JP2019021571A - Negative electrode active material for all-solid-state battery - Google Patents

Negative electrode active material for all-solid-state battery Download PDF

Info

Publication number
JP2019021571A
JP2019021571A JP2017140969A JP2017140969A JP2019021571A JP 2019021571 A JP2019021571 A JP 2019021571A JP 2017140969 A JP2017140969 A JP 2017140969A JP 2017140969 A JP2017140969 A JP 2017140969A JP 2019021571 A JP2019021571 A JP 2019021571A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
solid
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017140969A
Other languages
Japanese (ja)
Other versions
JP6760224B2 (en
Inventor
水谷 聡
Satoshi Mizutani
聡 水谷
山口 裕之
Hiroyuki Yamaguchi
裕之 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017140969A priority Critical patent/JP6760224B2/en
Publication of JP2019021571A publication Critical patent/JP2019021571A/en
Application granted granted Critical
Publication of JP6760224B2 publication Critical patent/JP6760224B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a negative electrode active material for an all-solid-state battery in which pulverization of Si induced by charging and discharging can be suppressed and an increase in cell resistance after charging and discharging can be suppressed.SOLUTION: The negative electrode active material for an all-solid-state battery is provided that is a granulated particle having a median diameter (D50) of 25 μm or less and is composed of: a particle of negative electrode active material which is a composite of Si and carbon; and a binder.SELECTED DRAWING: Figure 1

Description

本願は、全固体電池に用いられる負極活物質を開示する。   The present application discloses a negative electrode active material used in an all-solid battery.

固体電解質を用いた固体電解質層を有する金属イオン二次電池(例えば、リチウムイオン二次電池等。以下において「全固体電池」ということがある。)は、安全性を確保するためのシステムを簡素化しやすい等の長所を有している。   A metal ion secondary battery having a solid electrolyte layer using a solid electrolyte (for example, a lithium ion secondary battery, etc., hereinafter sometimes referred to as “all solid battery”) has a simple system for ensuring safety. It has advantages such as being easy to convert.

全固体電池の負極に関する技術として、例えば特許文献1には、Si微粒子、Sn微粒子、Siを含む合金の微粒子、及び、Snを含む合金の微粒子のいずれかである負極活物質微粒子と、カーボン微粒子である導電性微粒子と、無機固体電解質微粒子とから構成され、負極活物質微粒子及び導電性微粒子がそれぞれ独立して存在する、負極合材が開示されている。   As a technique relating to the negative electrode of an all-solid-state battery, for example, Patent Document 1 discloses negative electrode active material fine particles that are any one of Si fine particles, Sn fine particles, fine particles of an alloy containing Si, and fine particles of an alloy containing Sn, and carbon fine particles. There is disclosed a negative electrode mixture composed of conductive fine particles and inorganic solid electrolyte fine particles, wherein the negative electrode active material fine particles and the conductive fine particles exist independently of each other.

また、特許文献2には、平均粒径が10μm以下であるSi単体粉末を負極活物質として用いた全固体電池用負極合材が開示されている。特許文献3には、ケイ素と、電子伝導性を有する無機物質との複合体を用いたリチウムイオン電池用負極材料が開示されている。特許文献4には、負極活物質の平均粒径が0.01μm〜100μmであり、特定の充放電条件下で100サイクル後の放電容量維持率が50%以上である全固体電池が開示されている。   Patent Document 2 discloses an all-solid-state battery negative electrode mixture using, as a negative electrode active material, a simple Si powder having an average particle size of 10 μm or less. Patent Document 3 discloses a negative electrode material for a lithium ion battery using a composite of silicon and an inorganic substance having electronic conductivity. Patent Document 4 discloses an all-solid battery in which the average particle diameter of the negative electrode active material is 0.01 μm to 100 μm, and the discharge capacity retention rate after 100 cycles is 50% or more under specific charge / discharge conditions. Yes.

特開2014−192093号公報JP 2014-192093 A 特開2013−069416号公報JP 2013-066941 A 特開2014−086308号公報JP 2014-086308 A 特開2013−222530号公報JP 2013-222530 A

特許文献1に開示されているSiを含む負極合材を用いた全固体電池は、Siを含むことによりエネルギー密度を向上させることが可能であるが、Siが充放電に伴う体積膨張収縮によって微粉化し、活物質と固体電解質との間に隙間が生じ、充放電後のセル抵抗が増加してしまうという問題があった。   The all-solid-state battery using the negative electrode mixture containing Si disclosed in Patent Document 1 can improve the energy density by containing Si, but Si is finely divided by volume expansion and contraction accompanying charge and discharge. Thus, there is a problem that a gap is generated between the active material and the solid electrolyte, and the cell resistance after charge / discharge increases.

