JP2019021402A - Vehicle battery pack - Google Patents

Vehicle battery pack Download PDF

Info

Publication number
JP2019021402A
JP2019021402A JP2017136054A JP2017136054A JP2019021402A JP 2019021402 A JP2019021402 A JP 2019021402A JP 2017136054 A JP2017136054 A JP 2017136054A JP 2017136054 A JP2017136054 A JP 2017136054A JP 2019021402 A JP2019021402 A JP 2019021402A
Authority
JP
Japan
Prior art keywords
heat storage
heat
storage member
housing
battery pack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017136054A
Other languages
Japanese (ja)
Other versions
JP6946083B2 (en
Inventor
加藤 拓也
Takuya Kato
拓也 加藤
荘田 隆博
Takahiro Shoda
隆博 荘田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2017136054A priority Critical patent/JP6946083B2/en
Priority to CN201810758225.1A priority patent/CN109256606A/en
Publication of JP2019021402A publication Critical patent/JP2019021402A/en
Application granted granted Critical
Publication of JP6946083B2 publication Critical patent/JP6946083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/659Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

To provide a vehicle battery pack capable of suppressing a decrease in battery output at cold start.SOLUTION: A vehicle battery pack 1A includes a housing 2 having thermal conductivity, a plurality of batteries 3 arranged in an internal space 2a of the housing 2 and held by the housing 2, a heat storage member 4 directly thermally connected to at least each of the batteries 3 and the housing 2, accommodated in the housing 2, and having a larger amount of heat storage than the housing 2, a heater 9 accommodated in the housing 2 and heating the heat storage member 4, and a temperature adjuster 10 for performing temperature increase control for heating the heat storage member 4 with the heater 9 to raise the temperatures of the plurality of batteries 3.SELECTED DRAWING: Figure 1

Description

本発明は、車両用電池パックに関する。   The present invention relates to a vehicle battery pack.

電気車両(EV)、ハイブリッド車両(HEV)、プラグインハイブリッド車両(PHEV)等の車両は、駆動源であるモータを駆動する電力を供給する電源として、例えば車両用電池パックが搭載されている。車両用電池パックは、複数個の電池(二次電池)が収容されており、各電池が直列および/または並列に電気的に接続されている。各電池は、充放電の際に温度が変化し、車両の走行時間に応じて温度が上昇するため、使用可能温度が定められている。従って、各電池に短時間で高い負荷がかかることで使用可能温度を超えた場合には、充放電制限を設けることとなるため、使用可能温度を超えることを抑制することを目的として冷却機能を車両用電池パックに持たせる場合がある(例えば、特許文献1)。   Vehicles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV) are equipped with, for example, a vehicle battery pack as a power source for supplying electric power for driving a motor that is a drive source. A vehicle battery pack contains a plurality of batteries (secondary batteries), and each battery is electrically connected in series and / or in parallel. The temperature of each battery changes during charging and discharging, and the temperature rises according to the running time of the vehicle, so that the usable temperature is determined. Therefore, when the usable temperature is exceeded due to a high load applied to each battery in a short period of time, a charge / discharge limit is provided, so a cooling function is provided for the purpose of suppressing exceeding the usable temperature. A vehicle battery pack may be provided (for example, Patent Document 1).

車両用電池パックに収容される電池には、例えば、リチウムイオン電池が利用される。リチウムイオン電池は、低温時の入出力特性が悪化するため、車両の走行に支障をきたさないように大容量の電池を搭載することで、容量当たりの入出力負荷を軽減する必要がある。   For example, a lithium ion battery is used as the battery housed in the vehicle battery pack. Since the input / output characteristics at a low temperature deteriorate in a lithium ion battery, it is necessary to reduce the input / output load per capacity by mounting a large capacity battery so as not to hinder the running of the vehicle.

特許第4544192号公報Japanese Patent No. 4544192

しかしながら、冷間始動時の電池出力を確保する方法として、例えば、電池自体をヒータで加熱する方法があるが、ヒータをすべての電池に接触するように配索すると、電池間に隙間を設ける必要があり、車両用電池パックの容積に対するエネルギー密度が低下するという課題がある。   However, as a method of ensuring battery output at the time of cold start, for example, there is a method of heating the battery itself with a heater. However, if the heater is wired so as to contact all the batteries, it is necessary to provide a gap between the batteries. There exists a subject that the energy density with respect to the volume of the battery pack for vehicles falls.

本発明は、冷間始動時の電池出力の低下を抑制することができる車両用電池パックを提供することを目的とする。   An object of this invention is to provide the battery pack for vehicles which can suppress the fall of the battery output at the time of a cold start.

上記目的を達成するため、本発明に係る車両用電池パックは、熱伝導性を有する筐体と、前記筐体の内部空間に配列され、かつ前記筐体に保持される複数個の電池と、少なくとも各前記電池および前記筐体と直接熱的に接続されるとともに、前記筐体に収容され、かつ前記筐体よりも蓄熱量が大きい蓄熱部材と、前記筐体に収容され、かつ前記蓄熱部材を加熱する発熱体と、前記発熱体で前記蓄熱部材を加熱して複数個の前記電池を昇温する昇温制御を行う温度調整器と、を備えることを特徴とする。   In order to achieve the above object, a vehicle battery pack according to the present invention includes a case having thermal conductivity, a plurality of batteries arranged in an internal space of the case and held in the case, A heat storage member that is directly thermally connected to at least each of the batteries and the housing, is housed in the housing and has a larger heat storage amount than the housing, and is housed in the housing, and the heat storage member A heating element that heats the heat storage member, and a temperature regulator that performs temperature increase control to raise the temperature of the plurality of batteries by heating the heat storage member with the heating element.

上記目的を達成するため、本発明に係る車両用電池パックは、熱伝導性を有する筐体と、前記筐体の内部空間に配列され、かつ前記筐体に保持される複数個の電池と、少なくとも前記筐体と熱的に接続されるとともに、前記筐体に収容され、かつ前記筐体よりも蓄熱量が大きい蓄熱部材と、少なくとも各前記電池および前記蓄熱部材と熱的に接続されるとともに、前記筐体に収容される熱伝導部材と、前記筐体に収容され、かつ前記蓄熱部材を加熱する発熱体と、前記発熱体で前記蓄熱部材を加熱して複数個の前記電池を昇温する昇温制御を行う温度調整器と、を備えることを特徴とする。   In order to achieve the above object, a vehicle battery pack according to the present invention includes a case having thermal conductivity, a plurality of batteries arranged in an internal space of the case and held in the case, A thermal storage member that is thermally connected to at least the casing, is housed in the casing and has a larger amount of heat storage than the casing, and is thermally connected to at least each of the batteries and the thermal storage member. A heat conducting member housed in the housing, a heating element housed in the housing and heating the heat storage member, and heating the heat storage member with the heating body to raise the temperature of the plurality of batteries And a temperature regulator for performing temperature rise control.

また、上記車両用電池パックにおいて、前記蓄熱部材は、流動性を有し、複数個の前記電池と鉛直方向に対向する前記筐体の内部底面に貯留することが好ましい。   In the vehicle battery pack, the heat storage member preferably has fluidity and is stored on an inner bottom surface of the casing facing the plurality of batteries in the vertical direction.

また、上記車両用電池パックにおいて、前記蓄熱部材は、潜熱蓄熱材または顕熱蓄熱材の少なくとも一方が含まれることが好ましい。   In the vehicle battery pack, the heat storage member preferably includes at least one of a latent heat storage material and a sensible heat storage material.

本発明に係る車両用電池パックによれば、冷間始動時の電池出力の低下を抑制することができるという効果を奏する。   The vehicle battery pack according to the present invention has an effect of suppressing a decrease in battery output during cold start.

