JP2019043825A - Inorganic particle - Google Patents

Inorganic particle Download PDF

Info

Publication number
JP2019043825A
JP2019043825A JP2017171055A JP2017171055A JP2019043825A JP 2019043825 A JP2019043825 A JP 2019043825A JP 2017171055 A JP2017171055 A JP 2017171055A JP 2017171055 A JP2017171055 A JP 2017171055A JP 2019043825 A JP2019043825 A JP 2019043825A
Authority
JP
Japan
Prior art keywords
inorganic
particle
particles
ccs
aqueous slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017171055A
Other languages
Japanese (ja)
Other versions
JP7114231B2 (en
Inventor
阿隅 一将
Kazumasa Asumi
一将 阿隅
大神 剛章
Takeaki Ogami
剛章 大神
弘樹 山下
Hiroki Yamashita
弘樹 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2017171055A priority Critical patent/JP7114231B2/en
Publication of JP2019043825A publication Critical patent/JP2019043825A/en
Application granted granted Critical
Publication of JP7114231B2 publication Critical patent/JP7114231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a new inorganic particle that can be used widely as a heat insulation material or the like and includes a plurality of cells inside.SOLUTION: An inorganic particle includes a plurality of isolated cells with an average particle size of 50 nm-500 nm, each cell being sealed with an inorganic material constituting a hollow particle, the particle surface being compact with an average particle size of 0.1 μm-20 μm.SELECTED DRAWING: None

Description

本発明は、気泡を内包する無機質粒子に関する。   The present invention relates to inorganic particles containing air bubbles.

酸化物中空粒子や酸化物多孔質材料は、断熱性材料、遮熱性材料、触媒担体、建築材料等の分野で使用されている。例えば、火山ガラス質堆積物微粉体(シラス)を用いた中空粒子であるシラスバルーン(特許文献1)やパーライト(特許文献2)が広く知られているが、これらは粒子径が大きいため、薄膜を必要とする断熱性材料、プラスチックフィラー、増感剤等の分野では応用されていない。また、炭酸カルシウムをテンプレートとしたシリカ中空粒子も報告されている(特許文献3)が、中空細孔は一個であり、アルコール、アンモニア、酸を多量に使用するため数万円/kgと非常に高価である。外表面に開気孔を複数有するセラミックス粒子も報告されている(特許文献4)が、この粒子に存在する複数の孔は、外表面に開いているため、比表面積が大きくなり、遮熱性、断熱性が十分でない。また、特許文献5にも金属酸化物粉末が記載されているが、この粉末もスポンジ状であり、孔は外表面に開いているため、比表面積が大きく遮熱性、断熱性が十分でない。
また、カーボン核粒子の外殻に、シリカを主成分とする薄膜が形成された複合粒子(特許文献6)、コアが重合体でシェルが金属化合物である球状重合体−金属化合物複合粒子(特許文献7)、及びこれらの粒子から中央のカーボンや重合体を除去した粒子が報告されているが、いずれも中空細孔は一個であり、製造工程が複雑になる。
Hollow oxide particles and porous oxide materials are used in the fields of heat insulating materials, heat shielding materials, catalyst carriers, building materials and the like. For example, Shirosu balloon (patent document 1) and perlite (patent document 2) which are hollow particles using fine powder of volcanic glass deposits (Shirasu) are widely known, but since these particles have a large particle size, thin films It has not been applied in the fields of heat insulating materials, plastic fillers, sensitizers, etc. In addition, a silica hollow particle using calcium carbonate as a template has also been reported (Patent Document 3), but the number of hollow pores is one, and because alcohol, ammonia and acid are used in a large amount, it is very tens of thousands yen / kg. It is expensive. Although ceramic particles having a plurality of open pores on the outer surface have also been reported (Patent Document 4), the plurality of holes present in the particles are open on the outer surface, so the specific surface area is increased, and the heat shield and heat insulation Sex is not enough. Moreover, although the metal oxide powder is described also in patent document 5, this powder is also sponge-like, and since the hole is open to the outer surface, the specific surface area is large and the thermal insulation and the thermal insulation are not sufficient.
In addition, composite particles in which a thin film composed mainly of silica is formed on the outer shell of carbon core particles (Patent Document 6), spherical polymer-metal compound composite particles in which the core is a polymer and the shell is a metal compound (patent Although the literature 7) and the particle which removed central carbon and polymer from these particles are reported, the number of hollow pores is one at all, and a manufacturing process becomes complicated.