そこで本開示は、充放電に伴うSiの微粉化を抑制可能であり、充放電後のセル抵抗の増加を抑制可能な全固体電池用負極活物質を提供することを課題とする。   Then, this indication makes it a subject to provide the negative electrode active material for all-solid-state batteries which can suppress pulverization of Si accompanying charging / discharging, and can suppress the increase in cell resistance after charging / discharging.

上記課題を解決するために、本開示は以下の手段をとる。
本開示は、Siと炭素との複合体である負極活物質粒子と、バインダーとからなり、メディアン径(D50)が25μm以下の造粒粒子である、全固体電池用負極活物質である。
In order to solve the above problems, the present disclosure takes the following means.
The present disclosure is a negative electrode active material for an all-solid-state battery, which is a negative electrode active material particle that is a composite of Si and carbon, and a binder, and is a granulated particle having a median diameter (D50) of 25 μm or less.

本開示によれば、充放電に伴うSiの微粉化を抑制可能であり、充放電後のセル抵抗の増加を抑制可能な全固体電池用負極活物質を提供することができる。   According to the present disclosure, it is possible to provide a negative electrode active material for an all-solid-state battery that can suppress pulverization of Si accompanying charge / discharge and can suppress an increase in cell resistance after charge / discharge.

実施例1〜3、比較例1、2に係る負極活物質(造粒粒子)の2次粒子径(D50)が、充放電後の抵抗増加率に及ぼす影響を、比較例1の抵抗増加率を100として示す図である。The effect of the secondary particle diameter (D50) of the negative electrode active materials (granulated particles) according to Examples 1 to 3 and Comparative Examples 1 and 2 on the rate of increase in resistance after charge and discharge is the resistance increase rate of Comparative Example 1. FIG.

以下、本開示について説明する。なお、以下に示す形態は本開示の例示であり、本開示は以下に示す形態に限定されない。   Hereinafter, the present disclosure will be described. In addition, the form shown below is an illustration of this indication and this indication is not limited to the form shown below.

本発明者らは、鋭意検討の結果、Siと炭素とを複合化し、さらにバインダーを用いて造粒粒子とした状態で負極中に存在させることにより、Siの微粉化が抑制され、充放電サイクルに伴う抵抗増加を抑制可能であることを見出した。   As a result of intensive studies, the present inventors have compounded Si and carbon, and further present in the negative electrode in the state of granulated particles using a binder, thereby suppressing Si pulverization and charge / discharge cycles. It was found that the increase in resistance accompanying the control can be suppressed.

1.全固体電池用負極活物質
本開示の全固体電池用負極活物質は、Siと炭素との複合体である負極活物質粒子と、バインダーとからなり、メディアン径(D50)が25μm以下の造粒粒子である。
1. Negative electrode active material for all solid state battery The negative electrode active material for all solid state battery of the present disclosure is composed of negative electrode active material particles that are a composite of Si and carbon, and a binder, and has a median diameter (D50) of 25 μm or less. Particles.

(負極活物質粒子)
本開示に用いる負極活物質粒子は、Siと炭素との複合体である。負極活物質粒子において、Siと炭素との重量比率は、Si重量/炭素重量=90/10〜70/30であることが好ましい。
(Negative electrode active material particles)
The negative electrode active material particles used in the present disclosure are a composite of Si and carbon. In the negative electrode active material particles, the weight ratio of Si to carbon is preferably Si weight / carbon weight = 90/10 to 70/30.

炭素の材料としては、全固体電池の負極活物質として使用可能なものを適宜使用することができ、例えば、グラファイト、MCMB、HOPG、ハードカーボン、ソフトカーボン、カーボンブラック類等を使用することができる。   As the carbon material, materials that can be used as the negative electrode active material of an all-solid battery can be used as appropriate, and for example, graphite, MCMB, HOPG, hard carbon, soft carbon, carbon blacks, and the like can be used. .

負極活物質粒子は、粒状であれば、粒径等は特に限定されないが、1次粒子のメディアン径(D50)が、12μm以下であることが好ましい。本開示において、メディアン径(D50)とは、一般的なレーザー回折・光散乱法に基づく粒度分布測定装置によって測定した体積基準の粒度分布おいて、微粒子側からの累積50体積%に相当する粒径をいう。   The negative electrode active material particles are not particularly limited as long as they are granular, but the median diameter (D50) of the primary particles is preferably 12 μm or less. In the present disclosure, the median diameter (D50) is a particle corresponding to a cumulative 50% by volume from the fine particle side in a volume-based particle size distribution measured by a particle size distribution measuring apparatus based on a general laser diffraction / light scattering method. The diameter.

