JP2019044538A - Road surface status arithmetic unit and road surface management system for mine - Google Patents

Road surface status arithmetic unit and road surface management system for mine Download PDF

Info

Publication number
JP2019044538A
JP2019044538A JP2017171544A JP2017171544A JP2019044538A JP 2019044538 A JP2019044538 A JP 2019044538A JP 2017171544 A JP2017171544 A JP 2017171544A JP 2017171544 A JP2017171544 A JP 2017171544A JP 2019044538 A JP2019044538 A JP 2019044538A
Authority
JP
Japan
Prior art keywords
road surface
vehicle
detour
traveling
surface unevenness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017171544A
Other languages
Japanese (ja)
Other versions
JP6684254B2 (en
Inventor
啓範 石井
Keihan Ishii
啓範 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2017171544A priority Critical patent/JP6684254B2/en
Publication of JP2019044538A publication Critical patent/JP2019044538A/en
Application granted granted Critical
Publication of JP6684254B2 publication Critical patent/JP6684254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Traffic Control Systems (AREA)
  • Road Repair (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

To provide a road surface status arithmetic unit and a road surface management system for mine which estimates the irregularity on a bypassed road surface.SOLUTION: A travel road surface irregularity level on a road surface on which a work vehicle has actually traveled is computed based on vehicle positional information and vehicle body vibration information measured by a work vehicle while traveling; it is determined whether the work vehicle is bypassing by comparing the position of an own vehicle with a reference track map; when the vehicle bypassed, a bypass start point and a bypass completion point are computed to determine whether the work vehicle has bypassed from the reference track; a higher level than a travel road surface irregularity level is assigned as a bypass road surface irregularity level in a bypass segment which is the reference track between the bypass start point and the bypass completion point; and the bypass road surface irregularity level and the travel road surface irregularity level are synthesized to generate a road surface irregularity map.SELECTED DRAWING: Figure 5

Description

本発明は路面状況演算装置及び鉱山の路面管理システムに係り、特に鉱山内に設けられた未舗装路面の凹凸状況を管理する路面状況演算装置及び鉱山の路面管理システムに関する。   The present invention relates to a road surface condition calculating device and a road surface management system of a mine, and more particularly to a road surface condition calculating device and a road surface management system of a mine for managing unevenness of an unpaved road surface provided in a mine.

鉱山の採掘現場では、ダンプトラックなどの運搬車両が走行する路面は舗装されていないため、運搬車両が繰り返し走行することで、路面が劣化してくる。路面が悪化すると走行速度、燃料消費量、車体へのダメージ、全ての面において悪影響が出るため、鉱山ではブルドーザーやモーターグレーダーなどの路面補修機械を投入し、定期的に走行路面の保守を行っている。そこで、鉱山現場では走行路面の保守管理の効率化を行いたい要求がある。   At the mining site of a mine, the road surface on which a haul vehicle such as a dump truck travels is not paved, and the road surface is degraded by the haul vehicle traveling repeatedly. If the road surface gets worse, the running speed, fuel consumption, damage to the car body, etc. will be adversely affected in all aspects, so in the mine, install road repair machines such as bulldozers and motor graders, and periodically maintain the running road surface. There is. Therefore, there is a demand to improve the maintenance management of the traveling road surface at the mine site.

走行路面の保守管理を効率的に行う従来例として、特許文献1には、運搬車両が路面情報を取得し、取得した路面情報を鉱山管理装置に送信し、鉱山管理装置の路面状況解析部において、路面情報から凹凸イベントを算出し、路面凹凸イベントの発生頻度から路面の整備に関する指標を作成する記載がある。   As a conventional example for efficiently performing maintenance management of a traveling road surface, according to Patent Document 1, the transport vehicle acquires road surface information, transmits the acquired road surface information to the mine management device, and the road surface condition analysis unit of the mine management device There is a description of calculating an unevenness event from road surface information, and creating an index regarding maintenance of the road surface from the occurrence frequency of the road unevenness event.

特開2013−105278号公報JP, 2013-105278, A

走行路面の凹凸が運搬車両の走行そのものに支障を来すほど大きな場合、オペレータの判断により運搬車両が凹凸の大きい部分を迂回して走行することが考えられる。しかしながら、特許文献1では運搬車両が走行した経路の凹凸のみが認識でき、運搬車両が迂回走行した場合、迂回された路面の凹凸状況は把握できない。   If the irregularities of the traveling road surface are large enough to interfere with the traveling of the transport vehicle itself, it is conceivable that the transporter vehicle travels by bypassing the portion with large irregularities by the judgment of the operator. However, in Patent Document 1, it is possible to recognize only the unevenness of the route along which the transport vehicle travels, and when the transport vehicle travels by detour, it is not possible to grasp the concavity and convexity state of the detoured road surface.

そこで本発明は、前記実情に鑑み、迂回された路面の凹凸を推定する路面状況演算装置及び鉱山の路面管理システムを提供することを目的とする。   Then, in view of the said situation, an object of this invention is to provide the road surface management apparatus and road surface management system of a mine which estimate the unevenness of the bypassed road surface.

上記課題を解決するために、本発明は特許請求の範囲に記載の構成を備える。その一例をあげるならば、作業車両が走行する路面の凹凸状況を演算する路面状況演算装置であって、前記作業車両は、自車の位置を検出して車両位置情報を出力する車両位置検出装置、及び走行中に前記作業車両の車体に発生する振動を検出して車体振動情報を出力する車体振動検出装置を搭載し、前記車両位置検出装置及び前記車体振動検出装置の其々は前記路面状況演算装置に接続され、前記路面状況演算装置は、予め規定された前記作業車両の基準走行路を示す基準走行路地図を記憶する基準走行路地図記憶部と、前記車両位置情報及び前記車体振動情報に基づいて、前記作業車両が実際に走行した路面の前記自車の位置における走行路面凹凸レベルを演算する走行路面凹凸演算部と、前記自車の位置及び前記基準走行路地図の比較結果を基づいて、前記基準走行路から迂回したか否かを判定し、迂回したと判定した場合には前記基準走行路において迂回のために離脱し始めた迂回開始点及び前記基準走行路に復帰した迂回終了点を演算する迂回判定部と、前記迂回中に得られた前記走行路面凹凸レベルよりも高い凹凸レベルを、前記基準走行路における前記迂回開始点から前記迂回終了点までの区間に相当する迂回区間の迂回路面凹凸レベルとして割り当てる迂回路面凹凸推定部と、前記走行路面凹凸レベル及び前記迂回路面凹凸レベルを合成して、前記基準走行路の路面の凹凸を示す路面凹凸地図を生成する路面凹凸地図生成部とを備える、ことを特徴とする。   In order to solve the above-mentioned subject, the present invention comprises the composition indicated in a claim. One example is a road surface condition calculation device that calculates the unevenness condition of the road surface on which the work vehicle travels, and the work vehicle detects the position of the own vehicle and outputs the vehicle position information. And a vehicle body vibration detection device for detecting vibration generated in the vehicle body of the work vehicle during traveling to output vehicle body vibration information, and the vehicle position detection device and the vehicle body vibration detection device each have the road surface condition A reference traveling road map storage unit connected to an arithmetic device, the road surface condition arithmetic device storing a reference traveling road map indicating a predetermined reference traveling road of the work vehicle, the vehicle position information, and the vehicle body vibration information Comparing the position of the vehicle with the reference road map and the traveling road surface asperity calculation unit for calculating the traveling road surface unevenness level at the position of the vehicle on the road surface actually traveled by the work vehicle Based on the result, it is determined whether or not the detour is made from the reference traveling path, and if it is determined that the detouring has been made, the detouring start point at which the departure is started for detouring in the reference traveling path and the reference traveling path The detour determination unit that calculates the detour end point, and the unevenness level higher than the traveling road surface unevenness level obtained during the detour corresponds to the section from the detour start point to the detour end point on the reference traveling path The road surface unevenness map that indicates the road surface unevenness of the reference travel path is generated by combining the traveling road surface unevenness estimation unit, which is assigned as the bypass road surface unevenness level of the bypassing section, the traveling road surface unevenness level and the bypass road surface unevenness level And an unevenness map generation unit.

本発明によれば、迂回された路面の凹凸を推定する路面状況演算装置及び鉱山の路面管理システムを提供することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   According to the present invention, it is possible to provide a road surface condition calculation device for estimating unevenness of a bypassed road surface and a road surface management system of a mine. Problems, configurations, and effects other than those described above will be apparent from the description of the embodiments below.

