JP2019023282A - Epoxy resin composition, prepreg, and fiber-reinforced composite material - Google Patents

Epoxy resin composition, prepreg, and fiber-reinforced composite material Download PDF

Info

Publication number
JP2019023282A
JP2019023282A JP2018133900A JP2018133900A JP2019023282A JP 2019023282 A JP2019023282 A JP 2019023282A JP 2018133900 A JP2018133900 A JP 2018133900A JP 2018133900 A JP2018133900 A JP 2018133900A JP 2019023282 A JP2019023282 A JP 2019023282A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
component
temperature
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018133900A
Other languages
Japanese (ja)
Other versions
JP2019023282A5 (en
JP7215001B2 (en
Inventor
英喜 高橋
Hideki Takahashi
英喜 高橋
大典 小西
Daisuke Konishi
大典 小西
雅幸 三好
Masayuki Miyoshi
雅幸 三好
啓之 平野
Hiroyuki Hirano
啓之 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2019023282A publication Critical patent/JP2019023282A/en
Publication of JP2019023282A5 publication Critical patent/JP2019023282A5/ja
Application granted granted Critical
Publication of JP7215001B2 publication Critical patent/JP7215001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

To provide: an epoxy resin composition which is excellent in terms of both quick curability and storage stability, and controls a temperature for the lowest viscosity to improve resin flow, and gives a molding having good appearance quality; a prepreg using the epoxy resin composition; and a fiber-reinforced composite material obtained by curing the prepreg.SOLUTION: An epoxy resin composition contains components [A], [B], [C], and [D] below, and satisfies conditions [a], [b], and [c] below: [A] epoxy resin, [B] dicyandiamide, [C] aromatic urea, and [D] boric acid ester; [a] 0.005≤(content of component [D]/content of component [C])≤0.045, [b] in the case of a temperature elevated at a rate of 5°C/min from 40°C to 250°C by dynamic viscoelasticity measurement, the temperature at which the epoxy resin composition shows the lowest viscosity is 110°C or more and 140°C or less, [c]: when the temperature of the epoxy resin composition is elevated with a differential scanning calorimeter from 30°C to 300°C under the constant velocity conditions of 5°C/min, a difference between a heating start initiation temperature (T0) and a heating finish temperature (T1) is 25°C or less .SELECTED DRAWING: None

Description

本発明は、スポーツ用途、航空宇宙用途および一般産業用途に適した繊維強化複合材料のマトリックス樹脂として好ましく用いられるエポキシ樹脂組成物、ならびに、これをマトリックス樹脂としたプリプレグおよび繊維強化複合材料に関するものである。   The present invention relates to an epoxy resin composition preferably used as a matrix resin of a fiber reinforced composite material suitable for sports applications, aerospace applications and general industrial applications, and a prepreg and a fiber reinforced composite material using the epoxy resin composition as a matrix resin. is there.

エポキシ樹脂は、高い機械特性、耐熱性、接着性を活かし、炭素繊維、ガラス繊維、アラミド繊維などの強化繊維と組合せてなる繊維強化複合材料のマトリックス樹脂として好適に用いられている。   Epoxy resins are suitably used as matrix resins for fiber-reinforced composite materials that are combined with reinforcing fibers such as carbon fibers, glass fibers, and aramid fibers, taking advantage of high mechanical properties, heat resistance, and adhesiveness.

繊維強化複合材料の製造には、強化繊維にエポキシ樹脂を含浸したシート状の中間基材(プリプレグ)が汎用される。プリプレグを積層後、加熱してエポキシ樹脂を硬化する方法で成形品が得られ、プリプレグの積層設計により多彩な特性を発現できるため、航空機やスポーツなど、様々な分野へ応用されている。近年では自動車などの産業用途への適用も進み、量産性を重視したサイクルタイムの短い速硬化プリプレグが注目され、さらに外板用途などでは、意匠外観の改善が求められている。   For the production of a fiber-reinforced composite material, a sheet-like intermediate substrate (prepreg) in which a reinforcing fiber is impregnated with an epoxy resin is widely used. After the prepreg is laminated, a molded product can be obtained by heating and curing the epoxy resin, and various characteristics can be expressed by the prepreg lamination design. Therefore, it is applied to various fields such as aircraft and sports. In recent years, application to industrial applications such as automobiles has also progressed, and fast-curing prepregs with a short cycle time focusing on mass productivity have attracted attention. Further, for exterior panel applications and the like, improvement in design appearance is required.

一方で、速硬化プリプレグは使用されているエポキシ樹脂の反応性を高めて硬化時間を短縮したものであるため、保存安定性や作業中の品質変化がしばしば問題となり、より安定性に優れるプリプレグが求められている。   On the other hand, fast-curing prepregs shorten the curing time by increasing the reactivity of the epoxy resin used, so storage stability and quality changes during work often become problems, and prepregs with better stability It has been demanded.

特許文献1には、特定の芳香族ウレアを促進剤として使用した、速硬化性と耐熱性に優れた硬化物を与えるエポキシ樹脂組成物およびプリプレグが開示されている。   Patent Document 1 discloses an epoxy resin composition and a prepreg that use a specific aromatic urea as an accelerator and give a cured product excellent in rapid curability and heat resistance.

特許文献2には、硬化速度に優れ、ガラス転位温度が140℃を超えないエポキシ樹脂組成物が開示されている。   Patent Document 2 discloses an epoxy resin composition having an excellent curing rate and a glass transition temperature not exceeding 140 ° C.

特許文献3には、ジシアンジアミド、芳香族ウレアおよびホウ酸エステルを含む、保存安定性と機械特性に優れたエポキシ樹脂組成物が開示されている。   Patent Document 3 discloses an epoxy resin composition excellent in storage stability and mechanical properties, which contains dicyandiamide, aromatic urea and boric acid ester.

特開2003−128764号公報Japanese Patent Laid-Open No. 2003-128764 特表2016−500409号公報Japanese Translation of PCT International Publication No. 2006-500409 特開2016−148020号公報Japanese Patent Application Laid-Open No. 2006-148020

特許文献1に開示されたエポキシ樹脂組成物は比較的硬化時間が短く室温での作業性も良好であるが、例えば量産車に求められるサイクルタイムや、保存安定性および作業性を満足するには至っていない。   The epoxy resin composition disclosed in Patent Document 1 has a relatively short curing time and good workability at room temperature. For example, in order to satisfy the cycle time, storage stability, and workability required for a mass-produced vehicle. Not reached.

特許文献2に開示されたエポキシ樹脂組成物は、速硬化性に優れるが、保存安定性が不十分であった。   The epoxy resin composition disclosed in Patent Document 2 is excellent in fast curability but has insufficient storage stability.

特許文献3に開示されたエポキシ樹脂組成物は、保存安定性に優れるが、硬化時間は不十分であった。また、繊維強化複合材料の外観に関する言及もなかった。   Although the epoxy resin composition disclosed in Patent Document 3 is excellent in storage stability, the curing time is insufficient. There was no mention of the appearance of the fiber reinforced composite material.

そこで、本発明では、かかる従来技術の欠点を克服し、速硬化と保存安定性が両立し、かつ優れた外観品位を有する成形品を与えるエポキシ樹脂組成物、および該エポキシ樹脂組成物を用いたプリプレグ、ならびに該プリプレグを硬化して得られる、繊維強化複合材料を提供することを目的とする。   Therefore, in the present invention, an epoxy resin composition that overcomes the drawbacks of the prior art, provides a molded product that has both rapid curing and storage stability and has excellent appearance quality, and the epoxy resin composition are used. An object is to provide a prepreg and a fiber-reinforced composite material obtained by curing the prepreg.

本発明者らは、前記課題を解決すべく鋭意検討した結果、下記構成からなるエポキシ樹脂組成物を見いだし、本発明を完成させるに至った。すなわち本発明のエポキシ樹脂組成物は、以下の構成からなる。   As a result of intensive studies to solve the above problems, the present inventors have found an epoxy resin composition having the following constitution, and have completed the present invention. That is, the epoxy resin composition of this invention consists of the following structures.

次の成分[A]、[B]、[C]、[D]を含み、下記条件[a]、[b]、[c]を満たすエポキシ樹脂組成物。
[A]:エポキシ樹脂
[B]:ジシアンジアミド
[C]:芳香族ウレア
[D]:ホウ酸エステル
[a]:0.005≦(成分[D]の含有量/成分[C]の含有量)≦0.045
[b]:動的粘弾性測定で、5℃/分の速度にて40℃から250℃まで温度を上げた際の前記エポキシ樹脂組成物が最低粘度を示す温度が、110℃以上140℃以下。
[c]:前記エポキシ樹脂組成物を示差走査熱量分析計により30℃から300℃まで5℃/分の等速条件にて昇温したときの発熱開始温度(T0)および発熱終了温度(T1)の差が、25℃以下。
An epoxy resin composition comprising the following components [A], [B], [C] and [D] and satisfying the following conditions [a], [b] and [c].
[A]: Epoxy resin [B]: Dicyandiamide [C]: Aromatic urea [D]: Boric acid ester [a]: 0.005 ≦ (content of component [D] / content of component [C]) ≦ 0.045
[B]: The temperature at which the epoxy resin composition exhibits the lowest viscosity when the temperature is raised from 40 ° C. to 250 ° C. at a rate of 5 ° C./min in dynamic viscoelasticity measurement is 110 ° C. or more and 140 ° C. or less. .
[C]: Heat generation start temperature (T0) and heat generation end temperature (T1) when the epoxy resin composition was heated from 30 ° C. to 300 ° C. under a constant speed condition of 5 ° C./min with a differential scanning calorimeter The difference of 25 degrees C or less.

また、本発明のプリプレグは、上記エポキシ樹脂組成物と強化繊維からなる。   Moreover, the prepreg of this invention consists of the said epoxy resin composition and a reinforced fiber.

さらに、本発明の繊維強化複合材料は、上記プリプレグが硬化されてなる。   Furthermore, the fiber-reinforced composite material of the present invention is obtained by curing the prepreg.

本発明に記載のエポキシ樹脂組成物を用いることで、優れた速硬化性と保存安定性が両立したプリプレグを提供することに加え、外観に優れた繊維強化複合材料を提供することができる。   By using the epoxy resin composition described in the present invention, it is possible to provide a fiber-reinforced composite material having an excellent appearance in addition to providing a prepreg having both excellent fast curability and storage stability.

本発明のエポキシ樹脂組成物は、成分[A]エポキシ樹脂、成分[B]ジシアンジアミド、成分[C]芳香族ウレア化合物、成分[D]ホウ酸エステルを必須成分として含む。まずはこれらの構成要素について説明する。   The epoxy resin composition of the present invention contains component [A] epoxy resin, component [B] dicyandiamide, component [C] aromatic urea compound, and component [D] borate ester as essential components. First, these components will be described.