(バインダー)
本開示に用いるバインダーは、全固体電池の負極活物質として使用可能なものであれば特に限定されないが、PVDFを44mol%以上61mol%以下含有するポリマー材料であることが好ましい。ポリマー材料を構成するPVDF以外の成分としては、特に限定されない。
(binder)
The binder used in the present disclosure is not particularly limited as long as it can be used as a negative electrode active material for an all-solid battery, but is preferably a polymer material containing 44 mol% or more and 61 mol% or less of PVDF. The components other than PVDF constituting the polymer material are not particularly limited.

(造粒粒子)
本開示の全固体電池用負極活物質は、上記負極活物質粒子を、上記バインダーを用いて造粒した造粒粒子(2次粒子)である。造粒粒子のメディアン径(D50)は、25μm以下であることが重要である。造粒粒子のメディアン径(D50)が25μm以下であることにより、充放電に伴うSiの微粉化を抑制し、セル抵抗の増加を抑制することができる。
(Granulated particles)
The negative electrode active material for an all-solid battery according to the present disclosure is a granulated particle (secondary particle) obtained by granulating the negative electrode active material particles using the binder. It is important that the median diameter (D50) of the granulated particles is 25 μm or less. When the median diameter (D50) of the granulated particles is 25 μm or less, the pulverization of Si accompanying charge / discharge can be suppressed, and the increase in cell resistance can be suppressed.

本開示の全固体電池用負極活物質(造粒粒子)における負極活物質粒子とバインダーとの重量比率は、負極活物質粒子重量/バインダー重量=99/1〜90/10であることが好ましい。   The weight ratio between the negative electrode active material particles and the binder in the negative electrode active material (granulated particles) of the present disclosure is preferably negative electrode active material particle weight / binder weight = 99/1 to 90/10.

本開示の全固体電池用負極活物質(造粒粒子)におけるSiの含有量は、全固体電池のエネルギー密度を高める観点から、55重量%以上97重量%以下であることが好ましい。   The content of Si in the negative electrode active material (granulated particles) of the present disclosure is preferably 55 wt% or more and 97 wt% or less from the viewpoint of increasing the energy density of the all solid battery.

本開示の全固体電池用負極活物質(造粒粒子)は、上述した負極活物質粒子を構成するSi及び炭素、並びに、バインダー以外にも、B、Ti、Zn、Fe、Crのうちいずれか一つ以上の元素を含んでいてもよい。   The negative electrode active material (granulated particles) for the all-solid-state battery of the present disclosure is any one of B, Ti, Zn, Fe, and Cr, in addition to Si and carbon constituting the negative electrode active material particles and the binder. One or more elements may be included.

本開示に係る全固体電池用負極活物質は、Siと炭素との複合体である負極活物質粒子を、バインダーを用いて造粒して得られる造粒粒子である。このようにSiを炭素と複合化し、さらにバインダーで造粒した状態で、負極中に存在させることにより、Siの微粉化が抑制され、充放電サイクルに伴う抵抗増加を抑制することが可能となる。   The negative electrode active material for an all-solid battery according to the present disclosure is a granulated particle obtained by granulating negative electrode active material particles that are a composite of Si and carbon using a binder. In this way, Si is compounded with carbon and further granulated with a binder, so that it is present in the negative electrode, thereby suppressing the pulverization of Si and suppressing an increase in resistance associated with the charge / discharge cycle. .

2.全固体電池用負極活物質の製造方法
上述の全固体電池用負極活物質は、以下の方法により製造することができる。すなわち、本開示に係る全固体電池用負極活物質の製造方法は、Siと炭素との複合体である負極活物質粒子を作製する工程と、負極活物質粒子を、バインダーを用いて造粒し、メディアン径(D50)が25μm以下である造粒粒子を作製する工程と、を有する。
2. Manufacturing method of negative electrode active material for all solid state battery The negative electrode active material for all solid state battery described above can be manufactured by the following method. That is, the method for producing a negative electrode active material for an all-solid battery according to the present disclosure includes a step of producing negative electrode active material particles that are a composite of Si and carbon, and granulating the negative electrode active material particles using a binder. And a step of producing granulated particles having a median diameter (D50) of 25 μm or less.

