JP2019044304A - Transpiration dehydration of fabric - Google Patents

Transpiration dehydration of fabric Download PDF

Info

Publication number
JP2019044304A
JP2019044304A JP2017170021A JP2017170021A JP2019044304A JP 2019044304 A JP2019044304 A JP 2019044304A JP 2017170021 A JP2017170021 A JP 2017170021A JP 2017170021 A JP2017170021 A JP 2017170021A JP 2019044304 A JP2019044304 A JP 2019044304A
Authority
JP
Japan
Prior art keywords
fabric
water
dewatering
suction
dehydration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017170021A
Other languages
Japanese (ja)
Other versions
JP6260963B1 (en
Inventor
二三男 柴田
Fumio Shibata
二三男 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017170021A priority Critical patent/JP6260963B1/en
Application granted granted Critical
Publication of JP6260963B1 publication Critical patent/JP6260963B1/en
Publication of JP2019044304A publication Critical patent/JP2019044304A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Accessory Of Washing/Drying Machine, Commercial Washing/Drying Machine, Other Washing/Drying Machine (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

To provide a method for efficiently removing droplet and moisture adhered to a surface and moisture impregnated inside by using a transpiration dehydration and deliquoring device, and a transpiration dehydration and deliquoring tool without making wrinkle on a surface of a fabric or a fiber product.SOLUTION: There is provided a method for solving a problem of wrinkle generation (dehydration wrinkle) on a surface of a fabric in the cases of a personal fiber product such as general clothing or care clothing, sheet or cover having structure using a fabric having low water retention property, easy dehydration property and excellent in spread fabric transpiration dehydration property, which cannot be avoided in the case of dehydration using conventional washers, dehydrators with washers, and centrifugal dehydrators when droplet or moisture adhered to a surface of fiber products or moisture impregnated into the fiber is removed. There is provided a fabric processed by a hydrophobic agent, having at least one of performance with water repellency of Grade 4 or more and aspiration dehydration water holding rate of 20% or less, or transpiration water holding rate of 10% or less, and excellent in spread fabric transpiration dehydration property.SELECTED DRAWING: None

Description

本発明は、布帛の表面に皺を発生させずに行う拡布吸出し脱水や脱液が可能な製品向けの吸出し脱水・脱液性に優れた布帛及び吸出し脱水方法に関するものである。   TECHNICAL FIELD The present invention relates to a fabric having excellent dewatering and drainage properties for products capable of spreading, spreading, dewatering, and dewatering performed without generating wrinkles on the surface of the fabric, and a suction and dewatering method.

水分を含む布帛や繊維製品、水分が付着した布帛や繊維製品から水分を除去する方法には、先に水分をあらかた除去した後に残った水分を風や熱で乾燥させて除去する方法が一般的である。具体的なあらかたの水分除去方法としては、吊り乾し状態で放置して、自然落下で脱水させる方法、強制的な力、例えば洗濯後に遠心力を利用し水分を振るい落とす遠心脱水方法、ゴムロール等に布帛を通過させ、布帛や製品の表面に付着した水滴、内部に浸透した水分を圧搾脱水除去する方法等がある。その後は風乾除去させるか、早く除去する為に熱を利用したドラム乾燥機等を使ってい乾燥除去させる方法が一般的である。   As a method of removing moisture from fabrics and textiles containing moisture and fabrics and textiles to which moisture is attached, a method of removing moisture remaining after removing moisture first by drying with wind or heat is generally used. It is. As a specific method of removing water, there is a method of leaving in a hanging-dry state and dewatering by free fall, a forced force, for example, a centrifugal dewatering method of dropping water using centrifugal force after washing, a rubber roll, etc. There is a method of passing the fabric, water droplets adhering to the surface of the fabric or the product, and a method of squeezing and removing the water which has permeated the inside. After that, a method of air-drying removal or a method of drying-removing using a drum dryer or the like using heat for rapid removal is generally used.

強制的な力で物理的に水分を除去する遠心脱水方法は、日常生活の中で行われている洗濯後に回転するドラムの中で濡れたり、水滴の付着した布帛、繊維製品をドラム回転の遠心力を利用して水分を除去する方式が身近な脱水事例の遠心脱水方式である。
古い洗濯機には2本のゴムロールがあって、そのゴムロールには回転させるハンドルが付属しており、洗濯後に洗濯物をゴムロール隙間を調節した後、このゴムロール間に投入しハンドル操作でゴム間隙を通過させて水分、水滴を強制除去する圧搾除去する方式が身近な事例の圧搾脱水方式であった。
Centrifugal dewatering methods that physically remove water by forced force are as follows: washing in a rotating drum after washing performed in daily life, or a fabric with water droplets attached, or spinning a textile product on a drum The method of removing water using power is the centrifugal dewatering method of the familiar dehydration example.
There are two rubber rolls in the old washing machine, and the rubber roll comes with a handle that rotates, and after washing, adjust the rubber roll gap of the laundry after washing, put it in between the rubber rolls and handle the rubber gap by handle operation. A method of squeezing and removing water and water droplets by passing through is a squeezing dewatering method of a familiar case.

遠心脱水方式では布帛や衣類は折り畳まれた状態で投入される結果、脱水後の布帛や製品には洗濯時の皺と共に脱水皺、絞り皺が新たに発生し、乾燥させた後には残存するこれらの皺を除去する為にアイロン掛け等が基本的には必要であった。
最近の洗濯機では洗濯、脱水後に熱風を使用して水分を乾燥除去するドラム乾燥方法が一般的であり、この場合には折り畳まれた状態で加熱乾燥が行なわれるので皺の固定が起こり、より取れ難くて強い皺が布帛上に固定される。特に熱可塑性の繊維の場合は固定が強く行なわれる。
更に、折り畳まれた状態で脱水される結果、布帛や製品の重なった部分では脱水が悪く、また均一ではなく、脱水斑が多くの箇所で発生する。この傾向は遠心脱水槽への洗濯物の投入量が多くなるとより起こりやすい。また布帛の通気性が悪い布帛や衣類ほど起こり易い傾向にある。
圧搾除去方式の脱水方法も洗濯後の布帛や製品はロープ状になっていたり、絡んでいたりしているので、そのままゴムロールに通して水分を圧搾除去した場合には遠心脱水方式と同等かそれ以上に皺の発生、脱水斑の発生が起こる。
更に手動で行う場合はロール圧搾方式の水分除去効率は悪い傾向にある。
In the centrifugal dewatering method, the fabric and clothes are put in a folded state, and the dewatered fabric and product are dewatered and dewatered together with the wrinkles at the time of washing, and these are left after drying. Basically, ironing was necessary to remove the wrinkles.
In recent washing machines, it is common to use a drum drying method to dry and remove water using hot air after washing and dewatering, in which case heat drying is performed in a folded state, so fixation of wrinkles occurs and more Hard and hard to take off is fixed on the fabric. In the case of thermoplastic fibers, in particular, the fixation is strong.
Furthermore, as a result of being dehydrated in the folded state, dehydration is not good or uniform at overlapping portions of the fabric or the product, and dehydration spots occur at many places. This tendency is more likely to occur when the amount of laundry input to the centrifugal dewatering tank increases. In addition, the lower the air permeability of the fabric, the more likely it is for the fabric or clothing to be generated.
The dewatering method of the squeezing removal method is also roped or entangled with the fabric or product after laundering, so if it is passed through a rubber roll as it is and water is squeezed out, it is equal to or more than the centrifugal dewatering method The occurrence of hemorrhoids and the occurrence of dehydration spots occur.
Furthermore, in the case of manual operation, the water removal efficiency of the roll squeezing system tends to be poor.

これらの脱水方法では洗濯時に発生した皺を修正する機能が無いだけでなく、脱水時に更に新たな強い皺を発生させる。
これらの脱水方式の欠点である脱水時の布帛や繊維製品に新たな皺を発生させない脱水方法、水滴を除去する方法、更に脱水斑を発生させない脱水方法、脱水滴方法が上記の作業を行なう作業現場や、布帛や繊維製品を取り扱う現場で強く求められていた。更に、熱風を利用して折り畳まれて皺のある状態で乾かすことは皺をより強く固定してしまうのでこの点での改善も求められていた。
また、今までの布帛や製品をより効果的に、より簡単に水分、水滴が除去できる布帛や繊維製品、水分含有量が少なくなるような布帛や繊維製品も併せて求められていた。
本願発明は上記のような脱水皺、脱水斑を発生させずに布帛や繊維製品から効率よく水滴、水分を除去する拡布方式の水分除去(布帛を広げたままの状態で水分、水滴の除去)とその除去方式に適した布帛や繊維製品の提供に関するものである。
本願発明は拡布状態で水分を吸出して除去する、拡布式の水分、水滴除去方法及び水滴、水分除去を容易に行える布帛、繊維製品に関するものであり、脱水、脱滴後の布帛や繊維製品上には脱水皺を発生させない特徴を有する脱水方法に関する発明ある。以下本願発明では脱水、脱水方法に関しては拡布吸出し脱水、拡布吸出し脱水方法と呼ぶ。
更に、本発明を病院や介護の分野等に応用した場合は、吸出しの物は水や水滴以外に尿や体液更に流動性の嘔吐物も対象になる。
このように布帛や繊維製品から水分、水滴以外に尿や体液更に流動性の嘔吐物の除去を容易に行なえる除去方法、これらの除去が容易に行なえる布帛や繊維製品が市場では同様に求められており、水分に関する本発明はそのままで病院や介護分野にも応用して適用可能である。
以降の本願発明の表現で水分、水滴の表現には尿、体液、流動性嘔吐物、汚物等の液状物を含むものとする。
更に、水や液体、水滴や液滴の表現は特に必要のない場合を除き水分や水滴と表現する。更に水や水滴の表現は特に必要のない場合を除き水分と表現する。
以上のように脱水、脱水性の表現には特に区別が必要な場合を除いて、脱液、脱液性及び脱液状物、脱液状物性の内容を含めたものとする。
布帛の表面に脱水皺を発生させずに行う拡布吸出し脱水が可能な製品とは、上述のような拡布状で脱水できる衣服、衣類、シーツ類、カーバー等の身の回り品の繊維製品を言う。
「拡布吸出し脱水」の表現は拡布状態で行なう吸出し脱水、製品状態のままで行なう吸出し脱水の意味であり、「拡布吸出し脱水装置」は拡布状態のまま、製品の状態のままで吸出し脱水が行なえる装置を意味する。
In these dehydration methods, not only there is no function to correct wrinkles generated at the time of washing, but new strong wrinkles are generated at the time of dehydration.
The dewatering method that does not generate new wrinkles on the fabric or textile during dehydration, which is a drawback of these dehydration methods, a method of removing water droplets, a dehydration method that does not generate dewatering spots, and a water droplet removal method There has been a strong demand for on-site and on-site handling of fabric and textile products. In addition, since it is possible to fix the fold more strongly by folding it using hot air and drying it in a wrinkled state, improvement in this point has also been desired.
In addition, cloths and textiles that can remove water and water droplets more effectively and more easily, and cloths and textiles that can reduce the water content are also required together.
The invention of the present application removes water droplets and spreads water efficiently from fabrics and textiles without generating dewatering wrinkles and dewatering spots as described above (moisture removal of water and water droplets while the fabric is spread) And provision of a fabric or fiber product suitable for the removal method.
The present invention relates to a spread-type water, a method of removing water droplets, a method of removing water droplets, water droplets, and a fabric that can easily remove water in a spread state, and to a fabric and a fiber product after dehydration and dewatering. The present invention relates to a dewatering method having a feature that does not cause dewatering. In the present invention, dewatering and dewatering methods are hereinafter referred to as spreading and sucking out and spreading and discharging and dewatering methods.
Furthermore, when the present invention is applied to the hospital, the field of nursing care, etc., not only water and water droplets, but also urine and body fluids as well as flowable vomits can be used as the suctioned material.
In this way, removal methods that can easily remove urine and body fluids and fluid vomits other than water and water droplets from fabrics and textiles, and fabrics and textiles that can easily remove these are also sought in the market. The present invention relating to moisture can be applied as it is to hospitals and nursing care fields.
In the following description of the present invention, the expression of water and water droplets includes liquids such as urine, body fluid, flowable vomit and dirt and the like.
Furthermore, water and liquid, water droplets and water droplets are expressed as water and water droplets unless otherwise required. Furthermore, the expression of water and water droplets is expressed as water unless it is particularly necessary.
As described above, dewatering, dewatering property, liquid removal property, and liquid removing physical property content are included unless dewatering or dewatering expression requires special distinction.
A product capable of spreading, drawing, and dewatering without generating dewatering wrinkles on the surface of the fabric refers to textile products of perishable goods such as clothes, clothes, sheets, carver, etc. which can be dewatered and expanded as described above.
The expression "spread spreading suction dewatering" means suction dewatering performed in the spread state, and suction dewatering performed in the product state, and the "spread spreading suction dewatering device" can perform suction dewatering in the state of the product while spreading. Means a device that

