JP2019030847A - Aeration treatment method for contaminated water and aeration treatment device for contaminated water - Google Patents

Aeration treatment method for contaminated water and aeration treatment device for contaminated water Download PDF

Info

Publication number
JP2019030847A
JP2019030847A JP2017153769A JP2017153769A JP2019030847A JP 2019030847 A JP2019030847 A JP 2019030847A JP 2017153769 A JP2017153769 A JP 2017153769A JP 2017153769 A JP2017153769 A JP 2017153769A JP 2019030847 A JP2019030847 A JP 2019030847A
Authority
JP
Japan
Prior art keywords
aeration
contaminated water
tank
contaminated
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017153769A
Other languages
Japanese (ja)
Other versions
JP6910883B2 (en
Inventor
靖史 浅井
Yasushi Asai
靖史 浅井
石渡 寛之
Hiroyuki Ishiwatari
寛之 石渡
英史 日下
Eiji Kusaka
英史 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimatsu Construction Co Ltd
Original Assignee
Nishimatsu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimatsu Construction Co Ltd filed Critical Nishimatsu Construction Co Ltd
Priority to JP2017153769A priority Critical patent/JP6910883B2/en
Publication of JP2019030847A publication Critical patent/JP2019030847A/en
Application granted granted Critical
Publication of JP6910883B2 publication Critical patent/JP6910883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

To provide an aeration treatment method for contaminated water and aeration treatment device for contaminated water with a hydrophilic solvent for effective purification by using a small aeration treatment tank without requiring large energy.SOLUTION: The method includes storing a contaminated water contaminated with a hydrophilic solvent in a sealed aeration tank, aerating by injecting microbubbles into the contaminated water, and adding an oxidizing agent before aeration or during aeration to promote the oxidation of the hydrophilic solvent contained in the contaminated water and float an intermediate product or a final product produced in the contaminated water to the upper part in the aeration tank by the microbubbles, and discharging gas containing the intermediate product or final product to the outside of the aeration tank to promote purification of the contaminated water.SELECTED DRAWING: Figure 1

Description

本発明は、アルコール類、環状エーテルなどの親水性溶媒で汚染された汚染水の曝気処理方法および汚染水の曝気処理装置に関し、特に典型的な難分解性物質である1,4-ジオキサン(1,4−dioxane;C482)、THF(tetrahydrofuran;C48O)、その他の非プロトン溶媒で汚染された汚染水の曝気処理に適した汚染水の曝気処理方法および汚染水の曝気処理装置に関する。 The present invention relates to an aeration treatment method and an aeration treatment apparatus for contaminated water contaminated with a hydrophilic solvent such as alcohols and cyclic ethers. Particularly, 1,4-dioxane (1 , 4-dioxane; C 4 H 8 O 2 ), THF (tetrahydrofuran; C 4 H 8 O), and other aprotic solvents contaminated water aeration treatment method and contaminated water suitable for aeration treatment The present invention relates to an aeration processing apparatus.

従来、一般に地下水がVOC(揮発性有機化合物)に汚染されたときの汚染対策としては、汚染土壌・地下水を原位置で浄化する方法、汚染土壌ガスを抽出する方法、汚染地下水を揚水し浄化する方法、汚染土壌を掘削除去する方法などが挙げられる。   Conventionally, as a countermeasure against contamination when groundwater is generally contaminated with VOC (volatile organic compounds), a method of purifying contaminated soil / groundwater in situ, a method of extracting contaminated soil gas, pumping up and purifying contaminated groundwater And a method for excavating and removing contaminated soil.

このうち、汚染地下水を揚水し浄化する方法では、VOC汚染水を揚水し水槽に貯めて、水槽内に設置した散気管やエゼクターポンプでVOC汚染水をバブリング(気泡サイズが1mm以上)して気液接触浄化(曝気処理)することが行われてきた。   Among these methods, the method of pumping up and purifying contaminated groundwater pumps VOC-contaminated water, stores it in a water tank, and bubbles the VOC-contaminated water (bubble size is 1 mm or more) with an air diffuser or ejector pump installed in the water tank. Liquid contact purification (aeration treatment) has been performed.

図5は、その一例を示す曝気処理装置であり、VOC汚染の地下水を揚水し、揚水したVOC汚染水を原水槽1に貯留し、ポンプ2で原水槽1内のVOC汚染水を曝気槽3に送水する。曝気槽3内に設置された吸気管5を有するエゼクター4は、VOC汚染水をバブリングして汚染水からVOCを揮発脱離させる。次いで、気液分離槽6が曝気槽3内の上部に溜まる脱離揮発したVOCを含む空気を導入し気液分離し、さらに、活性炭吸着塔7が気液分離後の空気を導入して活性炭に触れさせVOCを活性炭に吸着させる。次いで、ブロア8が活性炭処理後のVOCが除去された空気をVOC管理施設に送気する。また、曝気槽3に隣接する排水ピット9がVOCを揮発脱離された後の汚染水の溢流水を受け入れ、排水ピット9内に設置されたポンプ10がVOCを揮発脱離された汚染水を濁水処理設備11に送水する。   FIG. 5 shows an example of an aeration treatment apparatus that pumps up VOC-contaminated groundwater, stores the pumped VOC-contaminated water in the raw water tank 1, and pumps the VOC-contaminated water in the raw water tank 1 into the aeration tank 3. Water. An ejector 4 having an intake pipe 5 installed in the aeration tank 3 bubbles VOC contaminated water to volatilize and desorb VOC from the contaminated water. Next, the gas-liquid separation tank 6 introduces air containing the desorbed and volatilized VOC accumulated in the upper part of the aeration tank 3 for gas-liquid separation, and the activated carbon adsorption tower 7 introduces the air after gas-liquid separation to activate the activated carbon. And VOC is adsorbed on the activated carbon. Next, the blower 8 sends the air from which the VOC after the activated carbon treatment has been removed to the VOC management facility. Moreover, the drainage pit 9 adjacent to the aeration tank 3 receives the overflow water of the contaminated water after the VOC has been volatilized and desorbed, and the pump 10 installed in the drainage pit 9 receives the polluted water from which the VOC has been volatilized and desorbed. Water is supplied to the muddy water treatment facility 11.

特許文献1に示すVOC汚染地下水の揚水曝気処理装置は、地下揚水井に連設した原水流入管からVOC汚染の地下水を揚水し、揚水した地下水を小型で複数連結された曝気水槽体に貯留し、各曝気水槽体毎に設置した曝気ブロアから曝気水槽体内に貯留されるVOC汚染の地下水に対して曝気用空気を送り込んで地下水を曝気処理し、次いで、曝気処理した地下水を活性炭吸着槽体に通流させて地下水に含まれるVOCを活性炭に吸着させ、汚染濃度を減少させる構成である。   The VOC-contaminated groundwater pumping aeration apparatus shown in Patent Document 1 pumps VOC-contaminated groundwater from the raw water inflow pipe connected to the underground pumping well, and stores the pumped groundwater in a small and connected aeration tank body. Then, aeration air is sent from the aeration blower installed in each aeration tank body to the VOC-contaminated groundwater stored in the aeration tank body to aerate the groundwater, and then the aerated groundwater is turned into the activated carbon adsorption tank body. The VOC contained in the groundwater is allowed to flow through and is adsorbed on the activated carbon to reduce the concentration of contamination.

VOC汚染の地下水の汚染物質が典型的な難分解性物質である1,4-ジオキサンやTHFである場合には、その分解処理が生物処理では難しく、また、砂ろ過、加圧浮上、凝集沈殿などの固液分離でも処理できず、活性炭処理においても吸着効率があまり良くない。1,4-ジオキサンは、曝気処理による気液分離が困難であることから、図5に示す曝気処理装置や特許文献1に示す曝気処理装置では、たとえ低濃度の汚染水であっても適用できず、現状では、1,4-ジオキサンやTHFを分解除去する方法として、酸化剤、オゾン、またはUV照射を併用する促進酸化処理法が採用される。汚染水の促進酸化処理法として、例えば特許文献2に示すものがある。   When VOC-contaminated groundwater contaminants are 1,4-dioxane or THF, which are typical hardly decomposable substances, the decomposition process is difficult with biological treatment, and sand filtration, pressurized flotation, coagulation sedimentation It cannot be processed by solid-liquid separation such as, and the adsorption efficiency is not so good even in the activated carbon treatment. Since 1,4-dioxane is difficult to gas-liquid-separate by aeration treatment, it can be applied to the aeration treatment device shown in FIG. However, at present, as a method for decomposing and removing 1,4-dioxane and THF, an accelerated oxidation method using an oxidizing agent, ozone, or UV irradiation in combination is employed. For example, Patent Document 2 discloses an accelerated oxidation treatment method for contaminated water.

特許文献2に示す汚水の処理方法は、pHを酸性として過酸化水素を添加した原水に対し、原水の流れ方向の順にpH調整剤、過酸化水素を供給し、原水中に含まれる鉄(II)イオンと過酸化水素を反応させた後に被処理水をオゾンおよび紫外線供給設備を備えた反応槽の下方部に供給し、反応槽内の被処理水である原水を過酸化水素とオゾンガスに紫外線を照射することにより生ずる[・OH]により処理する。その結果、[・OH]の生成を高めて、原水に接触するので、原水中に含まれている有機塩素化合物等の脱塩素反応し、また、廃オゾンガス濃度が減少する。廃オゾンガスが反応槽の頂部より排出する。原水中に含まれる物質が1,4-ジオキサンやTHFである場合にも同様に分解処理される。   In the method for treating sewage shown in Patent Document 2, a pH adjuster and hydrogen peroxide are supplied in the order of the flow direction of raw water to raw water to which hydrogen peroxide is added with acidic pH, and iron contained in the raw water (II ) After reacting ions and hydrogen peroxide, the water to be treated is supplied to the lower part of the reaction tank equipped with ozone and ultraviolet light supply equipment, and the raw water, which is the water to be treated in the reaction tank, is converted into hydrogen peroxide and ozone gas with ultraviolet light. Is treated with [.OH] generated by irradiation. As a result, since the production of [.OH] is increased and brought into contact with the raw water, the dechlorination reaction of the organic chlorine compound and the like contained in the raw water is carried out, and the waste ozone gas concentration is reduced. Waste ozone gas is discharged from the top of the reaction vessel. In the case where the substance contained in the raw water is 1,4-dioxane or THF, it is decomposed in the same manner.