Siと炭素との複合体である負極活物質粒子を作製する方法は、特に限定されない。例えば、Si単体と炭素材料とをボールミル装置に投入して混合し、複合化することにより作製することができる。ボールミル装置に投入するSi単体と炭素材料との重量比率は、Si重量/炭素重量=90/10〜70/30の範囲内であることが好ましい。また、Si単体及び炭素材料は粉末状であることが好ましい。負極活物質粒子の1次粒子径(D50)は、例えば、ボールミル処理の反応時間の調整、又は、ボールミル処理後の粉末の風力分級により制御することができる。   The method for producing negative electrode active material particles that are a composite of Si and carbon is not particularly limited. For example, it can be manufactured by putting Si alone and a carbon material into a ball mill apparatus, mixing them, and combining them. It is preferable that the weight ratio of Si simple substance and carbon material thrown into a ball mill apparatus is in the range of Si weight / carbon weight = 90/10 to 70/30. Moreover, it is preferable that Si simple substance and carbon material are powdery. The primary particle diameter (D50) of the negative electrode active material particles can be controlled, for example, by adjusting the reaction time of the ball mill treatment or by air classification of the powder after the ball mill treatment.

負極活物質粒子を、バインダーを用いて造粒し、メディアン径(D50)が25μm以下である造粒粒子を作製する方法は、特に限定されない。例えば、上記負極活物質粒子と、上記バインダーとをNMP等の溶剤に溶解し、流動造粒機を用いて負極活物質粒子を造粒することにより作製することができる。このとき、負極活物質粒子とバインダーとの合計に対して、バインダーの割合が1重量%以上10重量%以下となるように、負極活物質粒子とバインダーとを溶剤に溶解させることが好ましい。造粒粒子の2次粒子径(D50)は、例えばバインダーと活物質とを溶剤に分散して得られるペーストの粘度や固形分を調整することにより制御することができる。   The method of granulating the negative electrode active material particles using a binder to produce granulated particles having a median diameter (D50) of 25 μm or less is not particularly limited. For example, it can be produced by dissolving the negative electrode active material particles and the binder in a solvent such as NMP and granulating the negative electrode active material particles using a fluid granulator. At this time, it is preferable to dissolve the negative electrode active material particles and the binder in the solvent so that the ratio of the binder is 1 wt% or more and 10 wt% or less with respect to the total of the negative electrode active material particles and the binder. The secondary particle diameter (D50) of the granulated particles can be controlled, for example, by adjusting the viscosity and solid content of a paste obtained by dispersing a binder and an active material in a solvent.

3.負極
本開示は「負極」としての側面も有する。すなわち、本開示に係る負極は、上述の全固体電池用負極活物質と固体電解質とを含み、該全固体電池用負極活物質が、Siと炭素との複合体である負極活物質粒子とバインダーとからなり、メディアン径(D50)が25μm以下の造粒粒子である。負極に含まれる固体電解質としては、酸化物固体電解質や硫化物固体電解質等の無機固体電解質が好ましい。特に、硫化物固体電解質が好ましい。本開示に係る負極は、負極活物質として上記の特徴的な造粒粒子を用いる点を除き、従来の負極と同様とすることができる。例えば、負極は、本開示の全固体電池用負極活物質及び固体電解質に加えて、さらに公知のバインダーや、VGCF、炭素材料、金属材料等の導電助剤を含んでいてもよい。
3. Negative electrode The present disclosure also has a side surface as a “negative electrode”. That is, a negative electrode according to the present disclosure includes the above-described negative electrode active material for an all-solid battery and a solid electrolyte, and the negative electrode active material for an all-solid battery is a composite of Si and carbon and a binder. These are granulated particles having a median diameter (D50) of 25 μm or less. The solid electrolyte contained in the negative electrode is preferably an inorganic solid electrolyte such as an oxide solid electrolyte or a sulfide solid electrolyte. In particular, a sulfide solid electrolyte is preferable. The negative electrode according to the present disclosure can be the same as the conventional negative electrode except that the above-described characteristic granulated particles are used as the negative electrode active material. For example, the negative electrode may further contain a known binder, a conductive aid such as VGCF, a carbon material, and a metal material, in addition to the negative electrode active material for an all-solid battery and the solid electrolyte of the present disclosure.