特開平8−73232号公報JP-A-8-73232 特開2012−136402号公報JP 2012-136402 特開2005−263550号公報JP, 2005-263550, A 特開2010−100502号公報JP, 2010-100502, A 国際公開第2012/147812号International Publication No. 2012/147812 特開2010−105868号公報JP, 2010-105868, A 特開平6−7670号公報Japanese Patent Application Laid-Open No. 6-7670

しかしながら、微細な中空粒子であって、複数の気泡を内部に有し、各気泡が中空粒子を構成する無機質材料で封孔され、粒子表面が緻密な無機質粒子は報告されていない。
従って、本発明の課題は、断熱材料等として広く使用可能な複数の気泡の内部に有する新たな無機質粒子を提供することにある。
However, fine hollow particles having a plurality of air bubbles therein, each air bubble being sealed with an inorganic material constituting the hollow particles, and inorganic particles having a dense particle surface have not been reported.
Therefore, an object of the present invention is to provide a new inorganic particle having a plurality of air bubbles which can be widely used as a heat insulating material or the like.

そこで本発明者は、前記課題を解決すべく種々検討したところ、既に固体となったカーボン粒子ではなく、コロイド状のカーボンスフィア(コロイダルカーボンスフィア)を無機質粒子原料とともにスラリー化して、液滴を作製しこれを加熱処理すれば、溶媒が蒸散して無機質粒子原料が固化する温度までコロイダルカーボンスフィアの蒸発が起きないため気泡の形状が維持され、複数の独立気泡が内部に存在し、かつ各気泡が中空粒子を構成する無機質材料で封孔され、粒子表面が緻密な微細無機質粒子が容易に製造できること、さらに得られた粒子は断熱性に優れ、かつ軽量であることを見出し、本発明を完成した。   Then, when the present inventor variously examined in order to solve the above-mentioned subject, it is not the carbon particle which has become solid, but is made into a slurry by making a colloidal carbon sphere (colloidal carbon sphere) into a slurry with inorganic particle materials. When this is heat-treated, the shape of the bubbles is maintained since the evaporation of the colloidal carbon sphere does not occur up to the temperature at which the solvent evaporates and the inorganic particle raw material solidifies, and plural closed bubbles exist inside, and each bubble Is sealed with the inorganic material constituting the hollow particles, and it is found that fine inorganic particles having a dense particle surface can be easily produced, and furthermore, the obtained particles are excellent in heat insulation and lightweight, and the present invention is completed. did.

すなわち、本発明は、次の〔1〕〜〔4〕を提供するものである。   That is, the present invention provides the following [1] to [4].

〔1〕平均粒子径50nm〜500nmの独立気泡を複数内包し、各気泡が中空粒子を構成する無機質材料で封孔され、粒子表面が緻密な平均粒子径0.1μm〜20μmの無機質粒子。
〔2〕無機質粒子が、無機酸化物粒子である〔1〕記載の無機質粒子。
〔3〕コロイダルカーボンスフィアと粒子原料無機化合物とを含む水系スラリー液滴を熱処理することを特徴とする〔1〕又は〔2〕記載の無機質粒子の製造法。
〔4〕水系スラリー液滴の熱処理が、水系スラリー液滴を顆粒化した後加熱処理する手段、又は水系スラリーを噴霧熱分解する手段である〔3〕記載の製造法。
[1] Inorganic particles having an average particle diameter of 0.1 μm to 20 μm in which a plurality of closed cells having an average particle diameter of 50 nm to 500 nm are enclosed and each of the cells is sealed with an inorganic material constituting hollow particles.
[2] The inorganic particle according to [1], wherein the inorganic particle is an inorganic oxide particle.
[3] The method for producing inorganic particles according to [1] or [2], wherein the aqueous slurry droplet containing the colloidal carbon sphere and the particle raw material inorganic compound is heat-treated.
[4] The production method according to [3], wherein the heat treatment of the aqueous slurry droplets is a means for granulating the aqueous slurry droplets followed by heat treatment, or a means for spray pyrolysis of the aqueous slurry.

本発明の無機質粒子は、内部に複数の独立気泡を有し、各気泡が中空粒子を構成する無機質材料で封孔され、粒子表面が緻密なため、樹脂などと混合しても気泡中に樹脂が含浸することなく、優れた断熱性を維持することができ、軽量さも損なわれない。従って、広い範囲の断熱性材料、遮熱性材料、建築材料として有用である。またコロイダルカーボンスフィアは、水溶性の有機物を用いてオートクレーブによって作製することができ、そのカーボン源、熱処理温度によって粒径を制御することが可能である。   The inorganic particle of the present invention has a plurality of closed cells in the inside, and each cell is sealed with the inorganic material constituting the hollow particle, and the particle surface is dense, so even if mixed with a resin etc. It can maintain excellent thermal insulation without being impregnated, and its lightness is not lost. Therefore, it is useful as a wide range of heat insulating materials, heat insulating materials and building materials. Moreover, a colloidal carbon sphere can be produced by an autoclave using a water-soluble organic substance, and the particle size can be controlled by the carbon source and the heat treatment temperature.