鉱山全体を示す概念図Conceptual diagram showing the entire mine 第1の実施形態に係る鉱山の路面管理システムの構成を示すブロック図Block diagram showing the configuration of the road surface management system of the mine according to the first embodiment 第1の実施形態に係る交通管制装置の構成を示すブロック図Block diagram showing the configuration of the traffic control device according to the first embodiment 路面状況演算装置のハードウェア構成を示すブロック図Block diagram showing the hardware configuration of the road surface condition calculation device 鉱山の路面管理システムで実行される処理の概要を示すフローチャートFlow chart showing an outline of the process performed by the road surface management system of the mine 基準走行路地図の例を示す図Figure showing an example of a reference road map 迂回判定部の処理の流れを示すフローチャートFlow chart showing the flow of processing of the detour determination unit 迂回開始判定処理の流れを示すフローチャートFlow chart showing a flow of detour start determination processing 迂回終了判定処理の流れを示すフローチャートFlow chart showing the flow of detour end determination processing 迂回開始判定の基準を表す概念図Conceptual diagram representing the criteria for determining the detour start 迂回終了判定の基準を表す概念図Conceptual diagram showing the criteria for determining the end of detour 路面凹凸地図を表す概念図Conceptual diagram of road surface unevenness map 本発明の変形例に係わる鉱山の路面管理システムの構成を示すブロック図Block diagram showing the configuration of a road surface management system of a mine according to a modification of the present invention 本発明の変形例に係わる鉱山の路面管理システムの構成を示すブロック図Block diagram showing the configuration of a road surface management system of a mine according to a modification of the present invention

以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、実施形態を説明するための全図において、同一の機能を有する部材には同一又は関連する符号を付し、その繰り返しの説明は省略する。また、以下の実施形態では、特に必要なとき以外は同一又は同様な部分の説明を原則として繰り返さない。   Hereinafter, embodiments of the present invention will be described in detail based on the drawings. In all the drawings for describing the embodiments, members having the same function are denoted by the same or related reference numerals, and the repeated description thereof will be omitted. Moreover, in the following embodiments, the description of the same or similar parts will not be repeated in principle unless particularly required.

[第1の実施形態]
本発明の第1の実施形態を図面に基づいて説明する。
First Embodiment
A first embodiment of the present invention will be described based on the drawings.

<鉱山現場>
図1は、本発明の第1の実施形態における鉱山現場の概略構成を示す図である。鉱山現場では、図1で示すように、掘削作業や積込作業等を行う複数台の積込機械1と、積込機械1で掘削された砕石や土砂等の掘削物を、積込機械1が位置する積込場から放土場へ運搬する複数の運搬車両2とが稼働している。運搬車両2が走行する路面は舗装されておらず、運搬車両2の重量が大きいため、運搬車両2の走行に伴い路面状況が悪化してくる。そのため、悪化した路面を修復する複数の整地車両3が稼働している。本実施形態では作業車両の例として運搬車両2を用いているが、作業車両は運搬車両2に限らず、ライトビークルであってもよい。
<Mine site>
FIG. 1 is a view showing a schematic configuration of a mining site in the first embodiment of the present invention. At the mine site, as shown in FIG. 1, a plurality of loading machines 1 for performing excavating work, loading work and the like, and excavated materials such as crushed stone and earth and sand excavated by the loading machine 1 can be loaded machine 1 A plurality of transport vehicles 2 for transporting from the loading site where is located to the dumping site are in operation. Since the road surface on which the transport vehicle 2 travels is not paved, and the weight of the transport vehicle 2 is large, the road surface condition becomes worse as the transport vehicle 2 travels. Therefore, a plurality of ground adjustment vehicles 3 that restore the deteriorated road surface are operating. In the present embodiment, the transport vehicle 2 is used as an example of the work vehicle, but the work vehicle is not limited to the transport vehicle 2 and may be a light vehicle.

管理端末4は、無線中継局5を介し、積込機械1や運搬車両2や整地車両3の車両位置情報やセンサ情報などの稼働情報を収集したり、各車両の運行を管理する。収集した情報は表示装置41(図2参照)に表示される。鉱山管理者は管理端末4を介して、各積込機械や各作業車両の稼働情報をモニタリングしている。   The management terminal 4 collects, via the wireless relay station 5, operation information such as vehicle position information and sensor information of the loading machine 1, the transporting vehicle 2 and the ground leveling vehicle 3, and manages the operation of each vehicle. The collected information is displayed on the display device 41 (see FIG. 2). The mine manager monitors the operation information of each loading machine and each work vehicle via the management terminal 4.

<構成>
図2〜図3を参照して鉱山の路面管理システムの構成について説明する。図2は、第1の実施形態に係る鉱山の路面管理システムの構成を示すブロック図である。図3は、第1の実施形態に係る交通管制装置の構成を示すブロック図である。
<Configuration>
The configuration of a road surface management system of a mine will be described with reference to FIGS. FIG. 2 is a block diagram showing the configuration of a road surface management system of a mine according to the first embodiment. FIG. 3 is a block diagram showing the configuration of the traffic control device according to the first embodiment.

本実施形態に係る鉱山の路面管理システムは、図2に示すように、運搬車両2と、管理端末4とを無線通信接続して構成される。   The road surface management system of the mine according to the present embodiment is configured by wirelessly connecting the transport vehicle 2 and the management terminal 4 as shown in FIG.

運搬車両2は、路面の凹凸状況を演算する路面状況演算装置10と、GNSS衛星からGNSS衛星データを受信するGNSS受信アンテナ11と、運搬車両2の加速度、特に上下方向加速度を計測する加速度センサ12と、管理端末4との通信を行う車両側無線通信装置13とを備える。加速度センサ12は車体振動検出装置の一例であり、上下方向加速度は車体振動情報の一例である。   The transporter vehicle 2 includes a road surface condition computing device 10 that computes the surface roughness condition, a GNSS receiving antenna 11 that receives GNSS satellite data from GNSS satellites, and an acceleration sensor 12 that measures the acceleration of the transporter vehicle 2, particularly the vertical acceleration. And a vehicle-side wireless communication device 13 that communicates with the management terminal 4. The acceleration sensor 12 is an example of a vehicle body vibration detection device, and the vertical acceleration is an example of vehicle body vibration information.

<路面状況演算装置>
路面状況演算装置10は、GNSS受信アンテナ11から得たGNSS衛星データを基に運搬車両2の現在位置を演算する自己位置演算部14と、鉱山内において予め規定された運搬車両2の基準走行路地図情報を記憶する基準走行路地図記憶部15と、運搬車両2の自車の位置及び基準走行路地図の比較結果を基づいて、基準走行路から迂回したか否かを判定し、迂回したと判定した場合には基準走行路において迂回のために離脱し始めた迂回開始点及び基準走行路に復帰した迂回終了点を演算する迂回判定部16と、運搬車両2が走行している自車の位置における走行路面凹凸レベルを演算する走行路面凹凸演算部17と、迂回中に得られた走行路面凹凸レベルよりも高い凹凸レベルを、基準走行路における迂回開始点から迂回終了点までの区間に相当する迂回区間の迂回路面凹凸レベルとして割り当てる迂回路面凹凸推定部18と、走行路面凹凸レベル及び迂回路面凹凸レベルを合成して基準走行路及び迂回して走行した路面の路面凹凸レベルを表す路面凹凸地図を生成する路面凹凸地図生成部19と、迂回判定距離記憶部20と、を備える。GNSS受信アンテナ11は車両位置検出装置のパーツであり、慣性計測装置を用いてもよい。
<Road surface condition calculation device>
The road surface condition arithmetic unit 10 calculates a current position of the transporter vehicle 2 based on GNSS satellite data obtained from the GNSS receiving antenna 11, and a reference traveling route of the transporter vehicle 2 defined in advance in the mine. Based on the comparison result of the reference traveling route map storage unit 15 storing the map information, the position of the vehicle of the transport vehicle 2 and the reference traveling route map, it is determined whether or not the detouring from the reference traveling route is made When it is determined, the detour determination unit 16 that calculates the detour start point that has started to leave for detouring on the reference travel path and the detour end point that has returned to the reference travel path; The traveling road surface unevenness calculation unit 17 that calculates the traveling road surface unevenness level at the position, and the unevenness level higher than the traveling road surface unevenness level obtained during the detour from the detour start point to the detour end point on the reference road The detour road surface unevenness estimation unit 18 to be assigned as the detour road surface unevenness level of the detour section corresponding to the section of the road, the traveling road surface unevenness level and the detour road surface unevenness level are synthesized and the road surface unevenness level of the reference traveling path and the road surface A road surface unevenness map generating unit 19 that generates a road surface unevenness map to be represented, and a detour determination distance storage unit 20 are provided. The GNSS receiving antenna 11 is a part of a vehicle position detection device, and may use an inertial measurement device.

<管理端末>
管理端末4は、運搬車両2との通信を行う管理側無線通信装置40と、路面状況演算装置10から受信した路面凹凸地図情報を表示する表示装置41と、交通管制装置42とを備える。管理端末4の管理側無線通信装置40及び運搬車両2の車両側無線通信装置13は、無線通信回線を介して通信接続される。
<Management terminal>
The management terminal 4 includes a management-side wireless communication device 40 that communicates with the transport vehicle 2, a display device 41 that displays the road surface unevenness map information received from the road surface condition calculation device 10, and a traffic control device 42. The management-side wireless communication device 40 of the management terminal 4 and the vehicle-side wireless communication device 13 of the transport vehicle 2 are communicably connected via a wireless communication line.