特願2002−16622号公報(引例文献1)本引例1の特許文献は繊維構造物に関する特許である。引例文献1の〔0001〕には、「本発明は、撥水性に優れる繊維構造物、詳しくは水中等、水曝露が顕著な条件下で使用した場合でも低水濡れ性に優れる繊維構造物に関し、さらに詳しくは、水着等に好適な低水濡れ性に優れる繊維構造物に関するものである」と記載があるように本引例文献は低水濡れ性の編地に関するものであり、編地そのものが低水濡れ性の特徴を有する発明に関するものである。本願発明は拡布吸出し脱水方式による水分除去が容易に行える布帛、繊維製品に関するもの、脱水皺を発生させない脱水方法に関するものであり、脱水後の保水性が小さい。即ち保水値が小さい点では共通しているが、本引例の低濡れ性の評価は水中に保持した場合の水を吸い込む量の割合(含水率)で評価されており、一方の本願の保水性は吸引脱水後の水の保持率(吸引脱水保水率)で評価したものであり保水の内容が異なっている。更に、本引例文献には本願発明の構成の拡布吸出し脱水方式による水分除去方法に関する記述も吸出し脱水性の良好な布帛を得る為の布帛構成や布帛の加工手段等に関する記述も、これを示唆する記述も見当たらない。加工に関しても通常の撥水加工に関する記述が記載されているに過ぎずない。Japanese Patent Application No. 2002-16622 (Reference Document 1) The patent document of Reference Example 1 relates to a fiber structure. “The present invention relates to a fiber structure excellent in water repellency, specifically to a fiber structure excellent in low water wettability even when used under conditions such as water, in which water exposure is remarkable More specifically, the present reference document relates to a low water-wettability fabric, as described in the description “it relates to a fiber structure excellent in low water-wettability suitable for swimwear etc.”. The present invention relates to an invention having a characteristic of low water wettability. The present invention relates to a fabric and a fiber product that can easily remove water by a spread spreading suction dewatering method, and a dewatering method that does not generate dewatering wrinkles, and the water retention after dewatering is small. That is, although it is common in the point that the water retention value is small, the evaluation of the low wettability of this reference is evaluated by the ratio (water content) of the amount of water absorbed when it is kept in water. Is evaluated by the retention rate of water after suction and dehydration (suction dehydration water retention rate), and the content of water retention is different. Further, the description of the method for removing moisture by the spread suction dewatering method of the present invention also suggests the description of the fabric structure for obtaining good dewaterability, the processing means of the cloth, etc. The description is also missing. Also in regard to the processing, only the description on the usual water repellant processing is described.

特願2010−250908号公報(引例文献2)本引例文献2の特許は洗濯脱水抱水率が50%以下であることを特徴とする速乾性布帛を用いてなる学生服、学生ズボン、作業衣、および制服からなる群より選択されるいずれかの繊維製品に関するものである。本引例文献2の請求範囲2の洗濯脱水抱水率に関する記述は、本願発明の保水性評価の吸引脱水保水率や吸出し脱水保水率と同様の水分保持に関する記述であるが、本引用文献2の抱水率は洗濯脱水後の抱水率である。即ち遠心力を利用した脱水方式で脱水し、脱水後の保持水分量(遠心脱水方式での保持水量)の割合の測定値で評価されている。一方本願発明の吸引脱水水方式、吸出し脱水方式での吸引脱水保水率や吸出し脱水保水率とは評価方法が異なっている。引例文献は遠心脱水方式、本願発明は吸引脱水方式、吸出し脱水方式であり、脱水の機構が異なっている。本引例文献は請求項12の本願発明の特定糸使いの布帛や特定織物と多段疎水化処理加工の組合せの本願発明の評価に使用する抱水率とは評価条件が少し異なっているが評価方法自体大略同じである。本引例文献でも糸や織組織を工夫し、限定しての洗濯脱水抱水率を小さくする発明であり、加工に関しては通常の撥水加工が記述されているに過ぎない。一方、本願発明も特殊構成糸、特殊構成織物と多段疎水化加工との組合せ得られる効果に関する発明である。本引例文献には多段処理加工に関する記述も示唆する記述も全く見られない。また構成要件も一部異なっている。更に目的とする速乾性のためには、洗濯脱水抱水率が50%以下、より好ましくは20%以下、特に好ましくは5〜20%との記述があるが、この好ましい抱水率範囲を達成する特段の撥水加工に関する記述は見当たらない。本願発明は「抱水率が5%以下の接触濡れ感が感じ難い撥水性布帛」である達成目標も達成の数値自体も異なっている。本引例文献には本願発明の5%以下の抱水性にする為の手段に関しての記述は全く見られない。更に、本願発明は拡布吸出し脱水方式による水分除去が容易に行える布帛、繊維製品に関するもの、脱水皺を発生させない脱水方法に関するものであり、脱水後の保水性が小さい。即ち保水力が小さい点(小さくする点)では共通しているが、本引例文献には本願発明の構成の拡布吸出し脱水方式による皺を発生させずに水分を除去する方法に関する記述も拡布吸出し脱水性の良好な布帛を得る為の布帛構成や布帛の加工手段等に関する特別な記述も、これを示唆する記述も見当たらない。加工に関しては上述のように、好ましい処方に関する記述がある以外は本願発明と共通している通常の撥水加工に関する記述のみである。本願発明では引例文献と共通の通常の撥水加工以外に、緻密な織物、緻密な糸構成の糸(例えば強く撚糸した糸)を使用した布帛に効果を発揮するような繰り返し浸漬と絞りを実施する連続式の撥水処理加工(多段処理加工)、ニップと含浸を繰り返し行なうバッチ式の撥水処理加工も発明構成になっているが、このことに関する記述は全く見当たらない。本引例文献2は製品に関する特許でありこの点では一部共通している。しかし本願発明の明細書の〔背景技術〕で説明があるように製品を引例文献2のように洗濯及び脱水した場合には脱水斑の発生が避けられないだけでなく、洗濯時時の皺に加えて、脱水時の皺の発生は避けられない。本願発明の皺を発生させない拡布吸出し脱水方式の本願発明品とはこの点でも全く異なっている。更に、本引例文献2には本願発明の構成に関する記述も、これを示唆する記述も全く見られない。本引例文献2は特定の糸に、特定の撚糸を施した特定の織物、特定の用途に使用する遠心脱水後の低抱水性の織物に関する発明であり、本願発明品とは上述のように発明の構成や目的が全く異なっている。Japanese Patent Application No. 2010-250908 (reference document 2) The patent document 2 of the present application cites a student clothes, student pants, and work clothes using a quick-drying fabric characterized in that a washing and dehydration water retention rate is 50% or less. And a textile product selected from the group consisting of uniforms. Although the description on the washing and dehydration water holding ratio in claim 2 of this reference document 2 is a description on water retention similar to the suction and dehydration holding water ratio and the suction and dehydration holding water retention ratio of the water retention evaluation of the present invention, The water retention rate is the water retention rate after washing and dewatering. That is, it dehydrates by the dehydrating system using a centrifugal force, and is evaluated by the measured value of the ratio of the retained water amount after dewatering (the retained water amount in the centrifugal dewatering method). On the other hand, evaluation methods are different from the suction dewatering water holding rate and the suction dewatering water holding rate in the suction dewatering water system and the suction dewatering system of the present invention. The cited reference is a centrifugal dewatering system, the present invention is a suction dewatering system, a suction dewatering system, and the mechanism of dewatering is different. This reference document has a slightly different evaluation condition from the water retention rate used in the evaluation of the invention of the combination of the specific yarn using fabric and the specific woven fabric of the invention of claim 12 and the multistage hydrophobization processing of the present invention. It is almost the same. This reference document is also an invention of devising the yarn and the weave structure to reduce the limited water-washing / water-retaining rate, and only the ordinary water-repellent finish is described for processing. On the other hand, the invention of the present application is also an invention relating to the effects obtained by combining the special component yarn, the special component fabric and the multistage hydrophobization processing. In this reference, there is neither description nor suggestion concerning multistage processing. The configuration requirements are also partially different. Furthermore, for the purpose of quick drying, it is described that the water-washing / water-holding ratio is 50% or less, more preferably 20% or less, particularly preferably 5 to 20%, but this preferable water-holding ratio range is achieved. There is no description of the special water repellent finish. The present invention is a "water-repellent fabric having a water-retaining ratio of 5% or less, which is hard to feel contact wet feeling", and the achievement target and the achieved numerical value itself are also different. There is no mention in this reference at all regarding the means for achieving the 5% or less water retention of the present invention. Furthermore, the present invention relates to a fabric, a fiber product that can easily remove water by the spread suction and dewatering method, and a dewatering method that does not generate dewatering wrinkles, and the water retention after dewatering is small. That is, although the water holding capacity is small (it is common to be small), this reference also describes the method of removing water without generating wrinkles by the spread suction discharge method of the configuration of the present invention. There is neither a special description about the fabric configuration for obtaining a good-quality fabric nor a means of processing the fabric, nor any description suggesting this. Regarding the processing, as described above, the description is only about the usual water repellent finish common to the present invention except for the description regarding the preferred formulation. In the present invention, in addition to ordinary water-repellent processing common to the cited reference, repetitive immersion and squeezing are carried out so as to exert an effect on a dense woven fabric or a fabric using dense yarns (eg, strongly twisted yarns). Continuous water-repellent treatment (multi-stage treatment) and batch-type water-repellent treatment which repeatedly performs nip and impregnation are also invention constitutions, but the description regarding this is not found at all. This reference document 2 is a product-related patent and is partially common in this respect. However, when the product is washed and dewatered as described in Reference 2 as described in [Background Art] of the specification of the present invention, not only the occurrence of dewatering spots can not be avoided, and In addition, the occurrence of wrinkles during dehydration is inevitable. This invention is completely different from the product of the invention of the spread-out suction dewatering system which does not generate wrinkles according to the invention of this invention. Furthermore, in this reference document 2, neither the description regarding the configuration of the present invention nor the description suggesting this can be found at all. This reference document 2 is an invention relating to a specific fabric in which a specific yarn is subjected to a specific yarn, a low-hydrophobic fabric after centrifugal dewatering used for a specific application, and the product of the present invention is an invention as described above. The composition and purpose of are completely different.

本願発明の解決しようとする課題は布帛表面に付着した水や液体、繊維内部に浸透した水や液体を含んだ布帛や繊維製品から布帛や繊維製品の表面に脱水時に新たに脱水皺を作らず、かつ均一に水滴や液滴、水分や液体を除去する脱水・脱液方法に関する発明である。
洗濯機に付属または兼用の遠心脱水や、マングル絞り方式の脱水では布帛や繊維製品には洗濯時発生した皺に更に新たな脱水皺、絞り皺が発生すること、脱水斑が発生するので、これらの発生を防止することも課題の一つである。
更に、この拡布水分除去方式を容易に実施できる布帛や繊維製品を提供することがもう一つの課題である。本発明の対象とする布帛や繊維製品は一般衣料及びシーツ、カーバー等の衣料用品及び介護衣料、シーツ、カーバー等の介護衣料用品等の比較的軽量な目付け(500g/m2以下)の布帛から作られ、従来は主に家庭の洗濯機で洗濯されていた身の回り品が対象である。
The problem to be solved by the present invention is that water or liquid adhering to the surface of the fabric, or water or liquid containing the water or liquid permeating the inside of the fiber does not create dewatering wrinkles newly when dewatering the surface of the fabric or fiber product. It is an invention related to a dehydration / liquid removal method for uniformly and uniformly removing water droplets, droplets, water and liquid.
In centrifugal dewatering attached to or combined with the washing machine, or dewatering in a mangle drawing method, new dewatering stains and squeezed wrinkles are generated in the cloth and fiber products generated in washing, and dewatering spots are generated. One of the problems is to prevent the occurrence of
Furthermore, it is another object to provide a fabric or fiber product that can easily carry out the spread moisture removal method. Fabrics and textiles targeted by the present invention are made from relatively light-weighted (500 g / m2 or less) fabrics such as general clothing and clothing such as sheets and carver, and care clothing such as care and sheets and carver. In the past, personal items that were usually washed by household washing machines are targeted.