コロイダルカーボンスフィアのSEM像を示す。The SEM image of a colloidal carbon sphere is shown. 実施例1で得られた無機質粒子のSEM像を示す。2 shows an SEM image of the inorganic particles obtained in Example 1. 実施例1で得られた無機質粒子のSEM像を示す。2 shows an SEM image of the inorganic particles obtained in Example 1. 実施例1で得られた無機質粒子のSEM像を示す。2 shows an SEM image of the inorganic particles obtained in Example 1. 実施例2で得られた無機質粒子のSEM像を示す。10 shows an SEM image of the inorganic particles obtained in Example 2. 実施例2で得られた無機質粒子のSEM像を示す。10 shows an SEM image of the inorganic particles obtained in Example 2.

本発明の無機質粒子は、平均粒子径50nm〜500nmの独立気泡を複数個内包しており、各気泡が中空粒子を構成する無機質材料で封孔され、粒子表面が緻密な粒子径0.1μm〜20μmの粒子である。   The inorganic particle of the present invention contains a plurality of independent cells having an average particle diameter of 50 nm to 500 nm, and each of the cells is sealed with an inorganic material constituting hollow particles, and the particle surface has a dense particle diameter of 0.1 μm to It is a particle of 20 μm.

独立気泡とは、無機質粒子中の複数の気泡がそれぞれ独立して存在することを意味する。そして、独立気泡の粒子径は、それぞれの気泡の粒子径を意味する。
独立気泡の平均粒子径は50nm〜500nmであり、50nm〜300nmが好ましく、100nm〜200nmがより好ましい。独立気泡は、原料として用いるコロイダルカーボンスフィアが分解除去されて生じる気泡である。従って、独立気泡の粒子径は、原料として用いるコロイダルカーボンスフィアの粒子径に依存する。この独立気泡の平均粒子径は、粒子断面の走査型電子顕微鏡(SEM)によって測定することができるが、通常、原料として用いるコロイダルカーボンスフィアの平均粒子径の0.5〜1.0倍程度となる。
The closed cell means that a plurality of cells in the inorganic particles are independently present. And, the particle size of the closed cell means the particle size of each cell.
The average particle diameter of the closed cells is 50 nm to 500 nm, preferably 50 nm to 300 nm, and more preferably 100 nm to 200 nm. The closed cell is a cell produced by decomposition and removal of the colloidal carbon sphere used as a raw material. Therefore, the particle size of the closed cell depends on the particle size of the colloidal carbon sphere used as the raw material. The average particle size of the closed cell can be measured by a scanning electron microscope (SEM) of the particle cross section, but usually, it is about 0.5 to 1.0 times the average particle size of the colloidal carbon sphere used as a raw material Become.

無機質粒子中に内包される独立気泡の数は、複数であり、その個数は、用いるコロイダルカーボンスフィアの粒子径及び粒子製造時の水系スラリーの液滴の大きさによって適宜決定される。独立気泡の数は、得られる無機質粒子の断熱性及び軽量性と強度との関係を考慮して調整するのが好ましい。具体的には、2〜50個が好ましく、4〜27個がより好ましく、5〜14個がさらに好ましい。   The number of closed cells contained in the inorganic particles is plural, and the number is suitably determined by the particle size of the colloidal carbon spheres used and the size of the droplets of the aqueous slurry at the time of production of the particles. The number of closed cells is preferably adjusted in consideration of the heat insulation and the relationship between the lightness and the strength of the resulting inorganic particles. Specifically, 2 to 50 are preferable, 4 to 27 are more preferable, and 5 to 14 are more preferable.

無機質粒子は、内部の各気泡が中空粒子を構成する無機質材料で封孔され、粒子表面が緻密になっている。すなわち、内部の気泡は独立していて、粒子表面が緻密になっていることにより、樹脂などに混合しても気泡中に樹脂が含浸することがなく、断熱性を維持することができ、軽量さも損なわれない。気泡の封孔は、熱処理によりコロイダルカーボンスフィアが分解除去された後、さらに加熱することにより、無機質材料を溶融させることにより行われる。   In the inorganic particles, each internal bubble is sealed with an inorganic material forming hollow particles, and the particle surface is dense. That is, the internal air bubbles are independent, and the particle surface is compact, so that the resin does not impregnate in the air bubbles even when mixed with the resin etc., and the heat insulation can be maintained, which is lightweight There is no loss. The sealing of the air bubbles is performed by melting the inorganic material by further heating after the colloidal carbon spheres are decomposed and removed by heat treatment.