(成分[A])
本発明における成分[A]はエポキシ樹脂である。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ノボラック型エポキシ樹脂、フルオレン骨格を有するエポキシ樹脂、フェノール化合物とジシクロペンタジエンの共重合体を原料とするエポキシ樹脂、ジグリシジルレゾルシノール、テトラキス(グリシジルオキシフェニル)エタン、トリス(グリシジルオキシフェニル)メタンのようなグリシジルエーテル型エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、テトラグリシジルキシレンジアミンのようなグリシジルアミン型エポキシ樹脂が挙げられる。エポキシ樹脂は、これらを単独で用いても、複数種類を組み合わせても良い。
(Ingredient [A])
Component [A] in the present invention is an epoxy resin. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, novolac type epoxy resin, epoxy resin having fluorene skeleton, phenol compound and dicyclopentadiene Polymer-based epoxy resin, diglycidyl resorcinol, glycidyl ether type epoxy resin such as tetrakis (glycidyloxyphenyl) ethane, tris (glycidyloxyphenyl) methane, tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, triglycidylamino Examples thereof include glycidylamine type epoxy resins such as cresol and tetraglycidylxylenediamine. Epoxy resins may be used alone or in combination.

本発明における成分[A]としては、成分[A1]:下記式(I)で示されるエポキシ樹脂および/または下記式(II)で示されるエポキシ樹脂を、成分[A]としての全エポキシ樹脂100質量部中55〜100質量部含むことが好ましく、これを満たすことで樹脂硬化物の曲げ弾性率を高めることができる。成分[A1]は、一般にフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、またはジシクロペンタジエン型エポキシ樹脂として知られているものであり、2官能以上の多官能エポキシ樹脂の混合物として市販されている   Component [A] in the present invention includes component [A1]: an epoxy resin represented by the following formula (I) and / or an epoxy resin represented by the following formula (II), and all epoxy resins 100 as component [A]. It is preferable to contain 55-100 mass parts in a mass part, and the bending elastic modulus of a resin hardened | cured material can be raised by satisfy | filling this. Component [A1] is generally known as a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, or a dicyclopentadiene type epoxy resin, and is commercially available as a mixture of bifunctional or higher polyfunctional epoxy resins.

Figure 2019023282
Figure 2019023282

(式(I)において、R、R、Rは、それぞれ独立して水素原子またはメチル基を表す。また、nは1以上の整数を表す。) (In the formula (I), R 1 , R 2 and R 3 each independently represent a hydrogen atom or a methyl group, and n represents an integer of 1 or more.)

Figure 2019023282
Figure 2019023282

(式(II)において、nは1以上の整数を表す)。 (In formula (II), n represents an integer of 1 or more).

成分[A1]の市販品としては、“jER(登録商標)”152、154、180S(以上、三菱化学(株)製)、“Epiclon(登録商標)”N−740、N−770、N−775、N−660、N−665、N−680、N−695、HP7200L、HP7200、HP7200H、HP7200HH、HP7200HHH(以上、DIC(株)製)、PY307、EPN1179、EPN1180、ECN9511、ECN1273、ECN1280、ECN1285、ECN1299(以上、ハンツマン・アドバンスト・マテリアル社製)、YDPN−638、YDPN−638P、YDCN−701、YDCN−702、YDCN−703、YDCN−704(以上、東都化成(株)製)、DEN431、DEN438、DEN439(以上、ダウケミカル社製)などが挙げられる。   Commercially available components [A1] include “jER (registered trademark)” 152, 154, 180S (manufactured by Mitsubishi Chemical Corporation), “Epiclon (registered trademark)” N-740, N-770, N-. 775, N-660, N-665, N-680, N-695, HP7200L, HP7200, HP7200H, HP7200HH, HP7200HHH (above, manufactured by DIC Corporation), PY307, EPN1179, EPN1180, ECN9511, ECN1273, ECN1280, ECN1280 ECN1299 (manufactured by Huntsman Advanced Materials), YDPN-638, YDPN-638P, YDCN-701, YDCN-702, YDCN-703, YDCN-704 (above, manufactured by Tohto Kasei Co., Ltd.), DEN431, DEN438, D N439 (above, manufactured by Dow Chemical Co., Ltd.) and the like.

(成分[B])
本発明における成分[B]は、ジシアンジアミドである。ジシアンジアミドは、化学式(HN)C=N−CNで表される化合物である。ジシアンジアミドは、樹脂硬化物に高い力学特性や耐熱性を与える点で優れており、エポキシ樹脂の硬化剤として広く用いられる。かかるジシアンジアミドの市販品としては、DICY7、DICY15(以上、三菱化学(株)製)などが挙げられる。
(Ingredient [B])
Component [B] in the present invention is dicyandiamide. Dicyandiamide is a compound represented by the chemical formula (H 2 N) 2 C═N—CN. Dicyandiamide is excellent in terms of imparting high mechanical properties and heat resistance to the cured resin, and is widely used as a curing agent for epoxy resins. Examples of such commercially available dicyandiamide include DICY7 and DICY15 (manufactured by Mitsubishi Chemical Corporation).

ジシアンジアミド[B]を粉体としてエポキシ樹脂組成物に配合することは、室温での保存安定性や、プリプレグ製造時の粘度安定性の観点から好ましい。また、ジシアンジアミド[B]を予め成分[A]のエポキシ樹脂の一部に三本ロールなどを用いて分散させておくことは、エポキシ樹脂組成物を均一にし、硬化物の物性を向上させるため好ましい。   It is preferable to blend dicyandiamide [B] as a powder into the epoxy resin composition from the viewpoint of storage stability at room temperature and viscosity stability during prepreg production. In addition, it is preferable to disperse dicyandiamide [B] in advance in a part of the epoxy resin of component [A] using a three roll or the like in order to make the epoxy resin composition uniform and improve the physical properties of the cured product. .

ジシアンジアミドを粉体として樹脂に配合する場合、平均粒径は10μm以下であることが好ましく、さらに好ましくは7μm以下である。例えば、プリプレグ製造工程において加熱加圧により強化繊維束にエポキシ樹脂組成物を含浸させる際、平均粒径が10μm以下であれば、繊維束内部への樹脂の含浸性が良好となる。なお、ここでいう平均粒径とは、体積平均を意味し、レーザー回折型の粒度分布測定装置によって測定することができる。   When dicyandiamide is blended in the resin as a powder, the average particle size is preferably 10 μm or less, more preferably 7 μm or less. For example, when the reinforcing fiber bundle is impregnated with the epoxy resin composition by heating and pressing in the prepreg manufacturing process, if the average particle diameter is 10 μm or less, the resin impregnation property inside the fiber bundle is good. In addition, the average particle diameter here means a volume average and can be measured by a laser diffraction type particle size distribution measuring apparatus.

ジシアンジアミド[B]は、後述の成分[C]と併用することにより、成分[B]を単独で配合した場合と比較し、樹脂組成物の硬化温度を下げることができる。本発明においては、硬化時間を短縮するために、成分[B]と成分[C]を併用することが必要である。   When dicyandiamide [B] is used in combination with component [C] described later, the curing temperature of the resin composition can be lowered as compared with the case where component [B] is blended alone. In the present invention, in order to shorten the curing time, it is necessary to use the component [B] and the component [C] in combination.

(成分[C])
本発明における成分[C]は、芳香族ウレアである。
(Ingredient [C])
Component [C] in the present invention is an aromatic urea.

成分[C]における芳香族ウレアの具体例としては、3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア、3−(4−クロロフェニル)−1,1−ジメチルウレア、フェニルジメチルウレア、トルエンビスジメチルウレアなどが挙げられる。また、芳香族ウレア化合物の市販品としては、DCMU−99(保土ヶ谷化学工業(株)製)、“Omicure(登録商標)”24(ピィ・ティ・アイ・ジャパン(株)製)、“Dyhard(登録商標)”UR505(4,4’−メチレンビス(フェニルジメチルウレア、CVC製)などが挙げられる。   Specific examples of the aromatic urea in the component [C] include 3- (3,4-dichlorophenyl) -1,1-dimethylurea, 3- (4-chlorophenyl) -1,1-dimethylurea, phenyldimethylurea, Toluene bis dimethyl urea is mentioned. Commercially available aromatic urea compounds include DCMU-99 (manufactured by Hodogaya Chemical Co., Ltd.), “Omicure (registered trademark)” 24 (manufactured by PTI Japan Ltd.), “Dyhard ( Registered trademark) "UR505 (4,4'-methylenebis (phenyldimethylurea, manufactured by CVC)) and the like.

(成分[D])
本発明における成分[D]は、ホウ酸エステルである。成分[C]と成分[D]とを併用することにより、保管温度における成分[C]とエポキシ樹脂の反応が抑制されるため、プリプレグの保管安定性が著しく向上する。そのメカニズムは定かではないが、成分[D]はルイス酸性を持つため、成分[C]から遊離したアミン化合物と成分[D]が相互作用し、アミン化合物の反応性を低下させているのではないかと考えられる。
(Ingredient [D])
Component [D] in the present invention is a borate ester. By using the component [C] and the component [D] in combination, the reaction between the component [C] and the epoxy resin at the storage temperature is suppressed, so that the storage stability of the prepreg is significantly improved. Although the mechanism is not clear, since the component [D] has Lewis acidity, the amine compound liberated from the component [C] and the component [D] interact to reduce the reactivity of the amine compound. It is thought that there is not.

成分[D]のホウ酸エステルの具体例としては、トリメチルボレート、トリエチルボレート、トリブチルボレート、トリn−オクチルボレート、トリ(トリエチレングリコールメチルエーテル)ホウ酸エステル、トリシクロヘキシルボレート、トリメンチルボレートなどのアルキルホウ酸エステル、トリo−クレジルボレート、トリm−クレジルボレート、トリp−クレジルボレート、トリフェニルボレートなどの芳香族ホウ酸エステル、トリ(1,3−ブタンジオール)ビボレート、トリ(2−メチル−2,4−ペンタンジオール)ビボレート、トリオクチレングリコールジボレートなどが挙げられる。   Specific examples of the boric acid ester of component [D] include trimethyl borate, triethyl borate, tributyl borate, tri n-octyl borate, tri (triethylene glycol methyl ether) boric acid ester, tricyclohexyl borate, and trimenthyl borate. Aromatic borate esters such as alkyl borate ester, tri-o-cresyl borate, tri-m-cresyl borate, tri-p-cresyl borate, triphenyl borate, tri (1,3-butanediol) biborate, tri (2 -Methyl-2,4-pentanediol) biborate, trioctylene glycol diborate and the like.

また、ホウ酸エステルとして、分子内に環状構造を有する環状ホウ酸エステルを用いることもできる。環状ホウ酸エステルとしては、トリス−o−フェニレンビスボレート、ビス−o−フェニレンピロボレート、ビス−2,3−ジメチルエチレンフェニレンピロボレート、ビス−2,2−ジメチルトリメチレンピロボレートなどが挙げられる。   Further, as the borate ester, a cyclic borate ester having a cyclic structure in the molecule can also be used. Examples of cyclic borate esters include tris-o-phenylene bisborate, bis-o-phenylene pyroborate, bis-2,3-dimethylethylenephenylene pyroborate, bis-2,2-dimethyltrimethylene pyroborate, and the like. .