本発明は水分を含んだ布帛や繊維製品、水分が付着した布帛や繊維製品の表面を拡布状のまま走査可能な吸出し脱水装置を布帛上を走査させて表面に付着した水滴や布帛内部に浸透した水分を吸出して水分を除去する方法である。
更に、水分を拡布吸出し脱水方式で除去しやすい、拡布吸出し脱水性に優れた布帛、脱水後に低保水性になる布帛、この両性能を有する布帛を開発し、これを使用した拡布吸出し脱水性に優れ、脱水後に低保水性になる繊維製品を作る。
In the present invention, the surface of the fabric or fabric containing water, the fabric or the fabric to which water is attached is spread out, and the film is scanned with a suction / dehydration device capable of scanning the surface of the fabric. It is a method of removing the water by sucking out the water.
Furthermore, we have developed a fabric that is easy to remove water by the spreading suction and dewatering method, a cloth with excellent spreading suction and dewaterability, a fabric that has low water retention after dewatering, and a fabric having both of these performances. Produces textiles that are excellent and have low water retention after dewatering.

本願発明品の布帛、布帛を使用した繊維製品は拡布吸出し脱水性に優れており、また吸出し脱水後の保水性が低い特徴を有する。
本発明品の布帛や繊維製品を本発明の拡布吸出し脱水方法で脱水した場合には、脱水を拡布状態で実施できるので布帛や繊維製品の表面に大きな、強い皺を脱水時に新たに発生させない特徴を有する。
更に、拡布吸出し脱水装置の小型なタイプを使用し、本願発明に規定する低保水性の布帛を使用した製品や衣服では、使用状態、着用状態のままで水分や水滴の除去が可能になり、脱水後の布帛は低保水性になるので、そのまま製品や衣類を使用し続けられる長所をも有し、新しい特徴ある製品、衣服の提供にもつなげられる。
本発明の布帛や脱水方法は一般衣料分野の水分除去だけでなく病院や介護分野での尿や体液更に流動性汚物等の液状物の除去にも有用な介護衣料や介護用身の回り品からの水分、尿や流動性汚物の除去にも有効に使用したり、利用したりすることが可能である。
The fabric of the product of the present invention and the fiber product using the fabric are excellent in spreading and drawing out and dewatering properties, and also have a feature of low water retention after being drawn out and dewatering.
When the fabric or fiber product of the present invention is dewatered by the spreading suction and dewatering method of the present invention, dewatering can be carried out in the spread state, and thus a large, strong wrinkle is not generated newly on the surface of the fabric or fiber product. Have.
Furthermore, in products and clothes that use a low water retention fabric as defined in the present invention, using a small type of spreader suction dewatering device, it becomes possible to remove water and water droplets while used and worn. Since the dewatered fabric has low water retentivity, it also has the advantage of being able to continue using the product and clothes as it is, leading to the provision of new distinctive products and clothes.
The fabric and the dewatering method of the present invention are useful not only for water removal in the general clothing field but also for removal of urine and body fluids in hospitals and nursing care fields and liquids such as fluid stains, and water from care clothing and personal care items It can also be effectively used or removed for the removal of urine and fluid soil.

繊維から吸出し脱水・脱液方式で除去する対象は主として水分や尿で、一つは繊維表面上にある水分や尿であり、もう一つは布帛内部に浸透した水分や尿である。布帛表面の水分や尿は水滴状であったり、布帛全面に広がった状態で付着している。これらの表面の水分や尿は布帛表面を構成している繊維と接触している。これらの水分や尿を除去する場合に繊維と接触している水分や尿は繊維と表面張力で相互作用をして付着しているので繊維と接触していない水分や尿よりは除去に要する力がより必要である。
布帛の内部に浸透した水分や尿の大部分は繊維と接触していて、水分や尿は繊維と表面張力で相互作用を行っていて水分や尿の除去に要する力は繊維と非接触の水分や尿の除去、表面に付着の水分や尿の除去より更に大きな力が必要である。特に、中心内部に浸透した水分や尿は布帛を構成する繊維間に存在し、毛細管の中に保持される状態になり、水分や尿を取り囲む様に繊維との表面張力で相互作用を受けるので表面より一層水分や尿の除去に要する力が必要になる。このため、本発明の吸出し脱水性に優れ、、吸出し脱水後が低保水性になる性質を有する布帛を作るには、構成している繊維はアセテート繊維、アクリル繊維、ナイロン繊維、ポリエステル繊維、ポリプロピレン繊維、塩化ビニール繊維等の疎水性繊維がレーヨン繊維や綿繊維のような親水性の繊維より、水や尿と繊維との結合性が小さく、水分や尿の吸出し除去性が容易である点で好ましい。
繊維表面の固有のこの性質は各種の繊維加工手段、例えば撥水加工等で変化させられるので加工により、より好ましい性質の疎水性に改良し、本願発明に適用することが可能である。疎水性繊維はより疎水性に、親水性繊維も疎水性に変化させられるので撥水加工のような疎水化加工方法は好ましい加工方法である。繊維、糸種を選び布帛組織を選択することで吸引脱水保水率を40%以下に、又は吸出し脱水保水率を30%以下に、更に疎水化加工と組合せを行なうことで、吸引脱水保水率を20%以下に、又は吸出し脱水保水率を10%以下の好ましい布帛とすることが可能になる。実機を使用して拡布脱水した場合には上記の布帛では、実機吸引脱水保水率を10%以下、好ましくは5%以下にすることが出来て、吸引脱水後殆ど濡れ感を感じることなく着用することが可能になる。吸出し脱水を容易にするためには、布帛を構成する糸構造は水分保持量、保持力に関係する糸構造の中でも特に重要な役割をする毛細管構造の分布割合が少ないほうが保水量を小さくする点で、また毛細管径の大きいほうが、また毛細管径は不均一で乱れているほうが水分の除去しやすさの点で好ましい。具体的に例示すれば、糸を構成する繊維は短繊維より長繊維の方が、糸の種類も多く、糸構造を色々な加工手段で容易に変化させ得る点、調整できる点、毛細管構造分布の割合を少なくするように構成を設計出来る点で好ましい。例えば、糸の断面形状を変更したり、断面形状の構成割合を工夫したり、顕縮加工や混繊加工を実施したり、これらの組合せを検討したりする事で取れやすさに工夫することが可能であり好ましい。長繊維使用は毛細管構造の割合が少なく、保水量を少なく選択できるので好ましい。具体的には同じ太さの糸では単糸の太さが太い糸構成のものの方が毛細構造の分布量を少なく構成出来る点からは好ましい。低保水性にする機能面のみからは単糸太さとしては1デニール以上が好ましく、2デニール以上がより好ましい。また、フィラメントの形状は直線状の糸形状より、クリンプが発生していて毛細管構造が不均一になる加工糸タイプの糸形状の方が保水量は増えるが脱水性が容易である点で好ましい。混線糸タイプも同様の理由で好ましい。混繊糸の糸構成も単一なフィラメントタイプの混繊糸より糸断面が異型なフィラメントを組み合わせて構成した混繊糸、低収縮糸と高収縮糸の混繊糸、更にこれらの組合せを行なった異型断面と異収縮糸を複合した組み合わせの混繊糸も水分等の除去し易さの点で好ましい。更に、混繊に際して2種類の糸の供給割合(オーバーフィード量)を変えて供給する混繊方式で毛細管構造を作り難くする方法との組合せは水分の除去し易さの視点で好ましい混繊方法である。
糸を撚糸して毛細管構造を短くした構造、径を小さくした構造は撚りのない糸、少ない糸よりは毛細構造の長さが短く、径が小さくなり、含水量を小さくする点で好ましい。この視点での撚り係数は3000以上が好ましく、更には5000以上がより好ましい。
撚糸を強く行なう(撚り係数を上げる)と毛細管の間隔が狭くなり、浸透した水や尿は取れ難くはなるが、保水量が少なくなる点で好ましい。取れ難くなる点の改善は繊維表面を撥水加工等で疎水化し固体表面張力を小さくすることで改善できる。毛細管の間隔が狭くなっているので撥水加工等の好ましい加工に際しては加工薬剤の狭い間隔への浸透を良くする工夫が併せて重要である。例えば浸透剤の併用、処理液の浸漬と搾り出しを繰り返し連続的に実施する連続多段処理方法、浸漬とニップ絞り処理を浴中で行なうバッチ浸漬処理方法を例示できる。これらの加工手段は撚糸のような緻密糸使いの布帛や高密度織物のような緻密な織物には好ましい加工手段である。
吸出し脱水性に優れた布帛を使用して衣服を製作する場合には50%以上、好ましくは70%以上に吸出し脱水性に優れた布帛が使用されているのが好ましい。吸出し脱水性に優れた衣服の構成は表地、裏地、中間素材のいずれにも吸出し脱水性に優れた布帛を使用するのが最も好ましい。更に各々の部分が取り外せるようにボタンやチャック、テープ等で結合するように構成されている場合には吸い出し脱水操作をパーツ部分を取り外して個別に実施できるので好ましい。
The objects to be removed from the fibers by suction and dehydration / drainage methods are mainly water and urine, one is water and urine on the fiber surface, and the other is water and urine that has permeated into the inside of the fabric. Moisture and urine on the surface of the fabric are in the form of water droplets or adhere to the entire surface of the fabric in a spread state. The water and urine on these surfaces are in contact with the fibers that make up the fabric surface. When removing water or urine, the water or urine in contact with the fiber interacts with the fiber and adheres to the surface tension, so the force required for removal is higher than the water or urine not in contact with the fiber Is more necessary.
Most of the water and urine that permeated the inside of the fabric are in contact with the fiber, and the water and urine interact with the fiber by surface tension, and the force required to remove the water and urine is the water that is not in contact with the fiber Removal of urine and urine, removal of moisture and urine adhering to the surface requires even greater force. In particular, water and urine that penetrated into the center are present between the fibers that make up the fabric and are in a state of being retained in the capillary and are interacted with surface tension with the fibers so as to surround the water and urine. The surface needs more force to remove water and urine. For this reason, in order to produce a fabric having the property of being excellent in suction and dewatering properties and having a low water retention property after suction and dewatering according to the present invention, the constituent fibers are acetate fibers, acrylic fibers, nylon fibers, polyester fibers, polypropylene Fibers, polyvinyl chloride fibers and other hydrophobic fibers have a smaller bonding property between water and urine and fibers than hydrophilic fibers such as rayon fibers and cotton fibers, and are easy to absorb and remove water and urine. preferable.
This inherent property of the fiber surface can be changed by various fiber processing means such as water repellent processing, so that it is possible to improve the hydrophobic property of more preferable property by processing and apply it to the present invention. Hydrophobic processing methods such as water repellant processing are the preferred processing methods since hydrophobic fibers are more hydrophobic and hydrophilic fibers are also hydrophobic. By selecting fibers and yarn types and selecting the fabric structure, the suction dehydration water retention rate can be reduced to 40% or less, or the suction dehydration water retention rate can be reduced to 30% or less, and the suction dehydration water retention rate can be further combined with hydrophobization processing. It becomes possible to obtain a preferable fabric with 20% or less or with a sucking and dewatering rate of 10% or less. In the case of despreading using the actual machine, with the above-mentioned fabric, the actual machine suction dehydration water retention rate can be made 10% or less, preferably 5% or less, and it is worn with almost no feeling of wetting after suction dehydration. It becomes possible. In order to facilitate suction and dewatering, the yarn structure constituting the fabric plays a particularly important role among the yarn structures related to the water holding capacity and the holding power, and the smaller the distribution ratio of the capillary structure, the smaller the water holding capacity. Also, it is preferable that the diameter of the capillary be larger and that the diameter of the capillary be nonuniform and disordered in terms of the ease of removing water. More specifically, the fibers constituting the yarn are longer than the short fibers, and the types of yarn are more than those of the short fibers, and the yarn structure can be easily changed by various processing means, and can be adjusted, capillary structure distribution Is preferable in that the configuration can be designed to reduce the ratio of For example, change the cross-sectional shape of the yarn, devise the composition ratio of the cross-sectional shape, carry out squeezing processing and mixed fiber processing, or devise the easiness of removal by examining a combination of these. Is possible and preferred. The use of a long fiber is preferred because the proportion of capillary structure is small and the amount of water retention can be selected small. Specifically, in the case of yarns of the same thickness, a yarn having a thick single yarn is preferable in that the amount of distribution of the capillary structure can be reduced. The single yarn thickness is preferably 1 denier or more, and more preferably 2 denier or more, from the viewpoint of only the function of reducing water retention. Further, the shape of the filament is preferably a processed thread type thread shape in which crimp occurs and the capillary structure becomes uneven rather than a straight thread shape in that the water retention amount increases but the dewaterability is easy. Mixed yarn types are also preferred for the same reason. A mixed yarn consisting of a single filament type of mixed yarn and a filament formed by combining filaments having different cross-sections, a mixed yarn of a low shrinkage yarn and a high shrinkage yarn, and a combination thereof are also used. A combined yarn of a combination of atypical cross section and differently shrinkable yarn is also preferable in view of the ease of removing water and the like. Furthermore, the combination with the method of making it difficult to make the capillary structure by the mixed fiber method in which the supply ratio (overfeed amount) of the two types of yarns is changed at the time of mixed fiber combination is a preferable mixed fiber method from the viewpoint of water removal ease. It is.
The structure in which the capillary structure is shortened by twisting the yarn and the structure in which the diameter is reduced is preferable in that the capillary structure has a shorter length and a smaller diameter and a smaller water content than non-twisted yarns and few yarns. 3000 or more are preferable and, as for the twist coefficient in this viewpoint, 5000 or more are more preferable.
When the twisting is performed strongly (the twist coefficient is increased), the distance between the capillaries becomes narrow, and it is difficult to take out the permeated water and urine, but it is preferable in that the water retention amount is reduced. The improvement of the point where it is difficult to remove can be improved by making the surface of the fiber hydrophobic by means of a water repellent process or the like to reduce the solid surface tension. Since the distance between the capillaries is narrow, it is also important to improve the penetration of the processing agent into the narrow space at the time of the preferable processing such as the water repelling process. For example, there can be exemplified a continuous multistage treatment method in which combination use of a penetrant, immersion and squeezing out of a treatment liquid are repeated continuously, and a batch immersion treatment method in which immersion and nip drawing treatment are performed in a bath. These processing means are preferred processing means for dense yarn fabrics such as twisted yarns and dense fabrics such as high density fabrics.
In the case of producing a garment using a fabric excellent in suction and dewaterability, it is preferable to use a fabric excellent in dewaterability to 50% or more, preferably 70% or more. It is most preferable to use a cloth excellent in dewatering ability as the composition of the clothes excellent in dewatering ability as the outer fabric, the lining, and the intermediate material. Furthermore, in the case where each portion is configured to be connected by a button, a chuck, a tape or the like so as to be removable, it is preferable because the suction and dewatering operation can be performed separately by removing the parts.