本発明の無機質粒子の粒子径は平均0.1μm〜20μmと微細である。好ましくは0.1μm〜10μmであり、より好ましくは0.1μm〜5μmであり、さらに好ましくは0.1μm〜1μmである。
無機質粒子の平均粒子径は、JIS R 1629「ファインセラミックス原料のレーザ回折・散乱法による粒子径分布測定方法」、レーザー回折・散乱法による粒子径分布測定装置やSEMなどによって測定することができる。
The particle diameter of the inorganic particles of the present invention is as fine as 0.1 μm to 20 μm on average. Preferably it is 0.1 micrometer-10 micrometers, More preferably, it is 0.1 micrometer-5 micrometers, More preferably, it is 0.1 micrometer-1 micrometer.
The average particle size of the inorganic particles can be measured by JIS R 1629 “Method of measuring particle size distribution of fine ceramics raw material by laser diffraction / scattering method”, particle size distribution measuring apparatus by laser diffraction / scattering method, SEM or the like.

無機質粒子としては、無機酸化物微粒子もしくは水に可溶な無機物が好ましく、具体的には酸化アルミニウム、酸化チタン、酸化マグネシウム、酸化カルシウム、シリカ、硝酸アルミニウム、硝酸チタニル、硝酸マグネシウム、アルミノシリケート、ソーダガラス、ホウケイ酸ガラス等を含む、高温の熱処理で軟化する材料が挙げられる。   As the inorganic particles, inorganic oxide fine particles or inorganic substances soluble in water are preferable. Specifically, aluminum oxide, titanium oxide, magnesium oxide, calcium oxide, calcium oxide, silica, aluminum nitrate, titanyl nitrate, magnesium nitrate, magnesium nitrate, aluminosilicate, soda Materials that can be softened by high-temperature heat treatment include glass, borosilicate glass, and the like.

本発明の無機質粒子の圧縮強度は1〜800MPaであるのが好ましく、10〜800MPaであるのがより好ましく、30〜800MPaであるのがさらに好ましい。ここで圧縮強度は、微小圧縮試験機MCT−510(株式会社島津製作所製)により測定できる。   The compressive strength of the inorganic particles of the present invention is preferably 1 to 800 MPa, more preferably 10 to 800 MPa, and still more preferably 30 to 800 MPa. Here, the compressive strength can be measured by a micro compression tester MCT-510 (manufactured by Shimadzu Corporation).

本発明の無機質粒子の熱伝導率は、0.01〜0.2W/m・kが好ましく、0.01〜0.1W/m・kがより好ましく、0.01〜0.05W/m・kがさらに好ましい。熱伝導率は、迅速熱伝導率計QTM−500(東京電子工業社製)を用いた非定常熱線法により測定できる。   The thermal conductivity of the inorganic particles of the present invention is preferably 0.01 to 0.2 W / m · k, more preferably 0.01 to 0.1 W / m · k, and 0.01 to 0.05 W / m ···. k is more preferred. The thermal conductivity can be measured by the unsteady heat ray method using a rapid thermal conductivity meter QTM-500 (manufactured by Tokyo Denshi Kogyo Co., Ltd.).

本発明の無機質粒子の相対密度は、0.2〜0.8が好ましく、0.4〜0.7がさらに好ましい。相対密度が低くいと圧縮強度が小さくなり、相対密度が高いと、熱伝導率が高くなる。相対密度は、JIS R 1620「ファインセラミックス粉末の粒子密度測定方法」の気体置換法、例えば乾式自動密度計アキュピックII 1340などにより測定した値を、同組成の中実粒子の密度で除すことにより求められる。   0.2-0.8 are preferable and, as for the relative density of the inorganic particle of this invention, 0.4-0.7 are more preferable. The lower the relative density, the lower the compressive strength, and the higher the relative density, the higher the thermal conductivity. Relative density is obtained by dividing the value measured by the gas displacement method of JIS R 1620 “Method for measuring particle density of fine ceramic powder”, for example, dry automatic densimeter Accupyt II 1340, by density of solid particles of the same composition. Desired.

本発明の無機質粒子は、コロイダルカーボンスフィア(以下、「CCS」とする。)と粒子原料無機化合物とを含む水系スラリー液滴を熱処理することによって製造することができる。ここで、水系スラリー液滴の熱処理手段は、水系スラリー液滴を顆粒化した後加熱処理する手段、又は水系スラリーを噴霧熱分解する手段により行うのが好ましい。   The inorganic particles of the present invention can be produced by subjecting an aqueous slurry droplet containing colloidal carbon spheres (hereinafter referred to as "CCS") and a particle source inorganic compound to a heat treatment. Here, it is preferable that the heat treatment means of the aqueous slurry droplets be performed by means of granulating the aqueous slurry droplets followed by heat treatment or means of spray pyrolysis of the aqueous slurry.