図3に示すように、交通管制装置42は、車両位置情報取得部51と、取得した車両位置情報を記憶する車両位置情報記憶部52と、RTC(Real-Time Clock)53と、RTC53から時間情報を取得して車両位置情報が示す運搬車両2の位置が変化するまでの経過時間を計測する経過時間計測部54と、車両が停止していると判定するための時間により定義された停止判定閾値を記憶する停止判定閾値記憶部55と、運搬車両2の位置が変化するまでの経過時間が停止判定閾値以上であるかを判定する停止判定部56と、停止判定部56により経過時間が停止判定閾値以上であると判定された場合に、停止車両がいる位置を示す停止車両情報を生成して管理側無線通信装置40に出力する停止車両情報生成部57と、車両位置情報記憶部52に記憶された車両位置情報を基に、鉱山内に存在する運搬車両2の位置をマッピングした交通管制情報を生成し、表示装置41に出力する交通管制部58とを含む。   As shown in FIG. 3, the traffic control device 42 uses a vehicle position information acquisition unit 51, a vehicle position information storage unit 52 that stores the acquired vehicle position information, an RTC (Real-Time Clock) 53, and a time from the RTC 53. Stop determination defined by the elapsed time measurement unit 54 that measures the elapsed time until the position of the transport vehicle 2 indicated by the vehicle position information changes by acquiring information and measuring the time, and the time for determining that the vehicle is stopped A stop determination threshold storage unit 55 for storing a threshold, a stop determination unit 56 for determining whether an elapsed time until the position of the transport vehicle 2 changes is equal to or more than the stop determination threshold, and the elapsed time is stopped by the stop determination unit 56 In the stop vehicle information generation unit 57 that generates stop vehicle information indicating the position where the stop vehicle is located and outputs it to the management side wireless communication device 40 when it is determined that the determination threshold value or more, the vehicle position information storage unit 52 Record Based on the vehicle position information, and a traffic control portion 58 generates the traffic control information obtained by mapping the position of the transport vehicle 2 present in the mine, and outputs to the display device 41.

管理側無線通信装置40は、鉱山内を走行する全ての運搬車両2に向けて停止車両情報をブロードキャスト送信してもよい。   The management-side wireless communication device 40 may broadcast stop vehicle information to all the transport vehicles 2 traveling in the mine.

又は停止車両情報生成部57は交通管制情報を参照し、停止車両情報が示す停止車両位置から予め定めた範囲内に存在する運搬車両2を特定して、特定した運搬車両2に向けて管理側無線通信装置40を介して停止車両情報を送信してもよい。   Alternatively, the stop vehicle information generation unit 57 refers to the traffic control information, specifies the transport vehicle 2 existing in a predetermined range from the stop vehicle position indicated by the stop vehicle information, and directs the specified transport vehicle 2 to the management side. The stopped vehicle information may be transmitted via the wireless communication device 40.

図4は、路面状況演算装置のハードウェア構成を示すブロック図である。路面状況演算装置10は、CPU101、ROM102、RAM103、HDD104、入力インターフェース(I/F)105、出力I/F106を含みこれらがバス107を介して互いに接続された制御装置を用いて構成される。管理端末4も上記と同様の構成を含む。図2に示す路面状況演算装置10の各機能部及び図3に示す交通管制装置42は、各機能を実現するソフトウェアと図4に示すハードsウェアとが協働することで構成されてもよいし、各機能を実現する集積回路により構成されてもよい。   FIG. 4 is a block diagram showing the hardware configuration of the road surface condition calculation device. The road surface condition arithmetic device 10 is configured using a control device including a CPU 101, a ROM 102, a RAM 103, an HDD 104, an input interface (I / F) 105, and an output I / F 106, which are connected to one another via a bus 107. The management terminal 4 also includes the same configuration as described above. Each functional unit of the road surface condition arithmetic device 10 shown in FIG. 2 and the traffic control device 42 shown in FIG. 3 may be configured by cooperation of software for realizing each function and hardware shown in FIG. 4 And may be configured by an integrated circuit that implements each function.

<処理>
図5及び図6を参照して鉱山の路面管理システムの処理の概要について説明する。図5は、鉱山の路面管理システムで実行される処理の概要を示すフローチャートである。図6は、基準走行路地図の例を示す図である。鉱山の路面管理システムが起動すると一連の処理が開始する(S1)。運搬車両2が走行中、路面状況演算装置10は自車の位置を検出して車両位置情報及び走行中の車体振動を示す車体振動情報を取得する(S2)。走行路面凹凸演算部17は、車体振動情報を基に走行路面凹凸レベルを演算し(S3)、走行路面凹凸レベルを示す走行路面凹凸レベル情報を路面凹凸地図生成部19に出力する。
<Processing>
An outline of processing of a road surface management system of a mine will be described with reference to FIGS. 5 and 6. FIG. 5 is a flowchart showing an outline of processing executed by the road surface management system of the mine. FIG. 6 is a diagram showing an example of a reference driving route map. When the road surface management system of the mine starts up, a series of processing starts (S1). While the transport vehicle 2 is traveling, the road surface condition arithmetic unit 10 detects the position of the vehicle and acquires vehicle position information and vehicle vibration information indicating vehicle vibration during traveling (S2). The traveling road surface unevenness calculation unit 17 calculates the traveling road surface unevenness level based on the vehicle body vibration information (S3), and outputs traveling road surface unevenness level information indicating the traveling road surface unevenness level to the road surface unevenness map generation unit 19.

一方、迂回判定部16は、車両位置情報と基準走行路地図とを比較して迂回判定を行う(S4)。迂回している場合には、迂回路面凹凸推定部18が迂回路の迂回路面凹凸レベルを予め定められた条件に従って推定し(S5)、迂回路面凹凸レベルを示す走行路面凹凸レベル情報を路面凹凸地図生成部19へ出力する。   On the other hand, the detour determination unit 16 compares the vehicle position information with the reference travel route map to perform detour determination (S4). When detouring, the detour road surface unevenness estimation unit 18 estimates the detour road surface unevenness level of the detour road according to a predetermined condition (S5), and the traveling road surface unevenness level information indicating the detour road surface unevenness level is the road surface unevenness map It is output to the generation unit 19.

ステップ5の後、又は迂回していない場合にはステップ6へ移行する。路面凹凸地図生成部19は走行路面凹凸レベル及び迂回路面凹凸レベルを合成して路面凹凸地図を生成する(S6)。これらの処理は、鉱山の路面管理システムがシャットダウンされると終了する(S7)。   After step 5 or when not diverted, the process moves to step 6. The road surface unevenness map generation unit 19 combines the traveling road surface unevenness level and the bypass road surface unevenness level to generate a road surface unevenness map (S6). These processes end when the road surface management system of the mine is shut down (S7).

以下、上記各ステップの処理について詳細に説明する。   The process of each of the above steps will be described in detail below.

<自己位置演算部14:S2>
自己位置演算部14は、GNSS受信アンテナ11から複数のGNSS衛星データを取得し、車両位置141(図10A、図10B参照)を算出する。ここで算出する車両位置は、鉱山現場を平面と仮定し高さを無視した2次元情報である。自己位置演算部14は、車両位置141を示す車両位置情報を迂回判定部16と走行路面凹凸演算部17とに渡す。
<Self Position Calculation Unit 14: S2>
The self-position calculating unit 14 acquires a plurality of GNSS satellite data from the GNSS receiving antenna 11, and calculates a vehicle position 141 (see FIGS. 10A and 10B). The vehicle position calculated here is two-dimensional information in which the mine site is assumed to be a plane and the height is ignored. The self position calculation unit 14 passes vehicle position information indicating the vehicle position 141 to the detour determination unit 16 and the traveling road surface unevenness calculation unit 17.

<走行路面凹凸演算部17:S3>
走行路面凹凸演算部17は、加速度センサ12から運搬車両2の上下方向加速度を取得し、走行路面凹凸レベルを演算する。運搬車両2の上下方向加速度から走行路面凹凸レベルを算出する方法例として、例えば特許文献(特許第4220929号)に記載の方法を用いてもよい。本実施形態では、図11に示すように上下方向加速度から算出する走行路面凹凸レベルを5段階とし、凹凸の大きい方をレベル5、小さい方をレベル1とする。
<Travel road surface unevenness computing unit 17: S3>
The traveling road surface unevenness computing unit 17 obtains the vertical acceleration of the transport vehicle 2 from the acceleration sensor 12 and computes the traveling road surface unevenness level. As an example of a method of calculating the traveling road surface unevenness level from the vertical acceleration of the transport vehicle 2, for example, the method described in Patent Document (Japanese Patent No. 4220929) may be used. In the present embodiment, as shown in FIG. 11, the traveling road surface unevenness level calculated from the vertical acceleration is set to five levels, and the larger unevenness is regarded as level 5 and the smaller unevenness is regarded as level 1.

更に、走行路面凹凸演算部17は、自己位置演算部14から車両位置情報を取得し、車両位置と走行路面凹凸レベルとを関連付けた走行路面凹凸レベル情報を生成し、路面凹凸地図生成部19に渡す。   Furthermore, the traveling road surface unevenness computing unit 17 acquires vehicle position information from the self position computing unit 14, generates traveling road surface unevenness level information in which the vehicle position and traveling road surface unevenness level are associated, and the road surface unevenness map generating unit 19 hand over.