本願発明の主な構成の一つは拡布吸出し脱水性に優れ、脱水後の保水性が小さい布帛、この布帛を使用した製品に関する発明である。布帛からの吸出し脱水性に優れるとは、水分が容易に脱水されやすい性質を持つ布帛であることや布帛を構成する糸構造が脱水されやすい糸構造糸なっていること及び拡布吸出し脱水後の保水量が小さいことを意味している。水分の取れやすさに関係する因子は繊維糸構造、特に毛細管糸構造等の物理的因子が影響することは具体的な例示で上述した通りである。構造的構成要因が同じ場合は繊維表面の性質、特に繊維の表面張力(固体界面張力)の影響が大きく、親水性の大きな固体界面張力より疎水性の小さい固体界面張力を有する繊維からなる糸を使用した布帛の方が水分が除去されやすいので好ましい。この場合繊維表面の疎水化加工は好ましい加工方法である。保水量に関しては元々大きくても吸出し脱水操作で取れ易い布帛や元々保水量の小さい布帛も吸出し脱水性の優れた布帛となりうる。保水量を小さくする手段としても繊維表面の疎水化加工は好ましい加工方法である。吸出し脱水性を良くする加工方法としては上述のように繊維の疎水化加工が好ましく、親水性繊維の疎水化加工、疎水性繊維の一層の疎水化加工は吸出し脱水性、吸引脱水性の保水値を小さくする。保水量を少なくし、拡布吸出し脱水を容易にするので好ましい加工法である。具体的にはシリコーン樹脂、ポリエチレン樹脂等を使用した繊維加工や樹脂加工での繊維の疎水化や、撥水剤を使用した撥水加工方による繊維の撥水加工(疎水化加工)方法は、疎水化で繊維表面の固体界面張力を小さくするので、好ましい加工方法として例示できる。更に、繊維に例えばウレタン系の樹脂やアクリル系の樹脂を含浸させたり、布帛の裏面に防水性のウレタン系の樹脂フイルム、ポリテトラエチレン系の樹脂フイルムをラミネートして得られる防水性の加工布帛は布帛への水の浸透を防止したり、少なく抑えることが可能で保水量を少なくすることが出来る。そのため布帛内部からの水分除去量がそれだけ少なくなり、主に表面に付着した水分の除去だけですむので好ましい加工法である。更に部分的にこれら樹脂を布帛内部に浸透させることで毛細管構造の容積割合を少なくすることも可能であり、保水量を少なくする点で好ましい加工方法である。これら防水性の加工を吸い出し脱水性に優れ、保水性の小さな低保水性の布帛に実施することでより好ましい効果が相乗的(保水量を抑え、脱水し易い構造体にする相乗効果)に得られるので好ましい。好ましい糸構成の糸を使用し、好ましい疎水化加工法を採用し、更に防水加工をして得られる拡布吸出し脱水性に優れ、更に防水性の布帛はスポーツ衣料、ユニホーム衣料分野だけでなく、身の回り品、特に介護分野でのシーツやベッドカバー用品にも広く適用できる。この場合は水分や尿、液状の流動性汚物等の裏面への浸透も防止できるので本願発明用の好ましい布帛で有ると共に好ましい適用事例である。裏面への浸透を防止する為の布帛の防水性は300mm以上が好ましく、更に好ましくは1000mm以上である。裏面に防水性のポリウレタン系樹脂がコーティングされた布帛や防水性のポリウレタン系フイルムやボリテトラフルオロエチレン系のフイルムがラミネートされている布帛で防水性が300mm以上、好ましくは5000mm以上の布帛がこれらの用途には最も好ましく利用可能である。
繊維内部に浸透した水分をより容易に吸出し除去できる、拡布吸出し脱水性に優れた布帛にするためには、上述の疎水化加工、撥水加工を繊維内部の構成繊維にまで、むら無く均一に実施することが好ましい。特に緻密な布帛や緻密な糸構成(例えば強撚糸)の糸使用の布帛の場合にはこのことは特に重要である。布帛を構成する糸の繊維内部、布帛断面の中心内部まで均一に加工するには疎水化剤や撥水剤の布帛への浸透を良くするための加工方法が好ましい。例示すれば、疎水化剤や撥水剤をパッディング方法で布帛に含浸させる時に浸透剤を併用使用してパッディングする、パディング処理(浸漬とマングル搾り)を複数回繰り返しを連続処理方式で実施する、疎水化剤や撥水剤を含む液中で、例えば洗絨機を使用してニップと含浸処理を繰り返しバッチ処理方式で実施する、含浸時間を長くする等の加工手段は特に本発明の効果を十分に効果的にする上で好ましい加工手段である。洗絨機を使用する場合、ロープ状で布帛を処理するロープ式洗絨機より拡布状態で布帛を処理する拡布式洗絨機の方が布帛表面に皺を発生させない点で、処理斑が少ない点で、処理液量を少なく出来経済的である点で好ましい。
特に緻密な繊維構成の布帛、具体的には総カバーファクターの大きな、例えば経糸と緯糸の合計カバーファクターが1000以上、好ましくは1500以上ある高密度織物のような布帛には有用で、重要な加工方法である。更に、織物が緻密な場合には効果的であると記述したが、布帛が緻密でない場合でも、その布帛を構成している糸が、例えば強く撚糸(撚り係数で3000以上)されていて、糸を構成しいる単糸が緻密になっているような場合にもパディング処理(浸漬とマングル搾り)を複数回繰り返し実施する繰り返しパッディング処理方法、ニップと含浸を液中で繰り返し実施する方法は特に好ましく、布帛の保水性を小さくする、除去性を容易にするための好ましい加工手段(連続処理方式の多段処理加工、バッチ処理方式の繰り返しニップ含浸処理加工)である。この事から緻密糸を使用した緻密な布帛の場合には最も効果を発揮できるので好ましい。
布帛の糸構成で保水性の役割を果たす毛細管の構成割合が少ない布帛は本発明には好ましいが、毛細管径を小さくした構造糸、例えば撚糸係数が3000以上、好ましくは5000以上の糸を使用した織物に上述の多段処理を実施した場合には特に保水性が小さくなるだけでなく、本願測定の抱水性は5%よりも更に小さな値にすることが出来る、濡れ感を感じさせない布帛とすることを実施例で確認できた。更にこの多段処理加工や繰り返しニップ含浸処理加工を行なうことで生地の内部まで疎水化剤が塗布される結果、表面が汚れ等で撥水性能が劣化しても、また洗濯や摩擦等で削り取られても内部の疎水化剤はこれらの影響を受けがたく上述のように低保水性、易脱水性、低抱水性の性能にプラスして水漏れ機能(漏水性能)が大きく改善されることがわかった。この性能が改善されることは実施例で明確にした。漏水性の評価基準である漏水に至る時間は生地上に投入する水量(水圧)、生地の緻密さの程度で大きく変るのは言うまでもない。この水漏れ機能(漏水性能)の改善はテント、作業着、アウトドアーで使用する商品、例えば釣り用途向けの帽子、ゴルフウエア、登山用途向けのウエアー等に新たな機能を付与できる。
糸構成、布帛構成、加工手段を選んで、本願発明の表面に皺を作らない拡布吸出し脱水性に優れた布帛を作るだけでなく、抱水率を5%以下にすることが可能になる。抱水率が5%以下の布帛は濡れ感を感じさせずに、洗濯後に遠心脱水するだけで着用できる新たな衣服の提供にもつながるものである。洗濯時の皺の発生は避けられないが通常の洗濯、脱水後の洗濯脱水に相当する抱水率が小さい布帛が提供できる点は脱水するだけ着用できる長所以外に、熱的乾燥が不要乃至は最小限の省エネ型布帛の提供にも繋げられる。カバーファクターが1000以上の高密度織物や撚り係数が3000以上、好ましくは5000以上の疎水性の長繊維強撚糸を使用した織編物からなる布帛に上述の多段処理加工、またはニップと含浸を液中で繰り返し実施するバッチ処理加工を実施た布帛では吸引脱水保水率の値を20%以下、吸出し脱水保水率10%以下の本発明の好ましい布帛とすることが出来る。一例として実施例に示した理想的な場合には吸出し脱水保水率を1%以下にすることを可能とする好ましい組合せであるといえる。
One of the main constitutions of the present invention is an invention relating to a fabric having excellent spreading, sucking, and dewatering properties, and a small water retention after dewatering, and a product using this fabric. Being excellent in the dewatering ability by suction from the fabric means that the fabric has a property that the water is easily dewatered, that the yarn structure constituting the fabric is easily dewatered, and that it is maintained after the spreading and discharging. It means that the amount of water is small. The factors related to the ease of removing water are influenced by the physical factors such as the fiber yarn structure, particularly the capillary yarn structure, as described above in the specific examples. If the structural factor is the same, the property of the fiber surface, in particular the surface tension of the fiber (solid interfacial tension) has a large influence, and a yarn composed of fibers having a solid interfacial tension less hydrophobic than a large hydrophilic interfacial tension The fabric used is preferable because water can be easily removed. In this case, hydrophobization of the fiber surface is a preferred processing method. With regard to the water retention amount, a fabric which is originally large but which is easy to be removed by the suction and dewatering operation and a fabric which is originally small in the water retention amount can also be a fabric which is excellent in dewatering ability. Hydrophobicizing the fiber surface is also a preferred processing method as a means for reducing the amount of water retention. As mentioned above, hydrophobization of fibers is preferable as a processing method to improve the dewaterability, and hydrophobization processing of hydrophilic fibers and hydrophobization processing of one layer of hydrophobic fibers are dewatering ability and water absorption value of suction and dewaterability. Make This is a preferable processing method because it has a small water holding capacity and facilitates spreading, drawing, and dewatering. Specifically, the method of hydrophobization (hydrophobization) of fibers by hydrophobization using fibers such as silicone resin, polyethylene resin, etc. is also possible. It can be exemplified as a preferred processing method because the solid interfacial tension on the fiber surface is reduced by hydrophobization. Furthermore, a waterproof processed fabric obtained by impregnating a fiber with, for example, a urethane resin or an acrylic resin, or laminating the waterproof urethane resin film or polytetraethylene resin film on the back surface of the fabric. It is possible to prevent or reduce the penetration of water into the fabric and to reduce the amount of water retention. As a result, the amount of water removed from the inside of the fabric is reduced accordingly, and it is only the removal of water adhering to the surface, which is a preferable processing method. Furthermore, it is also possible to reduce the volume ratio of the capillary structure by partially permeating these resins into the inside of the fabric, which is a preferable processing method in terms of reducing the amount of water retention. A more preferable effect is obtained synergistically (synergistic effect of reducing the amount of water retention and making it easy to be dehydrated) by carrying out such waterproof processing on a low-water-retention fabric that is excellent in dewatering ability and absorbs moisture. Because it is Using a yarn of a preferred yarn configuration, adopting a preferred hydrophobization processing method, and providing a waterproof, well-spreading and dewatering fabric that is obtained by waterproofing, the waterproofing fabric is not only in the sports clothing and uniform clothing fields, but also in the surrounding area. It can be widely applied to products, especially sheets and bedspreads in the field of care. In this case, it is possible to prevent the penetration of moisture, urine, liquid fluid soil, etc. to the back side, and this is a preferred fabric for the present invention, which is a preferred application example. The waterproofness of the fabric for preventing penetration to the back surface is preferably 300 mm or more, more preferably 1000 mm or more. Fabrics coated with a waterproof polyurethane-based resin on the back, or fabrics laminated with a waterproof polyurethane-based film or a polytetrafluoroethylene-based film are those with a waterproofness of 300 mm or more, preferably 5000 mm or more. It is most preferably available for use.
In order to make it possible to easily absorb and remove moisture that has penetrated the inside of the fiber and to obtain a fabric with excellent spread-out suction and dewaterability, the above-mentioned hydrophobization processing and water-repellent processing are evenly and uniformly to the constituent fibers inside the fiber. It is preferable to carry out. This is particularly important in the case of fabrics which are used in particular for dense fabrics and yarns with a dense yarn configuration (e.g. high twist yarns). In order to process uniformly the inside of the fiber of the yarn constituting the fabric and the center of the cross section of the fabric, a processing method for improving the penetration of the hydrophobizing agent and the water repellent into the fabric is preferable. For example, when a fabric is impregnated with a hydrophobizing agent or a water repellent by padding method, padding is carried out using a penetrant in combination, padding treatment (immersion and mangle squeezing) is repeated several times and carried out by a continuous treatment method Processing means such as repeating the nip and impregnation treatment in a batch processing system using a carpet washing machine in a solution containing a hydrophobizing agent or a water repellent, lengthening the impregnation time, etc. are particularly preferred in the present invention. It is a preferable processing means in order to make the effect sufficiently effective. When using a carpet washing machine, the spread cloth washing machine that treats the fabric in a spread state does not generate wrinkles on the surface of the cloth than the rope cloth washing machine that processes the cloth in a rope shape, so there are less treated spots. From the point of view, the amount of processing solution can be reduced, which is preferable from the viewpoint of economy.
Particularly useful for important textiles, especially for fabrics with dense fiber construction, specifically high density fabrics with large total cover factors, eg, a total cover factor of 1000 for warp and weft, preferably 1500 or more. It is a method. Furthermore, although described as being effective when the fabric is dense, even when the fabric is not dense, the yarn constituting the fabric is, for example, strongly twisted (more than 3000 in twist coefficient), and the yarn is Repeated padding treatment method in which padding treatment (immersion and mangle squeezing) is repeated a plurality of times even when the single yarn constituting the fiber is dense, and the method of repeatedly performing the nip and the impregnation in a liquid is particularly preferred. Preferred is a preferred processing means for reducing the water retention of the fabric and facilitating the removability (multistage processing with continuous processing, repeated nip impregnation with batch processing). From this, in the case of a dense fabric using a dense yarn, it is most preferable because it can exert the most effect.
Although a fabric having a small proportion of the capillary that plays a role of water retention in the yarn configuration of the fabric is preferable for the present invention, a structural yarn with a reduced capillary diameter, for example, a yarn having a twist coefficient of 3000 or more, preferably 5000 or more is used. When the above-described multi-stage treatment is applied to the fabric, not only the water retentivity becomes small, but also the water permeability of the measurement in the present application can be made smaller than 5%, and the fabric does not feel a wet feeling. Was confirmed in the example. Furthermore, as a result of the hydrophobizing agent being applied to the inside of the fabric by performing this multistage treatment process and repeated nip impregnation process, even if the water repellant performance is deteriorated due to dirt on the surface, it is scraped off by washing or friction. Even though the internal hydrophobization agent is insensitive to these influences, as described above, the water retention function (water leakage performance) is greatly improved in addition to the low water retention, easy dehydration, and low water retention performance. all right. It is clarified in the example that this performance is improved. It goes without saying that the time to reach water leakage, which is the evaluation standard of water leakage, largely changes depending on the amount of water (water pressure) introduced onto the fabric and the degree of compactness of the fabric. The improvement of the water leakage function (water leakage performance) can impart new functions to tents, work clothes, products used outdoors, such as hats for fishing, golf wear, and wear for mountain climbing applications.
By selecting the yarn configuration, the fabric configuration, and the processing means, it is possible not only to make the fabric of the present invention which does not form wrinkles on the surface of the present invention, but to make the fabric excellent in dewatering and dewatering. A fabric having a water retention rate of 5% or less leads to provision of new clothes that can be worn only by centrifugal dewatering after washing without feeling wet feeling. The occurrence of wrinkles at the time of washing can not be avoided, but it is possible to provide a fabric with a small water retention rate equivalent to ordinary washing and washing and dewatering after dehydration. Apart from the advantage that it can be worn only for dewatering, thermal drying is unnecessary. It also leads to the provision of minimal energy saving type fabrics. The above-mentioned multi-stage processing, or nip and impregnation in a liquid made of a woven or knitted fabric using a high density fabric with a cover factor of 1000 or more and a hydrophobic long fiber strong twist yarn with a twist coefficient of 3000 or more, preferably 5000 or more In the case of a fabric which has been repeatedly subjected to the batch processing process, the value of the suction dewatering water holding rate can be 20% or less, and the suctioned dewatering water holding rate can be a preferable cloth of 10% or less. In the ideal case shown in the embodiment as an example, it can be said that it is a preferable combination which makes it possible to make the suction and dehydration water retention rate 1% or less.