より具体的には、無機質粒子の原料となる成分とCCSを含む水系スラリー液滴を乾燥させて得た顆粒、又は水系スラリーの液滴を熱処理することによって、CCSを含む無機質の粒子を作製し、次いで、内部のCCSを燃焼または分解することによって消失させ、さらに、無機質成分を焼成することによって封孔し、CCSの跡を独立気泡とすることにより、製造することができる。
エチルセルロースやグルコースなどの水溶性有機物を水に溶解させ、オートクレーブなどで140〜200℃、3〜24hで処理すると、有機物が集まってミセル状の球状微粒子を形成する。これがコロイダルカーボンスフィア(CCS)である。CCSは完全に炭化しておらず、表面には多くの親水基を残しており、親水性示す。さらにCCSの熱処理を進めると有機物が完全に炭化し、疎水性のアモルファスカーボンスフィア(ACS)となる(Meterials Letters 61(2007)4199-4203、Carbohydrate Research 346(2011)999-1004)。
このように、CCSは、コロイド化した球状の有機物であり、親水性を有している。親水性を有していることにより、水中での分散性が高く、凝集しにくいため、水中で無機質粒子の化合物となる成分を個々のCCS粒子表面に付着することができる。CCSの分散性が高く、凝集しないことにより、CCSを熱処理による分解除去で得られる微粒子中に独立気泡を形成することができる。
CCSは、水にグルコース、メチルセルロースなどを溶解した水溶液を水熱反応することにより、製造することができる。CCSの粒子径などは、原料の種類、水熱処理の温度などの条件により、調整することができるため、微粒子中の独立気泡の径を制御することができる。
粒径50nm〜1μmのような微粒子のCCSを製造することができるため、粒径が小さい無機質微粒子であっても、複数の独立気泡を形成することができる。
More specifically, granules of CCS-containing inorganic particles are produced by heat treating granules obtained by drying aqueous slurry droplets containing CCS and a component serving as a raw material of inorganic particles, or droplets of aqueous slurry. Then, it can be eliminated by burning or decomposing the internal CCS, and furthermore, it can be sealed by firing the inorganic component to make the trace of the CCS into a closed cell.
When water-soluble organic substances such as ethyl cellulose and glucose are dissolved in water and treated at 140 to 200 ° C. for 3 to 24 hours with an autoclave or the like, the organic substances are collected to form micelle-like spherical fine particles. This is a colloidal carbon sphere (CCS). CCS is not completely carbonized, leaves many hydrophilic groups on the surface, and is hydrophilic. Further, when the heat treatment of CCS is advanced, the organic matter is completely carbonized and becomes a hydrophobic amorphous carbon sphere (ACS) (Meterials Letters 61 (2007) 4199-4203, Carbohydrate Research 346 (2011) 999-1004).
Thus, CCS is a colloidal, spherical organic substance and has hydrophilicity. By having hydrophilicity, the dispersibility in water is high and aggregation is difficult, so that the component to be the compound of the inorganic particles in water can be attached to the surface of each CCS particle. Due to the high dispersibility of CCS and the absence of aggregation, closed cells can be formed in the fine particles obtained by decomposition and removal of CCS by heat treatment.
CCS can be produced by hydrothermally reacting an aqueous solution of glucose, methyl cellulose and the like in water. The particle diameter and the like of CCS can be adjusted by the conditions such as the type of raw material and the temperature of the hydrothermal treatment, so that the diameter of the closed cells in the fine particles can be controlled.
Since CCS of fine particles having a particle size of 50 nm to 1 μm can be produced, even if the fine inorganic particles have a small particle size, a plurality of closed cells can be formed.

無機質粒子の化合物となる成分としては、酸化物を構成する元素を含み、水に溶解する化合物もしくは、水に分散された微粒子であればよく、例えば、無機塩、金属アルコキシド等、および酸化物微粉末が挙げられる。より具体的には、アルミニウム塩、チタン塩、マグネシウム塩、カルシウム塩、ナトリウム塩、カリウム塩、リチウム塩、ホウ酸塩、リン酸塩、アルミノケイ酸塩、アルミニウムアルコキシドやテトラエトキシシラン、テトラメトキシシランなどのケイ酸アルコキシド等や、アルミナ、チタニア、酸化亜鉛などの微粉末が挙げられる。   The component to be the compound of the inorganic particles may be a compound which is soluble in water, or a fine particle dispersed in water, for example, inorganic salts, metal alkoxides, etc. Powder is mentioned. More specifically, aluminum salts, titanium salts, magnesium salts, calcium salts, sodium salts, potassium salts, lithium salts, borates, phosphates, aluminosilicates, aluminum alkoxides, tetraethoxysilanes, tetramethoxysilanes, etc. And fine powders of alumina, titania, zinc oxide and the like.

CCSを含む水スラリーに無機質粒子の化合物となる成分を混合する。混合は、CCSを含む水スラリーに無機質粒子の化合物となる成分を混合して溶解する方法、CCSを含む水スラリーと無機質粒子の化合物となる成分を溶解した水溶液やスラリーを混合する方法などがあり、特に限定はしない。   The component which becomes a compound of mineral particles is mixed with the water slurry containing CCS. Mixing includes a method of mixing and dissolving a component to be a compound of inorganic particles in a water slurry containing CCS, and a method of mixing an aqueous slurry containing a component to be a compound of inorganic particles and an aqueous slurry containing CCS and a slurry There is no particular limitation.