図1は、実施形態1に係る車両用電池パックの概略構成を示す部分平面図である。FIG. 1 is a partial plan view showing a schematic configuration of the vehicle battery pack according to the first embodiment. 図2は、図1中のA−A断面図である。2 is a cross-sectional view taken along the line AA in FIG. 図3は、実施形態1に係る車両用電池パックの温度調整器の動作を示すフローチャートである。FIG. 3 is a flowchart showing the operation of the temperature regulator of the vehicle battery pack according to the first embodiment. 図4は、実施形態1の変形例1に係る車両用電池パックの概略構成を示す平面図である。FIG. 4 is a plan view illustrating a schematic configuration of the vehicle battery pack according to the first modification of the first embodiment. 図5は、図4中のB−B断面図である。5 is a cross-sectional view taken along the line BB in FIG. 図6は、実施形態1の変形例2に係る車両用電池パックの概略構成を示す平面図である。FIG. 6 is a plan view illustrating a schematic configuration of the vehicle battery pack according to the second modification of the first embodiment. 図7は、実施形態2に係る車両用電池パックの概略構成を示す部分平面図である。FIG. 7 is a partial plan view showing a schematic configuration of the vehicle battery pack according to the second embodiment. 図8は、図7中のC−C断面図である。8 is a cross-sectional view taken along the line CC in FIG. 図9は、実施形態2の変形例1に係る車両用電池パックの概略構成を示す縦断面図である。FIG. 9 is a longitudinal sectional view showing a schematic configuration of the vehicle battery pack according to the first modification of the second embodiment. 図10は、実施形態2の変形例2に係る車両用電池パックの概略構成を示す平面図である。FIG. 10 is a plan view illustrating a schematic configuration of a vehicle battery pack according to a second modification of the second embodiment. 図11は、図10中のD−D断面図である。11 is a cross-sectional view taken along the line DD in FIG. 図12は、実施形態2の変形例3に係る車両用電池パックの概略構成を示す縦断面図である。FIG. 12 is a longitudinal sectional view showing a schematic configuration of a vehicle battery pack according to Modification 3 of Embodiment 2. 図13は、実施形態3に係る車両用電池パックの概略構成を示す部分平面図である。FIG. 13 is a partial plan view showing a schematic configuration of the vehicle battery pack according to the third embodiment. 図14は、実施形態3の変形例1に係る車両用電池パックの概略構成を示す平面図である。FIG. 14 is a plan view illustrating a schematic configuration of the vehicle battery pack according to the first modification of the third embodiment. 図15は、実施形態3の変形例2に係る車両用電池パックの概略構成を示す平面図である。FIG. 15 is a plan view illustrating a schematic configuration of a vehicle battery pack according to a second modification of the third embodiment. 図16は、実施形態3の変形例3に係る車両用電池パックの概略構成を示す平面図である。FIG. 16 is a plan view illustrating a schematic configuration of a vehicle battery pack according to a third modification of the third embodiment. 図17は、実施形態3の変形例4に係る車両用電池パックの概略構成を示す平面図である。FIG. 17 is a plan view illustrating a schematic configuration of a vehicle battery pack according to a fourth modification of the third embodiment. 図18は、実施形態3の変形例5に係る車両用電池パックの概略構成を示す平面図である。FIG. 18 is a plan view showing a schematic configuration of a vehicle battery pack according to Modification 5 of Embodiment 3. 図19は、実施形態3の変形例6に係る車両用電池パックの概略構成を示す平面図である。FIG. 19 is a plan view showing a schematic configuration of a vehicle battery pack according to Modification 6 of Embodiment 3. 図20は、実施形態3の変形例7に係る車両用電池パックの概略構成を示す平面図である。FIG. 20 is a plan view showing a schematic configuration of a vehicle battery pack according to Modification 7 of Embodiment 3. 図21は、実施形態3の変形例7に係る車両用電池パックの概略構成を示す平面図である。FIG. 21 is a plan view illustrating a schematic configuration of a vehicle battery pack according to Modification 7 of Embodiment 3. 図22は、実施形態3の変形例7に係る車両用電池パックの要部断面図である。FIG. 22 is a cross-sectional view of main parts of a vehicle battery pack according to Modification 7 of Embodiment 3.

以下に、本発明の実施形態に係る車両用電池パックを図面を参照しながら詳細に説明する。なお、以下に示す実施形態により本発明が限定されるものではない。また、以下に示す実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。さらに、以下に記載した構成は適宜組み合わせることが可能である。   Hereinafter, a vehicle battery pack according to an embodiment of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by embodiment shown below. In addition, constituent elements in the embodiments described below include those that can be easily replaced by those skilled in the art or those that are substantially the same. Furthermore, the structures described below can be combined as appropriate.

[実施形態1]
実施形態1に係る車両用電池パックについて説明する。図1は、実施形態1に係る車両用電池パックの概略構成を示す部分平面図である。図2は、図1中のA−A断面図である。図3は、実施形態1に係る車両用電池パックの温度調整器の動作を示すフローチャートである。なお、図1(図4、図7、図10、図13〜図21も同様)は、筐体の蓋(不図示)を取り外して、内部空間を外部に露出させた状態を示す図である。ここで、図1(図2、図4〜図22も同様)のX方向は、以下に示す実施形態における車両用電池パックの幅方向である。Y方向は、以下に示す実施形態における車両用電池パックの奥行き方向であり、幅方向と直交する方向である。Z方向は、以下に示す実施形態における車両用電池パックの上下方向であり、幅方向および奥行き方向と直交する方向である。
[Embodiment 1]
The vehicle battery pack according to Embodiment 1 will be described. FIG. 1 is a partial plan view showing a schematic configuration of the vehicle battery pack according to the first embodiment. 2 is a cross-sectional view taken along the line AA in FIG. FIG. 3 is a flowchart showing the operation of the temperature regulator of the vehicle battery pack according to the first embodiment. FIG. 1 (FIGS. 4, 7, 10, and 13 to 21) is a diagram showing a state in which the internal space is exposed to the outside by removing the cover (not shown) of the housing. . Here, the X direction in FIG. 1 (the same applies to FIGS. 2 and 4 to 22) is the width direction of the vehicle battery pack in the embodiment described below. The Y direction is a depth direction of the vehicle battery pack in the embodiment described below, and is a direction orthogonal to the width direction. The Z direction is the vertical direction of the vehicle battery pack in the embodiment described below, and is a direction orthogonal to the width direction and the depth direction.

本実施形態1に係る車両用電池パック1Aは、車両(不図示)、特に、電気車両(EV)、ハイブリッド車両(HEV)、プラグインハイブリッド車両(PHEV)等の、駆動源としてモータを用いる車両に搭載され、駆動源に電力を供給する電源となるものである。車両用電池パック1Aは、図1および図2に示すように、筐体2と、複数個の電池3と、蓄熱部材4と、ヒータ9と、温度調整器10とを含んで構成される。   The vehicle battery pack 1A according to the first embodiment is a vehicle (not shown), in particular, a vehicle using a motor as a drive source, such as an electric vehicle (EV), a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHEV). It becomes a power source for supplying power to the drive source. As shown in FIGS. 1 and 2, the vehicle battery pack 1 </ b> A includes a housing 2, a plurality of batteries 3, a heat storage member 4, a heater 9, and a temperature regulator 10.

筐体2は、複数個の電池3、蓄熱部材4、ヒータ9、および保持部材(不図示)を収容するものである。筐体2は、外表面が車両外から取り込まれた外気等と接触可能な場所に設けられている。本実施形態1における筐体2は、内部空間2aを有する箱状に形成されている。筐体2は、熱伝導性を有するものであり、例えば、鉄、銅、アルミニウム等により構成されている。なお、筐体2は、蓋により、内部空間2aを閉塞する。車両用電池パック1Aに防水性が要求される場合は、筐体2と蓋との間に防水構造を形成し、内部空間2aを密閉する。   The housing 2 houses a plurality of batteries 3, a heat storage member 4, a heater 9, and a holding member (not shown). The casing 2 is provided at a location where the outer surface can come into contact with outside air taken in from the outside of the vehicle. The housing 2 in Embodiment 1 is formed in a box shape having an internal space 2a. The housing | casing 2 has thermal conductivity, for example, is comprised with iron, copper, aluminum, etc. The housing 2 closes the internal space 2a with a lid. When waterproofing is required for the vehicle battery pack 1A, a waterproof structure is formed between the housing 2 and the lid, and the internal space 2a is sealed.

複数個の電池3は、それぞれが充放電可能な二次電池である。本実施形態1の電池3は、例えば、鉛直方向に延びる円筒型のリチウムイオン電池で構成される。複数個の電池3は、筐体2の内部空間2aに配列され、かつ筐体2に保持部材により保持される。本実施形態1における複数個の電池3は、筐体2の内部空間2aにおいて鉛直方向と直交する方向(幅方向または奥行き方向)に互いに間隔をあけて千鳥格子状または正方格子状に配列される。なお、複数個の電池3を筐体2に保持する保持部材については、どのような構造、構成であってもよい。   Each of the plurality of batteries 3 is a secondary battery that can be charged and discharged. The battery 3 according to the first embodiment is constituted by, for example, a cylindrical lithium ion battery extending in the vertical direction. The plurality of batteries 3 are arranged in the internal space 2 a of the housing 2 and are held on the housing 2 by a holding member. The plurality of batteries 3 according to the first embodiment are arranged in a staggered or square lattice in the internal space 2a of the housing 2 at intervals in the direction perpendicular to the vertical direction (width direction or depth direction). The The holding member that holds the plurality of batteries 3 in the housing 2 may have any structure and configuration.

蓄熱部材4は、熱伝導性および蓄熱性を有し、筐体2よりも蓄熱量が大きく、顕熱または潜熱または顕熱および潜熱の両方を行うことができる蓄熱材で構成される。蓄熱材は、顕熱を行うものとして、例えば、シリコンオイル等の油がある。また、潜熱を行うものとして、例えば、パラフィン、エチレングリコール、グリセリン、アセトン等がある。また、顕熱および潜熱を行うものとして、例えば、水、ブライン等がある。蓄熱材は、蓄熱部材4の主成分として含まれている材料であることが好ましい。潜熱を行う蓄熱材は、物質が固体から液体に相変化(融解)するときに熱を蓄え(蓄熱)、液体から固体に相変化(凝固)するときに熱を放出(放熱)する性質を利用して、蓄熱または放熱する。そのため、蓄熱部材4が潜熱蓄熱材である場合、凝固点を境にして液体と固体とに相転移する。   The heat storage member 4 has a thermal conductivity and a heat storage property, and has a heat storage amount larger than that of the housing 2, and is configured of a heat storage material capable of performing sensible heat or latent heat or both sensible heat and latent heat. Examples of the heat storage material that perform sensible heat include oil such as silicone oil. Moreover, there exist paraffin, ethylene glycol, glycerol, acetone etc. as what performs a latent heat, for example. Moreover, there exist water, a brine, etc. as what performs sensible heat and latent heat. The heat storage material is preferably a material contained as a main component of the heat storage member 4. A heat storage material that performs latent heat uses the property of storing heat (storage) when a substance undergoes a phase change (melting) from a solid to a liquid and releases heat (dissipates heat) when the phase changes (solidifies) from a liquid to a solid. Heat storage or heat dissipation. For this reason, when the heat storage member 4 is a latent heat storage material, the phase transitions to a liquid and a solid at the freezing point.