布帛を拡布した状態で水分を吸い出し脱水させるには通常の湿気や水分吸い取り能力を有する掃除機で布帛表面を走査して行う。ここに言う布帛表面とは布帛を構成する表面及び裏面の両方を含めた表現である。具体的な掃除機の例としてバキュウムポンプを使用したバキューム吸引方式の掃除機を例示できる。
これら掃除機は通常は吸引力で水分等を取り出す方法で除去性は通気性を有する布帛の方が空気の移動に伴って水分を除去する方式であるので内部へ浸透している水分も除去しやすい。低通気性の高密度織物、コーティングやラミネートした布帛のような通気性が小さい布帛や柔らかい布帛は吸引力を強くすると布帛そのものを吸い込んでしまい布帛に皺を発生させたり、水分除去の為の布帛の表面走査が出来なかったりしてトラブルを起こしやすい。従来からカーペット等ではカーペットの上にこぼした水分の除去等に水分吸い取り能力のある掃除機が使用されているが、カーペットは生地の厚みが大きく目付けも大きく、更に通常裏張りとして樹脂がコーティングされていて硬いので掃除機の吸い込み口に吸い込みこまれるトラブルは発生しない。又カーペットの表面は凹凸が大きく吸い込み口とカーペットの間には空気の通路が確保されるのでカーペットが吸い込まれることも起こらない。
一方、本発明品の布帛は衣服等の衣料や衣料用品、ベッドカバーやシーツ等の身の回り品に用いられる軽量(通常400g/m2以下)で柔らかく、カーペットに比べて比較にならない位に薄くて柔らかいものであり、更に表面も平坦であるため、吸い込み口に吸い寄せられ吸い付いてしまうことも起こる。吸い付いた場合、特に通気性が小さい布帛の場合、吸い込み口に吸い付き、水分除去機の吸い込み口の布帛表面走査による水分除去動作そのものが出来なくなる。このような場合には吸い込み口を小さくしたり、吸い込み口周辺に切り込みを入れたり、凹凸を作ったりして、布帛の吸い付きが起こらないように空気の通路を確保した形状の吸い込み口に改良することで、既存の込み式掃除機を好ましく利用できる。このような空気通路を確保した形状の吸い込み口を有する水分除去機能掃除機は布帛表面の水分除去走査をスムーズに実施出来るので本願発明の実施に利用可能な好ましい吸い込み口を有する水分除去掃除機である。
吸い込み口を小さくすると水分除去効率が悪くなるので、吸い込み口の大きさを確保して、吸い込み口を目の粗い格子状や網状の太い糸からなるネットや編地、目の粗い金属金網で被覆した吸い込み口を有する吸い込み式の水分除去掃除機も空気の通路が確保でき、吸い込み口の布帛表面の走査による水分除去動作がスムーズに実施出来るので好まし吸い込み口を有する水分除去掃除機である。
このように通常の水分除去機能掃除機の吸い込み口に目の粗い格子状や網状の太い糸からなるネットや編地を被覆したり、目の粗い金属金網を被覆して吸い込まれないように工夫して布帛表面を走査すれば布帛が吸引口へ吸い込まれることのトラブルを回避して効率よく布帛の水分除去が可能となり好ましい水分除去方法である。
通常の水分除去機能掃除機を使用して平坦で、広い表面積の布帛から水分や水滴を除去する場合においては、布帛表面に針金やプラスッチク製の変形しにくい硬い材質のネット状の網物や金網を布帛と掃除機の吸引口の間に配置することで、布帛が吸引口に引き込まれることによるトラブルが解消されるので広い面積の布帛から効率よく水分の除去を行なう好ましい方法である。
本願の発明においては、通常の水分吸い取り能力を有する掃除機が使用可能であるが、水分吸い取り能力を向上させる目的で空気等の気体を吹きつけながら水分の吸い取りを行なう水分除去掃除機を使用することは応用的に使用可能である。(ブロアー機能付き水分吸い取り掃除機)空気が加熱されていればより効率的に水分の吸い取りが可能になり好ましい。又、水分を除去することを主目的とするが、汚れを取る目的で水分を吹きつけながら、または水分を吹き付けた後に水分の吸い取りを行なう水分除去掃除機、水分吹き付けと吸い取り機能を併せ持ったヘッドの水分除去掃除機も利用可能である。更に汚れ除去機能を向上させる目的で洗剤等の汚れ除去剤そのもの、汚れ除去剤を含んだ水を、吹きつけながら、または先にこれらを吹きつけた後に水分の吸い上げを行なう水分除去掃除機を使用することも無論応用的に実施可能である。さらにまた、エアー吹きつけ式水分吸い取り掃除機において、熱風を吹きつけながら行なうことでより効率的な水分除去機を行うことも無論可能である。熱風を併用しての水分除去掃除機において、布帛部分を押さえながら吸引除去を行なえば皺を新たに発生させないだけでなく、水分除去前に発生した皺を伸ばしながらの水分除去が可能になる。本願発明の特徴を生かし、更に皺伸ばしも行なえる好ましい利用方法である。
この時に吸引口の材質を金属等比熱が2以上の好ましくは4以上の大きい素材を使った吸い込み口にすることで、熱容量が大きくなるので押さえ込みながらの水分の吸引除去を実施出来るだけでなく、洗濯後の水分除去掃除機ノズルとして適用した場合には水分除去前に発生した皺の軽減化や皺の除去も行なえるので好ましい吸引口を有する吸出し脱水方式の水分除去掃除機と成し得る。
洗剤や汚れ除去剤を使用する場合には布帛や製品上に洗剤や汚れ除去剤が残らないよう水分の吹きつけを十分に行なうことが再使用の場合に必要である。これらの薬剤が布帛上に残ってしまうと、次回使用に際して水分吸水性を高め、水分除去性を阻害するので残らないように除去を完全にすることが重要である。また、皮膚への安全性の視点からも重要である。吸出し水分除去掃除機を使用するに際しては上記のような空気、熱風、水、洗剤等を併用して使用する場合を例示したが抗菌剤、消臭剤、撥水剤等を併用使用することは水分除去を主目的とする掃除機の応用の範囲で、目的に応じて組合せて使用することは可能である。
水分吸出し機能を有する掃除機の水分除去能力は掃除機の吸引力に影響を受けるが吸引力が大きすぎると上述したように本願発明の布帛や製品が吸い付くトラブルになるので吸引力を適宜調整できるタイプの水分除去掃除機が好ましい。
In order to absorb and dehydrate water in the spread state of the fabric, the surface of the fabric is scanned with a vacuum cleaner having a usual moisture and water absorption capability. The fabric surface said here is the expression including both the surface and back which comprise a fabric. A vacuum suction type vacuum cleaner using a vacuum pump can be exemplified as a specific vacuum cleaner.
These vacuum cleaners usually use a suction method to remove moisture etc. Since the removability is a method of removing moisture as the air-permeable cloth moves air, it also removes moisture that has penetrated inside. Cheap. Fabrics with low air permeability such as low air-permeable high-density fabrics, coated or laminated fabrics or soft fabrics absorb the fabric itself when suction is increased, causing wrinkles in the fabric, or removing moisture It is easy to cause troubles because it can not scan the surface of In the past, carpets, etc. used a vacuum cleaner with the ability to absorb moisture, etc. to remove water spilled on the carpet, etc. However, the carpet has a large thickness and a large fabric weight, and is usually coated with resin as a backing. It is so hard that it does not cause any trouble when it is sucked into the vacuum cleaner's suction port. Also, since the surface of the carpet is rough and the passage of air is secured between the suction port and the carpet, the carpet will not be sucked.
On the other hand, the fabric of the present invention is lightweight (usually less than 400 g / m 2) used for clothing such as clothes and clothing items, and personal goods such as bedspreads and sheets, and is thin and soft compared to carpets. In addition, since the surface is flat, it may be sucked into the suction port and sucked. In the case of suction, particularly in the case of a low air permeability fabric, the suction port sucks, and the water removal operation itself can not be performed by the cloth surface scanning of the suction port of the water removal machine. In such a case, the suction port is made smaller, a cut is made around the suction port, or irregularities are made to improve the suction port having a shape that secures an air passage so that suction of the fabric does not occur. By doing this, an existing built-in vacuum cleaner can be preferably used. A moisture removing function cleaner having a suction port shaped as such an air passage can smoothly carry out a moisture removing scan on the surface of the fabric, so it is a moisture removing cleaner having a preferred suction port usable for the practice of the present invention. is there.
If the suction port is made smaller, the water removal efficiency will deteriorate, so the size of the suction port is secured, and the suction port is covered with a net, a knitted fabric or coarse metal wire mesh consisting of coarse grid-like or net-like thick thread. The suction type water removing cleaner having the suction port can also secure the passage of air, and the water removing operation by scanning the surface of the cloth of the suction port can be smoothly carried out, so it is preferably the water removing cleaner having the suction port.
As described above, the suction port of a conventional water removal function vacuum cleaner is coated with a net or a knitted fabric made of coarse grid-like or net-like thick yarn, or coated with a coarse metal wire mesh so that the suction is not absorbed. Then, if the surface of the fabric is scanned, the problem of the fabric being sucked into the suction port can be avoided and the moisture of the fabric can be efficiently removed, which is a preferable moisture removal method.
When removing moisture and water droplets from a flat, large surface area fabric using a conventional moisture removal function vacuum cleaner, a net-like mesh or mesh made of a hard material made of wire or plastic on the surface of the fabric is used. This is a preferred method of efficiently removing water from a large area of fabric because the trouble caused by the fabric being drawn into the suction port is eliminated by arranging the cloth between the cloth and the suction port of the vacuum cleaner.
In the invention of the present application, a vacuum cleaner having a normal water suction capability can be used, but a water removal cleaner that sucks water while blowing a gas such as air for the purpose of improving the water suction capability is used. The thing is usable in application. (Water Absorbent Cleaner with Blower Function) If the air is heated, it is possible to absorb water more efficiently, which is preferable. In addition, the main purpose is to remove the water, while removing the dirt with the purpose of removing moisture while blowing the moisture, or after blowing the moisture after the moisture removal cleaner to absorb the moisture, a head with a combination of moisture spray and suction function Dewatering cleaners are also available. Furthermore, in order to improve the dirt removal function, use a moisture removal cleaner that sucks in water while spraying or before spraying the dirt removal agent itself such as detergent itself or water containing the dirt removal agent. Of course, it is also possible to apply in practice. Furthermore, in the air-blowing type water suction cleaner, it is possible to perform a more efficient dehydrating machine by blowing hot air. In the water removal cleaner using the hot air in combination, if suction removal is performed while holding the fabric portion, not only wrinkles are not newly generated but also water removal can be performed while stretching wrinkles generated before water removal. This is a preferable utilization method which can further extend the eyebrow by taking advantage of the features of the present invention.
At this time, if the material of the suction port is a suction port using a material having a specific heat of 2 or more, preferably 4 or more, the heat capacity becomes large, so it is possible not only to carry out suction and removal of water while holding down, When used as a water removal cleaner nozzle after washing, it is possible to reduce wrinkles and wrinkles generated before water removal, and therefore it is possible to make a water removal cleaner of a suction dehydration type having a preferable suction port.
In the case of using a detergent or a stain remover, it is necessary in the case of reuse to sufficiently spray water so that the detergent or the stain remover does not remain on the fabric or the product. If these agents remain on the fabric, it is important to complete the removal completely so as not to leave them, because they will increase the water absorption during the next use and inhibit the ability to remove moisture. It is also important from the viewpoint of skin safety. In the case of using a suction and moisture removal vacuum cleaner, the case of using air, hot air, water, detergent, etc. in combination as described above is exemplified, but using an antibacterial agent, a deodorant, a water repellent, etc. in combination It is possible to use in combination according to the purpose within the scope of the application of the vacuum cleaner whose main purpose is water removal.
The water removal ability of the vacuum cleaner with water suction function is affected by the suction power of the vacuum cleaner, but if the suction power is too large it will cause troubles that the fabric or product of the present invention will stick as mentioned above. The preferred type of dewatering vacuum cleaner is.