かかるホウ酸エステルを含む製品としては、たとえば、“キュアダクト(登録商標)”L−01B(四国化成工業(株))、“キュアダクト(登録商標)”L−07N(四国化成工業(株))(ホウ酸エステル化合物を5質量部含む組成物)、“キュアダクト(登録商標)”L−07E(四国化成工業(株))(ホウ酸エステル化合物を5質量部含む組成物)などが挙げられる。   Examples of products containing such boric acid esters include “Cureduct (registered trademark)” L-01B (Shikoku Kasei Kogyo Co., Ltd.) and “Cureduct (registered trademark)” L-07N (Shikoku Kasei Kogyo Co., Ltd.). ) (Composition containing 5 parts by mass of borate ester compound), “Cureduct (registered trademark)” L-07E (Shikoku Chemicals Co., Ltd.) (composition containing 5 parts by mass of borate ester compound) and the like. It is done.

本発明のエポキシ樹脂組成物は、以下の条件[a]を満たす。
[a]:0.005≦(成分[D]の含有量/成分[C]の含有量)≦0.045。
The epoxy resin composition of the present invention satisfies the following condition [a].
[A]: 0.005 ≦ (content of component [D] / content of component [C]) ≦ 0.045.

条件[a]について、エポキシ樹脂組成物の成分[D]の含有量/成分[C]の含有量で示される値が0.005〜0.045の範囲内にあると、速硬化性と保存安定性のバランスが優れたプリプレグが得られる。成分[D]の含有量/成分[C]の含有量が0.005未満の場合、保存安定性が不十分なものとなる。成分[D]の含有量/成分[C]の含有量が0.045を超える場合、硬化時間が不十分なものとなる。なお、成分[C]の含有量または成分[D]の含有量とは、成分[A]のエポキシ樹脂100質量部に対する[C]ホウ酸エステルまたは[D]ホウ酸エステルの配合量のことである。   About condition [a], when the value shown by content of component [D] / content of component [C] of an epoxy resin composition exists in the range of 0.005-0.045, quick curability and preservation | save A prepreg having an excellent balance of stability can be obtained. When the content of component [D] / content of component [C] is less than 0.005, the storage stability becomes insufficient. When the content of component [D] / content of component [C] exceeds 0.045, the curing time is insufficient. In addition, content of component [C] or content of component [D] is the compounding quantity of [C] boric acid ester or [D] boric acid ester with respect to 100 mass parts of epoxy resins of component [A]. is there.

本発明のエポキシ樹脂組成物の保存安定性は、例えば、示差走査熱量分析(DSC)にて、ガラス転移温度の変化を追跡することで評価できる。具体的には、エポキシ樹脂組成物を、恒温恒湿槽などで所定の期間保管し、保管前後のガラス転移温度変化をDSCにより−20℃から150℃まで5℃/分で昇温して測定することで判定できる。   The storage stability of the epoxy resin composition of the present invention can be evaluated, for example, by tracking the change in glass transition temperature by differential scanning calorimetry (DSC). Specifically, the epoxy resin composition is stored in a constant temperature and humidity chamber for a predetermined period, and the glass transition temperature change before and after storage is measured by increasing the temperature from −20 ° C. to 150 ° C. at 5 ° C./min. Can be determined.

本発明のエポキシ樹脂組成物の硬化時間は、例えば、ローターレスタイプの加硫/硬化特性試験機(“キュラストメーター(登録商標)”V型)などを用いて評価することができる。具体的には、調製したエポキシ樹脂組成物を150℃に加熱されたダイスにサンプルを入れ、ねじり応力をかけてサンプルの硬化の進行にともなう粘度上昇をダイスに伝わるトルクとし、最大トルクの70%に達する時間を硬化時間として定義することで、評価が可能である。   The curing time of the epoxy resin composition of the present invention can be evaluated using, for example, a rotorless type vulcanization / curing property tester (“Curalastometer (registered trademark)” V type). Specifically, the prepared epoxy resin composition is put in a die heated to 150 ° C., and a torque transmitted to the die by a torsional stress is applied to the die, and 70% of the maximum torque. It is possible to evaluate by defining the time to reach as the curing time.

本発明のエポキシ樹脂組成物は、以下の条件[b]を満たす。
[b]:動的粘弾性測定で、5℃/分の速度にて40℃から250℃まで温度を上げた際の前記エポキシ樹脂組成物が最低粘度を示す温度が、110℃以上140℃以下。
The epoxy resin composition of the present invention satisfies the following condition [b].
[B]: The temperature at which the epoxy resin composition exhibits the lowest viscosity when the temperature is raised from 40 ° C. to 250 ° C. at a rate of 5 ° C./min in dynamic viscoelasticity measurement is 110 ° C. or more and 140 ° C. or less. .

本発明のエポキシ樹脂組成物が条件[b]を満たす、つまり動的粘弾性測定で、5℃/分の速度にて40℃から250℃まで温度を上げた際の前記エポキシ樹脂組成物が最低粘度を示す温度が、110℃以上140℃以下であると、該エポキシ樹脂を用いた繊維強化複合材料は優れた外観を示す。これは、加熱成形時の樹脂の流動で材料中のボイドは除去されつつ、適切なタイミングでのゲル化により過剰な樹脂の流出が抑えられ、表面の樹脂枯れ(カスレ)も抑止されるためと推測している。最低粘度を示す温度が110℃に満たないと、樹脂の粘度上昇がはやく、ボイドが残存し、外観不良を起こす場合がある。また、最低粘度を示す温度が140℃を超えると、樹脂の硬化開始が遅くなるため、成形中に樹脂が流出して表面にカスレが生じる場合がある。   When the epoxy resin composition of the present invention satisfies the condition [b], that is, when the temperature is increased from 40 ° C. to 250 ° C. at a rate of 5 ° C./min in the dynamic viscoelasticity measurement, the epoxy resin composition is the lowest When the temperature indicating the viscosity is 110 ° C. or higher and 140 ° C. or lower, the fiber-reinforced composite material using the epoxy resin exhibits an excellent appearance. This is because voids in the material are removed by the flow of the resin at the time of thermoforming, and excessive resin outflow is suppressed by gelation at an appropriate timing, and surface resin withering is also suppressed. I guess. If the temperature showing the minimum viscosity is less than 110 ° C., the viscosity of the resin increases rapidly, voids may remain, and the appearance may be deteriorated. In addition, when the temperature indicating the minimum viscosity exceeds 140 ° C., the start of curing of the resin is delayed, so that the resin may flow out during molding, and the surface may be blurred.

本発明のエポキシ樹脂組成物が最低粘度を示す温度、つまり条件[b]を満たすか否かは、例えば、動的粘弾性測定(DMA)にて、粘度の変化を追跡することで評価できる。具体的には、上記方法にて調製されたエポキシ樹脂組成物を、レオメーター(回転型動的粘度弾性測定装置)を用いて、5℃/分の速度にて40℃から250℃まで温度を上げた際の前記エポキシ樹脂組成物が最低粘度を示す温度で評価できる。   Whether or not the temperature at which the epoxy resin composition of the present invention exhibits the minimum viscosity, that is, the condition [b] is satisfied can be evaluated by tracking the change in viscosity by, for example, dynamic viscoelasticity measurement (DMA). Specifically, the epoxy resin composition prepared by the above method is heated from 40 ° C. to 250 ° C. at a rate of 5 ° C./minute using a rheometer (rotational dynamic viscoelasticity measuring device). It can be evaluated at a temperature at which the epoxy resin composition when it is raised exhibits a minimum viscosity.

本発明のエポキシ樹脂組成物は、以下の条件[c]を満たす。
[c]:前記エポキシ樹脂組成物を示差走査熱量分析計(DSC)により30℃から300℃まで5℃/分の等速条件にて昇温したときの発熱開始温度(T0)および発熱終了温度(T1)の差が、25℃以下。
The epoxy resin composition of the present invention satisfies the following condition [c].
[C]: Heat generation start temperature (T0) and heat generation end temperature when the epoxy resin composition was heated by a differential scanning calorimeter (DSC) from 30 ° C. to 300 ° C. under a constant speed condition of 5 ° C./min. The difference in (T1) is 25 ° C. or less.

本発明のエポキシ樹脂組成物が条件[c]を満たす、つまりT0とT1の差が25℃以下であると、速硬化性と保存安定性のバランスにより優れるエポキシ樹脂組成物を与える。T0とT1の差は、DSCの発熱ピークの鋭さを表している。発熱ピークが鋭いものは、発熱ピークトップの温度が同じ場合でも、幅広な発熱ピークを示すものよりも、発熱開始温度(T0)が高いことを意味する。加えて、より広い温度領域で安定性に優れる。発熱反応が開始すると速やかに硬化が完了するため、速硬化性は損なわれない。一方で、T0とT1の差が25℃以上であると、速硬化性と保存安定性が両立することができない。   When the epoxy resin composition of the present invention satisfies the condition [c], that is, the difference between T0 and T1 is 25 ° C. or less, an epoxy resin composition that is more excellent in the balance between fast curability and storage stability is provided. The difference between T0 and T1 represents the sharpness of the DSC exothermic peak. A sharp exothermic peak means that even when the temperature of the exothermic peak top is the same, the exothermic start temperature (T0) is higher than that showing a broad exothermic peak. In addition, it has excellent stability over a wider temperature range. When the exothermic reaction starts, the curing is completed quickly, so that the fast curability is not impaired. On the other hand, when the difference between T0 and T1 is 25 ° C. or more, fast curability and storage stability cannot be compatible.

本発明のエポキシ樹脂組成物は、[a]、[b]および[c]の条件を同時に満たすことで、速硬化性、保存安定性および繊維強化複合材料の外観を高いバランスで具備することが可能となり、個別の組み合わせでは実現できない。すなわち、[a]から[c]のいずれか1つ、あるいは2つの組み合わせでは、速硬化性、保存安定性および該樹脂を用いた繊維強化複合材料の外観を同時に達成することはできない。   The epoxy resin composition of the present invention can satisfy the conditions [a], [b], and [c] at the same time to have a high balance of fast curability, storage stability, and appearance of the fiber-reinforced composite material. It becomes possible and cannot be realized by individual combinations. That is, in any one of [a] to [c], or a combination of the two, it is not possible to simultaneously achieve fast curability, storage stability and appearance of a fiber-reinforced composite material using the resin.

本発明のエポキシ樹脂組成物は、以下の条件[d]を満たすことが好ましい。
[d]:0.9≦(成分[A]の活性基モル数/成分[B]の活性水素モル数)≦1.3。
The epoxy resin composition of the present invention preferably satisfies the following condition [d].
[D]: 0.9 ≦ (number of moles of active group of component [A] / number of moles of active hydrogen of component [B]) ≦ 1.3.

条件[d]について、成分[A]の活性基モル数/成分[B]の活性水素モル数で示される値が0.9〜1.3の範囲にある場合、速硬化性と機械特性のバランスが、より優れるエポキシ樹脂組成物を与える。   For the condition [d], when the value represented by the number of moles of active group of component [A] / number of moles of active hydrogen of component [B] is in the range of 0.9 to 1.3, An epoxy resin composition having a better balance is provided.