特開2014−124543号公報、図1Japanese Patent Application Laid-Open No. 2014-124543, FIG. 特開2001−121163号公報、0020、0021、図1Japanese Patent Laid-Open No. 2001-121163, 0020, 0021, FIG.

図5に示す曝気処理装置は、大量の汚染水へ対応しようとすると、水槽が大型化してしまうという問題点があった。詳述すると、汚染水の浄化効率は処理水槽内の汚染水曝気処理の均一性に大きく依存するが、曝気槽全体の均一な撹拌が困難であることから、単一の曝気系統では汚染水曝気処理の均一性確保が困難であり、大型化した水槽ではそれが顕著となるという問題点があった。   The aeration apparatus shown in FIG. 5 has a problem that the water tank becomes large when trying to cope with a large amount of contaminated water. In detail, the purification efficiency of the contaminated water depends largely on the uniformity of the aeration treatment of the contaminated water in the treatment tank, but it is difficult to uniformly agitate the entire aeration tank. It is difficult to ensure the uniformity of treatment, and there is a problem that it becomes remarkable in a large-sized water tank.

特許文献1に開示された曝気処理装置は、水槽を曝気による汚染水曝気処理の均一性確保が可能な大きさまで小型化し、各水槽に対応して曝気ブロアを設けて曝気する構成であり、図5に示す曝気処理装置に関する上記問題点を解消することができる。しかしながら、特許文献1に開示された曝気処理装置は、設備系統が複雑となり、単一の大型水槽で汚染水の浄化処理を行う場合に比べて、より広い設置場所が必要となるという問題点があった。   The aeration processing device disclosed in Patent Document 1 is a configuration in which a water tank is downsized to a size capable of ensuring uniformity of contaminated water aeration processing by aeration, and an aeration blower is provided for each water tank to perform aeration. The said problem regarding the aeration processing apparatus shown in 5 can be eliminated. However, the aeration apparatus disclosed in Patent Document 1 has a problem that the equipment system is complicated, and a wider installation place is required as compared with the case where purification treatment of contaminated water is performed in a single large tank. there were.

特許文献2に開示された汚水の処理方法は、装置にオゾン発生器及び紫外線ランプを必要とし、曝気処理方法に比べエネルギーコストが高くつくという問題点があった。そこで、1,4-ジオキサンおよびTHFの地下水汚染の浄化に対応できる、エネルギーコストの低い曝気処理装置が望まれていた。   The wastewater treatment method disclosed in Patent Document 2 requires an ozone generator and an ultraviolet lamp in the apparatus, and has a problem that the energy cost is higher than that of the aeration treatment method. Therefore, an aeration treatment apparatus with low energy cost that can cope with purification of groundwater contamination of 1,4-dioxane and THF has been desired.

本発明は、上述のような問題点を解決するためになされたもので、親水性溶媒で汚染された汚染水を小型な曝気処理槽を用いかつ大きなエネルギーを必要としないで効果的に浄化することができる汚染水の曝気処理方法および汚染水の曝気処理装置を提供することを目的としている。   The present invention was made to solve the above-described problems, and effectively purifies contaminated water contaminated with a hydrophilic solvent without using a large amount of energy using a small aeration treatment tank. It is an object of the present invention to provide a contaminated water aeration treatment method and a contaminated water aeration treatment apparatus.

本発明者らは、従来曝気処理では浄化が困難で酸化促進分解処理方法が適用されていた1,4-ジオキサンまたはTHFを含む汚染水を曝気処理できることを目標とし、大きなエネルギーを必要としない常温での曝気処理について試行錯誤した結果、界面活性剤を添加しないでミリバブルではなくマイクロバブルによる曝気と酸化剤添加という条件の下で曝気処理を行うと汚染水中の1,4-ジオキサンまたはTHFが、曝気除去可能な中間生成物又は最終生成物に分解移行することを確認し、本発明を完成したものである。なお、本発明の浄化対象は、目標とした1,4-ジオキサンまたはTHFで汚染された汚染水のほか、その他の環状エーテルやアルコール類などの親水性溶媒で汚染された汚染水の曝気処理にも適用することができる。   The present inventors aim to be able to perform aeration treatment of contaminated water containing 1,4-dioxane or THF, which has been difficult to purify by conventional aeration treatment and to which an oxidation promotion decomposition treatment method has been applied, and does not require large energy. As a result of trial and error about the aeration treatment in the case of 1,4-dioxane or THF in the contaminated water when the aeration treatment is carried out under the conditions of aeration with microbubbles instead of millibubbles and addition of an oxidizing agent without adding a surfactant, The present invention has been completed after confirming that it is decomposed and transferred to an intermediate product or a final product that can be aerated and removed. In addition to the target contaminated water contaminated with 1,4-dioxane or THF, the purification target of the present invention is also used for aeration treatment of contaminated water contaminated with other hydrophilic solvents such as cyclic ethers and alcohols. Can also be applied.

本発明に係る汚染水の曝気処理方法は、上記目的達成のため、密閉状の曝気槽に、親水性溶媒で汚染された汚染水を貯留し、前記汚染水にマイクロバブルを注入することにより曝気を行うとともに、曝気の前にまたは曝気中に酸化剤を添加することにより前記汚染水に含まれる前記親水性溶媒の酸化を促進し、前記汚染水中に産生する中間生成物又は最終生成物を前記マイクロバブルにより前記曝気槽内の上部に浮上させ、中間生成物又は最終生成物を含むガスを前記曝気槽外に排出し前記汚染水の浄化を促進する構成である。   In order to achieve the above object, the method for aeration treatment of contaminated water according to the present invention stores a contaminated water contaminated with a hydrophilic solvent in a sealed aeration tank and injects microbubbles into the contaminated water. And promoting the oxidation of the hydrophilic solvent contained in the contaminated water by adding an oxidizing agent before or during aeration, and the intermediate product or final product produced in the contaminated water is It is configured to float on the upper part of the aeration tank by microbubbles, discharge a gas containing an intermediate product or a final product to the outside of the aeration tank, and promote purification of the contaminated water.

本発明に係る汚染水の曝気処理方法は、前記親水性溶媒が、1,4-ジオキサンおよびTHFであることが望ましい。   In the method for aeration treatment of contaminated water according to the present invention, the hydrophilic solvent is preferably 1,4-dioxane and THF.

本発明に係る汚染水の曝気処理方法は、前記マイクロバブルが、20μmφないし1mmφ未満が中心のサイズ分布を有する気泡群であることが望ましい。   In the aeration method for contaminated water according to the present invention, it is desirable that the microbubbles are a group of bubbles having a size distribution centered on 20 μmφ to less than 1 mmφ.

本発明に係る汚染水の曝気処理方法は、前記酸化剤が、過硫酸ナトリウムであることが望ましい。   In the contaminated water aeration method according to the present invention, the oxidizing agent is preferably sodium persulfate.

本発明に係る汚染水の曝気処理方法は、前記マイクロバブルの注入が、微細多孔管である内側管と、前記内側管を貫挿し管両端を支持する外側管と、を有する気液混合構造のマイクロバブル発生器により行うものであって、循環ポンプで前記曝気槽内の汚染水を前記内側管内に一端より流入させるとともに、前記外側管内に圧縮空気を圧送することにより前記圧縮空気を前記内側管の微細多孔を通して前記内側管内に導入し前記内側管内を通流する前記汚染水中に注入して懸濁液として前記内側管内に他端より流出させて前記曝気槽内の汚染水の曝気を行う構成であることが望ましい。   The method for aeration of contaminated water according to the present invention has a gas-liquid mixing structure in which the injection of the microbubbles includes an inner tube that is a microporous tube, and an outer tube that penetrates the inner tube and supports both ends of the tube. The microbubble generator is used to feed the contaminated water in the aeration tank from one end into the inner pipe with a circulation pump, and pressurize the compressed air into the outer pipe by feeding the compressed air into the inner pipe. A configuration in which the contaminated water is introduced into the inner pipe through the fine pores and injected into the contaminated water flowing through the inner pipe and discharged as a suspension from the other end into the inner pipe to perform aeration of the contaminated water in the aeration tank. It is desirable that

本発明に係る汚染水の曝気処理方法は、前記曝気槽に貯留した汚染水を、25℃から35℃の範囲に設定することが望ましい。   In the aeration treatment method for contaminated water according to the present invention, it is desirable to set the contaminated water stored in the aeration tank in a range of 25 ° C to 35 ° C.

本発明に係る汚染水の曝気処理装置は、上記目的達成のため、親水性溶媒で汚染された汚染水を曝気により浄化する汚染水の曝気処理装置であって、密閉状の曝気槽を有し、前記曝気槽には、1,4-ジオキサンおよびTHFで汚染された汚染水を槽内に導入する汚染導入管と、前記曝気槽内に貯留される汚染水に酸化剤を添加する酸化剤注入管と、曝気処理後に前記曝気槽内に残る浄化が進んだ処理済水を排出する処理済水排出口と、曝気処理により産生する前記曝気槽内に上部に中間生成物又は最終生成物を含むガスを排出するガス排出口と、前記曝気槽に貯留される汚染水にマイクロバブルを注入するマイクロバブル発生装置と、を備えた構成である。   In order to achieve the above object, an aeration apparatus for contaminated water according to the present invention is an aeration apparatus for contaminated water that purifies contaminated water contaminated with a hydrophilic solvent by aeration, and has a sealed aeration tank. In the aeration tank, a contamination introduction pipe for introducing contaminated water contaminated with 1,4-dioxane and THF into the tank, and an oxidant injection for adding an oxidant to the contaminated water stored in the aeration tank A tube, a treated water discharge port for discharging treated water remaining in the aeration tank after the aeration treatment, and an intermediate product or a final product in the upper part of the aeration tank produced by the aeration treatment It is the structure provided with the gas discharge port which discharges | emits gas, and the microbubble generator which inject | pours a microbubble into the contaminated water stored in the said aeration tank.