本願発明に記述の物性値評価は下記の方法で行なった。
布帛に投入、吸水された水分は布帛を構成する繊維構造体に吸収されるか布帛上に残るが、この水分が吸引操作後もどの程度残存して布帛内部に保水されたままになるかの程度割合を吸引脱水保水率として下記の通り実行して評価した。
ろ過瓶にアズワン社扱いのビフネルロート、型番AF3(内径約10cm、ホール数271個、ホール径約1.55mm)のロート部に配置する直径10cmの大きさの布帛を準備する。この布帛の重量W0を測定した後にロート部に設置する。その上に水を100cc注入した後直ちに吸引ろ過を行う。吸引はアルバック社製のポータブルアスピレータ(MDA006)を用いて減圧稼動を開始し1分間の吸引を行う。MDA006の到達減圧度はカタログ記載によれば6600パスカルである。
吸引ろ過後に布帛を取り出し、布帛の重量W1を測定する。吸引脱水保水性(吸引脱水保水率)は下記の1式で算出した値である。
(W1−W0)/W0*100・・・・(1)
測定に際して、ロートと布はくの間に吸引を均一にする目的で株式会社ヤマニ社製の線径55ミクロンのポリエステルモノフィラメントメッシュ生地(T120-55)を配置して計測を行なった。
布帛表面や内部に存在する水分が、吸出し脱水操作を行なった後もどの程度の割合で吸出し脱水出来ずに布帛内部の繊維構造体に残存して保水されたままになるかの程度割合を吸出し脱水保水率として下記の通り実行して測定した。
ピンで固定した布帛上に5ccの水を投与して5分間静置した後、ヌッチェ接続部分のビニール管(内径9mm)をヌッチェから外して、このゴム管先端を布帛にあて、湿潤部分を走査して水を吸引させる。走査速度約3m/分で3回実施する。その後走査部分を10cm*10cmの大きさにカットし重量W2を測定する。乾燥後の生地重量W0を測定し、下記の2式で算出した値を吸出し脱水保水率とする。疎水化加工した布帛を評価する時は水の代わりに液体アタック(花王石鹸株式会社製)を0.1%含む水溶液を使用する。
(W2−W0)/W0*100・・・・(2)
生地がゴム管の先端に吸い付くのを防止する為にゴム管表面に上記のメッシュ生地(T120−55)を被覆し、生地はピンで吸引操作で剥がれないように固定して水分、水滴の吸出し除去を実施した。
家庭での洗濯後の遠心脱水操作後も布帛を構成する繊維構造体に残存する水分量の程度割合を想定する指標としての布帛抱水性の測定を下記の通り実行する。
布帛(重量W0)を液体アタック(花王石鹸株式会社製)を0.1%含む水溶液に30分間浸漬した後、洗濯機(日立社製 型番 PS−513 )の脱水槽で10分間の遠心脱水を行い布帛の重量W3を測定し、下記の3式で算出した値を布帛抱水性として算出する。
(W3−W0)/W0*100・・・・(3)
発明品の実用上の価値を評価をする為の評価試験はアクアシステム株式会社製吸引脱水掃除機(EVC−550)で行い、吸引掃除機による実機脱水保水率として算出した。吸引は内径32mmの芯線入り軟式塩化ビニールチューブノズルを直接使用して行なった。本EVC−550の到達真空度はカタログ記載によれば210パスカルである。
ピンで固定した布帛上に5ccの水を投与して5分間静置した後、上記掃除機で水滴が付着した部分、浸透した部分を下側から5回走査(約90秒間)吸引を行う。その後走査部分を10cm*10cmの大きさにカットし重量W4を測定する。乾燥後の生地重量W0を測定し、下記の4式で算出した値を実機吸出し脱水保水率とする。疎水化加工した布帛を評価する時は水の代わりに液体アタック(花王石鹸株式会社製)を0.1%含む水溶液を使用する。
(W4−W0)/W0*100・・・・(4)
下記に記述するJIS規定の防水性は非常に短い測定時間での布帛の防水機能を評価する方法である。実用上で布帛を使用する場合は長時間に亘っての防水性が必要となる場合がある。長時間に亘っての防水性を評価する指標としてJIS規定の防水性評価に代わって、下記の通り実施して測定した漏水性で評価した。200ccのプラスチック製ビーカ上に生地を緩めに固定し、その上に100ccの水を注入する。水はビーカからこぼれない程度の高さで維持する。水が生地から漏れ出すまでの時間、日数を測定する。例えば、100cc注入し、1日経過後に漏水すれば生地の漏水性機能は100cc*1日の耐漏水性と表現する。
通常の防水性の測定はJIS L 1092の 耐水度試験(静水圧法) A法(低水圧法)、またはB法(高水圧法)に記載の方法で実施した。
撥水性の測定はJIS L 1092に記載のスプレー法で実施した。
通気性の測定はJIS L 1096A法(フラジール法) に記載の方法で実施した。
洗濯の実施はJIS L 0217 103法に記載の方法で実施した。
撚係数は下記式により算出した。
撚係数=T×(デニール)1/2
ここで、Tは撚糸回数(T/m)であり、Dは糸条の総繊度(デニール)である。
総カバーファクターは下記式により算出した。
総カバーファクター=(DWp)1/2×MWp+(DWf)1/2×MWf
ただし、DWpは経糸総繊度(デニール)、MWpは経糸織密度(本/2.54cm)、DWfは緯糸総繊度(デニール)、MWfは緯糸織密度(本/2.54cm)である。
The physical property value evaluation described in the present invention was performed by the following method.
Although the water absorbed into the fabric is absorbed by the fiber structure constituting the fabric or remains on the fabric, to what extent the moisture remains after the suction operation and remains retained in the fabric The degree ratio was evaluated by performing as described below as a suction dehydration water retention rate.
Prepare a size of 10 cm diameter cloth to be placed in a funnel part of Bifner funnel, model number AF3 (inner diameter about 10 cm, hole number 271 holes, hole diameter about 1.55 mm) treated by As One Corporation in a filtration bottle. After measuring the weight W0 of this fabric, it is placed in the funnel portion. After injecting 100 cc of water, suction filtration is performed immediately. For suction, a vacuum operation is started using ULVAC portable aspirator (MDA 006) and suction is performed for 1 minute. The ultimate pressure reduction of MDA 006 is 6600 Pascal according to the catalog description.
After suction filtration, the fabric is taken out and the weight W1 of the fabric is measured. Suction dehydration water retention (suction dehydration water retention rate) is a value calculated by the following equation (1).
(W1-W0) / W0 * 100 (1)
At the time of measurement, in order to make the suction uniform between the funnel and the cloth, measurement was carried out by arranging a polyester monofilament mesh fabric (T120-55) with a wire diameter of 55 microns manufactured by Yamani Co., Ltd.
The percentage of how much of the water present on the surface and inside of the fabric is sucked out and dewatered, and it is absorbed out to a certain extent, so that it can not be dewatered and will remain in the fiber structure inside the fabric and remain retained. It measured and implemented as follows as a dehydration water retention rate.
After 5cc of water is dispensed on a pinned fabric and allowed to stand for 5 minutes, the vinyl tube (inner diameter 9 mm) of the Nutche connection part is removed from the Nutche, the rubber tube tip is applied to the fabric, and the wet part is scanned Then let the water aspirate. It is carried out three times at a scanning speed of about 3 m / min. Thereafter, the scanning portion is cut into a size of 10 cm * 10 cm and the weight W2 is measured. The dough weight W0 after drying is measured, and the value calculated by the following two formulas is taken as the dewatering water retention rate. When evaluating a hydrophobized fabric, an aqueous solution containing 0.1% of liquid attack (manufactured by Kao Soap Co., Ltd.) is used instead of water.
(W2-W0) / W0 * 100 (2)
In order to prevent the fabric from sticking to the end of the rubber tube, coat the above mesh fabric (T120-55) on the surface of the rubber tube, and fix the fabric so that it does not peel off with a pin. Suction removal was performed.
The measurement of the fabric water retention as an index which assumes the grade ratio of the amount of moisture which remains to the textiles structure which constitutes cloth also after centrifugal dehydration operation after washing at home is performed as follows.
After immersing the fabric (weight W0) in an aqueous solution containing 0.1% of liquid attack (manufactured by Kao Soap Co., Ltd.) for 30 minutes, centrifugal dewatering is performed for 10 minutes in a dewatering tank of a washing machine (manufactured by Hitachi, model no. PS-513) The weight W3 of the cloth is measured, and the value calculated by the following three equations is calculated as the water retention of the cloth.
(W3-W0) / W0 * 100 (3)
The evaluation test for evaluating the practical value of the inventive product was performed using a suction dewatering vacuum cleaner (EVC-550) manufactured by AquaSystems Co., Ltd., and was calculated as a water retention rate of a machine by a suction cleaner. Suction was performed directly using a cored soft vinyl chloride tube nozzle with an inner diameter of 32 mm. The ultimate vacuum of the EVC-550 according to the catalog is 210 Pascal.
After applying 5 cc of water on a pin-fixed fabric and leaving it to stand for 5 minutes, the portion to which the water droplet is attached and the portion which has penetrated with the vacuum cleaner are suctioned 5 times from the lower side (about 90 seconds). Thereafter, the scanning portion is cut into a size of 10 cm * 10 cm and the weight W4 is measured. The dough weight W0 after drying is measured, and the value calculated by the following four equations is taken as the actual water absorption rate by dehydration. When evaluating a hydrophobized fabric, an aqueous solution containing 0.1% of liquid attack (manufactured by Kao Soap Co., Ltd.) is used instead of water.
(W4-W0) / W0 * 100 (4)
The waterproofness specified in JIS described below is a method of evaluating the waterproofing function of the fabric in a very short measurement time. In the case of using a fabric for practical use, waterproofness may be required for a long time. As an index for evaluating the waterproofness over a long period of time, it was evaluated by the water leakage measured and carried out as follows instead of the waterproofness evaluation in accordance with JIS. Fix the dough loosely on a 200 cc plastic beaker and pour 100 cc of water on it. Water should be maintained at a level that will not spill out of the beaker. Measure the time and days until water leaks from the fabric. For example, if 100 cc is injected and water leaks after 1 day, the water leak function of the fabric is expressed as 100 cc * 1 day water leak resistance.
The usual waterproofness measurement was carried out by the water resistance test (hydrostatic pressure method) of JIS L 1092 according to method A (low water pressure method) or method B (high water pressure method).
The water repellency was measured by the spray method described in JIS L1092.
The measurement of air permeability was carried out by the method described in JIS L 1096A method (Frazil method).
The washing was performed according to the method described in JIS L 0217 103.
The twisting factor was calculated by the following equation.
Twisting factor = T × (denier) 1/2
Here, T is the number of times of twisting (T / m), and D is the total denier of the yarn.
The total cover factor was calculated by the following equation.
Total cover factor = (DWp) 1/2 x MWp + (DWf) 1/2 x MWf
However, DWp is a warp total fineness (denier), MWp is a warp weave density (book / 2.54 cm), DWf is a weft total fine rate (denier), and MWf is a weft weave density (book / 2.54 cm).