なお、成分[A]の活性基モル数とは、各エポキシ樹脂活性基のモル数の和のことであり、下式で表される。
成分[A]の活性基モル数=(樹脂A質量/樹脂Aのエポキシ当量)+(樹脂B質量/樹脂Bのエポキシ当量)+・・・・+(樹脂W質量/樹脂Wのエポキシ当量)。
In addition, the active group mole number of component [A] is the sum of the mole number of each epoxy resin active group, and is represented by the following formula.
Number of moles of active group of component [A] = (resin A mass / epoxy equivalent of resin A) + (resin B mass / epoxy equivalent of resin B) +... + (Resin W mass / epoxy equivalent of resin W) .

また、成分[B]の活性水素モル数は、ジシアンジアミド質量をジシアンジアミドの活性水素当量で除することにより求められ、下式で表される。
成分[B]の活性水素モル数=ジシアンジアミド質量/ジシアンジアミド活性水素当量。
The number of active hydrogen moles of component [B] is determined by dividing the dicyandiamide mass by the active hydrogen equivalent of dicyandiamide, and is represented by the following formula.
Active hydrogen moles of component [B] = Dicyandiamide mass / Dicyandiamide active hydrogen equivalent.

本発明のエポキシ樹脂組成物は、以下の条件[e]を満たすことが好ましい。
[e]:12≦(成分[A]の含有量/成分[C]の含有量)≦26。
The epoxy resin composition of the present invention preferably satisfies the following condition [e].
[E]: 12 ≦ (content of component [A] / content of component [C]) ≦ 26.

本発明のエポキシ樹脂組成物が条件[c]を満たす、つまりエポキシ樹脂組成物の成分[A]の含有量/成分[C]の含有量で示される値が、12〜26の範囲にある場合、速硬化性と保存安定性のバランスにより優れるエポキシ樹脂組成物を与える。   When the epoxy resin composition of the present invention satisfies the condition [c], that is, the value indicated by the content of the component [A] / the content of the component [C] in the epoxy resin composition is in the range of 12 to 26. An epoxy resin composition that is superior in the balance between fast curability and storage stability is provided.

本発明のエポキシ樹脂組成物は、本発明の効果を失わない範囲において、粘弾性を調整し、プリプレグのタッグやドレープ特性を改良する目的や、樹脂組成物の機械特性や靭性を高めるなどの目的で、成分[E]として熱可塑性樹脂を含むことができる。熱可塑性樹脂としては、エポキシ樹脂に可溶な熱可塑性樹脂や、ゴム粒子および熱可塑性樹脂粒子等の有機粒子、シリカなどの無機粒子、CNTやグラフェンなどのナノ粒子等を選択することができる。   The epoxy resin composition of the present invention has the purpose of adjusting the viscoelasticity and improving the tag and drape characteristics of the prepreg, and enhancing the mechanical characteristics and toughness of the resin composition within a range not losing the effects of the present invention. And a thermoplastic resin can be included as component [E]. As the thermoplastic resin, a thermoplastic resin soluble in an epoxy resin, organic particles such as rubber particles and thermoplastic resin particles, inorganic particles such as silica, nanoparticles such as CNT and graphene, and the like can be selected.

エポキシ樹脂に可溶な熱可塑性樹脂としては、ポリビニルホルマールやポリビニルブチラールなどのポリビニルアセタール樹脂、ポリビニルアルコール、フェノキシ樹脂、ポリアミド、ポリイミド、ポリビニルピロリドン、ポリスルホンを挙げることができる。   Examples of the thermoplastic resin soluble in the epoxy resin include polyvinyl acetal resins such as polyvinyl formal and polyvinyl butyral, polyvinyl alcohol, phenoxy resin, polyamide, polyimide, polyvinyl pyrrolidone, and polysulfone.

ゴム粒子としては、架橋ゴム粒子、および架橋ゴム粒子の表面に異種ポリマーをグラフト重合したコアシェルゴム粒子を挙げることができる。   Examples of the rubber particles include cross-linked rubber particles and core-shell rubber particles obtained by graft polymerization of a different polymer on the surface of the cross-linked rubber particles.

本発明のエポキシ樹脂組成物の調製には、例えばニーダー、プラネタリーミキサー、3本ロールおよび2軸押出機といった機械を用いて混練しても良いし、均一な混練が可能であれば、ビーカーとスパチュラなどを用い、手で混ぜても良い。   For the preparation of the epoxy resin composition of the present invention, for example, a kneader, a planetary mixer, a three-roll extruder and a twin-screw extruder may be used for kneading. If uniform kneading is possible, a beaker and Use a spatula or the like and mix by hand.

本発明で得られるエポキシ樹脂組成物を用いて繊維強化複合材料を得るにあたり、あらかじめエポキシ樹脂組成物と強化繊維からなるプリプレグとしておくことが好ましい。プリプレグは繊維の配置および樹脂の割合を精密に制御でき、複合材料の特性を最大限に引き出すことのできる材料形態である。プリプレグは、本発明のエポキシ樹脂組成物を強化繊維基材に含浸させて得ることができる。含浸させる方法としては、ホットメルト法(ドライ法)などを挙げることができる。ホットメルト法は、加熱により低粘度化したエポキシ樹脂組成物を直接強化繊維に含浸させる方法、または離型紙などの上にエポキシ樹脂組成物をコーティングしたフィルムを作製しておき、次いで強化繊維の両側または片側から前記フィルムを重ね、加熱加圧することにより強化繊維に樹脂を含浸させる方法である。   In obtaining a fiber-reinforced composite material using the epoxy resin composition obtained in the present invention, it is preferable to prepare a prepreg composed of an epoxy resin composition and reinforcing fibers in advance. The prepreg is a material form in which the fiber arrangement and the resin ratio can be precisely controlled, and the characteristics of the composite material can be maximized. The prepreg can be obtained by impregnating the reinforcing fiber base material with the epoxy resin composition of the present invention. Examples of the impregnation method include a hot melt method (dry method). The hot melt method is a method in which a reinforcing fiber is impregnated directly with an epoxy resin composition whose viscosity is reduced by heating, or a film in which an epoxy resin composition is coated on a release paper is prepared, and then both sides of the reinforcing fiber are prepared. Alternatively, it is a method of impregnating a reinforcing fiber with a resin by overlapping the film from one side and heating and pressing.

積層したプリプレグを成形する方法としては、例えばプレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法などを適宜使用することができる。   As a method for molding the laminated prepreg, for example, a press molding method, an autoclave molding method, a bagging molding method, a wrapping tape method, an internal pressure molding method, or the like can be appropriately used.

次に、繊維強化複合材料について説明する。本発明の繊維強化複合材料は、本発明のプリプレグを硬化させてなるものである。より具体的には、本発明のエポキシ樹脂組成物からなるプリプレグを積層した後、加熱し硬化させることにより、本発明のエポキシ樹脂組成物の樹脂硬化物をマトリックス樹脂として含む繊維強化複合材料を得ることができる。   Next, the fiber reinforced composite material will be described. The fiber-reinforced composite material of the present invention is obtained by curing the prepreg of the present invention. More specifically, a fiber reinforced composite material containing the cured resin of the epoxy resin composition of the present invention as a matrix resin is obtained by laminating the prepreg composed of the epoxy resin composition of the present invention and then curing by heating. be able to.

本発明に用いられる強化繊維は特に限定されるものではなく、ガラス繊維、炭素繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維などが使用できる。これらの繊維を2種以上混合して用いても構わない。軽量かつ高剛性な繊維強化複合材料が得られる観点から、炭素繊維を用いることが好ましい。   The reinforcing fiber used in the present invention is not particularly limited, and glass fiber, carbon fiber, aramid fiber, boron fiber, alumina fiber, silicon carbide fiber and the like can be used. Two or more of these fibers may be mixed and used. From the viewpoint of obtaining a lightweight and highly rigid fiber-reinforced composite material, it is preferable to use carbon fibers.

本発明のエポキシ樹脂組成物の樹脂硬化物と、強化繊維を含む繊維強化複合材料は、スポーツ用途、航空宇宙用途および一般産業用途に好ましく用いられる。より具体的には、スポーツ用途では、ゴルフシャフト、釣り竿、テニスやバドミントンのラケット、ホッケーなどのスティック、およびスキーポールなどに好ましく用いられる。また、航空宇宙用途では、主翼、尾翼およびフロアビーム等の航空機一次構造材用途、および内装材等の二次構造材用途に好ましく用いられる。さらに一般産業用途では、自動車、自転車、船舶および鉄道車両などの構造材に好ましく用いられる。なかでも、本発明のエポキシ樹脂組成物と炭素繊維からなるプリプレグは、保存安定性に優れ、冷凍の必要なく長期保存が可能で、同時に速硬化性にも優れることから、ハイサイクルを必要とする自動車部材に適している。また、本発明のエポキシ樹脂組成物からなるプリプレグは、加熱加圧して硬化させる成形方法、すなわち、プレス成形に好適に用いられる。あらかじめ加熱した金型に、前記プリプレグの積層体を配置し加圧することにより、さらに短時間で繊維強化複合材料を得ることができる。加えて、速硬化性と高い流動性を併せ持つという特徴を生かし、プレス成形でしばしば問題となる繊維の配向乱れと表面の樹脂枯れ(カスレ)を抑制することができるため、成形品の力学特性や意匠性を向上させることができる。なお、本発明において、加熱加圧に用いる金型の形状、および、加圧機構については、特に制限はない。3次元加工が可能な凹凸形状を有していてもよいし、平板状の熱板のみで構成されていてもよい。   The cured resin of the epoxy resin composition of the present invention and a fiber-reinforced composite material containing reinforcing fibers are preferably used for sports applications, aerospace applications, and general industrial applications. More specifically, in sports applications, it is preferably used for golf shafts, fishing rods, tennis and badminton rackets, hockey sticks, ski poles, and the like. Further, in aerospace applications, it is preferably used for primary structural material applications such as main wings, tail wings, and floor beams, and secondary structural material applications such as interior materials. Furthermore, in general industrial applications, it is preferably used for structural materials such as automobiles, bicycles, ships and railway vehicles. Among them, the prepreg comprising the epoxy resin composition of the present invention and carbon fiber is excellent in storage stability, can be stored for a long time without the need for freezing, and at the same time has excellent fast curability, and therefore requires a high cycle. Suitable for automobile parts. Moreover, the prepreg which consists of an epoxy resin composition of this invention is used suitably for the shaping | molding method which heat-presses and hardens | cures, ie, press molding. A fiber-reinforced composite material can be obtained in a shorter time by placing and pressing the prepreg laminate in a preheated mold. In addition, taking advantage of the characteristics of having both fast curability and high fluidity, it is possible to suppress the fiber orientation disorder and the surface resin withering (scratch), which are often problems in press molding. Designability can be improved. In the present invention, the shape of the mold used for heating and pressing and the pressurizing mechanism are not particularly limited. It may have a concavo-convex shape that can be three-dimensionally processed, or may be composed only of a flat hot plate.

