を示す。実施例の合金積層造形体の積層方向に対し平行面のSEM像である。結晶組織は積層方向に伸びた粗大な柱状晶と微細な等軸晶の混在する組織となっている。柱状晶の長軸方向の結晶粒径は40μm以下が望ましく、今回のSEM像では、20〜35 μm程度であり、短軸方向は10 μm程度であった。結晶組織として柱状晶が存在する場合、その長軸方向の強度が短軸方向に比べて強くなってる。   FIG. 5A shows an example of a columnar crystal structure of the alloy member of the present invention. It is a SEM image of a parallel surface with respect to the lamination direction of the alloy lamination three-dimensional model of an example. The crystal structure is a structure in which coarse columnar crystals elongated in the stacking direction and fine equiaxed crystals are mixed. The crystal grain size in the long axis direction of the columnar crystals is desirably 40 μm or less, and in the SEM image of this time, it is about 20 to 35 μm and the short axis direction is about 10 μm. When columnar crystals exist as a crystal structure, the strength in the major axis direction is stronger than that in the minor axis direction.

図5Bは、図5Aの柱状晶の結晶粒界近傍の高倍像である。組織中の白いコントラストの粒子は、セラミックス粒子であり、重量比は、0.5以上5.0以下重量パーセントであり、その大きさは100nm以下であった。なお、セラミックス粒子は、例えば、イットリウム(Y)、チタン(Ti)、バナジウム(V)、クロム(Cr)、アルミニウム(Al)、ハフニウム(Hf)、ジルコニウム(Zr)、マンガン(Mn)、モリブデン(Mo)の酸化物、炭化物、窒化物であることが望ましい。本実施例では、Zrの酸化物、窒化部の存在が確認できた。   FIG. 5B is a high magnification image of the vicinity of the grain boundary of the columnar crystals in FIG. 5A. The white contrast particles in the tissue were ceramic particles, and the weight ratio was 0.5 or more and 5.0 or less weight percent, and the size was 100 nm or less. The ceramic particles are, for example, yttrium (Y), titanium (Ti), vanadium (V), chromium (Cr), aluminum (Al), hafnium (Hf), zirconium (Zr), manganese (Mn), molybdenum The oxide, carbide, nitride of Mo) is desirable. In the present example, the presence of the oxide of Zr and the nitrided portion was confirmed.

図6Aは図5Aの柱状晶の短軸方向の断面の微細組織の一例を示す。実施例の合金積層造形体の積層方向に対し垂直面のSEM像である。垂直面の結晶粒界は通常のものと違い、大きく湾曲され、結晶粒界が波打つ形状になっている。垂直方向の結晶粒径は1μm以下の超微細粒から大きい粒では20μm程度であった。平均結晶粒径は2.8μmであった。   FIG. 6A shows an example of the microstructure of the cross section in the minor axis direction of the columnar crystal of FIG. 5A. It is a SEM image of a surface perpendicular to the lamination direction of the alloy lamination three-dimensional model of an example. The grain boundaries in the vertical plane are greatly curved unlike the normal ones, and the grain boundaries are in a wavy shape. The crystal grain size in the vertical direction was about 20 μm for ultrafine grains of 1 μm or less to large grains. The average grain size was 2.8 μm.

図6Bは、図6Aの粒界近傍の高倍像である。組織中の白いコントラストの粒子は、セラミックス粒子であり、100nm以下のサイズで組織中に分散している様子が観察される。また、結晶粒内のみでなく、結晶粒界にもセラミックス粒子が分散している様子が観察できる。特に、図中に示している結晶粒界は、セラミックス粒子のピン止めにより湾曲していることがわかる。   FIG. 6B is a high magnification image of the vicinity of the grain boundary of FIG. 6A. White contrast particles in the tissue are ceramic particles, and it is observed that they are dispersed in the tissue with a size of 100 nm or less. Further, it can be observed that the ceramic particles are dispersed not only in the crystal grains but also in the grain boundaries. In particular, it is understood that the grain boundaries shown in the figure are curved by pinning of the ceramic particles.

次に、セラミックス粒子分布をより詳細に調査する為に、透過型電子顕微鏡(TEM)を用いて微細組織観察を行った。図 7はセラミックス粒子分散組織の一例を示す透過型電子顕微鏡像であり、図 7(a)は明視野像、図 7(b)は暗視野像である。結晶粒界が曲がっている部分に微細なセラミックス粒子が分布している様子が観察できる。   Next, in order to investigate the ceramic particle distribution in more detail, the fine structure was observed using a transmission electron microscope (TEM). Fig. 7 is a transmission electron microscope image showing an example of the ceramic particle dispersed structure, Fig. 7 (a) is a bright field image, and Fig. 7 (b) is a dark field image. It can be observed that fine ceramic particles are distributed in the portion where the grain boundaries are bent.