4.全固体電池
本開示は、電解液を備えない「全固体電池」としての側面も有する。すなわち、本開示に係る全固体電池は、上記の本開示に係る負極と、正極と、当該負極及び正極の間に設けられた固体電解質層とを備える。また、本開示に係る全固体電池は、公知の集電体を備えていてもよい。ここで、固体電解質層は固体電解質と任意にバインダーとを含む層である。固体電解質としては、上述の無機固体電解質が好ましい。正極は、全固体電池の正極として公知のものをいずれも適用可能である。正極は、少なくとも正極活物質を含み、必要に応じて、公知のバインダーや、VGCF、炭素材料、金属材料等の導電助剤を含んでいてもよい。正極に含有させる正極活物質は特に限定されず、ニッケル酸リチウム、ニッケルコバルトアルミ酸リチウム、ニッケルコバルトマンガン酸リチウム等を例示することができる。本開示に係る全固体電池は、負極において負極活物質として上記の特徴的な造粒粒子を用いる点を除き、従来の全固体電池と同様とすることができる。
4). All-solid-state battery This indication also has the side as an "all-solid-state battery" without an electrolyte solution. That is, the all solid state battery according to the present disclosure includes the negative electrode according to the present disclosure, a positive electrode, and a solid electrolyte layer provided between the negative electrode and the positive electrode. The all solid state battery according to the present disclosure may include a known current collector. Here, the solid electrolyte layer is a layer containing a solid electrolyte and optionally a binder. As the solid electrolyte, the above-described inorganic solid electrolyte is preferable. As the positive electrode, any known positive electrode for all solid state batteries can be used. The positive electrode includes at least a positive electrode active material, and may include a known binder, a conductive assistant such as a VGCF, a carbon material, and a metal material as necessary. The positive electrode active material contained in the positive electrode is not particularly limited, and examples thereof include lithium nickelate, nickel cobalt lithium aluminate, and nickel cobalt lithium manganate. The all solid state battery according to the present disclosure can be the same as the conventional all solid state battery except that the above-described characteristic granulated particles are used as the negative electrode active material in the negative electrode.

<実施例1>
[1]固体電解質の合成
LiS(日本化学工業製)とP(アルドリッチ製)とを出発原料として、LiSを0.7656g、Pを1.2344g秤量し、メノウ乳鉢で5分間混合し、その後へプタンを4g入れ、遊星型ボールミルを用い40時間メカニカルミリングすることで固体電解質を得た。
<Example 1>
[1] Synthesis of solid electrolyte Using Li 2 S (manufactured by Nippon Kagaku Kogyo) and P 2 S 5 (manufactured by Aldrich) as starting materials, 0.7656 g of Li 2 S and 1.2344 g of P 2 S 5 were weighed, After mixing for 5 minutes in an agate mortar, 4 g of heptane was added, and a solid electrolyte was obtained by mechanical milling for 40 hours using a planetary ball mill.

[2]負極活物質の合成
シリコン粉末と炭素粉末とを重量比率8:2でボールミル装置の反応容器に入れ、不活性ガス雰囲気を封入した。30時間反応させた後、粉末を回収し、目の開き20μmの篩いで分級し、1次粒子径(メディアン径、D50)5.4μmの負極活物質粒子を合成した。
上記のようにして得られた負極活物質粒子の粉末を、流動造粒機を用いて造粒(2次粒子化)した。その際にバインダーとしてPVDFを50mol%含有するポリマー材料を用い、NMPに5wt%の濃度で溶解した後の活物質とバインダーとの比率が99:1となるように調整して造粒した。その結果、2次粒子径(メディアン径、D50)23.4μmの実施例1に係る負極活物質(造粒粒子)を得た。
なお、負極活物質粒子の1次粒子径(D50)、及び、負極活物質(造粒粒子)の2次粒子径(D50)は、レーザー式粒度分布計(堀場製作所社製)を用いて測定した。
[2] Synthesis of negative electrode active material Silicon powder and carbon powder were put into a reaction vessel of a ball mill apparatus at a weight ratio of 8: 2, and an inert gas atmosphere was sealed. After reacting for 30 hours, the powder was collected and classified with a sieve having an opening of 20 μm to synthesize negative active material particles having a primary particle diameter (median diameter, D50) of 5.4 μm.
The powder of negative electrode active material particles obtained as described above was granulated (secondary particles) using a fluid granulator. At that time, a polymer material containing 50 mol% of PVDF was used as a binder, and granulation was performed such that the ratio of the active material and the binder after being dissolved in NMP at a concentration of 5 wt% was 99: 1. As a result, a negative electrode active material (granulated particles) according to Example 1 having a secondary particle diameter (median diameter, D50) of 23.4 μm was obtained.
The primary particle diameter (D50) of the negative electrode active material particles and the secondary particle diameter (D50) of the negative electrode active material (granulated particles) were measured using a laser particle size distribution meter (manufactured by Horiba, Ltd.). did.