蓄熱部材4は、少なくとも各電池3および筐体2と直接熱的に接続される。ここで、蓄熱部材4が各電池3および筐体2と直接熱的に接続されるとは、各電池3および筐体2と接触することで、蓄熱部材4と、各電池3および筐体2との間で直接的に熱の授受が可能な場合をいう。本実施形態1における蓄熱部材4は、流動性を有し、複数個の電池3と鉛直方向に対向する筐体2の内部底面2bに貯留する。蓄熱部材4は、筐体2の内部空間2aを残して収容され、かつ各電池3を少なくとも部分的に覆うように形成(または貯留)される。蓄熱部材4は、液体に相変化した状態において、車両が傾斜していない状態で複数個の電池3のすべてを全体的に覆うように貯留されていてもよいし、車両が最大安定傾斜角まで傾斜しても複数個の電池3すべてを少なくとも部分的に覆うように貯留されていてもよい。   The heat storage member 4 is directly thermally connected to at least each battery 3 and the housing 2. Here, the fact that the heat storage member 4 is directly thermally connected to each battery 3 and the case 2 is in contact with each battery 3 and the case 2, so that the heat storage member 4, each battery 3, and the case 2 are in contact with each other. The case where heat can be exchanged directly with the. The heat storage member 4 in the first embodiment has fluidity and is stored in the inner bottom surface 2b of the housing 2 that faces the plurality of batteries 3 in the vertical direction. The heat storage member 4 is accommodated leaving the internal space 2a of the housing 2 and formed (or stored) so as to at least partially cover each battery 3. The heat storage member 4 may be stored so as to entirely cover all of the plurality of batteries 3 in a state where the vehicle is not inclined in a state where the phase is changed to a liquid, or the vehicle is kept up to the maximum stable inclination angle. Even if it inclines, it may be stored so that all the some battery 3 may be covered at least partially.

ヒータ9は、発熱体である。ヒータ9は、蓄熱部材4に埋設され、外部からの通電により蓄熱部材4を加熱するものである。本実施形態1におけるヒータ9は、幅方向および奥行き方向にそれぞれ延在して形成され、筐体2の内部底面2b上に配置されている。ヒータ9は、上下方向から見た場合に、外周形状が矩形状に形成され、幅方向および奥行き方向に複数個の電池3を覆うような大きさを有する。ヒータ9は、各電池3の底面の近傍に配置される。ヒータ9は、例えば、ニクロム線やPTC(Positive Temperature Coefficient)半導体等で構成される。ヒータ9は、ヒータ用配線(不図示)を介して筐体2の外部の温度調整器10に接続されている。   The heater 9 is a heating element. The heater 9 is embedded in the heat storage member 4 and heats the heat storage member 4 by energization from the outside. The heater 9 according to the first embodiment is formed to extend in the width direction and the depth direction, and is disposed on the inner bottom surface 2 b of the housing 2. The heater 9 is formed in a rectangular shape when viewed from above and below, and has a size that covers the plurality of batteries 3 in the width direction and the depth direction. The heater 9 is disposed in the vicinity of the bottom surface of each battery 3. The heater 9 is made of, for example, a nichrome wire or a PTC (Positive Temperature Coefficient) semiconductor. The heater 9 is connected to a temperature regulator 10 outside the housing 2 via a heater wiring (not shown).

温度調整器10は、温度センサ(不図示)により検出される電池の温度に応じて、ヒータ9の温度を調整するものである。温度センサは、例えば、サーミスタ等で構成され、電池3の内部または近傍に設置されている。温度センサは、電池3の温度に応じた温度センサ信号13を出力する。温度調整器10は、ヒータドライバ11と、BMU12とを含んで構成される。ヒータドライバ11は、電源20から供給される電力を用いて、BMU12からの制御信号に基づいてヒータ9にヒータ電流14を流して通電制御を行う。BMU(Battery Management Unit)12は、電圧センサ(不図示)や温度センサにより検出された電池3の電圧や温度等により電池3の状態を監視したり、電池3の電圧や温度等を制御するものである。本実施形態1のBMU12は、温度センサから入力された温度センサ信号13に基づいてヒータドライバ11に制御信号を送信して、ヒータ電流14を制御する。温度調整器10は、電源20から印加される12V電圧により駆動する。電源20は、例えば、12Vバッテリ等で構成され、ヒータドライバ11およびBMU12に電力を供給する。   The temperature adjuster 10 adjusts the temperature of the heater 9 according to the battery temperature detected by a temperature sensor (not shown). The temperature sensor is composed of, for example, a thermistor or the like, and is installed in or near the battery 3. The temperature sensor outputs a temperature sensor signal 13 corresponding to the temperature of the battery 3. The temperature regulator 10 includes a heater driver 11 and a BMU 12. The heater driver 11 uses the power supplied from the power supply 20 to control the energization by causing the heater 9 to flow through the heater 9 based on a control signal from the BMU 12. The BMU (Battery Management Unit) 12 monitors the state of the battery 3 based on the voltage and temperature of the battery 3 detected by a voltage sensor (not shown) and the temperature sensor, and controls the voltage and temperature of the battery 3. It is. The BMU 12 of the first embodiment controls the heater current 14 by transmitting a control signal to the heater driver 11 based on the temperature sensor signal 13 input from the temperature sensor. The temperature regulator 10 is driven by a 12V voltage applied from the power supply 20. The power source 20 is composed of, for example, a 12V battery and supplies power to the heater driver 11 and the BMU 12.

次に、車両用電池パック1Aにおける温度調整器10の動作について図3を参照して説明する。温度調整器10は、例えば、車両の始動(例えば、イグニッションON)とともに起動するものとするが、これに限定されるものではない。例えば、タイマーよる自動起動やリモコンによる起動であってもよい。   Next, the operation of the temperature regulator 10 in the vehicle battery pack 1A will be described with reference to FIG. For example, the temperature regulator 10 is activated when the vehicle is started (for example, ignition ON), but is not limited thereto. For example, automatic activation by a timer or activation by a remote controller may be used.

ステップS10では、BMU12は、温度センサから温度センサ信号13を受信して電池3の温度Tを取得する。温度Tは、温度センサにより検出された電池3の温度である。   In step S <b> 10, the BMU 12 receives the temperature sensor signal 13 from the temperature sensor and acquires the temperature T of the battery 3. The temperature T is the temperature of the battery 3 detected by the temperature sensor.

ステップS11では、BMU12は、ステップS10で取得した電池3の温度Tが電池3の許容下限温度Tmin以下か否かを判定する。電池3の許容下限温度Tminは、電池3の放電時の使用温度範囲の下限温度であり、例えば、リチウムイオン電池の使用温度範囲が−20℃〜60℃の場合には−20℃である。電池3の許容下限温度Tminは、電池3の出力が大幅に低下する温度が好ましい。ステップS11の判定の結果、電池3の温度Tが許容下限温度Tmin以下である場合には、ステップS12に進む一方、電池3の温度Tが許容下限温度Tminより高い場合には、ステップS13へ進む。   In step S11, the BMU 12 determines whether or not the temperature T of the battery 3 acquired in step S10 is equal to or lower than the allowable lower limit temperature Tmin of the battery 3. The allowable lower limit temperature Tmin of the battery 3 is the lower limit temperature of the operating temperature range when the battery 3 is discharged. For example, when the operating temperature range of the lithium ion battery is −20 ° C. to 60 ° C., it is −20 ° C. The allowable lower limit temperature Tmin of the battery 3 is preferably a temperature at which the output of the battery 3 is significantly reduced. As a result of the determination in step S11, when the temperature T of the battery 3 is equal to or lower than the allowable lower limit temperature Tmin, the process proceeds to step S12. On the other hand, when the temperature T of the battery 3 is higher than the allowable lower limit temperature Tmin, the process proceeds to step S13. .

ステップS12では、BMU12は、ヒータドライバ11に制御信号を送信して、ヒータドライバ11からヒータ9へヒータ電流14を流してヒータ9に通電(ON)して、ステップS10に戻る。   In step S12, the BMU 12 transmits a control signal to the heater driver 11, passes the heater current 14 from the heater driver 11 to the heater 9, energizes the heater 9, and returns to step S10.

ステップS13では、BMU12は、ヒータ9がON状態の場合、ヒータドライバ11に制御信号を送信して、ヒータドライバ11からヒータ9へのヒータ電流14の通電を遮断(OFF)して、ステップS10に戻る。一方、ヒータ9がOFF状態の場合、BMU12は、ヒータ9のOFF状態を継続する。   In step S13, when the heater 9 is in the ON state, the BMU 12 transmits a control signal to the heater driver 11 to cut off (OFF) the heater current 14 from the heater driver 11 to the heater 9, and then proceeds to step S10. Return. On the other hand, when the heater 9 is in the OFF state, the BMU 12 continues the OFF state of the heater 9.