<基準走行路地図記憶部15>
基準走行路地図記憶部15は、前もって作成された鉱山における運搬車両2の基準走行路地図を保持している。図6に示すように、基準走行路地図で鉱山現場を平面と仮定し高さを無視した2次元情報により構成され、基準走行路201と、積込機械1から運搬車両2への積込み作業をおこなう積込エリア202と、運搬車両2が土砂の放土作業を行う放土エリア203とが其々規定されている。基準走行路地図記憶部15は、基準走行路地図を迂回判定部16と迂回路面凹凸推定部18とに渡す。
<Reference road map storage unit 15>
The reference travel route map storage unit 15 holds a reference travel route map of the transport vehicle 2 in the mine created in advance. As shown in FIG. 6, it is composed of two-dimensional information in which the mine site is assumed to be a flat surface and the height is neglected in the reference traveling route map, and the loading operation from the loading vehicle 1 to the transport vehicle 2 is performed. A loading area 202 to be performed and a release area 203 to which the transport vehicle 2 performs release work of soil are often defined. The reference travel road map storage unit 15 passes the reference travel road map to the detour determination unit 16 and the detour road surface unevenness estimation unit 18.

<迂回判定部16:S4>
迂回判定部16は、基準走行路地図記憶部15から受け取った基準走行路地図上に、自己位置演算部14から受け取った車両位置141(図10A、図10B参照)を追加し、車両位置141と、基準走行路201と、積込エリア202と、放土エリア203とを比較することで、運搬車両2の迂回判定を行い、迂回開始点161と迂回終了点162とを算出する。
<Detour determination unit 16: S4>
The detour determination unit 16 adds the vehicle position 141 (see FIGS. 10A and 10B) received from the self-location calculation unit 14 on the reference travel route map received from the reference travel route map storage unit 15 and By comparing the reference travel path 201, the loading area 202, and the release area 203, the detour determination of the transport vehicle 2 is performed, and the detour start point 161 and the detour end point 162 are calculated.

迂回判定部16の具体的な処理ステップについて、図7〜図11を参照して説明する。図7は、迂回判定部の処理の流れを示すフローチャートである。図8は、迂回開始判定処理の流れを示すフローチャートである。図9は、迂回終了判定処理の流れを示すフローチャートである。図10Aは、迂回開始判定の基準を表す概念図である。図10Bは、迂回終了判定の基準を表す概念図である。図11は、路面凹凸地図を表す概念図である。   Specific processing steps of the detour determining unit 16 will be described with reference to FIGS. 7 to 11. FIG. 7 is a flowchart showing the flow of processing of the detour determination unit. FIG. 8 is a flowchart showing the flow of the bypass start determination process. FIG. 9 is a flowchart showing the flow of the bypass end determination process. FIG. 10A is a conceptual diagram showing the criteria for determining the detour start. FIG. 10B is a conceptual diagram showing the criteria for determining the end of the detour. FIG. 11 is a conceptual view showing a road surface unevenness map.

図7に示すように、迂回判定処理(S4)が開始すると、積込放土判定処理(S41)が実行される。積込放土判定処理(S41)では、車両位置141と、積込エリア202と、放土エリア203とを比較し、運搬車両2の車両位置141が積込エリア202あるいは放土エリア203外にある場合、運搬車両2が走行路を走行中と判定し、迂回開始判定処理(S42)に移行する。   As shown in FIG. 7, when the detour determination process (S4) starts, a loading / unloading determination process (S41) is executed. In the loading / unloading determination process (S41), the vehicle position 141, the loading area 202, and the release area 203 are compared, and the vehicle position 141 of the transport vehicle 2 is out of the loading area 202 or the release area 203. If there is, it is determined that the transport vehicle 2 is traveling on the traveling path, and the process proceeds to the bypass start determination process (S42).

一方、車両位置141が積込エリア202あるいは放土エリア203内にある場合、路面凹凸地図の生成ステップ(S6)に移行する。   On the other hand, when the vehicle position 141 is in the loading area 202 or the release area 203, the process proceeds to the road surface unevenness map generation step (S6).

一般的に、積込エリア202あるいは放土エリア203は、ある程度の広さを有する領域であり、運搬車両2の基準走行路201が無く、迂回という概念が適さない場合がある。そこで、本実施形態では、運搬車両2が積込エリア202あるいは放土エリア203内に存在する場合、迂回判定処理を終了している。なお、積込エリア202あるいは放土エリア203内においても基準走行路201を設定してもよく、その場合はステップ41をスキップして、迂回開始判定処理(S42)に移行しても良い。   Generally, the loading area 202 or the release area 203 is an area having a certain size, there is no reference traveling path 201 of the transport vehicle 2, and the concept of detour may not be suitable. Therefore, in the present embodiment, when the transport vehicle 2 exists in the loading area 202 or the release area 203, the detour determining process is ended. Note that the reference traveling path 201 may be set also in the loading area 202 or the discharge area 203, and in that case, step 41 may be skipped to shift to the bypass start determination processing (S42).

本実施形態では、迂回開始判定処理(S42)において、停止車両の有無、及び停止車両がある場合には停止車両と運搬車両2との位置関係に基づいて、迂回開始判定処理を行うか否かの判定処理を行う。   In the present embodiment, in the detour start determination process (S42), whether or not the detour start determination process is performed based on the presence or absence of the stopped vehicle and the positional relationship between the stopped vehicle and the transport vehicle 2 when the stopped vehicle is present. The determination process of

図8に示すように、迂回開始判定処理(S42)において、迂回判定部16は、管理端末4から停止車両情報を受信していなければ(S421/No)、停止車両に起因する迂回ではないことから、ステップ423へ進む。   As shown in FIG. 8, in the detour start determination process (S42), if the detour determination unit 16 has not received the stopped vehicle information from the management terminal 4 (S421 / No), the detour is not due to the stopped vehicle. Then, the process proceeds to step 423.

一方、迂回判定部16が、管理端末4から停止車両情報を受信しており(S421/Yes)、車両位置が停止車両位置から所定の距離範囲内に含まれない場合も(S422/No)、停止車両に起因する迂回ではないことから、ステップ423へ進む。上記「所定の距離範囲内」とは、停止車両をよけて走行するために基準走行路を逸脱しなければならない距離を基準に定められる距離範囲である。一例として、停止車両位置を中心とし、基準走行路に沿って進行方向手前に、停止車両の車体長のn倍の距離範囲として定めてもよい。   On the other hand, even when the detour determination unit 16 receives stopped vehicle information from the management terminal 4 (S421 / Yes) and the vehicle position is not included in the predetermined distance range from the stopped vehicle position (S422 / No), Since it is not a detour due to a stopped vehicle, the process proceeds to step 423. The above-mentioned "within a predetermined distance range" is a distance range which is determined on the basis of the distance which must deviate from the reference traveling path in order to travel a stationary vehicle. As an example, it may be defined as a distance range n times the body length of the stopped vehicle, with the stopped vehicle position as the center, along the reference traveling path and in the forward direction of travel.

一方、迂回判定部16が、運搬車両2の車両位置が、停止車両位置から所定の距離範囲内に含まれると判定した場合(S422/Yes)、停止車両に起因する迂回であるため、迂回判定をすることなく、ステップ6へ移行する。   On the other hand, when the detour determination unit 16 determines that the vehicle position of the transport vehicle 2 is included in the predetermined distance range from the stopped vehicle position (S422 / Yes), the detour determination is because the detour is caused by the stopped vehicle. Proceed to step 6 without doing

迂回判定部16は、停止車両に起因しない迂回があると判定すると、図10Aに示すように、運搬車両2の車両位置141と基準走行路201との最短距離を迂回判定距離dとして演算し(S423)、迂回判定距離dが予め設定した迂回開始判定距離d1より大きくなった場合(d>d1)(S424/Yes)、運搬車両2が迂回を開始したと判定し、迂回開始点設定処理(S43)に移行する。   When the detour determination unit 16 determines that there is a detour not caused by the stopped vehicle, as shown in FIG. 10A, the detour determination unit 16 calculates the shortest distance between the vehicle position 141 of the transport vehicle 2 and the reference travel path 201 as the detour determination distance d S423), when the detour determination distance d becomes larger than the detour start determination distance d1 set in advance (d> d1) (S424 / Yes), it is determined that the transport vehicle 2 has started the detour, and the detour start point setting process ( It shifts to S43).

一方、迂回判定部16は、迂回判定距離dが迂回開始判定距離d1以下の場合(d≦d1)(S424/No)、運搬車両2は通常走行をしていると判定し、ステップ6へ移行する。   On the other hand, when the detour determination distance d is equal to or less than the detour start determination distance d1 (d ≦ d1) (S424 / No), the detour determination unit 16 determines that the transport vehicle 2 is traveling normally, and proceeds to step 6 Do.

迂回開始点設定処理(S43)では、迂回判定部16は、基準走行路201上で車両位置141に対して最も近い点を迂回開始点161と設定する。その後、迂回終了判定処理(S44)に移行する。   In the detour start point setting process (S 43), the detour determination unit 16 sets a point closest to the vehicle position 141 on the reference travel path 201 as the detour start point 161. Thereafter, the process proceeds to bypass end determination processing (S44).