本発明に係る汚染水の曝気処理装置は、前記マイクロバブル発生装置が、前記曝気槽内に1つまたは複数設置され、微細多孔管である内側管と、前記内側管を貫挿し管両端を支持する外側管と、を有するマイクロバブル発生器と、前記曝気槽内の汚染水を前記内側管内に一端より流入させる循環ポンプと、前記外側管内に圧縮空気を圧送することにより空気圧送装置と、を備え、前記外側管内に圧送した前記圧縮空気を前記内側管の微細多孔を通して前記内側管内に導入し前記内側管内を通流する前記汚染水中に注入して懸濁液となるよう気液混合して前記内側管内に他端より流出させて前記曝気槽内の汚染水の曝気を行う構成であることが好ましい。   In the aeration apparatus for contaminated water according to the present invention, one or a plurality of the microbubble generators are installed in the aeration tank, and an inner tube that is a fine porous tube and the inner tube are inserted to support both ends of the tube. A microbubble generator having an outer tube, a circulation pump for causing contaminated water in the aeration tank to flow into the inner tube from one end, and a pneumatic feeder by pumping compressed air into the outer tube. The compressed air pumped into the outer tube is introduced into the inner tube through the fine pores of the inner tube, and injected into the contaminated water flowing through the inner tube to be gas-liquid mixed to form a suspension. It is preferable that the inside of the aeration tank is configured to perform aeration of contaminated water by flowing out from the other end.

本発明に係る汚染水の曝気処理装置は、前記曝気槽に貯留した汚染水を、所要温度に加熱するヒータを備えた構成であることが好ましい。   The contaminated water aeration treatment apparatus according to the present invention preferably includes a heater that heats the contaminated water stored in the aeration tank to a required temperature.

本発明によれば、親水性溶媒で汚染された汚染水を小型な曝気処理槽を用いかつ大きなエネルギーを必要としないで効果的に浄化することができる汚染水の曝気処理方法および汚染水の曝気処理装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the contaminated water aeration processing method and the aeration of contaminated water which can purify the contaminated water contaminated with the hydrophilic solvent effectively without using a small aeration treatment tank and without requiring large energy A processing device can be provided.

本発明の実施の形態に係る汚染水の曝気処理装置の概略の模式図である。It is a schematic diagram of the outline of the aeration apparatus for contaminated water according to the embodiment of the present invention. 本発明の実施の形態に係る汚染水の曝気処理装置のマイクロバブル発生器の概略の縦断面図である。It is a longitudinal cross-sectional view of the outline of the microbubble generator of the contaminated water aeration processing apparatus which concerns on embodiment of this invention. 本発明の実施の形態の汚染水の曝気処理方法に係り、汚染水の汚水物質が1,4-ジオキサンであるときの実施例1と比較例1-4を示すグラフである。It is a graph which shows Example 1 and Comparative Example 1-4 when it concerns on the aeration processing method of contaminated water of embodiment of this invention, and the sewage substance of contaminated water is 1, 4- dioxane. 本発明の実施の形態の汚染水の曝気処理方法に係り、汚染水の汚水物質がTHFであるときの実施例2と比較例5を示すグラフである。It is a graph which shows Example 2 and the comparative example 5 when it concerns on the aeration processing method of contaminated water of embodiment of this invention, and the sewage substance of contaminated water is THF. 従来例に係る汚染水の曝気処理装置の概略の模式図である。It is a schematic diagram of the outline of the aeration processing apparatus of the contaminated water which concerns on a prior art example.

以下、本発明を実施するための形態を、図面を用いて説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

[第1の実施の形態]
先ず、図面を参照して本発明の実施の形態に係る汚染水の曝気処理装置について説明し、次いで、汚染水の曝気処理装置を参照して本発明の実施の形態に係る汚染水の曝気処理方法について説明する。
[First Embodiment]
First, a contaminated water aeration treatment apparatus according to an embodiment of the present invention will be described with reference to the drawings, and then a contaminated water aeration treatment apparatus according to an embodiment of the present invention will be described with reference to the contaminated water aeration treatment apparatus. A method will be described.

図1に示すように、本実施の形態に係る汚染水の曝気処理装置20は、酸化剤貯留槽21と、曝気槽22と、濁水処理槽23と、オフガス処理槽24と、を備えている。これらの槽21〜24はいずれも密閉構造のタンクである。   As shown in FIG. 1, the aeration treatment apparatus 20 for contaminated water according to the present embodiment includes an oxidant storage tank 21, an aeration tank 22, a muddy water treatment tank 23, and an offgas treatment tank 24. . These tanks 21 to 24 are all tanks having a sealed structure.

酸化剤貯留槽21には、酸化剤として、過硫酸ナトリウム(ペルオキソ二硫酸ナトリウム;Peroxydisulfuric acid;Na228)、過炭酸ナトリウム(2Na2CO3・3H22)、あるいはオゾン(O3)のいずれか1種類を貯留する。後述する実施例および比較例では過硫酸ナトリウムを選択し酸化剤貯留槽21に貯留した。酸化剤貯留槽21は、図示しない給液口を有し、ここから酸化剤を給液する。 In the oxidant storage tank 21, as an oxidant, sodium persulfate (sodium peroxodisulfate; Peroxydisulfuric acid; Na 2 S 2 O 8 ), sodium percarbonate (2Na 2 CO 3 .3H 2 O 2 ), or ozone ( One type of O 3 ) is stored. In Examples and Comparative Examples described later, sodium persulfate was selected and stored in the oxidant storage tank 21. The oxidant storage tank 21 has a liquid supply port (not shown) from which oxidant is supplied.

酸化剤貯留槽21内の底部には酸化剤を送り出す酸化剤給送ポンプ43が設置される。この実施の形態では、酸化剤給送ポンプ43は、液漏れを回避するため酸化剤貯留槽21内に設けられている。酸化剤給送ポンプ43の吐出口と接続された酸化剤給送パイプ44は、酸化剤貯留槽21を貫通し、外部で図示しない逆止弁および自動弁(例えば電磁弁または電動弁)が介在され、管外端が曝気槽22の酸化剤注入管27に接続されている。   An oxidant feed pump 43 that sends out the oxidant is installed at the bottom of the oxidant storage tank 21. In this embodiment, the oxidant feed pump 43 is provided in the oxidant storage tank 21 in order to avoid liquid leakage. The oxidant feed pipe 44 connected to the discharge port of the oxidant feed pump 43 passes through the oxidant reservoir 21 and includes a check valve and an automatic valve (for example, a solenoid valve or a motor operated valve) not shown outside. The outer end of the tube is connected to the oxidant injection tube 27 of the aeration tank 22.

酸化剤給送ポンプ43は、定量ポンプが用いられ、曝気開始時に、曝気槽22に貯留される汚染水の量に対応した所要量を給液するように制御される。酸化剤貯留槽21外の図示しない自動弁は、酸化剤給送ポンプ43の稼動に連動して開閉制御される。なお、酸化剤給送ポンプ43を定量ポンプとしないで、代わりに酸化剤貯留槽21外に流量計を備えて酸化剤給送ポンプ43の給液量を制御してもよい。   The oxidant feed pump 43 is a metering pump, and is controlled to supply a required amount corresponding to the amount of contaminated water stored in the aeration tank 22 at the start of aeration. An automatic valve (not shown) outside the oxidant storage tank 21 is controlled to open and close in conjunction with the operation of the oxidant feed pump 43. Instead of using the oxidant feed pump 43 as a metering pump, a flow meter may be provided outside the oxidant reservoir 21 to control the amount of liquid supplied to the oxidant feed pump 43 instead.

曝気槽22は、汚染導入管25と、一対のバルブ取出口26と、酸化剤注入管27と、ガス排出口28と、処理済水排出口29と、圧縮空気取入口30と、を有する。汚染導入管25と酸化剤注入管27は、管内端が曝気槽22内に貯留する汚染水の液面レベルよりも所要寸法下方まで垂下している。ガス排出口28は、曝気槽22の上面部に設けられている。   The aeration tank 22 includes a contamination introduction pipe 25, a pair of valve outlets 26, an oxidant injection pipe 27, a gas outlet 28, a treated water outlet 29, and a compressed air inlet 30. The contamination introduction pipe 25 and the oxidant injection pipe 27 hang down below the required dimension from the level of the contaminated water stored in the aeration tank 22 at the inner end of the pipe. The gas discharge port 28 is provided on the upper surface of the aeration tank 22.

汚染導入管25は、アルコール類(例えばメタノール,エタノール)、環状エーテル類(例えば1,4-ジオキサンまたはTHF)等の親水性溶媒で汚染された地下水である汚染水を汲み上げる揚水ポンプ55と管路56で接続されている。なお、以下の説明では、特に難分解性の1,4-ジオキサンおよびTHFで汚染された汚染水について述べる。揚水ポンプ55は、スイッチオンされると汚染水である地下水を汲み上げるよう稼動して、地下水を曝気槽22に貯留していき、曝気槽22の壁面に設けられた図示しない液面レベルセンサに基づいて液面検出信号により稼動停止するようになっている。   The contamination introduction pipe 25 includes a pumping pump 55 and a pipe line for pumping up contaminated water which is groundwater contaminated with a hydrophilic solvent such as alcohols (for example, methanol, ethanol) and cyclic ethers (for example, 1,4-dioxane or THF). 56. In the following description, contaminated water contaminated with persistent 1,4-dioxane and THF will be described. When the pump is switched on, it operates to pump up groundwater that is contaminated water, stores the groundwater in the aeration tank 22, and is based on a liquid level sensor (not shown) provided on the wall surface of the aeration tank 22. The operation is stopped by the liquid level detection signal.

曝気槽22内には、マイクロバブル発生装置が備えられている。この実施の形態のマイクロバブル発生装置は、槽内底部に設置されたマイクロバブル発生ユニット31および循環ポンプ34と、槽外に設置された絞り弁36および空気圧縮機41を備えている。なお、マイクロバブル発生装置は、循環ポンプと、吸気管を有しマイクロバブルを発生させるエゼクターとで構成されてもよい。   In the aeration tank 22, a microbubble generator is provided. The microbubble generator of this embodiment includes a microbubble generating unit 31 and a circulation pump 34 installed at the bottom inside the tank, a throttle valve 36 and an air compressor 41 installed outside the tank. Note that the microbubble generator may include a circulation pump and an ejector that has an intake pipe and generates microbubbles.