次に、実施形態1に係る車両用電池パック1Aの熱の移動について説明する。車両の冷間始動時において、ヒータ9の発熱により蓄熱部材4が加熱されると、蓄熱部材4に熱が蓄えられるとともに、蓄熱部材4の温度が上昇する。蓄熱部材4に蓄えられた熱は、各電池3の外周面3aを介して、各電池3に伝熱される。蓄熱部材4が、流動性を有する蓄熱材である場合、自然対流によって蓄熱部材4全体の昇温を進ませることができる。   Next, heat transfer of the vehicle battery pack 1A according to the first embodiment will be described. When the heat storage member 4 is heated by the heat generated by the heater 9 during cold start of the vehicle, heat is stored in the heat storage member 4 and the temperature of the heat storage member 4 rises. The heat stored in the heat storage member 4 is transferred to each battery 3 via the outer peripheral surface 3 a of each battery 3. When the heat storage member 4 is a fluid heat storage material, the temperature increase of the entire heat storage member 4 can be advanced by natural convection.

車両の走行当初は、各電池3と蓄熱部材4との温度は、同一であるため、熱の移動は発生しないが、走行中は、各電池3で熱が発生し、温度が上昇する。各電池3で発生した熱は、各電池3の外周面3aを介して、蓄熱部材4に伝熱され、蓄熱部材4に一旦蓄熱される。蓄熱部材4に蓄熱された熱は、一部が蓄熱部材4に接する筐体2の内部底面2bおよび内部側面2cに伝熱され、筐体2の外表面から外気等に放熱されるので、蓄熱部材4を介して各電池3が冷却される。蓄熱部材4が潜熱蓄熱材である場合、車両の急加速等で電池3に高負荷がかかり電池温度が急に上昇したときは、蓄熱部材4が相変化(融解)して蓄熱するので、電池3の温度上昇を抑制することが容易となる。   At the beginning of travel of the vehicle, the temperature of each battery 3 and the heat storage member 4 is the same, so no heat transfer occurs, but during travel, heat is generated in each battery 3 and the temperature rises. The heat generated in each battery 3 is transferred to the heat storage member 4 via the outer peripheral surface 3 a of each battery 3 and is once stored in the heat storage member 4. The heat stored in the heat storage member 4 is partly transferred to the inner bottom surface 2b and the inner side surface 2c of the housing 2 in contact with the heat storage member 4, and is radiated from the outer surface of the housing 2 to the outside air or the like. Each battery 3 is cooled via the member 4. When the heat storage member 4 is a latent heat storage material, when the battery 3 is subjected to a high load due to sudden acceleration of the vehicle and the battery temperature suddenly rises, the heat storage member 4 undergoes phase change (melting) and stores heat. 3 is easily suppressed.

本実施形態1に係る車両用電池パック1Aでは、蓄熱部材4が潜熱蓄熱材である場合、相変化温度が、電池3の許容上限温度(例えばリチウムイオン電池の場合には60℃)より低く設定されることが好ましい。例えば、リチウムイオン電池は、使用可能温度の範囲(例えば30℃〜50℃)で使用すると電池出力や電池寿命に対する影響を抑えることが可能であるが、許容上限温度60℃を超える環境で使用すると劣化が進む。そこで、蓄熱部材4の相変化温度を、許容上限温度60℃よりも低い温度、例えば30℃〜50℃の範囲で設定する。これにより、電池温度が上昇して蓄熱部材4の相変化温度付近になると、蓄熱部材4の相変化(融解)による蓄熱で電池温度の上昇を抑制することができ、電池3を許容上限温度60℃以下で使用することが可能となるので、温度上昇による劣化の進行を抑制することができる。さらに電池温度が上昇した場合、液体に相変化した蓄熱部材4が自然対流や車両走行時の揺れ等によって流動し、液温の均一化が急速に進むとともに、筐体2の内部底面2bや内部側面2cに繰り返し伝熱され、筐体2の外表面から外気等への放熱が促されるので、電池3を継続的に許容上限温度60℃以下で使用することができ、電池3の劣化の進行を抑制することができる。   In the vehicle battery pack 1A according to the first embodiment, when the heat storage member 4 is a latent heat storage material, the phase change temperature is set lower than the allowable upper limit temperature of the battery 3 (for example, 60 ° C. in the case of a lithium ion battery). It is preferred that For example, when a lithium ion battery is used in a usable temperature range (for example, 30 ° C. to 50 ° C.), it is possible to suppress the influence on battery output and battery life, but when used in an environment exceeding the allowable upper limit temperature of 60 ° C. Deterioration progresses. Therefore, the phase change temperature of the heat storage member 4 is set to a temperature lower than the allowable upper limit temperature 60 ° C., for example, in the range of 30 ° C. to 50 ° C. Thereby, when battery temperature rises and it becomes the phase change temperature vicinity of the thermal storage member 4, the rise in battery temperature can be suppressed by the thermal storage by the phase change (melting | fusing) of the thermal storage member 4, and the allowable upper limit temperature 60 is set for the battery 3. Since it can be used at a temperature not higher than ° C., the progress of deterioration due to temperature rise can be suppressed. Further, when the battery temperature rises, the heat storage member 4 that has changed into a liquid flows due to natural convection or shaking during vehicle traveling, etc. Since heat is repeatedly transferred to the side surface 2c and heat radiation from the outer surface of the housing 2 to the outside air or the like is promoted, the battery 3 can be continuously used at an allowable upper limit temperature of 60 ° C. or less, and the deterioration of the battery 3 proceeds. Can be suppressed.

また、本実施形態1に係る車両用電池パック1Aでは、蓄熱部材4が筐体2の内部空間2aを残して収容されていることから、蓄熱部材4が潜熱蓄熱材である場合、凝固時の膨張による電池3へのダメージを回避することが可能となる。   Further, in the vehicle battery pack 1A according to the first embodiment, since the heat storage member 4 is accommodated leaving the internal space 2a of the housing 2, when the heat storage member 4 is a latent heat storage material, It is possible to avoid damage to the battery 3 due to expansion.

以上のように、実施形態1に係る車両用電池パック1Aは、筐体2と、筐体2の内部空間2aに配列され、かつ筐体2に保持される複数個の電池3と、少なくとも各電池3および筐体2と直接熱的に接続されるとともに、筐体2に収容され、かつ筐体2よりも蓄熱量が大きい蓄熱部材4と、筐体2に収容され、かつ蓄熱部材4を加熱するヒータ9と、ヒータ9で蓄熱部材4を加熱して複数個の電池3を昇温する昇温制御を行う温度調整器10とを備える。   As described above, the vehicle battery pack 1A according to the first embodiment includes the casing 2, the plurality of batteries 3 arranged in the internal space 2a of the casing 2, and held in the casing 2, and at least each A heat storage member 4 that is directly thermally connected to the battery 3 and the housing 2, is housed in the housing 2, and has a larger heat storage amount than the housing 2, and is housed in the housing 2, and the heat storage member 4 is A heater 9 for heating is provided, and a temperature regulator 10 for performing temperature increase control for heating the heat storage member 4 with the heater 9 to raise the temperature of the plurality of batteries 3.

上記構成を有する車両用電池パック1Aによれば、ヒータ9の発熱により蓄熱部材4を加熱し、蓄熱部材4に蓄えられた熱により各電池3を昇温させるので、冷間始動時であっても電池出力の低下を抑制することができる。また、電池3の昇温のために新たに設けるスペースを最小とすることができ、車両用電池パック1Aの容積に対するエネルギー密度の低下も最小限に抑えることができる。   According to the vehicle battery pack 1 </ b> A having the above configuration, the heat storage member 4 is heated by the heat generated by the heater 9, and each battery 3 is heated by the heat stored in the heat storage member 4. Also, a decrease in battery output can be suppressed. Moreover, the space newly provided for raising the temperature of the battery 3 can be minimized, and the decrease in the energy density with respect to the volume of the vehicle battery pack 1A can be minimized.

また、上記構成を有する車両用電池パック1Aは、蓄熱部材4が、流動性を有し、複数個の電池3と鉛直方向に対向する筐体2の内部底面2bに貯留するので、ヒータ9の発熱により蓄熱部材4が加熱されると、自然対流によって蓄熱部材4全体の昇温が進むので、各電池3を略均一に暖めることが可能となる。   Further, in the vehicle battery pack 1A having the above-described configuration, the heat storage member 4 has fluidity and is stored in the inner bottom surface 2b of the casing 2 facing the plurality of batteries 3 in the vertical direction. When the heat storage member 4 is heated by heat generation, the temperature of the entire heat storage member 4 is increased by natural convection, so that each battery 3 can be heated substantially uniformly.

また、上記構成を有する車両用電池パック1Aは、蓄熱部材4が、潜熱蓄熱材または顕熱蓄熱材の少なくとも一方が含まれるので、例えば、蓄熱部材4が顕熱蓄熱材である場合、ヒータ9の発熱により蓄熱部材4が加熱されると、蓄熱部材4の温度が上昇し、その熱が各電池3に伝わって、電池3を容易に昇温させることができる。一方、蓄熱部材4が潜熱蓄熱材である場合、電池温度が急上昇しても、蓄熱部材4の相変化による蓄熱で電池3の温度上昇を抑制することが可能となる。   Further, in the vehicle battery pack 1A having the above configuration, the heat storage member 4 includes at least one of a latent heat storage material and a sensible heat storage material. For example, when the heat storage member 4 is a sensible heat storage material, the heater 9 When the heat storage member 4 is heated by this heat generation, the temperature of the heat storage member 4 rises, the heat is transmitted to each battery 3, and the battery 3 can be easily heated. On the other hand, when the heat storage member 4 is a latent heat storage material, even if the battery temperature rises rapidly, it becomes possible to suppress the temperature rise of the battery 3 by heat storage due to the phase change of the heat storage member 4.