以下に実施例を示し、本発明をさらに具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the description of these examples.

本実施例で用いる構成要素は以下の通りである。   The components used in this embodiment are as follows.

<使用した材料>
・成分[A1]
[A1]−1 “jER(登録商標)”154(フェノールノボラック型エポキシ樹脂、平均官能基数:3.0個/分子、三菱化学(株)製)、
[A1]−2 “Epiclon(登録商標)”N−740(フェノールノボラック型エポキシ樹脂、平均官能基数:3.7個/分子、DIC(株)製)、
[A1]−3 “Epiclon(登録商標)”N−770(フェノールノボラック型エポキシ樹脂、平均官能基数:6.0個/分子、DIC(株)製)、
[A1]−4 “Epiclon(登録商標)”HP−7200H(ジシクロペンタジエン型エポキシ樹脂、平均官能基数:3.0個/分子、DIC(株)製)、
[A1]−5 “Epotec(登録商標)”YDPN−638(フェノールノボラック型エポキシ樹脂、平均官能基数:3.6個/分子、東都化成(株)製)。
・成分[A]:エポキシ樹脂
[A]−1 “jER(登録商標)”828(ビスフェノールA型エポキシ樹脂、三菱化学(株)製)、
[A]−2 “jER(登録商標)”1007FS(ビスフェノールA型エポキシ樹脂、三菱化学(株)製)、
[A]−3 “jER(登録商標)”1001(ビスフェノールA型エポキシ樹脂、三菱化学(株)製)、
[A]−4 “Epotec(登録商標)”YD136(ビスフェノールA型エポキシ樹脂、KUKDO社製)、
[A]−5 “Epon(登録商標)”2005(ビスフェノールA型エポキシ樹脂、Resolution Performance Products社製)、
[A]−6 “Epiclon(登録商標)”830(ビスフェノールF型エポキシ樹脂、DIC(株)製)、
[A]−7 “エポトート(登録商標)”YDF−2001(ビスフェノールF型エポキシ樹脂、東都化成(株)製)、
[A]−8 “jER(登録商標)”4010P(ビスフェノールF型エポキシ樹脂、三菱化学(株)製)、
[A]−9 “スミエポキシ(登録商標)”ELM434(ジアミノジフェニルメタン型エポキシ樹脂、住友化学工業(株)製)。
<Materials used>
Ingredient [A1]
[A1] -1 “jER (registered trademark)” 154 (phenol novolac type epoxy resin, average number of functional groups: 3.0 / molecule, manufactured by Mitsubishi Chemical Corporation),
[A1] -2 “Epiclon (registered trademark)” N-740 (phenol novolac type epoxy resin, average functional group number: 3.7 / molecule, manufactured by DIC Corporation),
[A1] -3 “Epiclon (registered trademark)” N-770 (phenol novolac epoxy resin, average functional group number: 6.0 / molecule, manufactured by DIC Corporation),
[A1] -4 “Epiclon (registered trademark)” HP-7200H (dicyclopentadiene type epoxy resin, average number of functional groups: 3.0 / molecule, manufactured by DIC Corporation),
[A1] -5 “Epotec (registered trademark)” YDPN-638 (phenol novolac-type epoxy resin, average number of functional groups: 3.6 / molecule, manufactured by Toto Kasei Co., Ltd.).
Component [A]: Epoxy resin [A] -1 “jER (registered trademark)” 828 (bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation),
[A] -2 “jER (registered trademark)” 1007FS (bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation),
[A] -3 “jER (registered trademark)” 1001 (bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation),
[A] -4 “Epotec (registered trademark)” YD136 (bisphenol A type epoxy resin, manufactured by KUKDO),
[A] -5 “Epon (registered trademark)” 2005 (bisphenol A type epoxy resin, manufactured by Resolution Performance Products),
[A] -6 “Epiclon (registered trademark)” 830 (bisphenol F type epoxy resin, manufactured by DIC Corporation),
[A] -7 “Epototo (registered trademark)” YDF-2001 (bisphenol F type epoxy resin, manufactured by Tohto Kasei Co., Ltd.),
[A] -8 “jER (registered trademark)” 4010P (bisphenol F type epoxy resin, manufactured by Mitsubishi Chemical Corporation),
[A] -9 “Sumiepoxy (registered trademark)” ELM434 (diaminodiphenylmethane type epoxy resin, manufactured by Sumitomo Chemical Co., Ltd.).

・成分[B]:ジシアンジアミド
[B]−1 DICY7(ジシアンジアミド、三菱化学(株)製)。
Component [B]: Dicyandiamide [B] -1 DICY7 (Dicyandiamide, manufactured by Mitsubishi Chemical Corporation).

・成分[C]:芳香族ウレア
[C]−1 “Omicure(登録商標)”24(4,4’−メチレンビス(フェニルジメチルウレア、ピィ・ティ・アイ・ジャパン(株)製)、
[C]−2 DCMU99(3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア、保土ヶ谷化学工業(株)製)、
[C]−3 “Dyhard(登録商標)”UR505(4,4’−メチレンビス(フェニルジメチルウレア、CVC製)。
Component [C]: Aromatic urea [C] -1 “Omicure (registered trademark)” 24 (4,4′-methylenebis (phenyldimethylurea, manufactured by PTI Japan)
[C] -2 DCMU99 (3- (3,4-dichlorophenyl) -1,1-dimethylurea, manufactured by Hodogaya Chemical Co., Ltd.),
[C] -3 “Dyhard®” UR505 (4,4′-methylenebis (phenyldimethylurea, manufactured by CVC).

・成分[D]:ホウ酸エステル
[D]−1 “キュアダクト(登録商標)”L−07E(ホウ酸エステル化合物を5質量部含む組成物、四国化成工業(株)製)。
Component [D]: Boric acid ester [D] -1 “Cureduct (registered trademark)” L-07E (a composition containing 5 parts by mass of a boric acid ester compound, manufactured by Shikoku Kasei Kogyo Co., Ltd.).

・成分[E]:熱可塑性樹脂
[E]−1 “ビニレック(登録商標)”K(ポリビニルホルマール、JNC(株)製)、
[E]−2 “スミカエクセル(登録商標)”PES3600P(ポリエーテルスルホン、住友化学(株)製)、
[E]−3 YP−50(フェノキシ樹脂、新日鉄住金化学(株)製)。
Component [E]: thermoplastic resin [E] -1 “Vinylec (registered trademark)” K (polyvinyl formal, manufactured by JNC Corporation),
[E] -2 “Sumika Excel (registered trademark)” PES3600P (polyethersulfone, manufactured by Sumitomo Chemical Co., Ltd.),
[E] -3 YP-50 (phenoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).

<エポキシ樹脂組成物の調製方法>
ステンレスビーカーに、[B]ジシアンジアミド、[C]芳香族ウレアおよび[D]ホウ酸エステル以外の成分を所定量入れ、60〜150℃まで昇温し、各成分が相溶するまで適宜混練した。60℃まで降温させた後、[D]ホウ酸エステル成分を配合し、混練した。別途、ポリエチレン製カップに所定量の[A]−1(“jER(登録商標)”828)および[B]ジシアンジアミドを添加し、三本ロールを用いて混合物をロール間に2回通し、ジシアンジアミドマスターを作製した。所定の配合割合になるように上記で作製した主剤成分とジシアンジアミドマスターを60℃以下で混練し、最後に[C]芳香族ウレアを添加し、60℃において30分間混練することにより、エポキシ樹脂組成物を得た。
<Method for preparing epoxy resin composition>
A predetermined amount of components other than [B] dicyandiamide, [C] aromatic urea and [D] boric acid ester was put into a stainless beaker, heated to 60 to 150 ° C., and kneaded as appropriate until each component was compatible. After the temperature was lowered to 60 ° C., the [D] borate ester component was blended and kneaded. Separately, a predetermined amount of [A] -1 (“jER (registered trademark)” 828) and [B] dicyandiamide are added to a polyethylene cup, and the mixture is passed twice between the rolls using three rolls. Was made. The main resin component prepared above and dicyandiamide master are kneaded at 60 ° C. or lower so as to have a predetermined blending ratio, and finally, [C] aromatic urea is added and kneaded at 60 ° C. for 30 minutes, whereby an epoxy resin composition is obtained. I got a thing.

<エポキシ樹脂組成物の硬化時間の評価方法>
エポキシ樹脂組成物の硬化時間は、前記<エポキシ樹脂組成物の調製方法>に従って得たエポキシ樹脂組成物を2mL秤量し、キュラストメーター(日合商事(株)製、JSRキュラストメーターV型)を用いて測定した。測定温度150℃、振動波形は正弦波、振動数100cpm、振幅角±1°の条件下で測定を行い、トルクの上昇を観測し、最大トルクの70%に到達するまでの時間を硬化時間とした。
<Evaluation method of curing time of epoxy resin composition>
The curing time of the epoxy resin composition was measured by weighing 2 mL of the epoxy resin composition obtained in accordance with the above <Method for preparing epoxy resin composition>, and a curast meter (manufactured by Nigo Shoji Co., Ltd., JSR curast meter V type). It measured using. Measurement temperature is 150 ° C, vibration waveform is sine wave, vibration frequency is 100cpm, amplitude angle is ± 1 °, torque increase is observed, and the time to reach 70% of maximum torque is the curing time did.

<エポキシ樹脂組成物の最低粘度観測温度の評価方法>
前記<エポキシ樹脂組成物の調製方法>に従って得られたエポキシ樹脂組成物を3g秤量し、直径40mmおよび直径50mmのパラレルプレートで挟み込み、回転型動的粘度弾性測定装置(ARES W/FCO:TAインスツルメント社製)を用いて、周波数3.14rad/s、5℃/分の速度にて40℃から250℃まで温度を上げた際の前記エポキシ樹脂組成物の粘度を測定した。このとき、前記エポキシ樹脂組成物が最も低い粘度を示した際の温度を最低粘度観測温度の値とした。
<Evaluation method of minimum viscosity observation temperature of epoxy resin composition>
3 g of the epoxy resin composition obtained according to the above <Method for Preparing Epoxy Resin Composition> is weighed and sandwiched between parallel plates having a diameter of 40 mm and a diameter of 50 mm, and a rotational dynamic viscoelasticity measuring apparatus (ARES W / FCO: TA in) The viscosity of the epoxy resin composition was measured when the temperature was increased from 40 ° C. to 250 ° C. at a frequency of 3.14 rad / s and 5 ° C./min. At this time, the temperature at which the epoxy resin composition showed the lowest viscosity was taken as the value of the lowest viscosity observation temperature.