CCSと無機質粒子の化合物となる成分を含むスラリー液滴を熱処理して、CCSの分解除去、焼成により原料化合物を無機酸化物とすることにより、無機質微粒子を製造することができる。
熱処理は、CCSと無機質粒子の化合物となる成分を含むスラリー液滴を乾燥させて得た顆粒を熱処理する方法、CCSと無機質粒子の化合物となる成分を含むスラリーを噴霧熱分解により熱処理する方法などが挙げられる。これらの方法は、粒子径や形状などにより、選択することができる。
CCSと無機質粒子の化合物となる成分を含むスラリー液滴を乾燥させて得た顆粒を熱処理する方法は、スラリーをスプレードライヤーなどにより乾燥させて、顆粒を製造する。その顆粒を焼成して、CCSの分解除去と焼成を行う。
CCSと無機質粒子の化合物となる成分を含むスラリーを噴霧熱分解により熱処理する方法は、ノズルなどにより噴霧して加熱炉中に導入し、CCSの分解除去と焼成を行う。
熱処理の温度は、CCSが分解除去できる400℃以上であればよい。更に、熱処理温度を高くすることにより、無機質微粒子の化合物を目的の酸化物にできる。さらに、無機質微粒子の酸化物の軟化点以上に加熱することにより、気泡の封孔と粒子表面を緻密化できる。
Inorganic fine particles can be produced by subjecting a slurry droplet containing a component to be a compound of CCS and inorganic particles to a heat treatment to decompose and remove CCS and calcining the raw material compound into an inorganic oxide.
Heat treatment is a method of heat treating granules obtained by drying a slurry droplet containing CCS and a component to be a compound of inorganic particles, a method to heat treat a slurry containing a component to be a compound of CCS and a compound of inorganic particles by spray pyrolysis, etc. Can be mentioned. These methods can be selected depending on the particle size, shape, and the like.
The method of heat-processing the granule obtained by drying the slurry droplet containing the component used as the compound of CCS and a mineral particle heats a slurry with a spray dryer etc., and manufactures a granule. The granules are fired to carry out CCS decomposition removal and firing.
The method of heat-processing the slurry containing the component used as a compound of CCS and a mineral particle by spray thermal decomposition sprays with a nozzle etc., introduces in a heating furnace, and performs decomposition removal and baking of CCS.
The temperature of the heat treatment may be 400 ° C. or higher at which CCS can be decomposed and removed. Furthermore, the compound of the inorganic fine particles can be made into a target oxide by raising the heat treatment temperature. Furthermore, the pore sealing of the bubbles and the particle surface can be densified by heating to a temperature higher than the softening point of the oxide of the inorganic fine particles.

次に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES The present invention will next be described in more detail by way of examples, which should not be construed as limiting the invention thereto.

参考例(CCSの作製)
250mLの蒸留水に20gのグルコースを加え、溶解した。次に、この溶液を圧力容器内で160℃、6時間熱処理した。
得られたCCSのSEM写真を図1に示す。直径約200〜300nmのCCSが得られた。
Reference Example (Production of CCS)
20 g of glucose was added to 250 mL of distilled water and dissolved. Next, this solution was heat-treated at 160 ° C. for 6 hours in a pressure vessel.
An SEM photograph of the obtained CCS is shown in FIG. CCS about 200-300 nm in diameter was obtained.

実施例1
CCSにホウ酸ナトリウム12g、硝酸カルシウム15g、硝酸アルミニウム25g、コロイダルシリカ(固形分10%)100gを加え、攪拌し、溶液を得た。超音波霧化器を用いて、溶液を大気気流中に噴霧し、1000℃の管状炉に導入し約5秒間通して、熱処理した。
得られた含気泡微粒子のSEM写真を図2〜4に示す。
Example 1
12 g of sodium borate, 15 g of calcium nitrate, 25 g of aluminum nitrate and 100 g of colloidal silica (solid content 10%) were added to CCS and stirred to obtain a solution. Using an ultrasonic atomizer, the solution was sprayed into the air stream, introduced into a 1000 ° C. tubular furnace, and heat treated for about 5 seconds.
The SEM photograph of the obtained bubble-containing fine particles is shown in FIGS.

薬剤の使用量を大幅に減らして、独立気泡を持つ微粒子を得ることができた。   The amount of drug used could be greatly reduced to obtain microparticles with closed cells.