迂回終了判定処理(S44)では、図10Bに示すように、迂回判定部16は、車両位置141と基準走行路201の距離を迂回判定距離dとして演算し(S441)、迂回判定距離dが予め設定した迂回終了判定距離d2より小さくなった場合(d<d2)(S442/Yes)、運搬車両2が迂回を終了したと判定し、迂回終了点設定処理(S45)に移行する。上記迂回開始判定距離d1及び迂回終了判定距離d2は、迂回判定距離記憶部20に予め記憶されている。   In the detour end determination processing (S44), as shown in FIG. 10B, the detour determination unit 16 calculates the distance between the vehicle position 141 and the reference travel path 201 as the detour determination distance d (S441), and the detour determination distance d is previously determined. If it is smaller than the set detour end determination distance d2 (d <d2) (S442 / Yes), it is determined that the transport vehicle 2 has ended the detour, and the process shifts to detour end point setting processing (S45). The detour start determination distance d1 and the detour end determination distance d2 are stored in advance in the detour determination distance storage unit 20.

一方、迂回判定距離dが迂回終了判定距離d2以上の場合(d≧d2)(S442/No)、迂回判定部16は、運搬車両2は迂回を継続していると判定し、ステップ441へ戻る。   On the other hand, if the detour determination distance d is equal to or greater than the detour end determination distance d2 (d d d2) (S442 / No), the detour determination unit 16 determines that the transport vehicle 2 continues detour, and returns to step 441 .

迂回終了点設定処理(S45)では、迂回判定部16は、基準走行路201上で車両位置141に対して最も近い点を迂回終了点162と設定する。   In the detour end point setting process (S 45), the detour determination unit 16 sets a point closest to the vehicle position 141 on the reference travel path 201 as the detour end point 162.

迂回判定部16は、算出した迂回開始点161と迂回終了点162を迂回路面凹凸推定部18に渡す。   The detour determination unit 16 passes the calculated detour start point 161 and the detour end point 162 to the detour road surface unevenness estimation unit 18.

<迂回路面凹凸推定部18:S5>
迂回路面凹凸推定部18は、基準走行路地図記憶部15から受け取った基準走行路地図と、迂回判定部16から受け取った迂回開始点161及び迂回終了点162とから、運搬車両2が迂回したため実際には走行していない基準走行路の部分区間からなる迂回区間の迂回路面凹凸レベルを推定する。
<Detour road surface unevenness estimation unit 18: S5>
The detour road surface unevenness estimating unit 18 actually detours the transport vehicle 2 from the reference traveling road map received from the reference traveling road map storage unit 15 and the detour start point 161 and the detour end point 162 received from the detour determination unit 16 The detour road unevenness level of the detour section which consists of a partial section of the standard runway which is not traveling is estimated.

図11に示すように、迂回路面凹凸推定部18は、基準走行路地図上の基準走行路201のうち迂回開始点161から迂回終了点162までの区間に相当する迂回区間163に対し、事前に設定した値を迂回路面凹凸レベルとして割り当てる。ここで、割り当てる迂回路面凹凸レベルは、本実施形態では、運搬車両2が走行困難なほど凹凸が大きいと考え、走行路面凹凸演算部17において運搬車両2の上下方向加速度から算出する走行路面凹凸レベルとして割り当てられる5段階のレベルの最大値(レベル5)を割り当てる。すなわち、迂回路面凹凸推定部18は、迂回区間163の迂回路面凹凸レベルをレベル5と推定したこととなる。迂回路面凹凸推定部18は、迂回区間163の位置と、迂回路面凹凸レベルとを関連付けて路面凹凸地図生成部19に渡す。   As shown in FIG. 11, the detour road surface unevenness estimation unit 18 makes an advance in the detour section 163 corresponding to the section from the detour start point 161 to the detour end point 162 in the reference travel path 201 on the reference travel path map. The set value is assigned as the bypass road surface unevenness level. Here, in the present embodiment, the detour road unevenness level to be assigned is considered to be large as the transportation vehicle 2 is difficult to travel, and the traveling road surface unevenness calculation unit 17 calculates the traveling road surface unevenness level calculated from the vertical acceleration of the transportation vehicle 2 Assign a maximum of 5 levels (Level 5) assigned as. That is, the detour road surface unevenness estimation unit 18 estimates that the detour road surface unevenness level of the detour section 163 is level 5. The detour road surface unevenness estimation unit 18 associates the position of the detour section 163 with the detour road surface unevenness level and passes it to the road surface unevenness map generation unit 19.

<路面凹凸地図生成部19:S6>
路面凹凸地図生成部19は、走行路面凹凸演算部17から車両位置141及び走行路面凹凸レベルを受け取り、迂回路面凹凸推定部18から迂回区間163及び迂回路面凹凸レベルを受け取り、路面凹凸地図を生成する。
<Road surface unevenness map generation unit 19: S6>
The road surface unevenness map generation unit 19 receives the vehicle position 141 and the traveling road surface unevenness level from the traveling road surface unevenness calculation unit 17, receives the detour section 163 and the detour road surface unevenness level from the detour road surface unevenness estimation unit 18, and generates a road surface unevenness map. .

図11に示すように、路面凹凸地図において、運搬車両2が実際に走行した実走行路については、車両位置141に走行路面凹凸レベルが割り当てられる。また運搬車両2が迂回した基準走行路201上の迂回区間163については、迂回路面凹凸レベルが割り当てられる。路面凹凸地図生成部19は、路面凹凸地図を示す路面凹凸地図情報を車両側無線通信装置13に渡す。   As shown in FIG. 11, in the road surface unevenness map, the traveling road surface unevenness level is assigned to the vehicle position 141 for the actual travel path on which the transport vehicle 2 has actually traveled. Further, the detour road surface unevenness level is assigned to the detour section 163 on the reference traveling path 201 where the transport vehicle 2 detours. The road surface unevenness map generation unit 19 passes the road surface unevenness map information indicating the road surface unevenness map to the vehicle-side wireless communication device 13.

<車両側無線通信装置13>
運搬車両2に搭載した車両側無線通信装置13は、路面凹凸地図情報及び車両位置情報を管理側無線通信装置40に送信する。
<Vehicle side wireless communication device 13>
The vehicle-side wireless communication device 13 mounted on the transport vehicle 2 transmits road surface unevenness map information and vehicle position information to the management-side wireless communication device 40.

<管理端末4>
管理端末4の管理側無線通信装置40は、運搬車両2の車両側無線通信装置13から路面凹凸地図情報を受け取り、表示装置41に渡す。表示装置41は例えば液晶ディスプレイ等であり、管理側無線通信装置40から取得した路面凹凸地図情報を基に、路面凹凸地図を表示する。
<Management terminal 4>
The management-side wireless communication device 40 of the management terminal 4 receives the road surface unevenness map information from the vehicle-side wireless communication device 13 of the transport vehicle 2 and passes it to the display device 41. The display device 41 is, for example, a liquid crystal display, and displays the road surface unevenness map based on the road surface unevenness map information acquired from the management side wireless communication device 40.

また管理側無線通信装置40は、車両位置情報を交通管制装置42に渡す。交通管制装置42は取得した車両位置情報を用いて交通管制処理を行う。また交通管制装置42は、停止車両が存在していると判定した場合は、停止車両情報を管理側無線通信装置40に出力し、運搬車両2に対して送信する。   Further, the management-side wireless communication device 40 passes vehicle position information to the traffic control device 42. The traffic control device 42 performs traffic control processing using the acquired vehicle position information. When it is determined that the stopped vehicle is present, the traffic control device 42 outputs the stopped vehicle information to the management side wireless communication device 40 and transmits the stopped vehicle information to the transport vehicle 2.

本実施形態によれば、迂回開始判定処理及び迂回終了判定処理を行うことにより、運搬車両が迂回走行をしているか否かをより詳細に把握することが可能となる。   According to the present embodiment, by performing the detour start determination process and the detour end determination process, it is possible to grasp in more detail whether or not the transport vehicle is detouring.

また運搬車両が迂回したために実際には走行していない路面の凹凸レベルを推定することが可能となり、路面整備をより効果的に実施することが可能となる。   In addition, since the transport vehicle has detoured, it is possible to estimate the unevenness level of the road surface which is not actually traveling, and it is possible to carry out the road surface maintenance more effectively.

更に本実施形態によれば、運搬車両が停止車両を回避するために迂回した場合には、迂回路面凹凸レベルの判定を行わないので、実際には基準走行路の路面が荒れていないにも関らず、停止車両を迂回した結果、迂回路面の凹凸レベルが高いと誤判定することを抑止できる。   Furthermore, according to the present embodiment, when the transport vehicle detours to avoid the stop vehicle, the determination of the detour road surface unevenness level is not performed, so that the road surface of the reference travel path is not actually rough. In addition, as a result of detouring the stopped vehicle, it is possible to prevent an erroneous determination that the unevenness level of the detour road surface is high.

<変形例>
<凹凸演算の一部を管理端末で行う変形例>
鉱山の路面管理システムの変形例について、図12を用いて述べる。図12は、本発明の変形例に係わる鉱山の路面管理システムの構成を示すブロック図である。第1の実施形態においては、路面状況演算装置10を運搬車両2に設けていたが、管理端末4に管理側路面状況演算装置60を設け、路面凹凸に関する演算の全て、もしくは一部を管理側路面状況演算装置60で実施する変形例がある。
<Modification>
<Modified example of performing part of the unevenness calculation on the management terminal>
A modification of the road surface management system of the mine will be described with reference to FIG. FIG. 12 is a block diagram showing a construction of a road surface management system of a mine according to a modification of the present invention. In the first embodiment, the road surface condition calculation device 10 is provided in the transport vehicle 2, but the management side 4 is provided with the management side road surface condition calculation device 60, and all or part of the calculation regarding the road surface unevenness is managed There is a modification that is implemented by the road surface condition calculation device 60.