<エポキシ樹脂組成物の発熱開始温度と発熱終了温度の差の評価方法>
前記<エポキシ樹脂組成物の調製方法>に従って得られたエポキシ樹脂組成物を3mgをサンプルパンに量り取り、示差走査熱量分析計(Q−2000:TAインスツルメント社製)を用い、30℃から300℃まで5℃/分の等速条件にて昇温して測定した。硬化反応にともなうヒートフローを、JIS K0129(2005)に従って解析した。ヒートフローのベースラインと発熱の開始、および、終了部分の接線の交点を、それぞれ、発熱開始温度(T0)および発熱終了温度(T1)とし、発熱開始温度と発熱終了温度の差、すなわち、T1―T0を算出した。
<Evaluation method of difference between heat generation start temperature and heat generation end temperature of epoxy resin composition>
3 mg of the epoxy resin composition obtained according to the above <Preparation Method of Epoxy Resin Composition> was weighed into a sample pan, and from 30 ° C. using a differential scanning calorimeter (Q-2000: manufactured by TA Instruments). The temperature was raised to 300 ° C. under a constant speed condition of 5 ° C./min. The heat flow accompanying the curing reaction was analyzed according to JIS K0129 (2005). The intersections of the heat flow baseline and the start and end of the tangent line are defined as the heat generation start temperature (T0) and the heat generation end temperature (T1), respectively, and the difference between the heat generation start temperature and the heat generation end temperature, that is, T1 -Calculated T0.

<エポキシ樹脂組成物の保存安定性の評価方法>
エポキシ樹脂組成物の保存安定性は、前記の方法で得た初期のエポキシ樹脂組成物をアルミカップに3g秤量し、40℃、75%RHの環境下で14日間恒温恒湿槽内に静置した後のガラス転移温度をTa、初期のガラス転移温度Tbとした時に、ガラス転移温度の変化量をΔTg=Tb−Taと定義し、ΔTgの値で保存安定性を判定した。ガラス転移温度は、保存後のエポキシ樹脂3mgをサンプルパンに量り取り、示差走査熱量分析計(Q−2000:TAインスツルメント社製)を用い、−20℃から150℃まで5℃/分で昇温して測定した。得られた発熱カーブの変曲点の中点をガラス転移温度として取得した。
<Method for evaluating storage stability of epoxy resin composition>
The storage stability of the epoxy resin composition was measured by weighing 3 g of the initial epoxy resin composition obtained by the above method in an aluminum cup and leaving it in a constant temperature and humidity chamber for 14 days in an environment of 40 ° C. and 75% RH. Then, when the glass transition temperature is Ta and the initial glass transition temperature Tb, the change amount of the glass transition temperature is defined as ΔTg = Tb−Ta, and the storage stability is determined by the value of ΔTg. The glass transition temperature was measured at 5 ° C./min from −20 ° C. to 150 ° C. using a differential scanning calorimeter (Q-2000: manufactured by TA Instruments) by weighing 3 mg of the epoxy resin after storage in a sample pan. The temperature was raised and measured. The midpoint of the inflection point of the obtained exothermic curve was obtained as the glass transition temperature.

<エポキシ樹脂硬化物の曲げ弾性率の評価方法>
前記<エポキシ樹脂組成物の調製方法>に従って得たエポキシ樹脂組成物を真空中で脱泡した後、2mm厚の“テフロン(登録商標)”製スペーサーにより厚み2mmになるように設定したモールド中で、150℃の温度で2時間硬化させ、厚さ2mmの板状の樹脂硬化物を得た。この樹脂硬化物から、幅10mm、長さ60mmの試験片を切り出し、インストロン万能試験機(インストロン社製)を用い、スパンを32mm、クロスヘッドスピードを10mm/分とし、JIS K7171(1994)に従って3点曲げを実施し、曲げ弾性率を測定した。この際、サンプル数n=6で測定した値を曲げ弾性率の値として採用した。
<Evaluation method of flexural modulus of cured epoxy resin>
After defoaming the epoxy resin composition obtained according to the above <Preparation Method of Epoxy Resin Composition> in a vacuum, in a mold set to a thickness of 2 mm by a 2 mm thick “Teflon (registered trademark)” spacer. And cured at a temperature of 150 ° C. for 2 hours to obtain a plate-shaped resin cured product having a thickness of 2 mm. From this cured resin, a test piece having a width of 10 mm and a length of 60 mm was cut out, an Instron universal testing machine (manufactured by Instron) was used, the span was 32 mm, the crosshead speed was 10 mm / min, and JIS K7171 (1994). According to the above, three-point bending was performed and the flexural modulus was measured. At this time, the value measured with the number of samples n = 6 was adopted as the value of the flexural modulus.

<プリプレグの作製方法>
上記<エポキシ樹脂組成物の調製方法>に従い調製したエポキシ樹脂組成物を、ナイフコーターを用いて離型紙上に塗布し、39g/mの目付の樹脂フィルムを2枚作製した。次に、シート状に一方向に配列させた炭素繊維“トレカ(登録商標)”T700S−12K−60E(東レ(株)製、目付150g/m)に、得られた樹脂フィルム2枚を炭素繊維の両面から重ね、温度90℃、圧力2MPaの条件で加圧加熱してエポキシ樹脂組成物を含浸させ、一方向プリプレグを得た。
<Preparation method of prepreg>
The epoxy resin composition prepared according to the above <Preparation Method of Epoxy Resin Composition> was applied onto release paper using a knife coater to prepare two resin films having a basis weight of 39 g / m 2 . Next, the two resin films obtained were placed on carbon fiber “TORAYCA (registered trademark)” T700S-12K-60E (manufactured by Toray Industries Inc., basis weight 150 g / m 2 ) arranged in one direction in a sheet shape. The unidirectional prepreg was obtained by accumulating from both surfaces of the fiber and impregnating the epoxy resin composition by heating under pressure at a temperature of 90 ° C. and a pressure of 2 MPa.

<繊維強化複合材料の外観評価方法>
上記<プリプレグの作製方法>に従って作製したプリプレグを、縦200mm、横200mmに裁断し、繊維方向が直交するよう5枚重ね、プリプレグ積層体を作製した。前記積層体を150℃に加熱した400mm角の2枚のステンレス製の板に上下から挟み込み、プレス機で3.5MPaで加圧した状態で5分間加熱し、繊維強化複合材料を得た。
<Appearance evaluation method of fiber reinforced composite material>
The prepreg produced according to the above <prepreg production method> was cut into a length of 200 mm and a width of 200 mm, and five sheets were stacked so that the fiber directions were orthogonal to produce a prepreg laminate. The laminate was sandwiched between two 400 mm square stainless steel plates heated to 150 ° C., and heated for 5 minutes in a state of being pressurized at 3.5 MPa with a press to obtain a fiber-reinforced composite material.

得られた繊維強化複合材料の外観は、目視により、以下の基準で判定した。
表面が平滑で、繊維蛇行や樹脂枯れ(カスレ)がない。 ・・・A
表面はほぼ平滑だが、ピンホール、シミ、繊維蛇行のいずれかがある。 ・・・B
表面に凹凸やカスレがあり、繊維蛇行や樹脂フローが顕著である。 ・・・C。
The appearance of the obtained fiber reinforced composite material was visually determined based on the following criteria.
The surface is smooth and there is no fiber meandering or resin wiping. ... A
The surface is almost smooth, but there are pinholes, spots, and fiber meanders. ... B
There are irregularities and blurring on the surface, and fiber meandering and resin flow are remarkable. ... C.

<一方向繊維強化複合材料のプレス成形方法>
上記<プリプレグの作製方法>に従って作製したプリプレグを240mm角の大きさにカットし、繊維方向を揃え、16プライ積層し、240mm角のプリプレグ積層体を作製した。
<Press molding method of unidirectional fiber reinforced composite material>
The prepreg produced in accordance with the above <prepreg production method> was cut into a 240 mm square size, the fiber directions were aligned, and 16 ply lamination was performed to produce a 240 mm square prepreg laminate.

成形における金型は両面型であって、下型は凹形状となっており、縦横の幅がいずれも250mmであり、25mmのキャビティを有している。上型凸形状となっており、凸部は下型のキャビティ部を埋めるような形状であり、金型の材質はSS400である。あらかじめ、両面型を150℃に加熱・温調した状態で、下型キャビティ部中央に、上記方法で作製したプリプレグの積層体を配置した後、型を閉じ、面圧3MPaで5分間加圧した。5分間経過後、両面型からプリプレグ積層体を脱型し、一方向繊維強化複合材料を得た。   The mold in the molding is a double-sided mold, the lower mold has a concave shape, the vertical and horizontal widths are both 250 mm, and it has a 25 mm cavity. The upper mold has a convex shape, the convex part fills the cavity part of the lower mold, and the material of the mold is SS400. In a state where the double-sided mold was heated to 150 ° C. and temperature-controlled in advance, the laminate of the prepreg produced by the above method was placed at the center of the lower mold cavity, and then the mold was closed and pressurized at a surface pressure of 3 MPa for 5 minutes. . After 5 minutes, the prepreg laminate was removed from the double-sided mold to obtain a unidirectional fiber reinforced composite material.

<一方向繊維強化複合材料の曲げ強度の評価方法>
上記<一方向繊維強化複合材料のプレス成形方法>に従って得られた積層板から、幅15mm、長さ100mmとなるように切り出し、インストロン万能試験機(インストロン社製)を用い、JIS K7017(1988)に従って3点曲げを実施した。クロスヘッド速度5.0mm/分、スパン80mm、厚子径10mm、支点径4mmで測定を行い、曲げ強度を測定した。かかる0°曲げ強度は、6個の試料について測定し、繊維質量含有率を60質量%とした換算値を算出して、その平均を0°曲げ強度として求めた。
<Evaluation method of bending strength of unidirectional fiber reinforced composite material>
From the laminate obtained in accordance with the above <Press-forming method of unidirectional fiber reinforced composite material>, it was cut out so as to have a width of 15 mm and a length of 100 mm, and JIS K7017 (Instron Co., Ltd.) was used. 1988), three-point bending was performed. The bending strength was measured by measuring at a crosshead speed of 5.0 mm / min, a span of 80 mm, a thickness of 10 mm, and a fulcrum diameter of 4 mm. The 0 ° bending strength was measured for six samples, and a conversion value with a fiber mass content of 60% by mass was calculated, and the average was obtained as 0 ° bending strength.

(実施例1)
[A]エポキシ樹脂として“jER(登録商標)”828を80質量部、“jER(登録商標)”154を20質量部[B]ジシアンジアミドとしてDICY7を11.3質量部、および[C]芳香族ウレア化合物として“Omicure(登録商標)”24を4.5質量部、[D]ホウ酸エステルを含む混合物として“キュアダクト(登録商標)”L−07Eを3.0質量部用いて、上記<エポキシ樹脂組成物の作製方法>に従ってエポキシ樹脂組成物を調製した。このエポキシ樹脂組成物の条件[a]成分[D]の含有量/成分[C]の含有量は0.033である。条件[b]最低粘度を示す温度を<エポキシ樹脂組成物の最低粘度観測温度の評価方法>に従って測定したところ122℃、また、条件[c]T1−T0を<エポキシ樹脂組成物の発熱開始温度と発熱終了温度の差の評価方法>に従って測定したところ17℃であった。
Example 1
[A] 80 parts by mass of “jER®” 828 as epoxy resin, 20 parts by mass of “jER®” 154 [B] 11.3 parts by mass of DICY7 as dicyandiamide, and [C] aromatic Using 4.5 parts by mass of “Omicure (registered trademark)” 24 as a urea compound and 3.0 parts by mass of “Cureduct (registered trademark)” L-07E as a mixture containing [D] borate ester, the above < Preparation method of epoxy resin composition> An epoxy resin composition was prepared. Condition [a] content of component [D] / content of component [C] of this epoxy resin composition is 0.033. Condition [b] The temperature showing the minimum viscosity was measured according to <Evaluation Method of Minimum Viscosity Observation Temperature of Epoxy Resin Composition> 122 ° C., and Condition [c] T1-T0 <Exothermic Start Temperature of Epoxy Resin Composition And 17 ° C.