Zrを添加したSUS304材のビッカース硬さは265.25であり、JIS G 4303(ステンレス鋼棒)におけるSUS304値以上の硬さを示しており、硬度特性の向上が確認された。   The Vickers hardness of the SUS304 material to which Zr is added is 265.25, which indicates a hardness of JIS G 4303 (stainless steel rod) or more in the SUS304 value, and improvement in the hardness characteristics was confirmed.

図8は、Zrを添加したSUS304材の合金積層造形体の引張特性の試験結果である。荷重方向は積層方向に垂直な方向となるように試験片を採取し、引張試験を行った結果、0.2%耐力および引張強さはそれぞれ536MPa、767MPaであった。図中点線はJIS G 4303のSUS304の強度を示す。結晶粒微細化、及びセラミックス粒子分散効果により、実施例材はSUS304を上回る機械的特性を示したことがわかる。   FIG. 8 shows the test results of the tensile properties of the Zr-added SUS304 alloy laminate molded article. As a result of collecting a test piece so that a load direction might be a direction perpendicular to the lamination direction and performing a tensile test, 0.2% proof stress and tensile strength were 536 MPa and 767 MPa, respectively. The dotted line in the figure shows the strength of SUS304 of JIS G 4303. From the grain refinement and ceramic particle dispersion effects, it can be seen that the example material exhibited mechanical properties superior to SUS304.

本発明に係るセラミックス粒子が分散された合金部材を用いた製造物の一例として、ベアリングがある。   A bearing is an example of a product using an alloy member in which ceramic particles according to the present invention are dispersed.

本発明のセラミックス粒子が分散された合金部材で製造された製造物は、金属粉末積層造形法により製造されることから、ベアリングのような複雑形状物でも容易に造形することができる。   The manufactured product made of the alloy member in which the ceramic particles of the present invention are dispersed is manufactured by the metal powder lamination molding method, so that it can be easily shaped even in a complicated shape such as a bearing.

また、本発明のセラミックス粒子が分散された合金部材を用いたベアリングは、高い強度と高い耐磨耗性を有することから、厳しい応力状態でも優れた耐久性を示すことができる。   In addition, since the bearing using the alloy member in which the ceramic particles of the present invention are dispersed has high strength and high wear resistance, it can exhibit excellent durability even in a severe stress state.

上述した実施形態や実施例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実施例の構成の一部について、削除・他の構成に置換・他の構成の追加をすることが可能である。   The embodiments and examples described above are described in order to help the understanding of the present invention, and the present invention is not limited to only the specific configurations described. For example, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. That is, in the present invention, it is possible to delete, replace, and add other configurations to some of the configurations of the embodiments and examples of the present specification.

1 原料混合溶解工程
2 アトマイズ工程
3 積層造形工程
4 取出工程
10 溶湯
11 合金粉末
100 粉末積層造形装置
101 合金積層造形体
102 ステージ
103 ベースプレート
104 パウダー供給用コンテナ
105 合金粉末
106 リコーダ
107 粉末床
108 レーザ発信器
109 レーザ
110 ガルバノメーターミラー
111 回収用コンテナ
112 凝固層
1 Raw material mixing and dissolution process
2 atomization process
3 Layered molding process
4 Extraction process
10 molten metal
11 alloy powder
100 powder laminate molding machine
101 alloy layered object
102 stages
103 base plate
104 Container for powder supply
105 alloy powder
106 recorder
107 powder bed
108 Laser transmitter
109 laser
110 galvanometer mirror
111 Collection container
112 Coagulation layer

Claims (7)