[3]電池の作製
正極活物質にニッケルコバルトマンガン酸リチウムLiNi3/5Co1/5Mn1/5を使用した。正極活物質にはLiNbOの表面処理を施した。この表面処理後の正極活物質10.8mgと、導電材カーボンのVGCF(昭和電工)0.460mgと、固体電解質4.53mgとをそれぞれ秤量し、混合したものを正極合材とした。
実施例1に係る負極活物質(造粒粒子)粉末1.96mgと、固体電解質1.96mgと、VGCF0.14mgとを秤量した。また、PVDFを75mol%含有するバインダーを5wt%の濃度で有機溶媒に溶かし、溶かした状態で1.6mg秤量し、上記秤量済みの負極活物質(造粒粒子)粉末、固体電解質、及び、VGCFと混合したものを負極合材とした。
1cmのセラミックス製の型に固体電解質を18mg秤量し、1ton/cmでプレスし、セパレート層を作製し、その片側に上記で作製した正極合材のペレットを入れ、1ton/cmでプレスして正極を作製した。その逆側に上記で作製した負極合材のペレットを入れ、5ton/cmでプレスすることで負極を作製した。そして、正極の表面に正極集電体としてアルミ箔を、負極の表面に負極集電体として銅箔をそれぞれ配置し、実施例1に係る全固体電池を作製した。
[3] Production of Battery Lithium nickel cobalt manganate LiNi 3/5 Co 1/5 Mn 1/5 O 2 was used as the positive electrode active material. The positive electrode active material was subjected to a surface treatment of LiNbO 3 . The positive electrode active material 10.8 mg after this surface treatment, VGCF (Showa Denko) 0.460 mg of conductive material carbon, and 4.53 mg of solid electrolyte were weighed and mixed to obtain a positive electrode mixture.
1.96 mg of negative electrode active material (granulated particles) powder according to Example 1, 1.96 mg of a solid electrolyte, and 0.14 mg of VGCF were weighed. Also, a binder containing 75 mol% of PVDF was dissolved in an organic solvent at a concentration of 5 wt%, and 1.6 mg was weighed in the dissolved state. The mixture was used as a negative electrode composite.
18 mg of solid electrolyte is weighed into a 1 cm 2 ceramic mold, pressed at 1 ton / cm 2 , a separate layer is prepared, and the positive electrode mixture pellet prepared above is placed on one side and pressed at 1 ton / cm 2 . Thus, a positive electrode was produced. The negative electrode composite pellet prepared above was placed on the opposite side, and pressed at 5 ton / cm 2 to prepare a negative electrode. Then, an aluminum foil as a positive electrode current collector was disposed on the surface of the positive electrode, and a copper foil as a negative electrode current collector was disposed on the surface of the negative electrode, whereby an all-solid battery according to Example 1 was produced.

[4]電池特性(抵抗増加率)の評価
初期:0.3mAで4.35VまでCC/CV充電した後、0.3mAで2.5VまでCC/CV放電を行った。これを5回繰り返した。その後、以下のDC−IR測定を行い、初期の抵抗値を求めた。
DC−IR測定:電圧を3.7Vに調整した後、10mAの電流を5秒間流したときの電圧降下から抵抗値を求めた。
耐久後:1.4mAで4.1VまでCC充電した後、1.4mAで3.1VまでCC放電を行うのを1サイクルとして500サイクル繰り返した。その後、初期設定と同様にDC−IR測定を行い、耐久後の抵抗値を求めた。初期の抵抗値を分母、耐久後の抵抗値を分子として抵抗増加率を求めた。後述する比較例1に係る全固体電池の抵抗増加率を100としたときの比を表1及び図1に示す。
[4] Evaluation of battery characteristics (resistance increase rate) Initial: CC / CV discharge was performed at 0.3 mA to 4.35 V, and then CC / CV discharge was performed at 0.3 mA to 2.5 V. This was repeated 5 times. Thereafter, the following DC-IR measurement was performed to obtain an initial resistance value.
DC-IR measurement: After adjusting the voltage to 3.7 V, the resistance value was determined from the voltage drop when a current of 10 mA was applied for 5 seconds.
After durability: After CC charging to 4.1 V at 1.4 mA, CC discharging to 1.4 V at 1.4 mA was repeated 500 cycles as one cycle. Thereafter, DC-IR measurement was performed in the same manner as the initial setting, and the resistance value after durability was obtained. Using the initial resistance value as the denominator and the resistance value after durability as the numerator, the resistance increase rate was determined. The ratio when the resistance increase rate of the all-solid-state battery according to Comparative Example 1 described later is 100 is shown in Table 1 and FIG.