作製した粒子は、直径約1μmで粒子密度(JIS R 1620 「ファインセラミックス粉末の粒子密度測定方法」の気体置換法)は1.2g/cm3、BET比表面積は2.5m2/gであった。独立気泡の粒子径は、150〜200nmであった(SEMによる断面計測により測定)。 The prepared particles have a diameter of about 1 μm and a particle density (gas displacement method of JIS R 1620 “Method for measuring particle density of fine ceramic powder”) is 1.2 g / cm 3 and BET specific surface area is 2.5 m 2 / g The The particle diameter of the closed cell was 150 to 200 nm (measured by cross-sectional measurement by SEM).

粒子密度については、CCSを含まない溶液(250mLの蒸留水にホウ酸ナトリウム12g、硝酸カルシウム15g、硝酸アルミニウム25g、コロイダルシリカ(固形分10%)100gを加え、攪拌し、透明な溶液を得、これを前記と同様に熱処理を行い、作製した中実の粒子密度は2.5g/cm3であった。実施例1の粒子密度は、1.2g/cm3と相対密度0.48となったことから、粒子内に独立気泡が形成されていることが示唆される。また、BET比表面積が小さいことから、独立気泡が形成されていることがわかる。 Regarding particle density, add CCS-free solution (250 g of distilled water to 12 g of sodium borate, 15 g of calcium nitrate, 25 g of aluminum nitrate and 100 g of colloidal silica (solid content 10%) and stir to obtain a clear solution This was heat-treated in the same manner as described above to produce a solid particle density of 2.5 g / cm 3. The particle density of Example 1 was 1.2 g / cm 3 and the relative density was 0.48. The results suggest that the closed cells are formed in the particles, and the small BET specific surface area indicates that the closed cells are formed.

実施例2
実施例1で作成したものと同じ溶液を、2流体ノズルを用いて、大気気流中に噴霧し、1000℃の管状炉に導入し約15秒間通して、熱処理した。
得られた含気泡微粒子のSEM写真を図5、6に示す。噴霧した液滴が大きくなった結果、粒子が大きくなった。
作製した粒子は、直径約10μmで粒子密度(JIS R 1620 「ファインセラミックス粉末の粒子密度測定方法」の気体置換法)は1.2g/cm3、BET比表面積は2m2/gであった。独立気泡の粒子径は、実施例1と同様150〜200nmであった。
実施例2の粒子密度は、1.5g/cm3、相対密度0.6となり、粒子内に独立気泡が形成されていることが示唆される。また、BET比表面積が小さいことから、独立気泡が形成されていることがわかる。
Example 2
The same solution as that prepared in Example 1 was sprayed into the air stream using a two-fluid nozzle, introduced into a 1000 ° C. tubular furnace, and heat treated for about 15 seconds.
The SEM photograph of the obtained bubble-containing fine particles is shown in FIGS. As a result of the sprayed droplets becoming larger, the particles become larger.
The particles produced had a diameter of about 10 μm and a particle density (gas displacement method of JIS R 1620 “Method of measuring particle density of fine ceramic powder”) was 1.2 g / cm 3 and BET specific surface area was 2 m 2 / g. The particle diameter of the closed cell was 150 to 200 nm as in Example 1.
The particle density of Example 2 is 1.5 g / cm 3 and the relative density is 0.6, which suggests that closed cells are formed in the particles. In addition, since the BET specific surface area is small, it can be seen that closed cells are formed.

Claims (4)

平均粒子径50nm〜500nmの独立気泡を複数内包し、各気泡が中空粒子を構成する無機質材料で封孔され、粒子表面が緻密な平均粒子径0.1μm〜20μmの無機質粒子。   Inorganic particles having an average particle diameter of 0.1 μm to 20 μm, in which a plurality of independent cells having an average particle diameter of 50 nm to 500 nm are contained, and each of the cells is sealed with an inorganic material constituting hollow particles. 無機質粒子が、無機酸化物粒子である請求項1記載の無機質粒子。   The inorganic particle according to claim 1, wherein the inorganic particle is an inorganic oxide particle. コロイダルカーボンスフィアと粒子原料無機化合物とを含む水系スラリー液滴を熱処理することを特徴とする請求項1又は2記載の無機質粒子の製造法。   The method for producing inorganic particles according to claim 1 or 2, wherein the aqueous slurry droplets containing the colloidal carbon spheres and the particle source inorganic compound are heat-treated. 水系スラリー液滴の熱処理が、水系スラリー液滴を顆粒化した後加熱処理する手段、又は水系スラリーを噴霧熱分解する手段である請求項3記載の製造法。   4. The method according to claim 3, wherein the heat treatment of the aqueous slurry droplets is a means for granulating the aqueous slurry droplets followed by heat treatment or a means for spray pyrolysis of the aqueous slurry.
JP2017171055A 2017-09-06 2017-09-06 inorganic particles Active JP7114231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017171055A JP7114231B2 (en) 2017-09-06 2017-09-06 inorganic particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017171055A JP7114231B2 (en) 2017-09-06 2017-09-06 inorganic particles

Publications (2)