柱状晶の組織を有し、
前記柱状晶の短軸方向の断面組織は、大きく湾曲され、波打つ形状であり、
前記柱状晶の結晶粒内及び結晶粒界に100nm以下のセラミックス粒子が分散されたことを特徴とする合金部材。
Has a columnar crystal structure,
The cross-sectional structure in the minor axis direction of the columnar crystals is a large curved and corrugated shape,
An alloy member characterized in that ceramic particles of 100 nm or less are dispersed in crystal grains and grain boundaries of the columnar crystals.
請求項1記載の合金部材において、
前記セラミックス粒子は、イットリウム(Y)、チタン(Ti)、バナジウム(V)、クロム(Cr)、アルミニウム(Al)、ハフニウム(Hf)、ジルコニウム(Zr)、マンガン(Mn)、モリブデン(Mo)の酸化物、炭化物、窒化物である、合金部材。
In the alloy member according to claim 1,
The ceramic particles are made of yttrium (Y), titanium (Ti), vanadium (V), chromium (Cr), aluminum (Al), hafnium (Hf), zirconium (Zr), manganese (Mn), molybdenum (Mo) Alloy members that are oxides, carbides and nitrides.
請求項1記載の合金部材において、
前記柱状晶の結晶粒内及び結晶粒界に、前記セラミック粒子が均一分散された、合金部材。
In the alloy member according to claim 1,
An alloy member, in which the ceramic particles are uniformly dispersed in crystal grains and grain boundaries of the columnar crystals.
請求項1乃至3のいずれか1項に記載の合金部材において、
前記セラミックス粒子の重量比は、0.5以上5.0以下重量パーセントである、合金部材。
The alloy member according to any one of claims 1 to 3.
The alloy member, wherein the weight ratio of the ceramic particles is 0.5 or more and 5.0 or less by weight.
請求項1乃至4のいずれか1項に記載の合金部材において、
前記柱状晶組織の長軸方向の結晶粒径は、40μm以下であり、短軸方向の結晶粒径は、10μm以下である、合金部材。
The alloy member according to any one of claims 1 to 4.
The alloy member, wherein the crystal grain size in the long axis direction of the columnar crystal structure is 40 μm or less, and the crystal grain size in the short axis direction is 10 μm or less.
請求項1乃至5のいずれか1項に記載の合金部材において、
前記合金部材は、金属粉末積層造形法により造形された、合金部材。
The alloy member according to any one of claims 1 to 5,
The alloy member, wherein the alloy member is formed by a metal powder lamination molding method.
請求項1乃至6のいずれか1項に記載の合金部材を用いて製造された製造物。   An article manufactured using the alloy member according to any one of claims 1 to 6.
JP2017187402A 2017-09-28 2017-09-28 Alloy member and article produced using the same Pending JP2019060006A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017187402A JP2019060006A (en) 2017-09-28 2017-09-28 Alloy member and article produced using the same
PCT/JP2018/010991 WO2019064641A1 (en) 2017-09-28 2018-03-20 Alloy member and product using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017187402A JP2019060006A (en) 2017-09-28 2017-09-28 Alloy member and article produced using the same

Publications (1)

Publication Number Publication Date
JP2019060006A true JP2019060006A (en) 2019-04-18

Family

ID=65901352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017187402A Pending JP2019060006A (en) 2017-09-28 2017-09-28 Alloy member and article produced using the same

Country Status (2)

Country Link
JP (1) JP2019060006A (en)
WO (1) WO2019064641A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021049538A1 (en) * 2019-09-10 2021-03-18
WO2021066142A1 (en) 2019-10-03 2021-04-08 東京都公立大学法人 Heat-resistant alloy, heat-resistant alloy powder, heat-resistant alloy molded article, and method for producing same
JP2021066933A (en) * 2019-10-24 2021-04-30 日本製鉄株式会社 Integrally-molded component, iron alloy powder and method for producing integrally-molded component
US20210138543A1 (en) * 2019-11-07 2021-05-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Process for the manufacture of an optimised steel material
JP2021075789A (en) * 2019-11-07 2021-05-20 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Optimized steel material
JP2021075790A (en) * 2019-11-07 2021-05-20 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Treatment method for optimized steel material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7141251B2 (en) 2018-06-06 2022-09-22 株式会社日立製作所 Austenitic stainless steel and reactor internals
CN111020347B (en) * 2019-12-30 2021-08-17 广州航海学院 High-density complex phase alloy material and preparation method thereof
CN114131043A (en) * 2021-11-18 2022-03-04 上海电气集团股份有限公司 Method for improving utilization rate of TC4 titanium alloy powder

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09227972A (en) * 1996-02-22 1997-09-02 Nippon Steel Corp Titanium-aluminium intermetallic compound base alloy material having superplasticity and its production
US7531021B2 (en) * 2004-11-12 2009-05-12 General Electric Company Article having a dispersion of ultrafine titanium boride particles in a titanium-base matrix
JP5423092B2 (en) * 2009-03-27 2014-02-19 Jfeスチール株式会社 Steel plate for cans with excellent surface properties after drawing and ironing and method for producing the same
CN103898406B (en) * 2014-03-25 2016-08-24 宝山钢铁股份有限公司 A kind of yield strength 890MPa level low welding crack sensitivity steel plate and manufacture method thereof
US10718038B2 (en) * 2014-09-29 2020-07-21 Hitachi, Ltd. Two-phase alloy, product using said two-phase alloy, and method for producing said product
JP2017025401A (en) * 2015-07-21 2017-02-02 株式会社エビス Metal lamination molding method, lamination molding apparatus, and lamination molding article