このエポキシ樹脂組成物を、<エポキシ樹脂組成物の硬化時間の評価方法>に従って測定したところ、硬化時間は118秒であり、良好であった。また、このエポキシ樹脂組成物を、<樹脂組成物の保存安定性の評価方法>に従って評価したΔTgは14℃であり、良好な保存安定性を示した。   When this epoxy resin composition was measured according to <Evaluation Method of Curing Time of Epoxy Resin Composition>, the curing time was 118 seconds, which was good. Further, this epoxy resin composition was evaluated in accordance with <Evaluation Method of Storage Stability of Resin Composition> and ΔTg was 14 ° C., which showed good storage stability.

<エポキシ樹脂硬化物の曲げ弾性率の評価方法>に従って、硬化物の曲げ弾性率を評価したところ、3.5GPaと良好なものであった。   When the bending elastic modulus of the cured product was evaluated according to <Evaluation method of bending elastic modulus of cured epoxy resin>, it was as good as 3.5 GPa.

<プリプレグの作製方法>に記載の方法で、プリプレグを作製し、<繊維強化複合材料の外観評価方法>に従って評価した外観はA判定であり、良好な外観を示した。また、<一方向繊維強化複合材料のプレス成形方法>に従って作製した繊維強化複合材料を、<一方向繊維強化複合材料の曲げ強度の評価方法>に従って、0°曲げ強度を評価したところ、1588MPaと良好な値を示した。   A prepreg was prepared by the method described in <Preparation Method for Prepreg>, and the appearance evaluated according to <Appearance Evaluation Method for Fiber Reinforced Composite Material> was A, indicating a good appearance. Moreover, when the fiber reinforced composite material produced according to <Press-forming method of unidirectional fiber-reinforced composite material> was evaluated for 0 ° bending strength according to <Method for evaluating bending strength of unidirectional fiber-reinforced composite material>, it was 1588 MPa. Good value was shown.

(実施例2〜21)
樹脂組成をそれぞれ表1〜3に示したように変更した以外は、実施例1と同じ方法で、エポキシ樹脂組成物、プリプレグ、および、繊維強化複合材料を作製した。これらのエポキシ樹脂組成物の[a]成分[D]の含有量/成分[C]の含有量は0.005〜0.045の範囲内、[b]最低粘度を示す温度は110〜140℃、[c]T1−T0は25℃以下であった。
(Examples 2 to 21)
An epoxy resin composition, a prepreg, and a fiber reinforced composite material were produced in the same manner as in Example 1 except that the resin composition was changed as shown in Tables 1 to 3, respectively. The content of [a] component [D] / content of component [C] in these epoxy resin compositions is in the range of 0.005 to 0.045, and [b] the temperature indicating the lowest viscosity is 110 to 140 ° C. , [C] T1-T0 was 25 ° C. or lower.

得られた樹脂組成物は、いずれも実施例1と同様、硬化時間、保存安定性、および、硬化物の曲げ弾性率は良好であった。また、得られた繊維強化複合材料の外観および0°曲げ強度は良好であった。   As in Example 1, the obtained resin compositions were all good in curing time, storage stability, and flexural modulus of the cured product. Further, the appearance and 0 ° bending strength of the obtained fiber reinforced composite material were good.

(比較例1)
[D]ホウ酸エステルを添加しなかったこと以外は、実施例1と同じ方法で、エポキシ樹脂組成物、プリプレグ、および、繊維強化複合材料を作製した。樹脂組成および評価結果は表4に示した通りである。このエポキシ樹脂組成物の[a]成分[D]の含有量/成分[C]の含有量は0、[b]最低粘度を示す温度は100℃、[c]T1−T0は30℃であった。
(Comparative Example 1)
[D] An epoxy resin composition, a prepreg, and a fiber-reinforced composite material were produced in the same manner as in Example 1 except that no boric acid ester was added. The resin composition and evaluation results are as shown in Table 4. The content of [a] component [D] / content of component [C] of this epoxy resin composition was 0, [b] the temperature showing the minimum viscosity was 100 ° C., and [c] T1-T0 was 30 ° C. It was.

得られた樹脂組成物の硬化時間は良好であったが、保存安定性が不十分であった。また、繊維強化複合材料の外観は、表面のカスレが顕著であったため、C判定とした。また、繊維強化複合材料の0°曲げ強度が1468MPaと低いものであった。   Although the curing time of the obtained resin composition was good, the storage stability was insufficient. Further, the appearance of the fiber reinforced composite material was marked as C because the surface blurring was remarkable. Moreover, the 0 ° bending strength of the fiber reinforced composite material was as low as 1468 MPa.

(比較例2)
[C]芳香族ウレアとして“Omicure(登録商標)”24を3部と減量した以外は、実施例1と同じ方法で、エポキシ樹脂組成物、プリプレグ、および、繊維強化複合材料を作製した。樹脂組成および評価結果は表4に示した通りである。このエポキシ樹脂組成物の[a]成分[D]の含有量/成分[C]の含有量は0.050、[b]最低粘度を示す温度は123℃、[c]T1−T0は30℃であった。
(Comparative Example 2)
[C] An epoxy resin composition, a prepreg, and a fiber-reinforced composite material were produced in the same manner as in Example 1 except that the amount of “Omicure (registered trademark)” 24 was reduced to 3 parts as an aromatic urea. The resin composition and evaluation results are as shown in Table 4. In this epoxy resin composition, the content of [a] component [D] / content of component [C] is 0.050, [b] the temperature indicating the minimum viscosity is 123 ° C., and [c] T1-T0 is 30 ° C. Met.

得られた樹脂組成物の保存安定性と硬化物の曲げ弾性率は良好であったが、硬化時間が272秒となり、不十分なものとなった。また、繊維強化複合材料の外観は、樹脂フローが顕著で繊維の配向が乱れていたため、C判定とした。また、繊維強化複合材料の0°曲げ強度が1492MPaと不十分なものであった。   Although the storage stability of the obtained resin composition and the flexural modulus of the cured product were good, the curing time was 272 seconds, which was insufficient. Further, the appearance of the fiber reinforced composite material was determined as C because the resin flow was remarkable and the fiber orientation was disturbed. Further, the 0 ° bending strength of the fiber reinforced composite material was insufficient at 1492 MPa.

(比較例3)
[B]ジシアンジアミドとしてDICY7を6.3部に減量した以外は、実施例1と同じ方法で、エポキシ樹脂組成物、プリプレグ、および、繊維強化複合材料を作製した。樹脂組成および評価結果は表4に示した通りである。このエポキシ樹脂組成物の[a]成分[D]の含有量/成分[C]の含有量は0.050、[b]最低粘度を示す温度は123℃、[c]T1−T0は36℃であった。
(Comparative Example 3)
[B] An epoxy resin composition, a prepreg, and a fiber reinforced composite material were produced in the same manner as in Example 1 except that DICY7 was reduced to 6.3 parts as dicyandiamide. The resin composition and evaluation results are as shown in Table 4. The content of [a] component [D] / component [C] in this epoxy resin composition is 0.050, [b] the temperature showing the minimum viscosity is 123 ° C., and [c] T1-T0 is 36 ° C. Met.

得られた樹脂組成物の保存安定性と硬化物の曲げ弾性率は良好だったが、硬化時間が351秒となり、硬化速度が著しく不足した。また、繊維強化複合材料の外観は、樹脂フローにともなう表面の凹凸が顕著となったため、C判定とした。繊維強化複合材料の0°曲げ強度は、1422MPaと不十分なものであった。   Although the storage stability of the obtained resin composition and the flexural modulus of the cured product were good, the curing time was 351 seconds, and the curing rate was remarkably insufficient. Further, the appearance of the fiber reinforced composite material was judged as C because the surface irregularities accompanying the resin flow became remarkable. The 0 ° bending strength of the fiber reinforced composite material was insufficient at 1422 MPa.

(比較例4)
[D]ホウ酸エステルとして“キュアダクト(登録商標)”L−07Eを7部に増量した以外は、実施例1と同じ方法で、エポキシ樹脂組成物、プリプレグ、および、繊維強化複合材料を作製した。樹脂組成および評価結果は表4に示した通りである。このエポキシ樹脂組成物の[a]成分[D]の含有量/成分[C]の含有量は0.048、[b]最低粘度を示す温度は145℃、[c]T1−T0は10℃であった。
(Comparative Example 4)
[D] An epoxy resin composition, a prepreg, and a fiber-reinforced composite material were produced in the same manner as in Example 1, except that “Cureduct (registered trademark)” L-07E was increased to 7 parts as a boric acid ester. did. The resin composition and evaluation results are as shown in Table 4. The content of [a] component [D] / content of component [C] of this epoxy resin composition is 0.048, [b] the temperature showing the minimum viscosity is 145 ° C., and [c] T1-T0 is 10 ° C. Met.

得られた樹脂組成物の保存安定性は良好であったが、硬化時間が不足した。また、繊維強化複合材料の外観は、表面にカスレに起因したシミが散見されたため、B判定とした。繊維強化複合材料の0°曲げ強度は、1493MPaと不足した。   Although the storage stability of the obtained resin composition was good, the curing time was insufficient. Further, the appearance of the fiber reinforced composite material was determined to be B because spots due to blurring were scattered on the surface. The 0 ° bending strength of the fiber reinforced composite material was insufficient at 1493 MPa.

(比較例5)
[D]ホウ酸エステルを添加しなかったこと以外は、実施例1と同じ方法で、エポキシ樹脂組成物、プリプレグ、および、繊維強化複合材料を作製した。樹脂組成および評価結果は表4に示した通りである。樹脂組成および評価結果は表3に示した。このエポキシ樹脂組成物の[a]成分[D]の含有量/成分[C]の含有量は0、[b]最低粘度を示す温度は97℃、[c]T1−T0は37℃であった。
(Comparative Example 5)
[D] An epoxy resin composition, a prepreg, and a fiber-reinforced composite material were produced in the same manner as in Example 1 except that no boric acid ester was added. The resin composition and evaluation results are as shown in Table 4. The resin composition and evaluation results are shown in Table 3. The content of [a] component [D] / component [C] of this epoxy resin composition was 0, [b] the temperature showing the minimum viscosity was 97 ° C., and [c] T1-T0 was 37 ° C. It was.