Publication Number Publication Date
JP2019043825A true JP2019043825A (en) 2019-03-22
JP7114231B2 JP7114231B2 (en) 2022-08-08

Family

ID=65815543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017171055A Active JP7114231B2 (en) 2017-09-06 2017-09-06 inorganic particles

Country Status (1)

Country Link
JP (1) JP7114231B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021075438A (en) * 2019-11-13 2021-05-20 日鉄ケミカル&マテリアル株式会社 Hollow silica particle, method for producing the same, resin composite composition using the same, and resin composite
US11179694B2 (en) 2017-09-11 2021-11-23 Basf Se Method of forming porous metal oxide microspheres
US11185835B2 (en) 2017-09-11 2021-11-30 Basf Se Method of forming porous metal oxide microspheres using polydisperse polymer nanospheres

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176343A (en) * 2004-12-21 2006-07-06 Catalysts & Chem Ind Co Ltd Method for producing porous silica-based particle and porous silica-based particle obtained by the same
WO2017141132A1 (en) * 2016-02-18 2017-08-24 Sabic Global Technologies B.V. Hollow zeolite type catalysts with varying framework and zeolite topologies

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176343A (en) * 2004-12-21 2006-07-06 Catalysts & Chem Ind Co Ltd Method for producing porous silica-based particle and porous silica-based particle obtained by the same
WO2017141132A1 (en) * 2016-02-18 2017-08-24 Sabic Global Technologies B.V. Hollow zeolite type catalysts with varying framework and zeolite topologies

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11179694B2 (en) 2017-09-11 2021-11-23 Basf Se Method of forming porous metal oxide microspheres
US11185835B2 (en) 2017-09-11 2021-11-30 Basf Se Method of forming porous metal oxide microspheres using polydisperse polymer nanospheres
US11471849B2 (en) 2017-09-11 2022-10-18 President And Fellows Of Harvard College Porous metal oxide microspheres with varying pore sizes
US11517871B2 (en) 2017-09-11 2022-12-06 President And Fellows Of Harvard College Porous metal oxide microspheres
JP2021075438A (en) * 2019-11-13 2021-05-20 日鉄ケミカル&マテリアル株式会社 Hollow silica particle, method for producing the same, resin composite composition using the same, and resin composite
JP7433022B2 (en) 2019-11-13 2024-02-19 日鉄ケミカル&マテリアル株式会社 Hollow silica particles, their manufacturing method, resin composite compositions and resin composites using the same

Also Published As

Publication number Publication date
JP7114231B2 (en) 2022-08-08

Similar Documents

Publication Publication Date Title
KR101868682B1 (en) Method for preparing metal oxide-silica complex aerogel and metal oxide-silica complex aerogel prepared by using the same
JP5288408B2 (en) Hollow carbon fine particles and method for producing the same
US20100304141A1 (en) Carbon microparticle having lignin as raw material and preparation method therefor
JP2019043825A (en) Inorganic particle
Carneiro et al. Preparation and characterization of nano silica from Equisetum arvenses.
Do Kim et al. Formation of spherical hollow silica particles from sodium silicate solution by ultrasonic spray pyrolysis method
KR101090100B1 (en) Method of preparing silica-titania nanoporous composite particles
CN106046756A (en) Graphene modified and enhanced polyurethane composite material for 3D printing
KR101762874B1 (en) Syntehtic method of core material for mesoporous hollow sillica spheres, and core meterial manufactured by it
JP6785760B2 (en) Methods for Producing Porous Calcium-Deficient Hydroxyapatite Granules
JP2016023095A (en) Inorganic oxide fine hollow particle
JP6385168B2 (en) Method for producing hollow particles
JP6605304B2 (en) Manufacturing method of micro magnesium oxide hollow particles
Lee et al. Fabrication of highly ordered, macroporous Na 2 W 4 O 13 arrays by spray pyrolysis using polystyrene colloidal crystals as templates
JP2005126309A (en) Method of producing hollow alumina particle
JP6386949B2 (en) Fine calcium carbonate hollow particles
KR20190087174A (en) Hollow Silica Nanospheres and Preparation Method Thereof
CN104445224A (en) Method for preparing micro silica aerogel powder
CN110342468B (en) Nano material with disordered surface and preparation method thereof
JP6588365B2 (en) Inorganic oxide micro hollow particles
Lu et al. Novel methods to fabricate macroporous 3D carbon scaffolds and ordered surface mesopores on carbon filaments
KR20120076043A (en) Silica hollow particles using spray drier and producing method thereof and silica-titania composite hollow particles and producing method thereof
JPH1164556A (en) Manufacture of lithium oxide micro ball for breeding tritium
JP2019026543A (en) Oxide hollow particles
KR101346036B1 (en) Producing method of Silicate glass bubble composite particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220727

R150 Certificate of patent or registration of utility model

Ref document number: 7114231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150