[実施形態1の変形例1]
次に、実施形態1の変形例1に係る車両用電池パックについて説明する。図4は、実施形態1の変形例1に係る車両用電池パックの概略構成を示す部分平面図である。図5は、図4中のB−B断面図である。
[Modification 1 of Embodiment 1]
Next, a vehicle battery pack according to Modification 1 of Embodiment 1 will be described. FIG. 4 is a partial plan view showing a schematic configuration of the vehicle battery pack according to the first modification of the first embodiment. 5 is a cross-sectional view taken along the line BB in FIG.

本実施形態1の変形例1に係る車両用電池パック1Bは、筐体2が内部底面2bに形成された複数の間仕切り壁2dを有する点が上記車両用電池パック1Aと異なる。なお、以下に説明する実施形態1の変形例において、共通する構成は同一の符号を付して、その説明を省略または簡略化する。   The vehicle battery pack 1B according to the first modification of the first embodiment is different from the vehicle battery pack 1A in that the housing 2 has a plurality of partition walls 2d formed on the inner bottom surface 2b. In addition, in the modification of Embodiment 1 demonstrated below, a common structure attaches | subjects the same code | symbol and the description is abbreviate | omitted or simplified.

筐体2は、筐体2に対して、内部底面2bから鉛直方向に立設される1つまたは複数の間仕切り壁2dを有する点が異なる。複数の間仕切り壁2dは、鉛直方向から見た場合に、隣り合う電池3の間に配置される。複数の間仕切り壁2dは、車両状態を考慮して、その鉛直方向の高さ(以下、単に「高さ」と呼ぶ。)が、流動性を有する蓄熱部材4の液面レベルより低くなることが好ましい。例えば、車両が水平状態にあるときに、複数の間仕切り壁2dの高さが蓄熱部材4の液面レベルより低いことで、間仕切り壁2d間の蓄熱部材4が隣り合う間仕切り壁2d間の蓄熱部材4と連通して、蓄熱部材4の熱伝導性を維持することができる。   The case 2 is different from the case 2 in that it has one or a plurality of partition walls 2d erected in the vertical direction from the inner bottom surface 2b. The plurality of partition walls 2d are arranged between the adjacent batteries 3 when viewed from the vertical direction. In consideration of the vehicle state, the plurality of partition walls 2d may have a height in the vertical direction (hereinafter simply referred to as “height”) lower than the liquid level of the heat storage member 4 having fluidity. preferable. For example, when the vehicle is in a horizontal state, the heat storage member between the partition walls 2d adjacent to each other due to the height of the plurality of partition walls 2d being lower than the liquid level of the heat storage member 4 4, the thermal conductivity of the heat storage member 4 can be maintained.

本実施形態1の変形例1におけるヒータ9は、幅方向および奥行き方向に延在して形成され、間仕切り壁2d間の内部底面2b上にそれぞれ配置されている。ここで、間仕切り壁2d間とは、鉛直方向から見た場合に隣り合う間仕切り壁2d間、および、鉛直方向から見た場合に間仕切り壁2dと筐体2の内部側面2cとの間が含まれる。各ヒータ9は、上下方向からみた場合に、外周形状が矩形状に形成され、幅方向に配列された複数個の電池3を覆うような大きさを有する。各ヒータ9は、各電池3の底面の近傍に配置されることが好ましい。   The heaters 9 in the first modification of the first embodiment are formed to extend in the width direction and the depth direction, and are respectively disposed on the inner bottom surface 2b between the partition walls 2d. Here, the space between the partition walls 2d includes the space between the adjacent partition walls 2d when viewed from the vertical direction and the space between the partition wall 2d and the inner side surface 2c of the housing 2 when viewed from the vertical direction. . Each heater 9 has a size such that the outer peripheral shape is formed in a rectangular shape when viewed in the vertical direction and covers a plurality of batteries 3 arranged in the width direction. Each heater 9 is preferably arranged in the vicinity of the bottom surface of each battery 3.

次に、実施形態1の変形例1に係る車両用電池パック1Bの熱の移動について説明する。車両の冷間始動時において、ヒータ9の発熱により蓄熱部材4が加熱されると、蓄熱部材4に熱が蓄えられるとともに、蓄熱部材4の温度が上昇する。ここで、ヒータ9の周囲の蓄熱部材4の熱は、一部がヒータ9から上下方向のうちの上方向の電池3に伝熱され、一部がヒータ9の周囲の蓄熱部材4と隣り合う間仕切り壁2dを介して幅方向に向けて蓄熱部材4に伝熱され、蓄熱部材4全体の昇温を進ませる。蓄熱部材4に蓄えられた熱は、各電池3の外周面3aを介して、各電池3に伝熱される。   Next, heat transfer of the vehicle battery pack 1B according to the first modification of the first embodiment will be described. When the heat storage member 4 is heated by the heat generated by the heater 9 during cold start of the vehicle, heat is stored in the heat storage member 4 and the temperature of the heat storage member 4 rises. Here, part of the heat of the heat storage member 4 around the heater 9 is transferred from the heater 9 to the upper battery 3 in the vertical direction, and part of the heat is adjacent to the heat storage member 4 around the heater 9. Heat is transferred to the heat storage member 4 in the width direction via the partition wall 2d, and the temperature of the heat storage member 4 as a whole is increased. The heat stored in the heat storage member 4 is transferred to each battery 3 via the outer peripheral surface 3 a of each battery 3.

上記構成を有する車両用電池パック1Bは、筐体2が少なくとも1つの間仕切り壁2dを有するので、蓄熱部材4が流動性を有する場合、車両状態によって筐体2内で偏在しようとも、間仕切り壁2d間に必要最小限の蓄熱部材4を残すことが可能となる。その結果、電池3が部分的に蓄熱部材4に浸かる状態を維持することができる。ここで車両状態には、傾斜路や登坂路等の走行時および停車時等が含まれる。また、間仕切り壁2dにより蓄熱部材4の内部底面2b上の移動を制約するため、車両の重量バランスを維持することが容易となる。   In the vehicle battery pack 1B having the above configuration, since the housing 2 has at least one partition wall 2d, even if the heat storage member 4 has fluidity, the partition wall 2d may be unevenly distributed in the housing 2 depending on the vehicle state. It becomes possible to leave the minimum necessary heat storage member 4 in between. As a result, the state in which the battery 3 is partially immersed in the heat storage member 4 can be maintained. Here, the vehicle state includes when the vehicle is traveling on an inclined road or an uphill road, when the vehicle is stopped, and the like. Further, since the partition wall 2d restricts the movement of the heat storage member 4 on the inner bottom surface 2b, it is easy to maintain the weight balance of the vehicle.

なお、複数の間仕切り壁2dは、鉛直方向から見た場合に、隣り合う電池3の間に配置されていれば、図示の配置例に限定されるものではない。例えば、複数の間仕切り壁2dが、各電池3を囲むように格子状に配置されていてもよい。また、複数の間仕切り壁2dは、鉛直方向の上部に厚み方向(幅方向)に貫通する貫通孔が設けられていてもよい。また、複数の間仕切り壁2dは、鉛直方向の高さがすべて同じ高さであってもよいし、異なる高さであってもよい。   The plurality of partition walls 2d are not limited to the illustrated arrangement example as long as they are arranged between adjacent batteries 3 when viewed from the vertical direction. For example, a plurality of partition walls 2 d may be arranged in a lattice shape so as to surround each battery 3. Further, the plurality of partition walls 2d may be provided with a through-hole penetrating in the thickness direction (width direction) at the upper part in the vertical direction. Further, the plurality of partition walls 2d may all have the same height in the vertical direction or may have different heights.

[実施形態1の変形例2]
次に、実施形態1の変形例2に係る車両用電池パックについて説明する。図6は、実施形態1の変形例2に係る車両用電池パックの概略構成を示す断面図である。
[Modification 2 of Embodiment 1]
Next, a vehicle battery pack according to Modification 2 of Embodiment 1 will be described. FIG. 6 is a cross-sectional view illustrating a schematic configuration of the vehicle battery pack according to the second modification of the first embodiment.

本実施形態1の変形例2に係る車両用電池パック1Cは、蓄熱部材4に添加された熱伝導部材5を有する点が上記車両用電池パック1Aと異なる。   The vehicle battery pack 1C according to the second modification of the first embodiment is different from the vehicle battery pack 1A in that the vehicle battery pack 1C includes a heat conducting member 5 added to the heat storage member 4.