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7241325B2 (en) 2019-09-10 2023-03-17 パナソニックIpマネジメント株式会社 Method for manufacturing three-dimensional shaped article, three-dimensional shaped article, and oxide powder used for manufacturing three-dimensional shaped article
WO2021049538A1 (en) * 2019-09-10 2021-03-18 パナソニックIpマネジメント株式会社 Method for producing three-dimensionally shaped article, three-dimensionally shaped article, and oxidized powder used for producing three-dimensionally shaped article
JPWO2021049538A1 (en) * 2019-09-10 2021-03-18
WO2021066142A1 (en) 2019-10-03 2021-04-08 東京都公立大学法人 Heat-resistant alloy, heat-resistant alloy powder, heat-resistant alloy molded article, and method for producing same
US11846006B2 (en) 2019-10-03 2023-12-19 Tokyo Metropolitan Public University Corporation Heat-resistant alloy, heat-resistant alloy powder, heat-resistant alloy structural component, and manufacturing method of the same
JP2021066933A (en) * 2019-10-24 2021-04-30 日本製鉄株式会社 Integrally-molded component, iron alloy powder and method for producing integrally-molded component
JP7401742B2 (en) 2019-10-24 2023-12-20 日本製鉄株式会社 Manufacturing method for integrally molded parts, iron alloy powder, and integrally molded parts
JP2021075790A (en) * 2019-11-07 2021-05-20 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Treatment method for optimized steel material
JP2021075791A (en) * 2019-11-07 2021-05-20 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Manufacturing method for optimized steel material
JP7227206B2 (en) 2019-11-07 2023-02-21 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Optimized steel manufacturing method
JP2021075789A (en) * 2019-11-07 2021-05-20 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Optimized steel material
JP7325393B2 (en) 2019-11-07 2023-08-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ optimized steel material
JP7325394B2 (en) 2019-11-07 2023-08-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Optimized steel processing method
US20210138543A1 (en) * 2019-11-07 2021-05-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Process for the manufacture of an optimised steel material

Also Published As

Publication number Publication date
WO2019064641A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
JP2019060006A (en) Alloy member and article produced using the same
JP6690789B2 (en) Alloy material, product using the alloy material, and fluid machine having the product
JP6849128B2 (en) Mixed powder for metal lamination modeling
Li et al. Progress in additive manufacturing on new materials: A review
US11325189B2 (en) Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same
AU2015294055B2 (en) Method for manufacturing machine components by additive manufacturing
Nematollahi et al. Additive manufacturing of ni-rich nitihf 20: Manufacturability, composition, density, and transformation behavior
CA3061851C (en) Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same
JP2019173175A (en) Manufacturing method of cobalt-based alloy laminate molded body
WO2016013495A1 (en) Alloy structure and manufacturing method of alloy structure
WO2016013496A1 (en) Relating to alloy structure and method for producing alloy structure.
WO2016013494A1 (en) Alloy powder used in fused deposition modeling, and production method of said alloy powder
JP6536927B2 (en) Alloy structure
JP2017222899A (en) Metal powder for laminate molding and laminate molded body using metal powder
WO2020179766A1 (en) Ni-based alloy member comprising additively manufactured article, method for manufacturing ni-based alloy member, and product using ni-based alloy member
CN115673338A (en) Powder bed fusion forming method for realizing structure performance customization of nickel-based alloy by using double lasers and nickel-based alloy part
JP5088532B2 (en) High-strength tool with excellent softening and surface finish characteristics and manufacturing method thereof
Borisov et al. Formation of structure in titanium lightweight structures made by selective laser melting
Babalola et al. Effect of nanocrystalline nickel powder and Co, Mo, ta, and Al additions on isothermal oxidation behavior of Ni–17Cr alloy
JP2019073760A (en) Titanium-based alloy member, method for manufacturing titanium-based alloy member, and product manufactured using titanium-based alloy member
Patil et al. Spark plasma sintering of 13Ni-400 maraging steel: Enhancement of mechanical properties through surface modification
WO2016013493A1 (en) Production method of casting alloy
Paidpilli et al. Sintering Response of Aluminum 6061-TiB 2 Composite: Effect of Prealloyed and Premixed Matrix
RU2771192C1 (en) Powder of a cobalt-based alloy, sintered body made of a cobalt-based alloy, and method for manufacturing a sintered body from a cobalt-based alloy
RU2771192C9 (en) Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for producing cobalt-based alloy sintered body