マイクロバブル発生ユニット31は、複数の、この実施の形態では6個のマイクロバブル発生器32を有する。マイクロバブル発生ユニット31は、ユニット枠31aと、ユニット枠31a内の底部に横設された大径のヘッダーパイプ31bと、ヘッダーパイプ31bの上面に設けられた6個の分岐管31cと、各分岐管31cに接続された循環汚染水取入管32dを有し立ち上がるマイクロバブル発生器32と、を有する。   The microbubble generating unit 31 has a plurality of microbubble generators 32 in this embodiment. The micro-bubble generating unit 31 includes a unit frame 31a, a large-diameter header pipe 31b horizontally provided at the bottom of the unit frame 31a, six branch pipes 31c provided on the upper surface of the header pipe 31b, and each branch. A microbubble generator 32 having a circulating polluted water intake pipe 32d connected to the pipe 31c.

6個のマイクロバブル発生器32は、いずれも同一の構成であり、微細多孔管である内側管32aと、内側管32aの両端を支持する外側管32bと、を有する。   Each of the six microbubble generators 32 has the same configuration, and includes an inner tube 32a that is a microporous tube and outer tubes 32b that support both ends of the inner tube 32a.

内側管32aは、例えば、マイクロ/ナノポーラスを有するセラミック多孔膜(シラス多孔質ガラス膜)からなる微細多孔管である。外側管32bは、内側管32aとの間の筒状空間の両端を密閉状態に閉じて内側管32aを支持し、一側に圧縮空気導入口32cを有する。圧縮空気導入口32cは、圧縮空気取入れ管42を介し圧縮空気取入口30と接続されている。圧縮空気取入口30は、空気圧縮機41と接続されている。   The inner tube 32a is, for example, a microporous tube made of a ceramic porous film (shirasu porous glass film) having micro / nanoporous. The outer tube 32b supports the inner tube 32a by closing both ends of the cylindrical space between the outer tube 32a and the inner tube 32a, and has a compressed air inlet 32c on one side. The compressed air inlet 32 c is connected to the compressed air inlet 30 via the compressed air intake pipe 42. The compressed air intake 30 is connected to an air compressor 41.

したがって、空気圧縮機41で外気が取り込まれ、例えば2〜3気圧の高圧に圧縮される高圧空気は、6個のマイクロバブル発生器32の各外側管32bに設けられた圧縮空気導入口32cから外側管32bと内側管32aとの間の筒状空間に流入し、さらに内側管32aの微細多孔を通流し内側管32a内に流入するようになっている。   Accordingly, high-pressure air that is taken in by the air compressor 41 and is compressed to a high pressure of, for example, 2 to 3 atmospheres is supplied from the compressed air inlets 32 c provided in the outer tubes 32 b of the six microbubble generators 32. It flows into the cylindrical space between the outer tube 32b and the inner tube 32a, and further flows through the microporous of the inner tube 32a and flows into the inner tube 32a.

内側管32aを構成するセラミック多孔膜(SPG)に形成される孔径は、1mmφ>孔径>0.02μmφの関係となるものが好ましく、さらに、0.8mmφ>孔径>0.02μmφの関係となるものが一層好ましい。これにより、圧縮空気を内側管32aの微細多孔よりマイクロ/ナノサイズの微細気泡となって内側管32a内に導入することができる。マイクロ/ナノサイズの微細気泡は、具体的には、20μmφないし1mmφ未満が中心のサイズ分布を有する気泡群である。   The pore diameter formed in the ceramic porous membrane (SPG) constituting the inner tube 32a is preferably 1 mmφ> pore diameter> 0.02 μmφ, and more preferably 0.8 mmφ> pore diameter> 0.02 μmφ. Is more preferable. Thereby, compressed air can be introduced into the inner tube 32a in the form of micro / nano-sized fine bubbles from the fine porosity of the inner tube 32a. Specifically, the micro / nano-sized fine bubbles are a group of bubbles having a size distribution centered on 20 μmφ to less than 1 mmφ.

曝気槽22内に設けられた循環ポンプ34は、吐出側が、管路35と、一対のバルブ取出口26の外端同士の間に介設された流量調整用の手動式の絞り弁36と、管路37とを介してヘッダーパイプ31bの導水口に接続されている。循環ポンプ34は、曝気槽22内の汚染水を、ヘッダーパイプ31bを介して6個の分岐管31cの内側管32aの下端より内部へ通流させるようになっている。   The circulation pump 34 provided in the aeration tank 22 has a discharge side, a pipe 35, and a manual throttle valve 36 for adjusting the flow rate interposed between the outer ends of the pair of valve outlets 26; The pipe 37 is connected to the water inlet of the header pipe 31b. The circulation pump 34 allows the contaminated water in the aeration tank 22 to flow from the lower ends of the inner pipes 32a of the six branch pipes 31c to the inside through the header pipe 31b.

したがって、曝気槽22は、内側管32a内に一端より汚染水を流入させるとともに、外側管32b内に(曝気槽22外から)圧縮空気を圧送することにより圧縮空気を内側管32aの微細多孔より内側管32a内に導入して内側管32a内を通流する汚染水中に懸濁状態に流入させる気液混合構造である。これにより、各マイクロバブル発生器32は、内側管32aの全周面にわたり開孔されている微細多孔を通流し内側管32a内に流入する圧縮空気をマイクロ/ナノサイズの微細気泡(マイクロバブル)にして、内側管32a内を下端から上端に向かって通流する汚染水に万遍なく注入させてマイクロバブル懸濁水を生成し曝気を行うようになっている。   Therefore, the aeration tank 22 allows the contaminated water to flow into the inner pipe 32a from one end, and compresses the compressed air from the fine porosity of the inner pipe 32a by pumping the compressed air into the outer pipe 32b (from outside the aeration tank 22). This is a gas-liquid mixing structure that is introduced into the inner pipe 32a and flows into the contaminated water flowing through the inner pipe 32a in a suspended state. As a result, each microbubble generator 32 allows micro / nano-sized microbubbles (microbubbles) to flow into the inner tube 32a through the micropores that are opened over the entire circumference of the inner tube 32a. Thus, the microbubble suspension water is generated and aerated by uniformly injecting into the contaminated water flowing through the inner pipe 32a from the lower end toward the upper end.

曝気槽22は、槽内に貯留した汚染水を温度制御可能に加熱するヒータ38を槽内の底部に備えている。ヒータ38は、補助的に備えられるもので、汚染物質によっては省エネルギー運転で曝気効果が得られるときにはヒータ38を加熱しない。ヒータ38は、遠赤外線ヒータや電熱コイル等のいずれであってもよい。なお、槽壁の一部を熱伝導率が高いCu等の金属板で構成し、その外面にヒータ38を密着して設けてもよい。   The aeration tank 22 includes a heater 38 that heats the contaminated water stored in the tank so that the temperature can be controlled. The heater 38 is provided as an auxiliary, and depending on the pollutant, the heater 38 is not heated when an aeration effect is obtained in an energy saving operation. The heater 38 may be a far infrared heater, an electric heating coil, or the like. A part of the tank wall may be formed of a metal plate such as Cu having high thermal conductivity, and the heater 38 may be provided in close contact with the outer surface thereof.

曝気槽22は、槽内の底部に処理済水排出ポンプ39を備えている。処理済水排出ポンプ39の吐出口と処理済水排出口29の内端とが処理済水排出管40で接続され、処理済水排出口29の外端に逆止弁45、仕切弁46を介して処理済水送出管47が接続され、処理済水送出管47の他端が濁水処理槽23内に連通接続されている。処理済水排出ポンプ39は、曝気槽22での曝気終了の後に稼働され、汚染濃度が低下した汚染水を濁水処理槽23に給送するようになっている。   The aeration tank 22 includes a treated water discharge pump 39 at the bottom of the tank. The discharge port of the treated water discharge pump 39 and the inner end of the treated water discharge port 29 are connected by a treated water discharge pipe 40, and a check valve 45 and a gate valve 46 are connected to the outer end of the treated water discharge port 29. The treated water delivery pipe 47 is connected via the other end, and the other end of the treated water delivery pipe 47 is connected in communication with the muddy water treatment tank 23. The treated water discharge pump 39 is operated after completion of the aeration in the aeration tank 22, and feeds the contaminated water having a reduced contamination concentration to the turbid water treatment tank 23.

濁水処理槽23は、槽内の底部に排水管49と接続された排水ポンプ48を備えている。排水ポンプ48は、濁水処理槽23で所要時間濁水処理が行われた後に稼働され、濁水浄化処理済水を排水管49を介してVOC管理施設へ送水するようになっている。   The muddy water treatment tank 23 is provided with a drain pump 48 connected to a drain pipe 49 at the bottom of the tank. The drainage pump 48 is operated after the muddy water treatment is performed in the muddy water treatment tank 23 for a required time, and the muddy water purification-treated water is supplied to the VOC management facility through the drainage pipe 49.

曝気槽22内の汚染水には界面活性剤を添加しない。マイクロバブル発生器32からも界面活性剤を添加しない。これにより、マイクロバブル懸濁水出口32eから排出されるマイクロバブルは集まりやすく1mmφサイズ以上の大きなバブルになって液面に速く浮上する。汚染物質が曝気されて産生する中間生成物(例えばアセトアルデヒド)、最終分解物はガスとともに液面から離れる。   No surfactant is added to the contaminated water in the aeration tank 22. No surfactant is added from the microbubble generator 32. As a result, the microbubbles discharged from the microbubble suspension water outlet 32e are easy to gather and become large bubbles of 1 mmφ size or more and quickly rise to the liquid surface. Intermediate products (eg, acetaldehyde) produced by aeration of pollutants and final decomposition products leave the liquid surface together with the gas.

曝気槽22とオフガス処理槽24とは送気管50で接続されている。送気管50は、曝気槽22内の上面部に設けられたガス排出口28とオフガス処理槽24の側面下部に設けられたオフガス導入口51とを連通接続している。曝気槽22内の上部空間部に産生する中間生成物、最終分解物を含むガスは、ブロア54によって誘引され、送気管50を通してオフガス導入口51よりオフガス処理槽24の側面下部に流入するようになっている。   The aeration tank 22 and the off-gas treatment tank 24 are connected by an air supply pipe 50. The air supply pipe 50 connects the gas discharge port 28 provided in the upper surface portion in the aeration tank 22 and the offgas introduction port 51 provided in the lower part of the side surface of the offgas treatment tank 24. The gas including the intermediate product and the final decomposition product produced in the upper space in the aeration tank 22 is attracted by the blower 54 and flows into the lower part of the side surface of the offgas treatment tank 24 from the offgas introduction port 51 through the air supply pipe 50. It has become.