熱伝導部材5は、長さが数mm〜数cm程度の紐状の熱伝導材で構成される。熱伝導材は、蓄熱部材4よりも熱伝導性が高いものが好ましい。熱伝導材としては、例えばグラファイト、窒化ホウ素ナノチューブ(BNNT:boron nitride nanotube)等の熱伝導性フィラー、銅やアルミニウム等の金属がある。蓄熱部材4は、例えば熱伝導フィラーを添加したものは、添加していないものに比べて熱伝導率が高くなり、蓄熱部材4全体への熱の拡散が早くなる。すなわち、蓄熱材の時間当たりの蓄熱量Wは、下記の式(1)で表せることから、蓄熱材に熱伝導材を添加することで熱伝導率λが高くなると、蓄熱量Wを増やすことが可能となる。
蓄熱量W=熱伝導率λ×断面積A÷経路長さL×温度差ΔT・・・(1)
The heat conducting member 5 is formed of a string-like heat conducting material having a length of about several mm to several cm. The heat conductive material preferably has a higher thermal conductivity than the heat storage member 4. Examples of the heat conductive material include heat conductive fillers such as graphite and boron nitride nanotubes (BNNT), and metals such as copper and aluminum. For example, the heat storage member 4 to which a heat conductive filler is added has a higher thermal conductivity than that to which the heat storage filler 4 is not added, and heat diffusion to the entire heat storage member 4 is accelerated. That is, since the heat storage amount W per hour of the heat storage material can be expressed by the following formula (1), if the heat conductivity λ is increased by adding the heat conduction material to the heat storage material, the heat storage amount W may be increased. It becomes possible.
Thermal storage amount W = thermal conductivity λ × cross-sectional area A ÷ path length L × temperature difference ΔT (1)

熱伝導部材5は、蓄熱部材4と比重が同等または蓄熱部材4より比重が大きいことが好ましい。そのため、熱伝導部材5は、蓄熱材が液状の場合、蓄熱部材4内で生じる自然対流により拡散する。熱伝導部材5の比重の調整として、例えば、熱伝導部材5の一部または全部を樹脂等でコーティングする方法がある。熱伝導部材5は、電池3間の短絡を防止するために、樹脂等でコーティングされたものが好ましい。   The heat conducting member 5 preferably has the same specific gravity as the heat storage member 4 or a larger specific gravity than the heat storage member 4. Therefore, the heat conducting member 5 is diffused by natural convection generated in the heat storage member 4 when the heat storage material is liquid. As an example of adjusting the specific gravity of the heat conducting member 5, there is a method of coating part or all of the heat conducting member 5 with a resin or the like. The heat conducting member 5 is preferably coated with a resin or the like in order to prevent a short circuit between the batteries 3.

本実施形態1の変形例2におけるヒータ9は、実施形態1のヒータ9と同様に、幅方向および奥行き方向にそれぞれ延在して形成され、筐体2の内部底面2b上に配置されている。ヒータ9は、上下方向から見た場合に、外周形状が矩形状に形成され、幅方向および奥行き方向に複数個の電池3を覆うような大きさを有する。ヒータ9は、各電池3の底面の近傍に配置されることが好ましい。   The heater 9 in the second modification of the first embodiment is formed so as to extend in the width direction and the depth direction, respectively, like the heater 9 in the first embodiment, and is disposed on the inner bottom surface 2 b of the housing 2. . The heater 9 is formed in a rectangular shape when viewed from above and below, and has a size that covers the plurality of batteries 3 in the width direction and the depth direction. The heater 9 is preferably disposed in the vicinity of the bottom surface of each battery 3.

次に、実施形態1の変形例2に係る車両用電池パック1Cの熱の移動について説明する。車両の停車後において、蓄熱部材4の温度が低下する頃には、上述した比重の違いから全ての熱伝導部材5が筐体2の内部底面2b側に沈殿する。車両の冷間始動時に、ヒータ9の発熱により蓄熱部材4が加熱されると、蓄熱部材4に沈殿している熱伝導部材5のうち、ヒータ9の周囲にあるものが加熱される。暖められた熱伝導部材5が自然対流により蓄熱部材4内で拡散し、蓄熱部材4全体の温度が上昇する。蓄熱部材4に蓄えられた熱は、各電池3の外周面3aを介して、各電池3に伝熱される。   Next, heat transfer of the vehicle battery pack 1C according to the second modification of the first embodiment will be described. After the vehicle stops, when the temperature of the heat storage member 4 decreases, all the heat conducting members 5 settle on the inner bottom surface 2b side of the housing 2 due to the above-described difference in specific gravity. When the heat storage member 4 is heated by the heat generated by the heater 9 at the time of cold start of the vehicle, among the heat conducting members 5 precipitated on the heat storage member 4, those around the heater 9 are heated. The warmed heat conducting member 5 diffuses in the heat storage member 4 by natural convection, and the temperature of the heat storage member 4 as a whole rises. The heat stored in the heat storage member 4 is transferred to each battery 3 via the outer peripheral surface 3 a of each battery 3.

上記構成を有する車両用電池パック1Cは、熱伝導性が蓄熱部材4より高い熱伝導部材5を蓄熱部材4に添加する。これにより、ヒータ9で蓄熱部材4を加熱する際に、蓄熱部材4に添加された熱伝導部材5により熱の拡散が早くなる共に、時間当たりの蓄熱量が増えるので、蓄熱部材4に蓄熱された熱を各電池3に効率よく伝熱することができる。   1 C of vehicle battery packs which have the said structure add the heat conductive member 5 whose heat conductivity is higher than the heat storage member 4 to the heat storage member 4. FIG. As a result, when the heat storage member 4 is heated by the heater 9, the heat conduction member 5 added to the heat storage member 4 accelerates the diffusion of heat and increases the amount of heat stored per hour, so that the heat storage member 4 stores heat. Heat can be efficiently transferred to each battery 3.

[実施形態2]
次に、実施形態2に係る車両用電池パックについて説明する。図7は、実施形態2に係る車両用電池パックの概略構成を示す部分平面図である。図8は、図7中のC−C断面図である。
[Embodiment 2]
Next, the vehicle battery pack according to Embodiment 2 will be described. FIG. 7 is a partial plan view showing a schematic configuration of the vehicle battery pack according to the second embodiment. 8 is a cross-sectional view taken along the line CC in FIG.

本実施形態2に係る車両用電池パック1Dは、複数個の電池3と蓄熱部材4とを熱伝導部材5を介して熱的に接続する点が上記実施形態1に係る車両用電池パック1Aと異なる。なお、以下の説明において、上記実施形態1と共通する構成は同一の符号を付して、その説明を省略または簡略化する(以下、実施形態3,4も同様)。   The vehicle battery pack 1D according to the second embodiment is different from the vehicle battery pack 1A according to the first embodiment in that the plurality of batteries 3 and the heat storage member 4 are thermally connected through the heat conducting member 5. Different. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified (the same applies to the third and fourth embodiments).

本実施形態2に係る車両用電池パック1Dは、図7および図8に示すように、熱伝導部材5を含んで構成される。   The vehicle battery pack 1D according to the second embodiment includes a heat conducting member 5 as shown in FIGS.

本実施形態2における複数個の電池3は、図7に示すように、筐体2の内部空間2aにおいて幅方向(または奥行き方向)に千鳥格子状に配列されている。   As shown in FIG. 7, the plurality of batteries 3 in Embodiment 2 are arranged in a staggered pattern in the width direction (or depth direction) in the internal space 2 a of the housing 2.

熱伝導部材5は、蓄熱部材4よりも熱伝導性が高い熱伝導材で構成される。熱伝導材としては、例えば、グラファイト、熱伝導性フィラーを含有する樹脂、熱伝導性が高い金属材料である銅、アルミニウム等がある。本実施形態2における熱伝導部材5は、シート状のグラファイトで構成される。熱伝導部材5は、少なくとも各電池3および蓄熱部材4と熱的に接続される。ここで、熱伝導部材5が各電池3および蓄熱部材4と熱的に接続されるとは、直接各電池3と蓄熱部材4とを接触させることで熱伝導部材5と各電池3および蓄熱部材4との間で直接的に熱の授受が可能な場合、あるいは絶縁部材等の蓄熱部材4と筐体2との間に要求される条件に基づいた機能を有し、かつ熱伝導性を有する介在部材を介して熱伝導部材5と各電池3および蓄熱部材4との間で間接的に熱の授受が可能な場合をいう。   The heat conducting member 5 is composed of a heat conducting material having higher heat conductivity than the heat storage member 4. Examples of the heat conductive material include graphite, a resin containing a heat conductive filler, copper, aluminum which is a metal material having high heat conductivity, and the like. The heat conducting member 5 in the second embodiment is made of sheet-like graphite. The heat conducting member 5 is thermally connected to at least each battery 3 and the heat storage member 4. Here, that the heat conducting member 5 is thermally connected to each battery 3 and the heat storage member 4 means that each battery 3 and the heat storage member 4 are brought into direct contact with each other so that the heat conduction member 5, each battery 3 and the heat storage member are brought into contact with each other. 4 has a function based on conditions required between the heat storage member 4 such as an insulating member and the housing 2 when it can directly exchange heat with the housing 4, and has thermal conductivity. This refers to the case where heat can be indirectly exchanged between the heat conducting member 5 and each battery 3 and the heat storage member 4 via the interposition member.

熱伝導部材5は、複数個の電池3の配列方向に沿って配置され、複数個の電池3の各外周面3aに接触する。熱伝導部材5は、図7に示すように、鉛直方向から見た場合に、幅方向(X方向)に配列される各電池3の外周面3aに沿って波状に形成され、奥行き方向(Y方向)に電池3が隣り合う場合には、隣り合う電池3に挟まれて形成される。熱伝導部材5は、図8に示すように、電池3の外周面3aと接触する接触部5aと、当該接触部5aから鉛直方向に向かって延設された延設部5bとを有し、当該延設部5bが蓄熱部材4に浸かっている。蓄熱部材4は、熱伝導部材5の延設部5bが部分的に浸かる(「または埋没する」以下同じ)ように、筐体2の内部底面2b上に満たされている。   The heat conducting member 5 is arranged along the arrangement direction of the plurality of batteries 3 and is in contact with each outer peripheral surface 3 a of the plurality of batteries 3. As shown in FIG. 7, the heat conducting member 5 is formed in a wave shape along the outer peripheral surface 3 a of each battery 3 arranged in the width direction (X direction) when viewed from the vertical direction, and the depth direction (Y When the batteries 3 are adjacent to each other in the direction), the battery 3 is sandwiched between the adjacent batteries 3. As shown in FIG. 8, the heat conducting member 5 includes a contact portion 5 a that contacts the outer peripheral surface 3 a of the battery 3, and an extending portion 5 b that extends from the contact portion 5 a toward the vertical direction. The extended portion 5 b is immersed in the heat storage member 4. The heat storage member 4 is filled on the inner bottom surface 2b of the housing 2 so that the extended portion 5b of the heat conducting member 5 is partially immersed (the same applies hereinafter).