得られた樹脂組成物の硬化時間は良好であったが、ΔTgが49となり、保存安定性が著しく損なわれた。また、繊維強化複合材料の外観は、表面全体にカスレによる凹凸が散見されたため、C判定とした。繊維強化複合材料の0°曲げ強度は、1398MPaと低いものであった。   Although the curing time of the obtained resin composition was good, ΔTg was 49, and the storage stability was remarkably impaired. Further, the appearance of the fiber reinforced composite material was judged as C because the unevenness due to splattering was scattered all over the surface. The 0 ° bending strength of the fiber reinforced composite material was as low as 1398 MPa.

(比較例6)
[B]ジシアンジアミドとしてDICY7を5部に減量し、さらに、[D]ホウ酸エステルを添加しなかったこと以外は、実施例1と同じ方法で、エポキシ樹脂組成物、プリプレグ、および、繊維強化複合材料を作製した。樹脂組成および評価結果は表4に示した通りである。このエポキシ樹脂組成物の[a]成分[D]の含有量/成分[C]の含有量は0、[b]最低粘度を示す温度は96℃、[c]T1−T0は41℃であった。
(Comparative Example 6)
[B] An epoxy resin composition, a prepreg, and a fiber reinforced composite were the same as in Example 1 except that DICY7 was reduced to 5 parts as dicyandiamide, and [D] boric acid ester was not added. The material was made. The resin composition and evaluation results are as shown in Table 4. The content of [a] component [D] / component [C] of this epoxy resin composition was 0, [b] the temperature showing the minimum viscosity was 96 ° C., and [c] T1-T0 was 41 ° C. It was.

得られた樹脂組成物の硬化時間は367秒と不十分であり、また、保存安定性も不足した。また、繊維強化複合材料の外観は、樹脂フローと繊維の蛇行が顕著であったため、C判定とした。繊維強化複合材料の0°曲げ強度は、1356MPaと低いものであった。   The resulting resin composition had an insufficient curing time of 367 seconds, and storage stability was also insufficient. The appearance of the fiber reinforced composite material was determined to be C because the resin flow and the meandering of the fibers were remarkable. The 0 ° bending strength of the fiber reinforced composite material was as low as 1356 MPa.

(比較例7)
[C]芳香族ウレアとしてDCMU99を3部と減量した以外は、実施例1と同じ方法で、エポキシ樹脂組成物、プリプレグ、および、繊維強化複合材料を作製した。樹脂組成および評価結果は表4に示した通りである。このエポキシ樹脂組成物の[a]成分[D]の含有量/成分[C]の含有量は0.050、[b]最低粘度を示す温度は131℃、[c]T1−T0は34℃であった。
(Comparative Example 7)
[C] An epoxy resin composition, a prepreg, and a fiber-reinforced composite material were produced in the same manner as in Example 1 except that DCMU99 was reduced to 3 parts as an aromatic urea. The resin composition and evaluation results are as shown in Table 4. The content of [a] component [D] / component [C] of this epoxy resin composition is 0.050, [b] the temperature indicating the minimum viscosity is 131 ° C., and [c] T1-T0 is 34 ° C. Met.

得られた樹脂組成物の保存安定性は良好だが、硬化時間が287秒と不足した。また、繊維強化複合材料の外観は、樹脂フローによる表面凹凸が顕著となったため、C判定とした。繊維強化複合材料の0°曲げ強度は、1455MPaと不十分なものであった。   Although the storage stability of the obtained resin composition was good, the curing time was insufficient as 287 seconds. Further, the appearance of the fiber reinforced composite material was judged as C because surface irregularities due to the resin flow became remarkable. The 0 ° bending strength of the fiber reinforced composite material was 1455 MPa, which was insufficient.

Figure 2019023282
Figure 2019023282

Figure 2019023282
Figure 2019023282

Figure 2019023282
Figure 2019023282

Figure 2019023282
Figure 2019023282

なお、表中の各成分の単位は質量部である。   In addition, the unit of each component in a table | surface is a mass part.

本発明に記載のエポキシ樹脂組成物を用いることで、速硬化性と保存安定性が共に優れたプリプレグを提供することができ、ハイサイクル成形を必要とする産業用途に好ましく用いられる。さらに、繊維強化複合材料とした時の外観にも優れるために、特に自動車の外板用途などに好ましく用いられる。
By using the epoxy resin composition described in the present invention, it is possible to provide a prepreg excellent in both fast curability and storage stability, and it is preferably used for industrial applications requiring high cycle molding. Furthermore, since it is excellent in appearance when it is made into a fiber reinforced composite material, it is preferably used particularly for an outer panel of an automobile.

Claims (6)

次の成分[A]、[B]、[C]、[D]を含み、下記条件[a]、[b]、[c]を満たすエポキシ樹脂組成物。
[A]:エポキシ樹脂
[B]:ジシアンジアミド
[C]:芳香族ウレア
[D]:ホウ酸エステル
[a]:0.005≦(成分[D]の含有量/成分[C]の含有量)≦0.045
[b]:動的粘弾性測定で、5℃/分の速度にて40℃から250℃まで温度を上げた際の前記エポキシ樹脂組成物が最低粘度を示す温度が、110℃以上140℃以下。
[c]:前記エポキシ樹脂組成物を示差走査熱量分析計により30℃から300℃まで5℃/分の等速条件にて昇温したときの発熱開始温度(T0)および発熱終了温度(T1)の差が、25℃以下。
An epoxy resin composition comprising the following components [A], [B], [C] and [D] and satisfying the following conditions [a], [b] and [c].
[A]: Epoxy resin [B]: Dicyandiamide [C]: Aromatic urea [D]: Boric acid ester [a]: 0.005 ≦ (content of component [D] / content of component [C]) ≦ 0.045
[B]: The temperature at which the epoxy resin composition exhibits the lowest viscosity when the temperature is raised from 40 ° C. to 250 ° C. at a rate of 5 ° C./min in dynamic viscoelasticity measurement is 110 ° C. or more and 140 ° C. or less. .
[C]: Heat generation start temperature (T0) and heat generation end temperature (T1) when the epoxy resin composition was heated from 30 ° C. to 300 ° C. under a constant speed condition of 5 ° C./min with a differential scanning calorimeter The difference of 25 degrees C or less.
成分[A]100質量部中、次の成分[A1]を55〜100質量部含む、請求項1に記載のエポキシ樹脂組成物。
[A1]:式(I)で示されるエポキシ樹脂および/または式(II)で示されるエポキシ樹脂
Figure 2019023282
(式(I)において、R、R、Rは、それぞれ独立して水素原子またはメチル基を表す。また、nは1以上の整数を表す。)
Figure 2019023282
(式(II)において、nは1以上の整数を表す。)
The epoxy resin composition according to claim 1, comprising 55 to 100 parts by mass of the following component [A1] in 100 parts by mass of the component [A].
[A1]: Epoxy resin represented by formula (I) and / or epoxy resin represented by formula (II)
Figure 2019023282
(In the formula (I), R 1 , R 2 and R 3 each independently represent a hydrogen atom or a methyl group, and n represents an integer of 1 or more.)
Figure 2019023282
(In formula (II), n represents an integer of 1 or more.)
下記条件[d]を満たす、請求項1または2に記載のエポキシ樹脂組成物。
[d]:0.9≦(成分[A]の活性基モル数/成分[B]の活性水素モル数)≦1.3
The epoxy resin composition according to claim 1 or 2, which satisfies the following condition [d].
[D]: 0.9 ≦ (number of moles of active group of component [A] / number of moles of active hydrogen of component [B]) ≦ 1.3
下記条件[e]を満たす、請求項1〜3のいずれかに記載のエポキシ樹脂組成物。
[e]:12≦(成分[A]の含有量/成分[C]の含有量)≦26
The epoxy resin composition according to any one of claims 1 to 3, which satisfies the following condition [e].
[E]: 12 ≦ (content of component [A] / content of component [C]) ≦ 26
請求項1〜4のいずれかに記載のエポキシ樹脂組成物と強化繊維からなるプリプレグ。   A prepreg comprising the epoxy resin composition according to claim 1 and reinforcing fibers. 請求項5に記載のプリプレグが硬化されてなる繊維強化複合材料。
A fiber-reinforced composite material obtained by curing the prepreg according to claim 5.
JP2018133900A 2017-07-21 2018-07-17 Epoxy resin compositions, prepregs and fiber reinforced composites Active JP7215001B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017141642 2017-07-21
JP2017141642 2017-07-21

Publications (3)

Publication Number Publication Date
JP2019023282A true JP2019023282A (en) 2019-02-14
JP2019023282A5 JP2019023282A5 (en) 2021-08-12
JP7215001B2 JP7215001B2 (en) 2023-01-31

Family

ID=65368402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018133900A Active JP7215001B2 (en) 2017-07-21 2018-07-17 Epoxy resin compositions, prepregs and fiber reinforced composites

Country Status (1)

Country Link
JP (1) JP7215001B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136242A (en) * 1992-10-28 1994-05-17 Toho Rayon Co Ltd Epoxy resin composition and prepreg
JP2016148021A (en) * 2015-02-09 2016-08-18 東レ株式会社 Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2016148020A (en) * 2015-02-09 2016-08-18 東レ株式会社 Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2016148022A (en) * 2015-02-09 2016-08-18 東レ株式会社 Epoxy resin composition, prepreg and fiber-reinforced composite material
WO2016199857A1 (en) * 2015-06-11 2016-12-15 三菱レイヨン株式会社 Epoxy resin composition, molded article, prepreg, fiber-reinforced composite material and structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136242A (en) * 1992-10-28 1994-05-17 Toho Rayon Co Ltd Epoxy resin composition and prepreg
JP2016148021A (en) * 2015-02-09 2016-08-18 東レ株式会社 Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2016148020A (en) * 2015-02-09 2016-08-18 東レ株式会社 Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2016148022A (en) * 2015-02-09 2016-08-18 東レ株式会社 Epoxy resin composition, prepreg and fiber-reinforced composite material
WO2016199857A1 (en) * 2015-06-11 2016-12-15 三菱レイヨン株式会社 Epoxy resin composition, molded article, prepreg, fiber-reinforced composite material and structure

Also Published As

Publication number Publication date
JP7215001B2 (en) 2023-01-31

Similar Documents

Publication Publication Date Title
JP6771883B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP6771884B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP6977560B2 (en) Prepreg and fiber reinforced composites
KR101878128B1 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
KR102389775B1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP6771885B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP2017020004A (en) Epoxy resin composition, prepreg and fiber reinforced composite material
WO2022039050A1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
US11345808B2 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP7290109B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP7423891B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP2019023281A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP7215001B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP7215002B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite
JP2016053151A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP7180446B2 (en) Resin feedstock, preform, and method for producing fiber-reinforced composite material using same
JP2019210464A (en) Epoxy resin composition, prepreg, and fiber reinforced composite material
JPWO2018003690A1 (en) Prepreg and fiber reinforced composites
JP6066026B1 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP2015108052A (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP2020189922A (en) Epoxy resin composition, base material and fiber-reinforced composite material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230102

R151 Written notification of patent or utility model registration

Ref document number: 7215001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151