図12に示す変形例では、運搬車両2に設けた車両側路面状況演算装置10aは、自己位置演算部14及び走行路面凹凸演算部17のみを備え、管理端末4に設けた管理側路面状況演算装置60は、基準走行路地図記憶部15と、迂回判定部16と、迂回路面凹凸推定部18と、路面凹凸地図生成部19とを備えている。車両側路面状況演算装置10aは、自己位置演算部14で算出した車両位置と、走行路面凹凸演算部17で算出した各車両位置における走行路面凹凸レベル情報を、車両側無線通信装置13及び管理側無線通信装置40を介して管理側路面状況演算装置60に送信する。管理側路面状況演算装置60の各部における処理内容は第1の実施形態に準ずる。   In the modification shown in FIG. 12, the vehicle-side road surface condition computing device 10 a provided in the transport vehicle 2 includes only the self position computing unit 14 and the traveling road surface unevenness computing unit 17, and the management side road surface condition computing provided in the management terminal 4. The device 60 includes a reference road map storage unit 15, a detour determination unit 16, a detour road surface unevenness estimation unit 18, and a road surface unevenness map generation unit 19. The vehicle-side road surface condition computing device 10 a manages the vehicle-side wireless communication device 13 and the management side of the traveling road surface unevenness level information at each vehicle position calculated by the self-position calculating unit 14 and the traveling road surface unevenness calculating unit 17. It transmits to the management side road surface condition arithmetic unit 60 via the wireless communication unit 40. The processing content in each part of the management-side road surface condition calculation device 60 conforms to the first embodiment.

上記変形例によれば、管理端末にて、複数台の運搬車両から得られた情報を基に、路面の凹凸レベルを集約して把握することが可能となり、一台の運搬車両の測定結果だけを用いて路面の凹凸レベルを測定するよりもより信頼性が高い路面凹凸地図を生成することができる。   According to the above-mentioned modification, it becomes possible to collect and grasp the unevenness level of the road surface based on the information obtained from the plurality of transport vehicles by the management terminal, and only the measurement result of one transport vehicle A road surface asperity map can be generated that is more reliable than measuring the road surface asperity level using.

<迂回路の路面凹凸レベルの推定に関する変形例>
迂回区間163の路面凹凸レベル推定の変形例について、図13を用いて述べる。図13は、本発明の変形例に係わる鉱山の路面管理システムの構成を示すブロック図である。第1の実施形態の迂回路面凹凸推定部18においては、迂回区間163に対し、事前に設定した値(上記の説明では走行路面凹凸レベルに適用する最大値)を迂回路面凹凸レベルとして割り当てているが、迂回区間163の迂回路面凹凸レベルの推定には、迂回区間163周辺の運搬車両2が実際に走行した走行路面の走行路面凹凸レベルを利用する変形例がある。
<Modification Example Regarding Estimation of Road Surface Roughness Level on Detour>
A modification of the road surface unevenness level estimation of the detour section 163 will be described with reference to FIG. FIG. 13 is a block diagram showing a construction of a road surface management system of a mine according to a modification of the present invention. In the detour road surface unevenness estimation unit 18 of the first embodiment, a value set in advance (the maximum value applied to the traveling road surface unevenness level in the above description) is assigned to the detour section 163 as the detour road surface unevenness level. However, there is a modification that uses the traveling road surface unevenness level of the traveling road surface on which the transport vehicle 2 in the vicinity of the detour section 163 actually travels to estimate the bypass road surface unevenness level of the bypass section 163.

図13に示す変形例では、走行路面凹凸演算部17が、算出した車両位置141の走行路面凹凸レベルを迂回路面凹凸推定部18に渡す。迂回路面凹凸推定部18では、迂回区間163の周辺の車両位置における走行路面凹凸レベルを参照し、周辺の走行路面凹凸レベルよりも高いレベルを迂回区間163の迂回路面凹凸レベルとして割り当てる。例えば走行路面凹凸レベルがレベル1〜3の場合、迂回路面凹凸レベルとしてレベル3以上を適用する。これにより、迂回路面凹凸レベルをより詳細に推定することが可能となり、路面整備をより効果的に実施することが可能となる。   In the modification shown in FIG. 13, the traveling road surface unevenness calculating unit 17 passes the calculated traveling road surface unevenness level of the vehicle position 141 to the bypass road surface unevenness estimating unit 18. The detour road surface unevenness estimating unit 18 refers to the traveling road surface unevenness level at the vehicle position around the detour section 163, and assigns a level higher than the traveling road surface unevenness level in the vicinity as the detour road surface unevenness level of the detour section 163. For example, when the traveling road surface unevenness level is levels 1 to 3, level 3 or higher is applied as the bypass road surface unevenness level. As a result, it becomes possible to estimate the bypass road surface unevenness level in more detail, and it becomes possible to carry out road surface maintenance more effectively.

<連続した凹凸レベル>
第1の実施形態では、走行路面凹凸レベルとして5段階のレベルを設定したが、走行路面凹凸レベルとして連続値を用いても良い。この場合、上記図13の変形例において、迂回路面凹凸レベルとして連続値を適用してもよい。
<Continuous unevenness level>
In the first embodiment, five levels are set as the traveling road surface unevenness level, but a continuous value may be used as the traveling road surface unevenness level. In this case, in the modification of FIG. 13, a continuous value may be applied as the bypass road surface unevenness level.

<振動検出:サスペンションシリンダ圧>
第1の実施形態では、運搬車両2の走行路面凹凸レベルを算出するために、加速度センサ12から取得した上下方向加速度を使用したが、車体に発生する振動を検出して数値化し、走行路面凹凸レベルに変換できるものであれば、方式はこの限りではない。変形例として、例えば特許文献(特開2013−166425)記載の方法により、運搬車両2のサスペンションシリンダ圧を検出する圧力センサを搭載し、サスペンションシリンダ圧を測定して走行路面の凹凸レベルを演算する方法を採用しても良い。又はサスペンションシリンダのストローク長を測定するストローク長センサを搭載し、サスペンションシリンダのストローク長を基に走行路面の凹凸レベルを演算してもよい。
<Vibration detection: Suspension cylinder pressure>
In the first embodiment, the vertical acceleration obtained from the acceleration sensor 12 is used to calculate the traveling road surface unevenness level of the transport vehicle 2. However, the vibration generated in the vehicle body is detected and quantified to calculate the traveling road surface unevenness. The scheme is not limited to this as long as it can be converted into levels. As a modification, a pressure sensor for detecting the suspension cylinder pressure of the transport vehicle 2 is mounted by, for example, a method described in Patent Document (Japanese Patent Laid-Open No. 2013-166425), and the suspension cylinder pressure is measured to calculate the unevenness level of the traveling road surface. You may adopt the method. Alternatively, a stroke length sensor for measuring the stroke length of the suspension cylinder may be mounted, and the unevenness level of the traveling road surface may be calculated based on the stroke length of the suspension cylinder.

<3次元データ>
第1の実施形態では、地図情報を、高さを無視した2次元情報として取り扱ったが、高さ情報を含む3次元情報として取り扱っても良い。
<3D data>
In the first embodiment, the map information is treated as two-dimensional information neglecting height, but may be treated as three-dimensional information including height information.

1:積込機械
2:運搬車両
3:整地車両
4:管理端末
5:無線中継局
10:路面状況演算装置
10a:車両側路面状況演算装置
11:GNSS受信アンテナ
12:加速度センサ
13:車両側無線通信装置
40:管理側無線通信装置
41:表示装置
42:交通管制装置
1: loading machine 2: transport vehicle 3: ground preparation vehicle 4: management terminal 5: wireless relay station 10: road surface condition arithmetic device 10a: vehicle side road surface condition arithmetic device 11: GNSS receiving antenna 12: acceleration sensor 13: vehicle side wireless Communication device 40: Management side wireless communication device 41: Display device 42: Traffic control device

Claims (6)