本実施形態2におけるヒータ9は、幅方向および奥行き方向にそれぞれ延在して形成され、筐体2の内部底面2b上に配置されている。ヒータ9は、上下方向から見た場合に、幅方向および奥行き方向に複数の熱伝導部材5を覆うような大きさを有する。ヒータ9は、上下方向から見た場合に、外周形状が矩形状に形成され、幅方向および奥行き方向に複数個の電池3を覆うような大きさを有する。ヒータ9は、熱伝導部材5の延設部5bの近傍に配置される。   The heater 9 in Embodiment 2 is formed to extend in the width direction and the depth direction, and is disposed on the inner bottom surface 2 b of the housing 2. The heater 9 has such a size as to cover the plurality of heat conducting members 5 in the width direction and the depth direction when viewed from the vertical direction. The heater 9 is formed in a rectangular shape when viewed from above and below, and has a size that covers the plurality of batteries 3 in the width direction and the depth direction. The heater 9 is disposed in the vicinity of the extending portion 5 b of the heat conducting member 5.

次に、実施形態2に係る車両用電池パック1Dの熱の移動について説明する。車両の冷間始動時において、ヒータ9の発熱により蓄熱部材4が加熱されると、蓄熱部材4に熱が蓄えられるとともに、蓄熱部材4の温度が上昇する。蓄熱部材4に蓄えられた熱は、延設部5bを介して熱伝導部材5に伝わり、接触部5aを介して各電池3に伝熱される。蓄熱部材4が、流動性を有する蓄熱材である場合、自然対流によって蓄熱部材4全体の昇温を進ませることができる。   Next, heat transfer of the vehicle battery pack 1D according to the second embodiment will be described. When the heat storage member 4 is heated by the heat generated by the heater 9 during cold start of the vehicle, heat is stored in the heat storage member 4 and the temperature of the heat storage member 4 rises. The heat stored in the heat storage member 4 is transmitted to the heat conducting member 5 through the extended portion 5b, and is transferred to each battery 3 through the contact portion 5a. When the heat storage member 4 is a fluid heat storage material, the temperature increase of the entire heat storage member 4 can be advanced by natural convection.

車両の走行当初は、各電池3と蓄熱部材4との温度差がないため、熱の移動は発生しないが、走行中は、各電池3で熱が発生し、温度が上昇する。各電池3で発生した熱は、各電池3の外周面3aを介して、熱伝導部材5に伝熱される。熱伝導部材5に伝わった熱は、蓄熱部材4に伝熱され、蓄熱部材4に一旦蓄熱される。各電池3は、熱伝導部材5を介して蓄熱部材4に熱を奪われ続けることで温度上昇が緩やかになる。各電池3に短時間で高負荷がかかり電池温度が上昇したときでも、車両の走行による揺れ等により蓄熱部材4から筐体2の内部側面2c等に繰り返し伝熱され、筐体2の外表面から外気等に放熱されることで、電池3の温度上昇が緩やかになり、電池温度が適正範囲に保持される時間が長くなる。   Since there is no temperature difference between each battery 3 and the heat storage member 4 at the beginning of traveling of the vehicle, no heat transfer occurs, but heat is generated in each battery 3 and the temperature rises during traveling. The heat generated in each battery 3 is transferred to the heat conducting member 5 through the outer peripheral surface 3 a of each battery 3. The heat transferred to the heat conducting member 5 is transferred to the heat storage member 4 and temporarily stored in the heat storage member 4. As each battery 3 continues to be deprived of heat by the heat storage member 4 via the heat conducting member 5, the temperature rise becomes moderate. Even when a high load is applied to each battery 3 in a short time and the battery temperature rises, heat is repeatedly transferred from the heat storage member 4 to the inner side surface 2c of the housing 2 due to shaking caused by traveling of the vehicle, and the outer surface of the housing 2 Since the heat is radiated from the air to the outside air or the like, the temperature rise of the battery 3 is moderated, and the time during which the battery temperature is maintained in an appropriate range becomes longer.

以上のように、実施形態2に係る車両用電池パック1Dは、筐体2と、筐体2の内部空間2aに配列され、かつ筐体2に保持される複数個の電池3と、少なくとも筐体2と熱的に接続されるとともに、筐体2に収容され、かつ筐体2よりも蓄熱量が大きい蓄熱部材4と、少なくとも各電池3および蓄熱部材4と熱的に接続されるとともに、筐体2に収容される熱伝導部材5と、筐体2に収容され、かつ蓄熱部材4を加熱するヒータ9と、ヒータ9で蓄熱部材4を加熱して複数個の電池3を昇温する昇温制御を行う温度調整器10とを備える。   As described above, the vehicle battery pack 1D according to the second embodiment includes the housing 2, the plurality of batteries 3 arranged in the internal space 2a of the housing 2, and held in the housing 2, and at least the housing. While being thermally connected to the body 2 and being thermally connected to the heat storage member 4 housed in the housing 2 and having a larger heat storage amount than the housing 2, at least each battery 3 and the heat storage member 4, The heat conducting member 5 housed in the housing 2, the heater 9 housed in the housing 2 and heating the heat storage member 4, and the plurality of batteries 3 are heated by heating the heat storage member 4 with the heater 9. And a temperature regulator 10 for performing temperature rise control.

上記構成を有する車両用電池パック1Dによれば、ヒータ9の発熱により蓄熱部材4を加熱し、蓄熱部材4に蓄熱された熱を熱伝導部材5を介して各電池3に伝熱して昇温させるので、冷間始動時であっても電池出力の低下を抑制することができる。また、電池3の昇温のために新たに設けるスペースを最小とすることができ、車両用電池パック1Dの容積に対するエネルギー密度の低下も最小限に抑えることができる。   According to the vehicle battery pack 1 </ b> D having the above configuration, the heat storage member 4 is heated by the heat generated by the heater 9, and the heat stored in the heat storage member 4 is transferred to each battery 3 through the heat conducting member 5 to increase the temperature. Therefore, it is possible to suppress a decrease in battery output even during cold start. Moreover, the space newly provided for raising the temperature of the battery 3 can be minimized, and the decrease in the energy density with respect to the volume of the vehicle battery pack 1D can be minimized.

[実施形態2の変形例1]
次に、実施形態2の変形例1に係る車両用電池パックについて説明する。図9は、実施形態2の変形例1に係る車両用電池パックの概略構成を示す縦断面図である。
[Modification 1 of Embodiment 2]
Next, a vehicle battery pack according to Modification 1 of Embodiment 2 will be described. FIG. 9 is a longitudinal sectional view showing a schematic configuration of the vehicle battery pack according to the first modification of the second embodiment.

実施形態2の変形例1に係る車両用電池パック1Eは、熱伝導部材5が、鉛直方向の端部に内部底面2bに接触する延設部5bを有する点が上記車両用電池パック1Dと異なる。なお、以下に説明する実施形態2の変形例において、共通する構成は同一の符号を付して、その説明を省略または簡略化する。   The vehicle battery pack 1E according to the first modification of the second embodiment is different from the vehicle battery pack 1D in that the heat conducting member 5 has an extended portion 5b that contacts the inner bottom surface 2b at the end in the vertical direction. . In addition, in the modification of Embodiment 2 demonstrated below, a common structure attaches | subjects the same code | symbol and the description is abbreviate | omitted or simplified.

熱伝導部材5は、延設部5bが部分的に蓄熱部材4に浸かるとともに、延設部5bの鉛直方向の端部5cが筐体2の内部底面2bと接触する。本実施形態における熱伝導部材5は、延設部5bの鉛直方向の端部5cがL字形状を有し、端部5cの鉛直方向に向く面が筐体2の内部底面2bに対して面接触する。   In the heat conducting member 5, the extended portion 5 b is partially immersed in the heat storage member 4, and the vertical end 5 c of the extended portion 5 b is in contact with the inner bottom surface 2 b of the housing 2. In the heat conductive member 5 according to the present embodiment, the end portion 5c in the vertical direction of the extending portion 5b has an L shape, and the surface of the end portion 5c that faces in the vertical direction faces the inner bottom surface 2b of the housing 2. Contact.

本実施形態2の変形例1におけるヒータ9は、幅方向および奥行き方向に延在して形成され、延設部5b間の内部底面2b上にそれぞれ配置されている。ここで、延設部5b間とは、鉛直方向から見た場合に隣り合う延設部5b間、および、鉛直方向から見た場合に延設部5bと筐体2の内部側面2cとの間が含まれる。各ヒータ9は、上下方向から見て奥行き方向に沿って長辺を有する矩形状に形成される。各ヒータ9は、各熱伝導部材5の延設部5bの近傍に配置される。   The heaters 9 in Modification 1 of Embodiment 2 are formed to extend in the width direction and the depth direction, and are respectively disposed on the inner bottom surface 2b between the extending portions 5b. Here, between the extended portions 5b is between the adjacent extended portions 5b when viewed from the vertical direction, and between the extended portion 5b and the inner side surface 2c of the housing 2 when viewed from the vertical direction. Is included. Each heater 9 is formed in a rectangular shape having a long side along the depth direction when viewed from the vertical direction. Each heater 9 is disposed in the vicinity of the extending portion 5 b of each heat conducting member 5.