<実施例2、3>
造粒粒子の2次粒子径(D50)を表1に示すように変更した以外は、実施例1と同様にして、実施例2、3に係る負極活物質及び全固体電池を作製し、電池特性評価を行った。結果を表1及び図1に示す。
<Examples 2 and 3>
Except that the secondary particle diameter (D50) of the granulated particles was changed as shown in Table 1, negative electrode active materials and all-solid batteries according to Examples 2 and 3 were produced in the same manner as in Example 1, and the battery Characterization was performed. The results are shown in Table 1 and FIG.

<比較例1>
造粒を行わず、1次粒子径(D50)が25.1μmの負極活物質粒子を用いた以外は、実施例1と同様にして、比較例1に係る全固体電池を作製し、電池特性評価を行った。結果を表1及び図1に示す。
<Comparative Example 1>
An all-solid battery according to Comparative Example 1 was produced in the same manner as in Example 1 except that no negative granulation was performed and negative electrode active material particles having a primary particle diameter (D50) of 25.1 μm were used. Evaluation was performed. The results are shown in Table 1 and FIG.

<比較例2>
造粒粒子の2次粒子径(D50)を表1に示すように変更した以外は、実施例1と同様にして、比較例2に係る負極活物質及び全固体電池を作製し、電池特性評価を行った。結果を表1及び図1に示す。
<Comparative example 2>
A negative electrode active material and an all-solid battery according to Comparative Example 2 were produced in the same manner as in Example 1 except that the secondary particle diameter (D50) of the granulated particles was changed as shown in Table 1, and battery characteristics were evaluated. Went. The results are shown in Table 1 and FIG.

Figure 2019021571
Figure 2019021571

[結果]
表1及び図1に示すように、実施例1〜3に係る負極活物質を用いた全固体電池は、造粒を行わなかった比較例1に係る負極活物質を用いた全固体電池、及び、2次粒子径(メディアン径、D50)が25μmよりも大きかった比較例2に係る負極活物質を用いた全固体電池よりも、充放電後の相対抵抗増加率が低かった。よって、本開示の全固体電池用負極活物質によれば、充放電後のセル抵抗の増加を抑制可能であることが確認された。
[result]
As shown in Table 1 and FIG. 1, the all solid state battery using the negative electrode active material according to Examples 1 to 3 is an all solid state battery using the negative electrode active material according to Comparative Example 1 that was not granulated, and The rate of increase in relative resistance after charge / discharge was lower than that of the all solid state battery using the negative electrode active material according to Comparative Example 2 in which the secondary particle diameter (median diameter, D50) was larger than 25 μm. Therefore, according to the negative electrode active material for all-solid-state batteries of this indication, it was confirmed that the increase in cell resistance after charging / discharging can be suppressed.

Claims (1)

Siと炭素との複合体である負極活物質粒子と、バインダーとからなり、
メディアン径(D50)が25μm以下の造粒粒子である、
全固体電池用負極活物質。
It consists of negative electrode active material particles that are a composite of Si and carbon, and a binder.
It is a granulated particle having a median diameter (D50) of 25 μm or less.
Negative electrode active material for all solid state batteries.
JP2017140969A 2017-07-20 2017-07-20 Negative electrode active material for all-solid-state batteries Active JP6760224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017140969A JP6760224B2 (en) 2017-07-20 2017-07-20 Negative electrode active material for all-solid-state batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017140969A JP6760224B2 (en) 2017-07-20 2017-07-20 Negative electrode active material for all-solid-state batteries

Publications (2)

Publication Number Publication Date
JP2019021571A true JP2019021571A (en) 2019-02-07
JP6760224B2 JP6760224B2 (en) 2020-09-23

Family

ID=65355879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017140969A Active JP6760224B2 (en) 2017-07-20 2017-07-20 Negative electrode active material for all-solid-state batteries

Country Status (1)

Country Link
JP (1) JP6760224B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019121557A (en) * 2018-01-10 2019-07-22 トヨタ自動車株式会社 Negative electrode layer
DE102023123270A1 (en) 2022-08-31 2024-02-29 Toyota Jidosha Kabushiki Kaisha Active material composite particles, electrode, secondary battery and manufacturing process for active material composite particles