作業車両が走行する路面の凹凸状況を演算する路面状況演算装置であって、
前記作業車両は、自車の位置を検出して車両位置情報を出力する車両位置検出装置、及び走行中に前記作業車両の車体に発生する振動を検出して車体振動情報を出力する車体振動検出装置を搭載し、前記車両位置検出装置及び前記車体振動検出装置の其々は前記路面状況演算装置に接続され、
前記路面状況演算装置は、
予め規定された前記作業車両の基準走行路を示す基準走行路地図を記憶する基準走行路地図記憶部と、
前記車両位置情報及び前記車体振動情報に基づいて、前記作業車両が実際に走行した路面の前記自車の位置における走行路面凹凸レベルを演算する走行路面凹凸演算部と、
前記自車の位置及び前記基準走行路地図の比較結果を基づいて、前記基準走行路から迂回したか否かを判定し、迂回したと判定した場合には前記基準走行路において迂回のために離脱し始めた迂回開始点及び前記基準走行路に復帰した迂回終了点を演算する迂回判定部と、
前記迂回中に得られた前記走行路面凹凸レベルよりも高い凹凸レベルを、前記基準走行路における前記迂回開始点から前記迂回終了点までの区間に相当する迂回区間の迂回路面凹凸レベルとして割り当てる迂回路面凹凸推定部と、
前記走行路面凹凸レベル及び前記迂回路面凹凸レベルを合成して、前記基準走行路の路面の凹凸を示す路面凹凸地図を生成する路面凹凸地図生成部と、を備える、
ことを特徴とする路面状況演算装置。
A road surface condition calculating device for calculating the unevenness condition of a road surface on which a work vehicle is traveling,
The work vehicle detects a position of the own vehicle and outputs vehicle position information, and a vehicle body vibration detection which detects vibration generated in a vehicle body of the work vehicle while traveling and outputs vehicle body vibration information A device is mounted, and each of the vehicle position detection device and the vehicle body vibration detection device is connected to the road surface condition calculation device;
The road surface condition calculation device
A reference travel path map storage unit that stores a reference travel path map indicating a reference travel path of the work vehicle defined in advance;
A traveling road surface asperity calculation unit which calculates a traveling road surface unevenness level at a position of the vehicle on a road surface on which the work vehicle actually travels based on the vehicle position information and the vehicle body vibration information;
Based on the comparison result of the position of the vehicle and the reference traveling route map, it is determined whether or not the vehicle has detoured from the reference traveling route. A detour determination unit that calculates a detour start point that has started and a detour end point that has returned to the reference travel path;
A detour road surface is assigned with an unevenness level higher than the traveling road surface unevenness level obtained during the detour as a detour road surface unevenness level of a detour section corresponding to a section from the detour start point to the detour end point on the reference traveling path An unevenness estimation unit,
A road surface unevenness map generation unit that combines the traveling road surface unevenness level and the bypass road surface unevenness level to generate a road surface unevenness map that indicates the road surface unevenness of the reference traveling path;
A road surface condition computing device characterized by
請求項1に記載の路面状況演算装置において、
前記車体振動検出装置は、前記作業車両の上下方向加速度を検出する加速度センサ、前記作業車両に搭載されたサスペンションシリンダのストローク長を検出するストローク長センサ、又は前記サスペンションシリンダを検出する圧力センサを用いて構成され、
前記走行路面凹凸演算部は、前記上下方向加速度、前記ストローク長、又は前記サスペンションシリンダの圧力の少なくとも一つを基に、前記走行路面凹凸レベルを演算する、
ことを特徴とする路面状況演算装置。
In the road surface situation calculating device according to claim 1,
The vehicle body vibration detection apparatus uses an acceleration sensor that detects vertical acceleration of the work vehicle, a stroke length sensor that detects a stroke length of a suspension cylinder mounted on the work vehicle, or a pressure sensor that detects the suspension cylinder. Is configured,
The traveling road surface unevenness computing unit computes the traveling road surface unevenness level based on at least one of the vertical acceleration, the stroke length, or the pressure of the suspension cylinder.
A road surface condition computing device characterized by
請求項1に記載の路面状況演算装置において、
前記迂回判定部は、前記作業車両の前記自車の位置と前記基準走行路との最短距離を迂回判定距離として算出し、
前記迂回判定距離が予め定められた迂回開始判定距離よりも大きくなった場合に、前記作業車両が迂回を開始したと判定して前記迂回開始点を設定し、
前記迂回判定距離が予め定められた迂回終了判定距離よりも小さくなった場合に、前記作業車両が迂回を終了したと判定して前記迂回終了点を設定する、
ことを特徴とする路面状況演算装置。
In the road surface situation calculating device according to claim 1,
The detour determination unit calculates the shortest distance between the position of the vehicle of the work vehicle and the reference travel path as the detour determination distance.
When the detour determination distance is larger than a predetermined detour start determination distance, it is determined that the work vehicle has started detour, and the detour start point is set.
When the detour determination distance is smaller than a predetermined detour end determination distance, it is determined that the work vehicle has finished detour, and the detour end point is set.
A road surface condition computing device characterized by
請求項1記載の路面状況演算装置において、
前記基準走行路地図には、積込エリアの位置及び放土エリアの位置が其々規定されており、
前記迂回判定部は、前記自車の位置が前記積込エリア又は前記放土エリアの内側に存在したと判定した場合は、前記作業車両が前記基準走行路から迂回したか否かの判定を行わない、
ことを特徴とする路面状況演算装置。
In the road surface situation calculating device according to claim 1,
In the reference roadway map, the position of the loading area and the position of the earthing area are often defined.
When the detour determination unit determines that the position of the vehicle is present inside the loading area or the release area, it is determined whether the work vehicle detours from the reference traveling path. Absent,
A road surface condition computing device characterized by
作業車両と当該作業車両の運行を管理する管理端末とを無線通信回線を介して接続した鉱山の路面管理システムであって、
前記作業車両は、自車の位置を検出して車両位置情報を出力する車両位置検出装置と、走行中に前記作業車両の車体に発生する振動を検出して車体振動情報を出力する車体振動検出装置と、
車両側無線通信装置と、
作業車両が走行する路面の凹凸状況を演算する路面状況演算装置であって、前記車両位置検出装置、前記車体振動検出装置、及び前記車両側無線通信装置の其々に接続された路面状況演算装置と、を備え、
前記路面状況演算装置は、
予め規定された前記作業車両の基準走行路を示す基準走行路地図を記憶する基準走行路地図記憶部と、
前記車両位置情報及び前記車体振動情報に基づいて、前記作業車両が実際に走行した路面の前記自車の位置における走行路面凹凸レベルを演算する走行路面凹凸演算部と、
前記自車の位置及び前記基準走行路地図の比較結果を基づいて、前記基準走行路から迂回したか否かを判定し、迂回したと判定した場合には前記基準走行路において迂回のために離脱し始めた迂回開始点及び前記基準走行路に復帰した迂回終了点を演算する迂回判定部と、
前記迂回中に得られた前記走行路面凹凸レベルよりも高い凹凸レベルを、前記基準走行路における前記迂回開始点から前記迂回終了点までの区間に相当する迂回区間の迂回路面凹凸レベルとして割り当てる迂回路面凹凸推定部と、
前記走行路面凹凸レベル及び前記迂回路面凹凸レベルを合成して、前記基準走行路の路面の凹凸を示す路面凹凸地図を生成する路面凹凸地図生成部と、を備え、
前記管理端末は、管理側無線通信装置に接続され、
前記管理端末は、前記基準走行路に停止中の車両がある場合は、停止車両位置を示す停止車両情報を生成し、前記管理側無線通信装置を介して前記作業車両に対して送信し、
前記車両側無線通信装置が前記停止車両情報を受信すると、前記迂回判定部は、前記停止車両情報に含まれる前記停止車両位置を参照し、前記自車の位置が前記停止車両位置から所定の距離範囲内に含まれる場合は、前記作業車両が前記基準走行路から迂回したか否かを判定しない、
ことを特徴とする鉱山の路面管理システム。
A road surface management system for a mine, in which a work vehicle and a management terminal for managing the operation of the work vehicle are connected via a wireless communication line,
The work vehicle detects a position of the own vehicle and outputs vehicle position information, and a vehicle body vibration detection which detects vibration generated in a vehicle body of the work vehicle while traveling and outputs vehicle body vibration information A device,
Vehicle-side wireless communication device,
A road surface condition calculating device for calculating an unevenness condition of a road surface on which a work vehicle travels, the road surface condition calculating device connected to each of the vehicle position detecting device, the vehicle body vibration detecting device, and the vehicle side wireless communication device And
The road surface condition calculation device
A reference travel path map storage unit that stores a reference travel path map indicating a reference travel path of the work vehicle defined in advance;
A traveling road surface asperity calculation unit which calculates a traveling road surface unevenness level at a position of the vehicle on a road surface on which the work vehicle actually travels based on the vehicle position information and the vehicle body vibration information;
Based on the comparison result of the position of the vehicle and the reference traveling route map, it is determined whether or not the vehicle has detoured from the reference traveling route. A detour determination unit that calculates a detour start point that has started and a detour end point that has returned to the reference travel path;
A detour road surface is assigned with an unevenness level higher than the traveling road surface unevenness level obtained during the detour as a detour road surface unevenness level of a detour section corresponding to a section from the detour start point to the detour end point on the reference traveling path An unevenness estimation unit,
A road surface unevenness map generation unit that combines the traveling road surface unevenness level and the detour road surface unevenness level to generate a road surface unevenness map that indicates the road surface unevenness of the reference traveling path;
The management terminal is connected to a management side wireless communication device,
The management terminal generates stop vehicle information indicating a stop vehicle position when there is a vehicle stopping on the reference travel path, and transmits the stop vehicle information to the work vehicle via the management side wireless communication device.
When the vehicle-side wireless communication device receives the stopped vehicle information, the detour determining unit refers to the stopped vehicle position included in the stopped vehicle information, and the position of the vehicle is a predetermined distance from the stopped vehicle position. When it is included in the range, it is not determined whether the work vehicle has detoured from the reference travel path.
Road surface management system of mine characterized by that.
作業車両と当該作業車両の運行を管理する管理端末とを無線通信回線を介して接続した鉱山の路面管理システムであって、
前記作業車両は、
自車の位置を検出して車両位置情報を出力する車両位置検出装置と、
走行中に前記作業車両の車体に発生する振動を検出して車体振動情報を出力する車体振動検出装置と、
前記作業車両が実際に走行した路面の走行路面凹凸レベルを示す走行路面凹凸レベル情報及び前記車両位置情報を前記管理端末に送信する車両側無線通信装置と、
前記車両位置検出装置、前記車体振動検出装置、及び前記車両側無線通信装置に接続された車両側路面状況演算装置と、を搭載し、
車両側路面状況演算装置は、
前記車両位置情報及び前記車体振動情報に基づいて、前記作業車両が実際に走行した路面の前記自車の位置における走行路面凹凸レベルを演算して、その走行路面凹凸レベルを示す走行路面凹凸レベル情報を前記車両側無線通信装置に出力する走行路面凹凸演算部を備え、
前記管理端末は、前記走行路面凹凸レベル情報及び前記車両位置情報を受信する管理側無線通信装置及び当該管理側無線通信装置に接続された管理側路面状況演算装置を備え、
前記管理側路面状況演算装置は、
予め規定された前記作業車両の基準走行路を示す基準走行路地図を記憶する基準走行路地図記憶部と、
前記車両位置情報に含まれる前記自車の位置及び前記基準走行路地図の比較結果を基づいて、前記基準走行路から迂回したか否かを判定し、迂回したと判定した場合には前記基準走行路において迂回のために離脱し始めた迂回開始点及び前記基準走行路に復帰した迂回終了点を演算する迂回判定部と、
前記迂回中に得られた前記走行路面凹凸レベルよりも高い凹凸レベルを、前記基準走行路における前記迂回開始点から前記迂回終了点までの区間に相当する迂回区間の迂回路面凹凸レベルとして割り当てる迂回路面凹凸推定部と、
前記走行路面凹凸レベル及び前記迂回路面凹凸レベルを合成して、前記基準走行路の路面の凹凸を示す路面凹凸地図を生成する路面凹凸地図生成部と、を備える、
ことを特徴とする鉱山の路面管理システム。
A road surface management system for a mine, in which a work vehicle and a management terminal for managing the operation of the work vehicle are connected via a wireless communication line,
The work vehicle is
A vehicle position detection device that detects the position of the vehicle and outputs vehicle position information;
A vehicle body vibration detection device that detects vibration generated in the vehicle body of the work vehicle while traveling and outputs vehicle body vibration information;
A vehicle-side wireless communication device that transmits traveling road surface unevenness level information indicating the traveling road surface unevenness level of the road surface on which the work vehicle has actually traveled and the vehicle position information to the management terminal;
Loading the vehicle position detection device, the vehicle body vibration detection device, and a vehicle-side road surface condition calculation device connected to the vehicle-side wireless communication device;
The vehicle side road surface condition calculation device
Based on the vehicle position information and the vehicle body vibration information, the traveling road surface unevenness level at the position of the vehicle on the road surface on which the work vehicle actually travels is calculated, and traveling road surface unevenness level information indicating the traveling road surface unevenness level A traveling road surface unevenness computing unit for outputting the vehicle-side wireless communication device;
The management terminal includes a management side wireless communication device for receiving the traveling road surface unevenness level information and the vehicle position information, and a management side road surface condition calculation device connected to the management side wireless communication device.
The management side road surface condition calculation device
A reference travel path map storage unit that stores a reference travel path map indicating a reference travel path of the work vehicle defined in advance;
Based on the comparison result of the position of the vehicle and the reference traveling route map included in the vehicle position information, it is determined whether the vehicle has detoured from the reference traveling route, and when it is determined that the detouring is performed, the reference traveling A detour determination unit that calculates a detour start point that has started to leave due to a detour on the road and a detour end point that has returned to the reference traveling path;
A detour road surface is assigned with an unevenness level higher than the traveling road surface unevenness level obtained during the detour as a detour road surface unevenness level of a detour section corresponding to a section from the detour start point to the detour end point on the reference traveling path An unevenness estimation unit,
A road surface unevenness map generation unit that combines the traveling road surface unevenness level and the bypass road surface unevenness level to generate a road surface unevenness map that indicates the road surface unevenness of the reference traveling path;
Road surface management system of mine characterized by that.
JP2017171544A 2017-09-06 2017-09-06 Road condition calculator and mine road management system Active JP6684254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017171544A JP6684254B2 (en) 2017-09-06 2017-09-06 Road condition calculator and mine road management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017171544A JP6684254B2 (en) 2017-09-06 2017-09-06 Road condition calculator and mine road management system