オフガス処理槽24は、この実施の形態では、活性炭フィルタ52を有しており、上方への流れるガスを活性炭フィルタ52に触れさせて、ガスに含まれる中間生成物又は最終生成物を活性炭フィルタ52に吸着させるようになっている。活性炭フィルタ52に中間生成物又は最終生成物を吸着されたオフガス処理槽24内の上部空間に到達する清浄ガスはオフガス処理槽24内の上部空間に連通接続した清浄ガス送出管53を通りブロア54によりVOC管理施設へ送気される。なお、オフガス処理槽24は、活性炭吸着処理に限定されるものでなく、UV光またはオゾンにより処理、または熱処理の少なくともいずれか1つによる処理を行うようになっていればよい。   In this embodiment, the off-gas treatment tank 24 has an activated carbon filter 52, and the activated gas is caused to touch the activated carbon filter 52 so that the gas flowing upward is in contact with the activated carbon filter 52. It is made to adsorb to. The clean gas reaching the upper space in the off-gas treatment tank 24 in which the intermediate product or the final product is adsorbed by the activated carbon filter 52 passes through the clean gas delivery pipe 53 connected to the upper space in the off-gas treatment tank 24 and is blower 54. Is sent to the VOC management facility. Note that the off-gas treatment tank 24 is not limited to the activated carbon adsorption treatment, and it is only necessary to perform treatment with UV light or ozone, or treatment with at least one of heat treatment.

続いて、上記構成の汚染水の曝気処理装置の作用について説明する。
まず、揚水ポンプ55を稼働し、1,4-ジオキサン、THF、その他の非プロトン溶媒で汚染された汚染水である地下水を揚水し、この汚染水を密閉状の曝気槽22に所定の液面レベルに達するよう貯留する。汚染水の曝気槽22への貯留途中で酸化剤給送ポンプ43を稼働し、酸化剤貯留槽21内に貯留された酸化剤の所定量を曝気槽22に注液する。これにより、曝気開始前に酸化剤が汚染水中のアルコール類、環状エーテルなどの親水性溶媒に万遍なく混ざり合う。
Then, the effect | action of the aeration processing apparatus of the contaminated water of the said structure is demonstrated.
First, the pumping pump 55 is operated to pump ground water, which is contaminated water contaminated with 1,4-dioxane, THF, or other aprotic solvent, and the contaminated water is put into a sealed aeration tank 22 at a predetermined liquid level. Store to reach level. During the storage of the contaminated water in the aeration tank 22, the oxidant feed pump 43 is operated, and a predetermined amount of the oxidant stored in the oxidant storage tank 21 is injected into the aeration tank 22. Thereby, before an aeration start, an oxidizing agent mixes uniformly with hydrophilic solvents, such as alcohol and cyclic ether in contaminated water.

次に、曝気槽22に貯留した汚染水の水温が例えば18℃である場合には、ヒータ38を加熱して汚染水の水温を25℃になるように加熱するのが好ましい。なお、この加熱は必要的ではなく、冬季で汚染水の水温が低い場合に加熱すれば足りる。   Next, when the water temperature of the contaminated water stored in the aeration tank 22 is 18 ° C., for example, it is preferable to heat the heater 38 so that the water temperature of the contaminated water becomes 25 ° C. Note that this heating is not necessary, and heating is sufficient when the temperature of the contaminated water is low in winter.

次に、循環ポンプ34および空気圧縮機41を稼働する。循環ポンプ34の稼働により、曝気槽22内の酸化剤を含む汚染水がヘッダーパイプ31bを通り、6個のマイクロバブル発生器32の各内側管32aの下端より内部を通流し上端より流出するとともに、空気圧縮機41の稼働により、外気が取り込まれ高圧空気となり、当該高圧空気が、6個のマイクロバブル発生器32の各外側管32bに設けられた圧縮空気導入口32cより外側管32bと内側管32aとの筒状空間に流入し、さらに内側管32aの微細多孔を通る際に20μmφないし1mmφ未満が中心のサイズ分布を有する気泡群のマイクロバブルとなる。   Next, the circulation pump 34 and the air compressor 41 are operated. Due to the operation of the circulation pump 34, the contaminated water containing the oxidizing agent in the aeration tank 22 passes through the header pipe 31b, flows from the lower ends of the inner pipes 32a of the six microbubble generators 32, and flows out from the upper ends. By the operation of the air compressor 41, outside air is taken in to become high-pressure air, and the high-pressure air is inside the outer pipe 32b and the inner side from the compressed air inlet 32c provided in each outer pipe 32b of the six microbubble generators 32. When flowing into the cylindrical space with the tube 32a and passing through the fine pores of the inner tube 32a, microbubbles of a group of bubbles having a size distribution of 20 μmφ to less than 1 mmφ in the center are formed.

そして、当該マイクロバブルが内側管32a内を通流する酸化剤を含む汚染水中に注入され、懸濁状態になって内側管32aの上端より流出する。これによって、水温が25℃の汚染水が酸化剤とマイクロバブルとによる曝気作用を受けることになり、汚染水中のアルコール類、環状エーテルなどの親水性溶媒が分解され中間生成物、最終中間生成物に変化する。   Then, the microbubbles are injected into the contaminated water containing the oxidant flowing through the inner pipe 32a, become suspended, and flow out from the upper end of the inner pipe 32a. As a result, the contaminated water having a water temperature of 25 ° C. is subjected to an aeration action by the oxidizing agent and the microbubbles, and the hydrophilic solvent such as alcohols and cyclic ethers in the contaminated water is decomposed to produce intermediate products and final intermediate products. To change.

汚染水には界面活性剤を添加しないから、内側管32aの上端より流出するマイクロバブルは、直ぐに集まって大きなミリバブルとなり、水中を長く漂うことなく水面に向かって比較的速い速度で上昇し、中間生成物、最終中間生成物がミリバブル,マイクロバブルの表面に付着して曝気槽22内の上部空間部に移行する。   Since the surfactant is not added to the contaminated water, the microbubbles flowing out from the upper end of the inner tube 32a immediately gather into a large millibubble, and rises at a relatively high speed toward the water surface without drifting long in the water. The product and the final intermediate product adhere to the surfaces of the millibubble and microbubble and move to the upper space in the aeration tank 22.

次いで、空気圧縮機41で生成された高圧空気が連続して供給されるから、曝気槽22内の上部空間部に移行した中間生成物、最終中間生成物を含むガスは、ブロア54により誘引され、送気管50を通流しオフガス導入口51よりオフガス処理槽24内の底部に流入する。オフガス処理槽24内に流入するガスは、ブロア54により摩擦抵抗体である活性炭フィルタ52を通流し、中間生成物、最終中間生成物が活性炭フィルタ52に吸着され、浄化されたガスとなってブロア54によりVOC管理施設へ送気される。   Next, since the high-pressure air generated by the air compressor 41 is continuously supplied, the intermediate product and the gas containing the final intermediate product transferred to the upper space in the aeration tank 22 are attracted by the blower 54. Then, the air pipe 50 flows and flows into the bottom of the off-gas treatment tank 24 from the off-gas introduction port 51. The gas flowing into the off-gas treatment tank 24 flows through the activated carbon filter 52, which is a frictional resistor, by the blower 54, and the intermediate product and the final intermediate product are adsorbed by the activated carbon filter 52 and become purified gas. 54 is sent to the VOC management facility.

上記の曝気処理が例えば2時間ほど行われると、曝気槽22内の汚染水は、アルコール類、環状エーテルなどの親水性溶媒の残留量を大幅に減じることになり、循環ポンプ34および空気圧縮機41の稼動が停止され、ヒータ38の加熱が停止される。   When the aeration process is performed for about 2 hours, for example, the contaminated water in the aeration tank 22 greatly reduces the residual amount of hydrophilic solvents such as alcohols and cyclic ethers, and the circulation pump 34 and the air compressor. 41 is stopped, and heating of the heater 38 is stopped.

次いで、処理済水排出ポンプ39が稼動され、処理済水排出ポンプ39により曝気槽22内の汚染水が濁水処理槽23に移される。濁水処理槽23で汚染水を一定時間濁水処理して浄水とした後、排水ポンプ48が稼動され、排水ポンプ48により濁水処理槽23内の浄水がVOC管理施設へ送水される。   Next, the treated water discharge pump 39 is operated, and the contaminated water in the aeration tank 22 is transferred to the muddy water treatment tank 23 by the treated water discharge pump 39. After the contaminated water is treated with turbid water in the turbid water treatment tank 23 for a certain period of time to obtain purified water, the drain pump 48 is operated, and the drain pump 48 supplies the purified water in the turbid water treatment tank 23 to the VOC management facility.

以上のように、本実施の形態に係る汚染水の曝気処理方法は、密閉状の曝気槽22に、アルコール類、環状エーテルなどの親水性溶媒で汚染された汚染水を貯留し、汚染水にマイクロバブルを注入することにより曝気を行うとともに、曝気の前にまたは曝気中に酸化剤を添加することにより汚染水に含まれる親水性溶媒酸化を促進し、前記汚染水中に産生する中間生成物又は最終生成物をマイクロバブルにより曝気槽22内の上部に浮上させ、中間生成物又は最終生成物を含むガスを曝気槽22外に排出し汚染水の浄化を促進し、曝気槽22内の上部に産生する酸化物を含むガスを曝気槽22外のオフガス処理槽24に導入してオフガス処理する構成である。   As described above, in the contaminated water aeration method according to the present embodiment, the contaminated water contaminated with a hydrophilic solvent such as alcohols and cyclic ethers is stored in the sealed aeration tank 22 and used as the contaminated water. Aeration is performed by injecting microbubbles, and an intermediate product produced in the contaminated water is promoted by promoting hydrophilic solvent oxidation contained in the contaminated water by adding an oxidizing agent before or during aeration. The final product is floated to the upper part in the aeration tank 22 by microbubbles, and the gas containing the intermediate product or the final product is discharged out of the aeration tank 22 to promote the purification of contaminated water. The gas containing the oxide to be produced is introduced into the off-gas treatment tank 24 outside the aeration tank 22 to perform off-gas treatment.