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031993A1 (en) * 2011-08-31 2013-03-07 国立大学法人東北大学 Si/C COMPOSITE MATERIAL, METHOD FOR MANUFACTURING SAME, AND ELECTRODE
WO2013038842A1 (en) * 2011-09-12 2013-03-21 日本電気株式会社 Secondary cell
JP2013222530A (en) * 2012-04-13 2013-10-28 Idemitsu Kosan Co Ltd All solid state battery and method for charging/discharging all solid state battery
JP2016507142A (en) * 2013-02-05 2016-03-07 エー123 システムズ, インコーポレイテッド Electrode material at the interface of synthetic solid electrolyte
JP2016509739A (en) * 2012-12-27 2016-03-31 サムスン エレクトロニクス カンパニー リミテッド Negative electrode active material for secondary battery, conductive composition for secondary battery, negative electrode material including the same, negative electrode structure and secondary battery including the same, and manufacturing method thereof
JP2016110969A (en) * 2014-05-07 2016-06-20 東ソー株式会社 Negative electrode active material for lithium ion secondary battery, and manufacturing method thereof
JP2016189294A (en) * 2015-03-30 2016-11-04 東ソー株式会社 Negative electrode active material for lithium ion secondary battery and manufacturing method for the same
JP2017054720A (en) * 2015-09-10 2017-03-16 トヨタ自動車株式会社 Negative electrode for all-solid battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031993A1 (en) * 2011-08-31 2013-03-07 国立大学法人東北大学 Si/C COMPOSITE MATERIAL, METHOD FOR MANUFACTURING SAME, AND ELECTRODE
WO2013038842A1 (en) * 2011-09-12 2013-03-21 日本電気株式会社 Secondary cell
JP2013222530A (en) * 2012-04-13 2013-10-28 Idemitsu Kosan Co Ltd All solid state battery and method for charging/discharging all solid state battery
JP2016509739A (en) * 2012-12-27 2016-03-31 サムスン エレクトロニクス カンパニー リミテッド Negative electrode active material for secondary battery, conductive composition for secondary battery, negative electrode material including the same, negative electrode structure and secondary battery including the same, and manufacturing method thereof
JP2016507142A (en) * 2013-02-05 2016-03-07 エー123 システムズ, インコーポレイテッド Electrode material at the interface of synthetic solid electrolyte
JP2016110969A (en) * 2014-05-07 2016-06-20 東ソー株式会社 Negative electrode active material for lithium ion secondary battery, and manufacturing method thereof
JP2016189294A (en) * 2015-03-30 2016-11-04 東ソー株式会社 Negative electrode active material for lithium ion secondary battery and manufacturing method for the same
JP2017054720A (en) * 2015-09-10 2017-03-16 トヨタ自動車株式会社 Negative electrode for all-solid battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019121557A (en) * 2018-01-10 2019-07-22 トヨタ自動車株式会社 Negative electrode layer
JP7069727B2 (en) 2018-01-10 2022-05-18 トヨタ自動車株式会社 Negative electrode layer
DE102023123270A1 (en) 2022-08-31 2024-02-29 Toyota Jidosha Kabushiki Kaisha Active material composite particles, electrode, secondary battery and manufacturing process for active material composite particles
KR20240031085A (en) 2022-08-31 2024-03-07 도요타 지도샤(주) Active material composite particle, electrode, secondary battery, and manufacturing method for active material composite particle

Also Published As

Publication number Publication date
JP6760224B2 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
JP6595152B2 (en) Solid electrolyte for lithium secondary battery and sulfide compound for solid electrolyte
JP5610205B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6946836B2 (en) Lithium solid-state battery and manufacturing method of lithium solid-state battery
KR101106966B1 (en) Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell
JP6003996B2 (en) Electrode active material, method for producing electrode active material, electrode, battery, and method of using clathrate compound
JP2015133318A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same
TWI700853B (en) Positive electrode active material for sodium ion secondary battery and manufacturing method thereof
JP2019033067A (en) Positive electrode composite material and manufacturing method thereof
EP4030503A1 (en) Electrode mixture and electrode layer and solid-state battery employing same
JP2011132095A (en) Method for producing olivine-type compound particle powder, and nonaqueous electrolyte secondary battery
JP2008156163A (en) Spinel type lithium manganese oxide and method for manufacturing the same
WO2016147853A1 (en) Positive electrode active material powder for sodium ion secondary cells
JP4379971B2 (en) Electrical energy storage element
KR20110108301A (en) Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
JP6187655B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
TWI699926B (en) Positive electrode active material for alkaline ion secondary battery
JP2014207064A (en) Negative electrode active material for lithium secondary battery and method for producing the same
JP6760224B2 (en) Negative electrode active material for all-solid-state batteries
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
KR20150078068A (en) Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery
JP2017157473A (en) Lithium ion secondary battery
US20120267566A1 (en) Lithium ion secondary battery positive electrode material
JP4800589B2 (en) Solid electrolyte-containing electrode for lithium secondary battery
JP6411959B2 (en) Positive electrode mixture and all-solid-state lithium battery
JP2018095529A (en) Lithium-manganese composite oxide powder and method for producing the same, and positive electrode for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R151 Written notification of patent or utility model registration

Ref document number: 6760224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151