Publications (2)

Publication Number Publication Date
JP2019044538A true JP2019044538A (en) 2019-03-22
JP6684254B2 JP6684254B2 (en) 2020-04-22

Family

ID=65812531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017171544A Active JP6684254B2 (en) 2017-09-06 2017-09-06 Road condition calculator and mine road management system

Country Status (1)

Country Link
JP (1) JP6684254B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021022331A (en) * 2019-07-30 2021-02-18 株式会社リコー Information processing device, mobile body, remote control system, information processing method, and program
JP2021056114A (en) * 2019-09-30 2021-04-08 Toyo Tire株式会社 Method and system for evaluating vehicle travel condition
JP2021113399A (en) * 2020-01-16 2021-08-05 矢崎エナジーシステム株式会社 On-vehicle unit and on-vehicle system
CN113758495A (en) * 2021-09-10 2021-12-07 上海伯镭智能科技有限公司 Road finding method based on mine unmanned driving
CN117382366A (en) * 2023-09-08 2024-01-12 湖北交投智能检测股份有限公司 Road roughness detection device convenient to remove

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080082347A1 (en) * 2006-09-29 2008-04-03 Oscar Ernesto Villalobos Haul road maintenance management system
JP2013105278A (en) * 2011-11-11 2013-05-30 Komatsu Ltd Mining machine management system and mining machine management method
JP2014126919A (en) * 2012-12-25 2014-07-07 Hitachi Constr Mach Co Ltd Map creation support system
JP2016193691A (en) * 2015-04-01 2016-11-17 日立建機株式会社 Loading station road surface condition detection system of dump truck

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080082347A1 (en) * 2006-09-29 2008-04-03 Oscar Ernesto Villalobos Haul road maintenance management system
JP2013105278A (en) * 2011-11-11 2013-05-30 Komatsu Ltd Mining machine management system and mining machine management method
JP2014126919A (en) * 2012-12-25 2014-07-07 Hitachi Constr Mach Co Ltd Map creation support system
JP2016193691A (en) * 2015-04-01 2016-11-17 日立建機株式会社 Loading station road surface condition detection system of dump truck

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021022331A (en) * 2019-07-30 2021-02-18 株式会社リコー Information processing device, mobile body, remote control system, information processing method, and program
JP2021056114A (en) * 2019-09-30 2021-04-08 Toyo Tire株式会社 Method and system for evaluating vehicle travel condition
JP7306943B2 (en) 2019-09-30 2023-07-11 Toyo Tire株式会社 VEHICLE RUNNING CONDITION EVALUATION METHOD AND SYSTEM
JP2021113399A (en) * 2020-01-16 2021-08-05 矢崎エナジーシステム株式会社 On-vehicle unit and on-vehicle system
JP7387455B2 (en) 2020-01-16 2023-11-28 矢崎エナジーシステム株式会社 On-board equipment and on-board systems
CN113758495A (en) * 2021-09-10 2021-12-07 上海伯镭智能科技有限公司 Road finding method based on mine unmanned driving
CN113758495B (en) * 2021-09-10 2023-11-14 上海伯镭智能科技有限公司 Unmanned road searching method based on mine
CN117382366A (en) * 2023-09-08 2024-01-12 湖北交投智能检测股份有限公司 Road roughness detection device convenient to remove

Also Published As

Publication number Publication date
JP6684254B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
JP6684254B2 (en) Road condition calculator and mine road management system
AU2011337752B2 (en) Method of controlling travel within travel system for unmanned vehicle and travel system for unmanned vehicle
JP6087475B2 (en) Work machine control system, work machine, and work machine management system
US9704304B2 (en) System for managing mining machinery, method for managing mining machinery, and dump truck
JP5399459B2 (en) Information collection system for mining equipment
JP6694113B2 (en) Road surface management system and road surface management method
JP6267059B2 (en) Vehicle management system
US8340907B2 (en) Slippage condition response system
JP6617192B2 (en) Work machine management system and work machine
JP6757749B2 (en) Work machine management system, work machine, work machine management method
JPWO2015140966A1 (en) Road surface state determination method, road surface state output method, road surface state determination device, and road surface state output device
AU2017239926B2 (en) Control system of transporter vehicle, transporter vehicle, and control method of transporter vehicle
US10620004B2 (en) Surveying system and method using mobile work machine
JP6672339B2 (en) Work machine management system and work machine
JPWO2015040745A1 (en) Tire abnormality management system and tire abnormality management method
JPWO2015040744A1 (en) Tire management system and tire management method
US20220005350A1 (en) Display unit for road machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200327

R150 Certificate of patent or registration of utility model

Ref document number: 6684254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150