本実施の形態に係る汚染水の曝気処理方法は、特に、典型的な難分解性物質である1,4-ジオキサン(1,4−dioxane;C482)、THF(tetrahydrofuran;C48O)、その他の非プロトン溶媒で汚染された汚染水の曝気処理に適している。 The aeration treatment method for contaminated water according to the present embodiment particularly includes 1,4-dioxane (1,4-dioxane; C 4 H 8 O 2 ), THF (tetrahydrofuran; C), which are typical persistent substances. 4 H 8 O), suitable for aeration treatment of contaminated water contaminated with other aprotic solvents.

構成について既述したように、汚染水に注入するマイクロバブルは、20μmφないし1mmφ未満が中心のサイズ分布を有する気泡群である。また汚染水に添加する酸化剤は、過硫酸ナトリウムが第一選択であり、代替としては過炭酸ナトリウム、あるいはオゾン(O3)のいずれかが選択される。   As described above with respect to the configuration, the microbubbles injected into the contaminated water are a group of bubbles having a size distribution centered on 20 μmφ to less than 1 mmφ. As the oxidizing agent added to the contaminated water, sodium persulfate is the first choice, and as an alternative, either sodium percarbonate or ozone (O3) is selected.

マイクロバブルの注入は、曝気槽22内に設置された微細多孔管である内側管32aと、内側管32aを貫挿し管両端を支持する外側管32bと、を有する気液混合構造の1つまたは複数のマイクロバブル発生器32により行うものであって、曝気槽22内に設置する循環ポンプ34で内側管32a内に一端(下端)より汚染水を流入させるとともに、外側管32b内に(曝気槽22外から)圧縮空気を圧送することにより圧縮空気を内側管32aの多孔より内側管32a内に導入して内側管32a内を通流する汚染水中に懸濁状態に流入させる。なお、曝気槽22内にマイクロバブルが注入できればよく、内側管32aと外側管32bとの気液混合構造のマイクロバブル発生器32に限定されるものではない。曝気槽22内の汚染水中に浸漬されるよう外気が供給される中空体が設置され、中空体の上面部が、内側管32aと同様にマイクロバブルを生成する微細多孔を有するセラミックで構成されてもよい。   The injection of microbubbles is one of a gas-liquid mixing structure having an inner tube 32a that is a microporous tube installed in the aeration tank 22 and an outer tube 32b that penetrates the inner tube 32a and supports both ends of the tube. This is performed by a plurality of microbubble generators 32. The circulating pump 34 installed in the aeration tank 22 allows contaminated water to flow into the inner pipe 32a from one end (lower end) and into the outer pipe 32b (aeration tank). The compressed air is introduced into the inner tube 32a from the perforation of the inner tube 32a by flowing the compressed air (from outside 22), and flows into the suspended water flowing through the inner tube 32a in a suspended state. The microbubble generator 32 is not limited to the microbubble generator 32 having a gas-liquid mixing structure of the inner tube 32a and the outer tube 32b as long as microbubbles can be injected into the aeration tank 22. A hollow body to which outside air is supplied so as to be immersed in the contaminated water in the aeration tank 22 is installed, and the upper surface portion of the hollow body is composed of a ceramic having fine pores that generate microbubbles similarly to the inner tube 32a. Also good.

本実施の形態に係る汚染水の曝気処理方法は、汚染水に注入するバブルがマイクロバブルであることに加え、汚染水に酸化剤を添加することにより汚染水を加熱することなく、アルコール類だけでなく、特に典型的な難分解性物質である1,4-ジオキサン、THF、その他の非プロトン溶媒を中間生成物や最終生成物に効果的に分解できるという優れた曝気効果が得られる。具体的には、1,4-ジオキサンの中間物質として揮発性の高いアセトアルデヒド(CH3CHO)を中心に、その他酢酸(CH3COOH),グリコールアルデヒド(C2H4O2),グリコール酸(C2H4O3)などが産生される。最終生成物としては二酸化炭素,水素イオンが産生される。本実施の形態に係る汚染水の曝気処理装置は、超小型のマイクロバブル発生器32により懸濁状態に気液混合を行うので、曝気槽22を小型にすることができ、装置全体を小型化できる。 In the aeration method for contaminated water according to the present embodiment, in addition to the bubbles injected into the contaminated water being microbubbles, only the alcohols are heated without heating the contaminated water by adding an oxidant to the contaminated water. In addition, an excellent aeration effect can be obtained in which 1,4-dioxane, THF, and other aprotic solvents, which are typical hardly decomposable substances, can be effectively decomposed into intermediate products and final products. Specifically, as an intermediate of 1,4-dioxane, mainly volatile acetaldehyde (CH 3 CHO), acetic acid (CH 3 COOH), glycol aldehyde (C 2 H 4 O 2 ), glycolic acid ( C 2 H 4 O 3 ) and the like are produced. Carbon dioxide and hydrogen ions are produced as final products. Since the contaminated water aeration apparatus according to the present embodiment performs gas-liquid mixing in a suspended state by the ultra-small microbubble generator 32, the aeration tank 22 can be reduced in size and the entire apparatus can be reduced in size. it can.

より好ましくは、曝気効果の促進のため、汚染物質が1,4-ジオキサンのとき、ヒータ38で汚染水を35℃に加熱する。   More preferably, when the pollutant is 1,4-dioxane, the heater 38 heats the contaminated water to 35 ° C. in order to promote the aeration effect.

以下は、1,4-ジオキサンで汚染された汚染水について実験を行った。図3に示すグラフは、縦軸に、曝気槽22に貯留された試験用の汚染水中の1,4-ジオキサンの残存率(C/C)を目盛り、横軸メモリに、処理時間(min)を目盛って、曝気効果を示したものである。 The following experiment was conducted on contaminated water contaminated with 1,4-dioxane. In the graph shown in FIG. 3, the vertical axis indicates the residual ratio (C / C 0 ) of 1,4-dioxane in the contaminated test water stored in the aeration tank 22, and the horizontal axis memory indicates the processing time (min ) To show the aeration effect.

[比較例1]
図3に示すグラフ中に示す比較例1の線図は、●印に沿った概略の線図を示す。比較例1は、試験用の汚染水として、1,4-ジオキサンで汚染された汚染水を作り、水温を25℃として汚染水に酸化剤(過硫酸ナトリウム、以下同じ)を添加せず、マイクロバブル(20μmφないし1mmφ未満が中心のサイズ分布を有する気泡群、以下同じ)だけを注入して曝気処理を行った結果を示すもので、処理時間が経過しても1,4-ジオキサンの残存率(C/C)に殆ど変化がない。すなわち、曝気効果の高いといわれるマイクロバブルを用いたとしても、水温25℃では曝気効果が得られていないことを示す。
[Comparative Example 1]
The diagram of Comparative Example 1 shown in the graph shown in FIG. 3 shows a schematic diagram along the mark ●. In Comparative Example 1, contaminated water contaminated with 1,4-dioxane was prepared as contaminated water for testing, the water temperature was set to 25 ° C., and no oxidizing agent (sodium persulfate, the same applies hereinafter) was added to the contaminated water. This shows the result of aeration treatment by injecting only bubbles (bubble groups with a central size distribution of 20μmφ to less than 1mmφ, the same applies below), and the residual rate of 1,4-dioxane even after the treatment time has elapsed There is almost no change in (C / C 0 ). That is, even when microbubbles that are said to have a high aeration effect are used, the aeration effect is not obtained at a water temperature of 25 ° C.

[比較例2および比較例3]
図3に示すグラフ中に示す比較例2の線図と比較例3の線図は、−印または△印に沿った概略の線図であり、略同一の線引きになるので一つの線図で示している。比較例2は、試験用の汚染水として、1,4-ジオキサンで汚染された汚染水を作り、水温を25℃として汚染水に酸化剤を所定量添加し、マイクロバブルでない従来式の曝気気泡(気泡径が1mmφ以上の大きさのミリバブルが中心)を注入して曝気処理を行った結果を示すもので、2時間の処理時間経過時で1,4-ジオキサンの残存率(C/C)が20%減少した。比較例3は、比較例1の追加条件として水温を35℃まで昇温した時の結果を示すもので、比較例2とほぼ同じ1,4-ジオキサンの残存率(C/C)となった。以上のことから、水温25℃で従来式の曝気気泡を用いた時の酸化剤による曝気効果の上乗せは、曝気気泡をマイクロバブル化したうえで水温35℃に昇温させることでも達成されるということに理解される。同じ効果であれば、操作の多い後者(比較例3)が選択肢としては不利である。
[Comparative Example 2 and Comparative Example 3]
The diagram of the comparative example 2 and the diagram of the comparative example 3 shown in the graph shown in FIG. 3 are schematic diagrams along the − mark or the Δ mark, and are substantially the same line drawing. Show. In Comparative Example 2, a contaminated water contaminated with 1,4-dioxane was prepared as a test contaminated water, a predetermined temperature was added to the contaminated water at a water temperature of 25 ° C., and a conventional aerated bubble that was not a microbubble This shows the result of aeration treatment by injecting (millibubbles with a bubble diameter of 1 mmφ or more in the center). The residual ratio of 1,4-dioxane (C / C 0 after the treatment time of 2 hours) ) Decreased by 20%. Comparative Example 3 shows the result when the water temperature was raised to 35 ° C. as an additional condition of Comparative Example 1, and the residual ratio of 1,4-dioxane (C / C 0 ) was almost the same as Comparative Example 2. It was. From the above, it is said that the addition of the aeration effect by the oxidizing agent when the conventional aeration bubble is used at a water temperature of 25 ° C. can also be achieved by raising the water temperature to 35 ° C. after making the aeration bubbles into microbubbles. It is understood that. If the effect is the same, the latter (Comparative Example 3) with many operations is disadvantageous as an option.

[比較例4]
図3に示すグラフ中に示す比較例4の線図は、□印に沿った概略の線図である。比較例4は、比較例1の追加条件として水温を55℃にまで昇温した時の結果を示す。比較例4は、1時間の処理時間経過時、および2時間の処理時間経過時でそれぞれ比較例3の場合に比べ、1,4-ジオキサンの残存率(C/C)が2倍以上減少した。
[Comparative Example 4]
The diagram of Comparative Example 4 shown in the graph shown in FIG. 3 is a schematic diagram along the □ mark. Comparative Example 4 shows the results when the water temperature was raised to 55 ° C. as an additional condition for Comparative Example 1. In Comparative Example 4, the residual ratio of 1,4-dioxane (C / C 0 ) decreased by a factor of 2 or more when the processing time of 1 hour was elapsed and when the processing time of 2 hours was elapsed, compared to the case of Comparative Example 3. did.