経糸及び緯糸に50デニール、144フィラメントで撚糸数1500回/メータの経マット組織の織物を通常の染色加工工程で染色加工を実施して青色の染色物を得た。染色物の経糸密度は268本/インチ、緯糸密度は114本/インチであった。総カバーファクターは2701、糸のより係数は10607であった。
本染色織物を下記処方の撥水剤処方の液で、浸漬とマングル絞りを10回繰り返し実施した後に通常の方法で乾燥、熱処理を実施して本願発明品1を作成した。同様の織物を上記処理液で通常の方法で浸漬とマングル絞りを1回実施した後に通常の方法で乾燥、熱処理を実施して本願発明品2を作成した。
本願発明品1及び2の物性を第1表に示す。本発明品1、2の目付けはそれぞれ127、128 g/mであった。
撥水処方:
ユニカガード LK−633P(ユニオン化学社製)10%、
ユニカ フィクサーUG−1030(ユニオン化学社製)2%の溶液、ピックアップ率 59%。
A woven fabric of 50 deniers and 144 filaments and having 1500 yarns / meter of trans mat structure was subjected to dyeing processing in a usual dyeing process step for warp and weft to obtain a blue dyed product. The warp density of the dyed product was 268 / inch and the weft density was 114 / inch. The total cover factor was 2701 and the yarn coefficient was 10607.
The dyed textile was repeatedly subjected to 10 times of immersion and mangle squeezing with a liquid of water repellent formulation of the following formulation, and then drying and heat treatment were carried out by a usual method to produce the product 1 of the present invention. The same fabric was dipped and mangled once with the above-mentioned treatment solution in the usual manner, and then dried and heat-treated in the usual manner to produce the product 2 of the present invention.
The physical properties of the invention products 1 and 2 are shown in Table 1. The basis weights of the inventive products 1 and 2 were 127 and 128 g / m 2 , respectively.
Water repellent prescription:
Unikagaard LK-633P (made by Union Chemical) 10%,
Unika Fixer UG-1030 (manufactured by Union Chemical Co., Ltd.) 2% solution, pickup rate 59%.

第1表

Figure 2019044304
参考:撥水加工前の生地の吸引保水率は12%であった。
本願発明品は吸出し脱水保水率が低く、吸引保水率も低い。
更に、抱水率も非常に小さく、特に撥水処理を繰り返し100回行なったものは特に抱水率が小さく手で触っても濡れを余り感じない程度であった。更に洗濯耐久性にも優れていた。 Table 1
Figure 2019044304
Reference: The suction and water retention rate of the fabric before water repelling was 12%.
The product of the present invention has a low suction and water retention rate and a low suction and water retention rate.
Furthermore, the water retention rate was also very small, and in particular, in the case where the water repelling treatment was repeated 100 times, the water retention rate was particularly small, and even when it was touched with a hand, it was not so wet. Furthermore, the washing durability was also excellent.

経糸及び緯糸に50デニール、144フィラメントの仮より加工糸の平織り組織の織物を通常の染色加工工程で染色加工を実施して茶色の染色物を得た。染色物の経糸密度は147本/インチ、緯糸密度は134本/インチであった。
本染色織物を実施例1に記載の撥水剤処方の液で、通常の撥水加工を1回実施し、通常の方法で乾燥、熱処理を実施して撥水有り品を作成した。
撥水処理をしないものと撥水無し品とした。
得られた撥水有り品、撥水無し品の物性を第2表に示す。
A plain weave fabric of 50 denier and 144 filaments was processed for warp and weft by dyeing in a conventional dyeing process to obtain a brown dyed product. The warp density of the dyed product was 147 / inch and the weft density was 134 / inch.
This dyed fabric was subjected to one ordinary water repellent finish with the liquid of the water repellent formulation described in Example 1, dried and heat treated in the usual manner to prepare a water repellent article.
It was a product without water repellent treatment and a product without water repellent.
The physical properties of the obtained water repellent products and the non-water repellent products are shown in Table 2.

第2表

Figure 2019044304
吸出し脱水保保水率は破水有り品で著しく低い値となる。
第3表に吸引掃除機での実機脱水、従来の洗濯機での洗濯脱水実施時の脱水斑、外観観察評価結果を示す。 Table 2
Figure 2019044304
Dewatering and retention water retention rate is extremely low for products with water loss.
Table 3 shows the results of actual observation and evaluation of dehydration on the actual surface of the machine with a suction cleaner, dehydration spots during washing and dewatering with a conventional washing machine, and the like.

第3表

Figure 2019044304
撥水有り品は従来の洗濯及び脱水時に発生する皺や脱水斑が少ないことがわかる。
また、実機脱水保水率は撥水無し品でも低く、撥水加工品では非常に低い保水値まで脱水され、濡れ感が無い程度に脱水乾燥されている。 Table 3
Figure 2019044304
It can be seen that the product with water repellence has less wrinkles and dewatering spots that occur during conventional washing and dewatering.
In addition, the water retention rate of the actual machine is low even for products without water repellant, and the water repellant products are dewatered to a very low water retention value, and dehydrated and dried to such an extent that there is no feeling of wetness.

下記の3種類の生地を使用して撥水処理工程の違いによる生地の水分保持特性を評価した。使用した加工上がりの生地の内容を第4表に示す。 The following three types of fabrics were used to evaluate the moisture retention characteristics of the fabrics due to differences in the water repelling process. Table 4 shows the contents of the processed dough used.

第4表

Figure 2019044304
これらの織物は通常の方法で精錬、リラックス、乾燥と熱セット後、染色をした生地に実施例1に記載の方法と同様の方法でパッディング処理を1回、実施したもの(通常処理)、パッディング処理を繰り返し10回実施したもの(多段処理)を実施した。撥水剤処理後は通常の方法で乾燥、熱処理を行なって通常処理品、多段処理品を作成し、評価を実施した。
評価結果を第5表及び第6表に示す。 Table 4
Figure 2019044304
These fabrics were refined, relaxed, dried and heat-set in the usual way, and then subjected to one padding treatment in the same manner as described in Example 1 on the dyed fabric (normal treatment), What was repeatedly subjected to the padding treatment 10 times (multistage treatment) was carried out. After the water repellent treatment, drying and heat treatment were carried out by a usual method to prepare a treated product and a multi-stage treated product, and the evaluation was carried out.
The evaluation results are shown in Tables 5 and 6.

第5表

Figure 2019044304

生地3は撚糸係数が10607の緻密糸、総カバーファクターが2701の高密度な緻密織物であり多段処理撥水加工と通常処理の効果の違いが抱水性で顕著に現れている。 Table 5
Figure 2019044304

The fabric 3 is a dense yarn with a twist coefficient of 10607 and a high density dense fabric with a total cover factor of 2701. The difference between the effects of the multi-stage water repellent finish and the normal treatment is prominently exhibited in the water retention.

第6表
実機脱水保水率(%)

Figure 2019044304
実機で拡布吸引脱水を行なったが皺は全く発生しなかった。生地見本では撥水の有無に関わず低い保水性値まで脱水されること、撥水加工品はすべての生地見本が1%以下の低保水率まで吸引脱水出来ることがわかった。 Table 6 Actual machine dehydration water retention rate (%)
Figure 2019044304
Spreading suction and dewatering was performed with the actual machine, but no wrinkles were generated at all. It was found that the swatches were dewatered to a low water retention value regardless of the presence or absence of water repellency, and that all the swatches could be sucked and dehydrated to a low water retention rate of 1% or less.

下記フイルム処方で織物裏面に貼り付けるフイルムを作成し、ついでグラビアロールで下記接剤処方の接着剤をフイルムに塗布した後に実施例1で作成した発明品2の織物とラミネートしてラミネート織物を作成し本発明品を作成した。加工後の物性は第7表に示す。
フイルム処方:
クリスボン NYT−18(大日本インキ株式会社製)100部、ハウラックA−COLOR (大日本インキ株式会社製)15部、DMF 25部
接着剤処方:
クリスボン AD−865HV(大日本インキ株式会社製)100部、バーノック DN−950(大日本インキ株式会社製)10部、クリスボン アクセルT(大日本インキ株式会社製)3部、トルエン 2部
A film to be attached to the back of the fabric is prepared by the following film formulation, and then an adhesive of the following formulation is applied to the film by a gravure roll, and then laminated with the fabric of the invention 2 prepared in Example 1 to form a laminated fabric. The present invention was made. Physical properties after processing are shown in Table 7.
Film prescription:
100 parts of Klisbon NYT-18 (made by Dainippon Ink Co., Ltd.), 15 parts of Howrak A-COLOR (made by Dainippon Ink Co., Ltd.), 25 parts of DMF adhesive formulation:
Krisboa AD-865HV (made by Dainippon Ink Co., Ltd.) 100 parts, Bernock DN-950 (made by Dainippon Ink Co., Ltd.) 10 parts, Klissona axel T (made by Dainippon Ink Co., Ltd.) 3 parts, toluene 2 parts

第7表

Figure 2019044304
吸出し脱水抱水率は0.1 %以下、実機脱水保水率も0.8と非常に低く脱水後は濡れ感を感ずることなくそのまま使用続けられることを示している。。 Table 7
Figure 2019044304
It shows that it can be used as it is without feeling a feeling of wetness after dehydration because the suction and dehydration water retention rate is 0.1% or less and the actual machine dehydration water retention rate is also very low at 0.8. .