比較例1と比較例3と比較例4は、いずれもマイクロバブルを注入して曝気処理を行っており、水温が25℃のときは曝気効果が得られず、水温が35℃のときは1,4-ジオキサンの残存率(C/C)が2時間の処理時間経過時に20%弱となる曝気効果が得られ、水温が55℃のときは1,4-ジオキサンの残存率(C/C)が2時間の処理時間経過時に45%となる大きな曝気効果が得られることが分かった。しかしながら、一般的に、水温を高めて曝気効果を追求する戦略は、汚染水に対する昇温操作のエネルギー効率が悪く、ランニングコストの高騰を招きやすい。 In each of Comparative Example 1, Comparative Example 3 and Comparative Example 4, aeration treatment was performed by injecting microbubbles. When the water temperature was 25 ° C., no aeration effect was obtained, and when the water temperature was 35 ° C., 1 , 4-dioxane residual rate (C / C 0 ) is less than 20% after a treatment time of 2 hours, and when the water temperature is 55 ° C., 1,4-dioxane residual rate (C / C It has been found that a large aeration effect is obtained in which C 0 ) is 45% when a treatment time of 2 hours elapses. However, in general, a strategy for increasing the water temperature and pursuing the aeration effect is inferior in energy efficiency of the temperature raising operation for the contaminated water, and is likely to increase the running cost.

[実施例1]
図3に示すグラフ中に示す実施例1の線図は、×印に沿った概略の線図である。実施例1は、比較例1の追加条件として汚染水に酸化剤を所定量添加した時の結果である。
[Example 1]
The diagram of Example 1 shown in the graph shown in FIG. 3 is a schematic diagram along the x mark. Example 1 is a result when a predetermined amount of an oxidizing agent is added to contaminated water as an additional condition of Comparative Example 1.

実施例1は、1時間もしくは2時間の処理時間経過時に得られる1,4-ジオキサンの残存率(C/C0)の減少量で、比較例4には及ばないものの、比較例2や3に比較すると明確に改善している。   Example 1 is a decrease in the residual ratio of 1,4-dioxane (C / C0) obtained after the treatment time of 1 hour or 2 hours, which is not comparable to Comparative Example 4, but in Comparative Examples 2 and 3. In comparison, it is clearly improved.

すなわち、汚染水の水温を35℃や55℃等といった常温以上に昇温させずとも、25℃で汚染水に酸化剤を添加し、ここに曝気気泡のマイクロバブル化を併用すれば、比較例2,比較例3を大きく上回る実用的な曝気効果が得られることが分かった。実施例1は、エネルギー効率の悪い汚染水の昇温操作を積極的に必要としないのでランニングコスト面で有利といえる。   That is, even if the temperature of the contaminated water is not raised to a room temperature such as 35 ° C. or 55 ° C. or higher, an oxidizing agent is added to the contaminated water at 25 ° C. 2 It was found that a practical aeration effect greatly surpassing that of Comparative Example 3 was obtained. The first embodiment is advantageous in terms of running cost because it does not actively require a temperature raising operation of contaminated water with low energy efficiency.

なお、図3に示さないが、前記の知見を踏まえると、実施例1の追加条件として水温を35℃まで昇温すれば、曝気効果はさらに顕著に向上すると考えられる。曝気効果の追求とランニングコストとのトレードオフで検討すべき問題であるが、水温35℃程度に昇温することは比較的容易な操作であって、技術的範囲からは排除するものではない。   Although not shown in FIG. 3, based on the above findings, it is considered that the aeration effect is further significantly improved if the water temperature is raised to 35 ° C. as an additional condition of Example 1. Although it is a problem to be examined in the trade-off between pursuit of the aeration effect and running cost, raising the water temperature to about 35 ° C. is a relatively easy operation and is not excluded from the technical scope.

次に、THF(テトラヒドロフラン)で汚染された汚染水について実験を行った。図4に示すグラフは、縦軸に、試験用の汚染水中の1,4-ジオキサンの残存率(C/C)を目盛り、横軸メモリに、処理時間(min)を目盛って、曝気効果を示したものである。 Next, an experiment was conducted on contaminated water contaminated with THF (tetrahydrofuran). In the graph shown in FIG. 4, the abscissa indicates the residual ratio (C / C 0 ) of 1,4-dioxane in the contaminated water for the test, and the abscissa memory indicates the treatment time (min). It shows the effect.

[比較例5]
図4に示すグラフ中に示す比較例5の線図は、●印に沿った概略の線図を示す。比較例5は、試験用の汚染水として、THFで汚染された汚染水を作り、水温を25℃に保ち、汚染水に酸化剤を添加しないで、マイクロバブルを注入して曝気処理を行った結果を示すもので、処理時間の経過とともにTHFの残存率(C/C)が少なくなり、80分の処理時間経過時の値は残存率が40%まで大きく減少し、1,4-ジオキサンの場合と異なり、曝気気泡のマイクロバブル化のみで曝気効果に大きな影響を与えることが分かった。
[Comparative Example 5]
The diagram of Comparative Example 5 shown in the graph shown in FIG. 4 shows a schematic diagram along the mark ●. In Comparative Example 5, contaminated water contaminated with THF was prepared as test contaminated water, the water temperature was kept at 25 ° C., and aeration treatment was performed by injecting microbubbles without adding an oxidizing agent to the contaminated water. The results show that the residual rate of THF (C / C 0 ) decreases as the treatment time elapses, and the value after 80 minutes of treatment time greatly decreases the residual rate to 40%, and 1,4-dioxane Unlike the case of, it was found that the aeration effect is greatly affected only by the microbubbles of the aerated bubbles.

[実施例2]
図4に示すグラフ中に示す実施例2の線図は、×印に沿った概略の線図を示す。実施例2は、比較例5の追加条件として汚染水に酸化剤を添加した時の結果を示す。処理時間の経過とともにTHFの残存率(C/C)が少なくなり、80分の処理時間経過時の値は残存率が25%まで大きく減少し、マイクロバブル化と酸化剤添加との相乗効果が示されている。
[Example 2]
The diagram of Example 2 shown in the graph shown in FIG. 4 shows a schematic diagram along the x mark. Example 2 shows a result when an oxidizing agent is added to contaminated water as an additional condition of Comparative Example 5. As the treatment time elapses, the residual ratio of THF (C / C 0 ) decreases, and when the treatment time elapses 80 minutes, the residual ratio is greatly reduced to 25%, and the synergistic effect of microbubble formation and addition of oxidizing agent It is shown.

Figure 2019030847
Figure 2019030847

表1は、アセトアルデヒドとTHFと1,4-ジオキサンについての誘電率と蒸気圧と分子量と沸点について示す。表1中、1,4-ジオキサンが曝気されて中間生成物であるアセトアルデヒドに変わる場合、1,4-ジオキサンの分子量88.1、蒸気圧40hPaがアセトアルデヒドの分子量44.06、蒸気圧987hPaに変わることを示している。   Table 1 shows the dielectric constant, vapor pressure, molecular weight and boiling point for acetaldehyde, THF and 1,4-dioxane. In Table 1, when 1,4-dioxane is aerated and changed to an intermediate product, acetaldehyde, the molecular weight of 1,4-dioxane is 88.1 and the vapor pressure is 40 hPa, and the molecular weight of acetaldehyde is 44.06 and the vapor pressure is 987 hPa. It is shown that.

本発明によれば、親水性溶媒で汚染された汚染水を小型な曝気処理層槽を用いかつ大きなエネルギーを必要としないで効果的に浄化することができるという効果を有し、1,4-ジオキサンおよびTHFで汚染された汚染水の曝気処理方法に有用である。   According to the present invention, contaminated water contaminated with a hydrophilic solvent can be effectively purified using a small aeration treatment layer tank and without requiring large energy, and 1,4- This method is useful for aeration treatment of contaminated water contaminated with dioxane and THF.

20 汚染水の曝気処理装置
21 酸化剤貯留槽
22 曝気槽
24 オフガス処理槽
25 汚染導入管
27 酸化剤注入管
28 ガス排出口
31 マイクロバブル発生ユニット(マイクロバブル発生装置)
32 マイクロバブル発生器
32a 内側管
32b 外側管
34 循環ポンプ(マイクロバブル発生装置)
38 ヒータ
41 空気圧縮機(マイクロバブル発生装置)
43 酸化剤給送ポンプ
DESCRIPTION OF SYMBOLS 20 Aeration processing apparatus of contaminated water 21 Oxidant storage tank 22 Aeration tank 24 Off-gas processing tank 25 Contamination introduction pipe 27 Oxidant injection pipe 28 Gas discharge port 31 Micro bubble generation unit (micro bubble generation apparatus)
32 Microbubble generator 32a Inner tube 32b Outer tube 34 Circulation pump (microbubble generator)
38 Heater 41 Air compressor (microbubble generator)
43 Oxidant feed pump

Claims (8)

密閉状の曝気槽に、親水性溶媒で汚染された汚染水を貯留し、前記汚染水にマイクロバブルを注入することにより曝気を行うとともに、曝気の前にまたは曝気中に酸化剤を添加することにより前記汚染水に含まれる親水性溶媒の酸化を促進し、前記汚染水中に産生する中間生成物又は最終生成物を前記マイクロバブルにより前記曝気槽内の上部に浮上させ、中間生成物又は最終生成物を含むガスを前記曝気槽外に排出し前記汚染水の浄化を促進することを特徴とする汚染水の曝気処理方法。   Storing contaminated water contaminated with a hydrophilic solvent in a sealed aeration tank, and performing aeration by injecting microbubbles into the contaminated water, and adding an oxidizing agent before or during aeration By promoting the oxidation of the hydrophilic solvent contained in the contaminated water, the intermediate product or final product produced in the contaminated water is levitated above the aeration tank by the microbubbles, and the intermediate product or final product is produced. A method for aeration treatment of contaminated water, characterized in that gas containing substances is discharged outside the aeration tank to promote purification of the contaminated water. 前記親水性溶媒は、1,4-ジオキサンおよびTHFである請求項1に記載の汚染水の曝気処理方法。   The method for aeration of contaminated water according to claim 1, wherein the hydrophilic solvent is 1,4-dioxane and THF. 前記マイクロバブルは、20μmφないし1mmφ未満が中心のサイズ分布を有する気泡群である請求項1に記載の汚染水の曝気処理方法。   The method for aeration of contaminated water according to claim 1, wherein the microbubbles are a group of bubbles having a size distribution centered on 20 μmφ to less than 1 mmφ. 前記酸化剤は、過硫酸ナトリウムである請求項1ないし3のいずれか1項に記載の汚染水の曝気処理方法。   The method for aeration of contaminated water according to any one of claims 1 to 3, wherein the oxidizing agent is sodium persulfate. 前記マイクロバブルの注入は、微細多孔管である内側管と、前記内側管を貫挿し管両端を支持する外側管と、を有する気液混合構造のマイクロバブル発生器により行うものであって、循環ポンプで前記曝気槽内の汚染水を前記内側管内に一端より流入させるとともに、前記外側管内に圧縮空気を圧送することにより前記圧縮空気を前記内側管の微細多孔を通して前記内側管内に導入し前記内側管内を通流する前記汚染水中に注入して懸濁液として前記内側管内に他端より流出させて前記曝気槽内の汚染水の曝気を行う請求項1ないし4のいずれか1項に記載の汚染水の曝気処理方法。   The injection of the microbubbles is performed by a microbubble generator having a gas-liquid mixing structure having an inner tube that is a microporous tube and outer tubes that penetrate the inner tube and support both ends of the tube. Contaminated water in the aeration tank is caused to flow from one end into the inner pipe by a pump, and the compressed air is introduced into the inner pipe through the micropores of the inner pipe by pumping compressed air into the outer pipe. 5. The aeration according to claim 1, wherein the aeration of the contaminated water in the aeration tank is performed by injecting into the contaminated water flowing through the pipe and flowing out from the other end into the inner pipe as a suspension. Aeration method for contaminated water. 前記曝気槽に貯留した汚染水を、25℃から35℃の範囲に加熱する請求項1〜5に記載の汚染水の曝気処理方法。   The contaminated water aeration method according to claim 1, wherein the contaminated water stored in the aeration tank is heated to a range of 25 ° C. to 35 ° C. 6. 親水性溶媒で汚染された汚染水を曝気により浄化する汚染水の曝気処理装置であって、
密閉状の曝気槽を有し、
前記曝気槽には、
前記親水性溶媒で汚染された汚染水を槽内に導入する汚染導入管と、
前記曝気槽内に貯留される汚染水に酸化剤を添加する酸化剤注入管と、
曝気処理後に前記曝気槽内に残る浄化が進んだ処理済水を排出する処理済水排出口と、
曝気処理により産生する前記曝気槽内に上部に中間生成物又は最終生成物を含むガスを排出するガス排出口と、
前記曝気槽に貯留される汚染水にマイクロバブルを注入するマイクロバブル発生装置と、を備えたことを特徴とする汚染水の曝気処理装置。
An aeration apparatus for contaminated water that purifies contaminated water contaminated with a hydrophilic solvent by aeration,
Has a sealed aeration tank,
In the aeration tank,
A contamination introduction pipe for introducing contaminated water contaminated with the hydrophilic solvent into the tank;
An oxidant injection pipe for adding an oxidant to the contaminated water stored in the aeration tank;
A treated water discharge port for discharging treated water which has been purified in the aeration tank after the aeration treatment;
A gas discharge port for discharging a gas containing an intermediate product or a final product in the upper part of the aeration tank produced by the aeration treatment;
An aeration treatment apparatus for contaminated water, comprising: a microbubble generator for injecting microbubbles into the contaminated water stored in the aeration tank.
前記マイクロバブル発生装置は、
前記曝気槽内に1つまたは複数設置され、微細多孔管である内側管と、前記内側管を貫挿し管両端を支持する外側管と、を有するマイクロバブル発生器と、
前記曝気槽内の汚染水を前記内側管内に一端より流入させる循環ポンプと、
前記外側管内に圧縮空気を圧送することにより空気圧送装置と、を備え、
前記外側管内に圧送した前記圧縮空気を前記内側管の微細多孔を通して前記内側管内に導入し前記内側管内を通流する前記汚染水中に注入して懸濁液となるよう気液混合して前記内側管内に他端より流出させて前記曝気槽内の汚染水の曝気を行う構成である請求項7に記載の汚染水の曝気処理装置。
The microbubble generator is
One or a plurality of microbubble generators installed in the aeration tank and having a microporous tube, and an outer tube penetrating the inner tube and supporting both ends of the tube;
A circulation pump for flowing contaminated water in the aeration tank into the inner pipe from one end;
A pneumatic feeder by pumping compressed air into the outer tube, and
The compressed air pumped into the outer tube is introduced into the inner tube through the micropores of the inner tube, injected into the contaminated water flowing through the inner tube, and mixed in a gas-liquid mixture to form a suspension. The aeration treatment apparatus for contaminated water according to claim 7, wherein the aeration apparatus for contaminated water is configured to perform aeration of contaminated water in the aeration tank by flowing into the pipe from the other end.
JP2017153769A 2017-08-09 2017-08-09 Aeration treatment method for contaminated water and aeration treatment equipment for contaminated water Active JP6910883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017153769A JP6910883B2 (en) 2017-08-09 2017-08-09 Aeration treatment method for contaminated water and aeration treatment equipment for contaminated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017153769A JP6910883B2 (en) 2017-08-09 2017-08-09 Aeration treatment method for contaminated water and aeration treatment equipment for contaminated water

Publications (2)

Publication Number Publication Date
JP2019030847A true JP2019030847A (en) 2019-02-28
JP6910883B2 JP6910883B2 (en) 2021-07-28

Family

ID=65522800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017153769A Active JP6910883B2 (en) 2017-08-09 2017-08-09 Aeration treatment method for contaminated water and aeration treatment equipment for contaminated water

Country Status (1)

Country Link
JP (1) JP6910883B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210032268A (en) * 2019-09-16 2021-03-24 금오공과대학교 산학협력단 Air purification system using microbubble and its air purification method
CN114805721A (en) * 2022-04-19 2022-07-29 北京博汇特环保科技股份有限公司 Self-closing aeration hose and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1199394A (en) * 1997-07-29 1999-04-13 Japan Organo Co Ltd Method for removing organic matter in water
JP2002153741A (en) * 2000-11-21 2002-05-28 Masao Ukisho Tool for mixing fluid and pump for mixing fluid using the same
JP2007521940A (en) * 2003-07-29 2007-08-09 エフ エム シー コーポレーション Treatment of environmental pollutants
JP2007278003A (en) * 2006-04-11 2007-10-25 Kubota Corp Method and device for purifying sewage force-feed pipeline system
JP2008055291A (en) * 2006-08-30 2008-03-13 Toshiba Corp Water treating device
JP2012076057A (en) * 2010-10-05 2012-04-19 Chiyoda Kako Kensetsu Kk Method and apparatus for treating wastewater containing persistent substance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1199394A (en) * 1997-07-29 1999-04-13 Japan Organo Co Ltd Method for removing organic matter in water
JP2002153741A (en) * 2000-11-21 2002-05-28 Masao Ukisho Tool for mixing fluid and pump for mixing fluid using the same
JP2007521940A (en) * 2003-07-29 2007-08-09 エフ エム シー コーポレーション Treatment of environmental pollutants
JP2007278003A (en) * 2006-04-11 2007-10-25 Kubota Corp Method and device for purifying sewage force-feed pipeline system
JP2008055291A (en) * 2006-08-30 2008-03-13 Toshiba Corp Water treating device
JP2012076057A (en) * 2010-10-05 2012-04-19 Chiyoda Kako Kensetsu Kk Method and apparatus for treating wastewater containing persistent substance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210032268A (en) * 2019-09-16 2021-03-24 금오공과대학교 산학협력단 Air purification system using microbubble and its air purification method
KR102391711B1 (en) 2019-09-16 2022-04-28 금오공과대학교 산학협력단 Air purification system using microbubble and its air purification method
CN114805721A (en) * 2022-04-19 2022-07-29 北京博汇特环保科技股份有限公司 Self-closing aeration hose and preparation method thereof

Also Published As

Publication number Publication date
JP6910883B2 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
US11339068B2 (en) Eductor-based membrane bioreactor
EP3357872A1 (en) Wastewater treatment system and wastewater treatment method
JP2003062579A (en) Treating method of liquid and device therefor
KR101585143B1 (en) Method and apparatus for treating 1,4-dioxane in waste water
KR20070011640A (en) D,h,s,w.water a purifier
CN105600880A (en) Advanced treatment device for nitrogen-containing heterocyclic ring compound chemical tail water and combination technology thereof
JP2009254967A (en) Water treatment system
WO1999033552A1 (en) Vapor/liquid mixer and polluted water purification apparatus using the mixer
JP6910883B2 (en) Aeration treatment method for contaminated water and aeration treatment equipment for contaminated water
CN108101266A (en) A kind of integrated apparatus and its application method of granular activated carbon coupling ceramic membrane advanced treatment of industrial wastewater
KR102024871B1 (en) Device for removing residual ozone gas
KR102307272B1 (en) Method and device for treating an organic effluent
KR101732662B1 (en) Flush Toilet System With Sewage Treatment System
CN102976555A (en) Integrated air floatation-membrane bioreactor
CN202924871U (en) Integrated air flotation-membrane bioreactor
JP3491122B2 (en) Water treatment equipment
JP4271991B2 (en) Ozone water treatment equipment
JP3731806B2 (en) Organic wastewater treatment method and apparatus
JP3491125B2 (en) Water treatment equipment
KR100904722B1 (en) Apparatus for generating micro-buble
JP6424807B2 (en) Water treatment system and water treatment method
KR101671410B1 (en) Water treatement apparatus for reusing rainwater and waste water
KR102059988B1 (en) Membrane water treatment apparatus using micro-bubble
CN105859035A (en) Reclaimed water reuse and treatment process
JP2003334432A (en) Gas dissolving device and water treatment device and water treatment apparatus having these

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210707

R150 Certificate of patent or registration of utility model

Ref document number: 6910883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250