経糸及び緯糸に80デニール、156フィラメントの異収縮混繊糸の平織り組織の織物を通常の染色加工工程で染色加工を実施して青色の染色物を得た。染色物の経糸密度は122本/インチ、緯糸密度は100本/インチであった。
本染色織物を実施例1に記載の撥水剤処方の液で、通常の撥水加工を1回及び10回の多段処理した後、通常の方法で乾燥、熱処理を実施して本願発明品を作成した。
得られた発明品、比較品の物性を第8表に示す
A plain weave fabric of 80 denier and 156 filaments different shrinkage mixed yarn was subjected to dyeing processing in a normal dyeing process step for warp yarns and weft yarns to obtain a blue dyed product. The warp density of the dyed product was 122 / in and the weft density was 100 / in.
The present dyed fabric is subjected to conventional water repellant processing one time and 10 times in a multistage process with the liquid of the water repellent formulation described in Example 1, and then drying and heat treatment are carried out by the usual method to obtain the product of the present invention. Created.
The physical properties of the obtained inventive product and comparative product are shown in Table 8.

第8表

Figure 2019044304
10回の多段処理品の耐漏水機能は処理1回の通常撥水処理加工品に比べて100cc漏水性で10倍長い漏水性能の改善が見られること、耐水圧も大きく向上されることが明らかになった。更に洗濯耐久性も優れていることも明らかとなった。 Table 8
Figure 2019044304
It is clear that the water leakage resistance function of the 10-stage multi-stage treated product is improved by a 100 cc water leakage and 10 times longer water leakage performance compared to the single normal water-repellent finished product with one treatment. Became. It also became clear that the washing durability is also excellent.

本発明の布帛や繊維製品を使用してスポーツ衣料等の一般衣料、介護衣服、ベッドカバーやシーツ等の介護用品、水着、傘、テント等多岐の繊維製品とした場合には、拡布吸出し脱水が可能な繊維製品とすることが可能である。
拡布吸出し脱水が行こなえるので布帛上に新たな脱水皺を発生させない。
更に拡布脱水作業の長所として繊維製品を着用したまま、使用したままで実施することを可能にする。
When using the fabrics and textiles of the present invention as general clothing such as sports clothing, care clothing, care products such as bedspreads and sheets, swimwear, umbrellas, tents, etc. Possible textile products are possible.
Spreading, drawing, and dewatering can be performed, so that new dewatering wrinkles are not generated on the fabric.
Furthermore, as an advantage of the spreading and dewatering operation, it is possible to carry out the use while keeping the textile product worn.

Claims (13)

布帛表面に皺を発生させずに行なえる拡布吸出し脱水が可能な製品向けの吸引脱水保水率が40%以下の性能または吸出し脱水保水率が30%以下の性能の少なくともいずれかの性能を有する拡布吸出し脱水性に優れた布帛。 Spreading with a performance of 40% or less of the suction and dewatering water retention rate for products capable of spreading, drawing, dewatering and spreading that can be performed without generating wrinkles on the fabric surface or a performance of 40% or less of dewatering water retention A fabric with excellent suction and dewaterability. 疎水性の薬剤で加工され、撥水性が4級以上で、吸引脱水保水率が20%以下の性能または吸出し脱水保水率が10%以下の性能の少なくともいずれかの性能を有する請求項1に記載の拡布吸出し脱水性に優れた布帛。 The method according to claim 1, wherein it is processed with a hydrophobic agent, has a water repellency of at least 4 class, and has a performance of suction dehydration water retention of 20% or less or a performance of suction drainage water retention of 10% or less. Fabrics with excellent spreading, drawing, and dewatering properties. 請求項2に記載の疎水性の薬剤が撥水性薬剤である請求項2に記載の拡布吸出し脱水性に優れた布帛。 The fabric having excellent spread-out suction and dewaterability according to claim 2, wherein the hydrophobic drug according to claim 2 is a water-repellent drug. 布帛を構成する繊維が公定水分率が6%以下の繊維を使用して製造される請求項1、2、3のいずれか一項に記載の拡布吸出し脱水性に優れた布帛。 The fabric having excellent spreadability and dischargeability according to any one of claims 1 to 3, wherein the fibers constituting the fabric are produced using fibers having an official moisture percentage of 6% or less. 疎水性薬剤または撥水剤が布帛内部の繊維にまで浸透して塗布されるように、疎水性薬剤液、撥水性薬剤液を布帛に含浸または塗布後に搾り出す一連の含浸・搾り出し工程を2回以上繰返し実施することで得られる請求項2、3,4のいずれか一項に記載の拡布吸出し脱水性に優れた布帛。 To impregnate and apply hydrophobic drug liquid and water repellent drug liquid to fabric so that hydrophobic drug or water repellent penetrates and penetrates fibers in the fabric, a series of impregnation and squeezing process is performed twice. The fabric having excellent spread-out suction and dewaterability according to any one of claims 2, 3 and 4, which is obtained by repeating the above. 請求項1、2、3,4、5のいずれか一項に記載の拡布吸出し脱水性に優れた布帛を重量比率で70%以上使用して製造される拡布吸出し脱水性に優れた衣服。 A garment having excellent spreading and dewatering properties, which is manufactured using 70% or more by weight of the cloth having excellent spreading and dewatering properties according to any one of claims 1, 2, 3, 4, and 5. 請求項6に記載の衣服に請求項1、2、3,4、5のいずれか一項に記載の拡布吸出し脱水性に優れた布帛を表地及び裏地に使用して製造される拡布吸出し脱水性に優れた請求項6に記載の衣服。 A fabric according to any one of claims 1, 2, 3, 4 and 5 manufactured by using the fabric according to any one of claims 1, 2, 3, 4 and 5 as the outer fabric and the backing. The clothes according to claim 6, which is excellent. 請求項7に記載の衣服に請求項1、2、3,4、5のいずれか一項に記載の吸出し脱水・脱液性に優れた布帛を使用して作られる中間素材を表地と裏地の間に使用して製造される拡布吸出し脱水性に優れた衣服。 An intermediate material made of the fabric according to any one of claims 1, 2, 3, 4 and 5 and having excellent drainage and drainage properties according to any one of claims 1, 2, 3, 4, 5 as the outer fabric and the backing. An expanded, drawn, dewaterable garment manufactured using between. 請求項1、2、3,4、5のいずれか一項に記載の布帛や請求項6、7、8のいずれか一項に記載の衣服の、表面に付着した水滴、布帛の内部や衣服を構成する布帛の内部に浸透した水分、水滴を吸出し脱水・脱液装置、吸出し脱水・脱液器具を使用して拡布吸出し除去、拡布吸出し脱水する方法。
The water droplet adhering to the surface of the fabric according to any one of claims 1, 2, 3, 4, 5 or the clothes according to any one of claims 6, 7, 8 A method of sucking out water that has permeated into the interior of the fabric constituting the fabric, removing water droplets, using a dewatering / draining device, a suction dewatering / draining device, spreading out, removing, spreading out, dewatering.
通気性が1cc以下、耐水性が1000mm以上の撥水性布帛を使用したシート形状の布帛製品や衣服に付着の水分、水滴を吸出し脱水・脱液装置、吸出し脱水・脱液器具を使用して拡布吸出し脱水する方法。
Water absorption attached to a sheet-shaped fabric product or clothes using a water-repellent fabric with an air permeability of 1 cc or less and water resistance of 1000 mm or more Suction, water droplets, and dewatering equipment How to suck and dehydrate.
水分、水滴、液体等を吸出し脱水除去する方法がバキューム式除去方法である請求項9、10のいずれか一項に記載の拡布吸出し脱水する方法。 11. The method according to any one of claims 9 and 10, wherein the method of sucking and dehydrating water, water droplets, liquid and the like is a vacuum type removing method. 経方向と緯方向の合計カバーファクターが1000以上の高密度織物または撚係数が3000以上の緻密糸を50%以上含む布帛のいずれかの織物または布帛に疎水性薬剤または撥水剤を布帛内部の繊維にまで浸透して塗布されるよう疎水性薬剤液、撥水性薬剤液を布帛に含浸または塗布後に搾り出す一連の含浸と搾り出し工程を2回以上繰返し実施する(連続方式の多段処理加工)、バッチ方式で疎水性薬剤液、撥水性薬剤液の処理液中での繰り返し含浸と搾り出しのニップ処理加工を実施することで得られる抱水率が5%以下の接触濡れ感が感じ難い撥水性布帛。 A hydrophobic drug or water repellent is added to any fabric or fabric of a high density fabric having a total cover factor in the warp and latitudinal directions of 1000 or more or a fabric containing 50% or more of dense yarns having a twist coefficient of 3000 or more A series of impregnation and squeezing steps are repeated twice or more to impregnate or coat the hydrophobic drug liquid and the water repellent drug liquid so as to be applied to fibers even after being applied to the fabric (continuous process multistage processing), A water repellent fabric with a water retention rate of 5% or less, which is obtained by performing repeated impregnation and squeezing nip treatment processing of hydrophobic drug liquid and water repellent drug liquid in a batch method in a processing solution . 請求項12に記載の方法で得られる100cc漏水性が1日以上の漏水性に優れた撥水性布帛。 A water repellent fabric excellent in water leakage of 100 cc water leakage obtained by the method according to claim 12 for 1 day or more.
JP2017170021A 2017-09-05 2017-09-05 Suction and dewatering of fabric Active JP6260963B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017170021A JP6260963B1 (en) 2017-09-05 2017-09-05 Suction and dewatering of fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017170021A JP6260963B1 (en) 2017-09-05 2017-09-05 Suction and dewatering of fabric

Publications (2)

Publication Number Publication Date
JP6260963B1 JP6260963B1 (en) 2018-01-17
JP2019044304A true JP2019044304A (en) 2019-03-22

Family

ID=60989207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017170021A Active JP6260963B1 (en) 2017-09-05 2017-09-05 Suction and dewatering of fabric

Country Status (1)

Country Link
JP (1) JP6260963B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111877017A (en) * 2020-07-10 2020-11-03 温州厚德服饰有限公司 Waterproof cotton-padded clothes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191812A (en) * 2006-01-17 2007-08-02 Seiren Co Ltd Water-repellant fiber fabric
JP2011137253A (en) * 2009-12-28 2011-07-14 Toray Ind Inc Fiber structure and method for producing the same, and clothes formed with the same
JP2014194098A (en) * 2013-03-29 2014-10-09 Toray Ind Inc Fiber structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191812A (en) * 2006-01-17 2007-08-02 Seiren Co Ltd Water-repellant fiber fabric
JP2011137253A (en) * 2009-12-28 2011-07-14 Toray Ind Inc Fiber structure and method for producing the same, and clothes formed with the same
JP2014194098A (en) * 2013-03-29 2014-10-09 Toray Ind Inc Fiber structure

Also Published As

Publication number Publication date
JP6260963B1 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
RU2527367C1 (en) Leatherette with ultrathin fibres and method of its manufacture
CN103938368A (en) Spunlaced non-woven material with one-way water guide function and preparing method and application thereof
JP3183130U (en) Polyester and polyamide composite fiber microfiber towel fabric
CN103696110A (en) One-way wet-guiding and absorbing and quick-drying type cotton/nylon composite knitting fabric
KR101484893B1 (en) Method for Preparing Knitting Yarn with Water Repellency
CN102888754B (en) Polyester fabric with one-way moisture-diffusion and quick-drying functions, and production method thereof
JP2011226026A (en) Fabric for clothing
JP2018509533A (en) Fabrics containing conformable low density fluoropolymer fiber blends
US3968571A (en) Drying process
JP6101231B2 (en) Knitted fabric for clothing
WO1995019461A1 (en) Cloth of hollow fibers and method of manufacturing same
JP2006515905A (en) Textile finishes containing fluorochemicals exhibiting wash-resistant soil release and moisture absorption properties
CN108442034A (en) A kind of compound non-woven base fabric of melt-blown spun lacing
JP6260963B1 (en) Suction and dewatering of fabric
US5922445A (en) Composite material and process for production of same
US20110281088A1 (en) Moisture absorptive and perspiratory cloth structure
JP2013256736A (en) Method for producing polyester-polyamide composite microfiber towel cloth and the towel cloth
JP2004137617A (en) Stain-resistant wear
JPH0655999B2 (en) Method for producing suede-like artificial leather
KR20040042073A (en) A quick absorption and dry fabric having the prominence and water-way layer
CN107912030A (en) Textile article
KR101475694B1 (en) Method for manufacturing Water repellent knitting fabric and Water repellent knitting fabric made by the method
JP6958829B1 (en) fabric
JPS6014778Y2 (en) Thin knitted fabric for clothing
TWI284160B (en) Method for treating and manufacturing textile capable of improving bonding forces of water-repellant fabrics

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171204

R150 Certificate of patent or registration of utility model

Ref document number: 6260963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350