次に、実施形態2の変形例1に係る車両用電池パック1Eの熱の移動について説明する。車両の冷間始動時において、ヒータ9の発熱により蓄熱部材4が加熱されると、蓄熱部材4に熱が蓄えられるとともに、蓄熱部材4の温度が上昇する。蓄熱部材4に蓄えられた熱は、延設部5bを介して熱伝導部材5に伝わり、接触部5aを介して各電池3に伝熱される。また、蓄熱部材4に蓄えられた熱が、内部側面2cおよび内部底面2bを介して筐体2に伝わるとともに、熱伝導部材5に伝わった熱が、端部5cを介して筐体2にも伝わることで、筐体2全体を暖めることができる。   Next, heat transfer of the vehicle battery pack 1E according to the first modification of the second embodiment will be described. When the heat storage member 4 is heated by the heat generated by the heater 9 during cold start of the vehicle, heat is stored in the heat storage member 4 and the temperature of the heat storage member 4 rises. The heat stored in the heat storage member 4 is transmitted to the heat conducting member 5 through the extended portion 5b, and is transferred to each battery 3 through the contact portion 5a. Further, the heat stored in the heat storage member 4 is transmitted to the housing 2 through the inner side surface 2c and the inner bottom surface 2b, and the heat transmitted to the heat conducting member 5 is also transmitted to the housing 2 through the end portion 5c. By being transmitted, the entire housing 2 can be warmed.

上記構成を有する車両用電池パック1Eでは、車両の走行時および走行直後に各電池3で発生した熱は、各電池3の外周面3aから接触部5aを介して熱伝導部材5に伝わる。熱伝導部材5に伝わった熱は、当該熱伝導部材5の鉛直方向に延在する延設部5bに移動し、当該延設部5bから蓄熱部材4に伝わり、当該蓄熱部材4に蓄熱される。また、熱伝導部材5に伝わった熱は、一部が端部5cと面接触する筐体2の内部底面2bに伝熱され、筐体2の外表面から外気に放熱される。   In the vehicle battery pack 1E having the above-described configuration, heat generated in each battery 3 during and immediately after traveling of the vehicle is transmitted from the outer peripheral surface 3a of each battery 3 to the heat conducting member 5 through the contact portion 5a. The heat transmitted to the heat conducting member 5 moves to the extending portion 5b extending in the vertical direction of the heat conducting member 5, is transmitted from the extending portion 5b to the heat storage member 4, and is stored in the heat storage member 4. . Further, the heat transmitted to the heat conducting member 5 is transferred to the inner bottom surface 2b of the housing 2 partly in surface contact with the end portion 5c, and is radiated from the outer surface of the housing 2 to the outside air.

なお、延設部5bの端部5cは、L字形状を有するとしたが、筐体2の内部底面2bに接触するものであれば、どのような形状であってもよい。また、内部底面2bから鉛直方向に立設する立設部(不図示)を設け、当該立設部と延設部5bを幅方向で重ね合わせるように接触させる構成であってもよい。   The end 5c of the extending portion 5b has an L shape, but may have any shape as long as it contacts the inner bottom surface 2b of the housing 2. Moreover, the structure which provides the standing part (not shown) standing upright from the internal bottom face 2b, and contacts the said standing part and the extension part 5b so that it may overlap in the width direction may be sufficient.

[実施形態2の変形例2]
次に、実施形態2の変形例2に係る車両用電池パックについて説明する。図10は、実施形態2の変形例に係る車両用電池パックの概略構成を示す平面図である。図11は、図10中のD−D断面図である。
[Modification 2 of Embodiment 2]
Next, a vehicle battery pack according to Modification 2 of Embodiment 2 will be described. FIG. 10 is a plan view showing a schematic configuration of a vehicle battery pack according to a modification of the second embodiment. 11 is a cross-sectional view taken along the line DD in FIG.

実施形態2の変形例2に係る車両用電池パック1Fは、内部底面2bに複数の間仕切り壁2dが形成されている筐体2を有する点が上記車両用電池パック1Dと異なる。   The vehicle battery pack 1F according to the second modification of the second embodiment is different from the vehicle battery pack 1D in that the vehicle battery pack 1F includes a housing 2 in which a plurality of partition walls 2d are formed on the inner bottom surface 2b.

筐体2は、内部底面2bに鉛直方向に立設される1つまたは複数の間仕切り壁2dを有する。複数の間仕切り壁2dは、鉛直方向から見た場合に、隣り合う延設部5bの間に配置される。   The housing 2 has one or a plurality of partition walls 2d erected in the vertical direction on the inner bottom surface 2b. The plurality of partition walls 2d are disposed between adjacent extending portions 5b when viewed from the vertical direction.

本実施形態2の変形例2におけるヒータ9は、幅方向および奥行き方向に延在して形成され、間仕切り壁2d間の内部底面2b上にそれぞれ配置されている。ここで、間仕切り壁2d間とは、鉛直方向から見た場合に隣り合う間仕切り壁2d間、および、鉛直方向から見た場合に間仕切り壁2dと筐体2の内部側面2cとの間が含まれる。ヒータ9は、図9に示すヒータ9と同様に、上下方向から見て奥行き方向に沿って長辺を有する矩形状に形成される。各ヒータ9は、各伝熱部材5Cの延設部5bの近傍に配置される。   The heaters 9 in the second modification of the second embodiment are formed to extend in the width direction and the depth direction, and are respectively disposed on the inner bottom surface 2b between the partition walls 2d. Here, the space between the partition walls 2d includes the space between the adjacent partition walls 2d when viewed from the vertical direction and the space between the partition wall 2d and the inner side surface 2c of the housing 2 when viewed from the vertical direction. . Similarly to the heater 9 shown in FIG. 9, the heater 9 is formed in a rectangular shape having long sides along the depth direction when viewed from the vertical direction. Each heater 9 is disposed in the vicinity of the extending portion 5b of each heat transfer member 5C.

次に、実施形態2の変形例2に係る車両用電池パック1Fの熱の移動について説明する。車両の冷間始動時において、ヒータ9の発熱により蓄熱部材4が加熱されると、蓄熱部材4に熱が蓄えられるとともに、蓄熱部材4の温度が上昇する。ここで、ヒータ9の周囲の蓄熱部材4の熱は、一部がヒータ9から最も近い延設部5bを介して熱伝導部材5に伝わり、接触部5aを介して電池3に伝熱される。さらに、ヒータ9の熱の一部が、当該ヒータ9の周囲の蓄熱部材4と隣り合う間仕切り壁2dを介して幅方向に向けて蓄熱部材4に伝熱され、蓄熱部材4全体の昇温を進ませることができる。蓄熱部材4に蓄えられた熱は、延設部5bを介して熱伝導部材5に伝わり、接触部5aを介して各電池3に伝熱される。   Next, heat transfer of the vehicle battery pack 1F according to the second modification of the second embodiment will be described. When the heat storage member 4 is heated by the heat generated by the heater 9 during cold start of the vehicle, heat is stored in the heat storage member 4 and the temperature of the heat storage member 4 rises. Here, a part of the heat of the heat storage member 4 around the heater 9 is transmitted to the heat conducting member 5 through the extended portion 5b closest to the heater 9, and is transferred to the battery 3 through the contact portion 5a. Further, a part of the heat of the heater 9 is transferred to the heat storage member 4 in the width direction via the partition wall 2d adjacent to the heat storage member 4 around the heater 9 to increase the temperature of the entire heat storage member 4. Can advance. The heat stored in the heat storage member 4 is transmitted to the heat conducting member 5 through the extended portion 5b, and is transferred to each battery 3 through the contact portion 5a.

本実施形態2の変形例2に係る車両用電池パック1Fでは、例えば、流動性を有する蓄熱部材4が、車両状態(傾斜路や登坂路等の走行時および停車時等)によって筐体2の内部底面2b上で偏在しようとも、複数の間仕切り壁2d間に必要最小限の蓄熱部材4を残すことが可能となり、延設部5bが部分的に蓄熱部材4に浸かる状態を維持することができる。この間仕切り壁2d間には、鉛直方向から見た場合に隣り合う間仕切り壁2d間、および、鉛直方向から見た場合に間仕切り壁2dと筐体2の内部側面20cとの間が含まれる。複数の間仕切り壁2dは、蓄熱部材4の内部底面2b上の移動を制約するため、車両の重量バランスを維持することが容易となる。   In the vehicle battery pack 1F according to the second modification of the second embodiment, for example, the heat storage member 4 having fluidity is provided in the housing 2 depending on the vehicle state (when traveling on an inclined road or an uphill road or when stopping). Even if it is unevenly distributed on the inner bottom surface 2b, it is possible to leave the minimum necessary heat storage member 4 between the plurality of partition walls 2d, and it is possible to maintain a state in which the extending portion 5b is partially immersed in the heat storage member 4. . Between the partition walls 2d, there are included between adjacent partition walls 2d when viewed from the vertical direction and between the partition walls 2d and the inner side surface 20c of the housing 2 when viewed from the vertical direction. Since the plurality of partition walls 2d restrict movement on the inner bottom surface 2b of the heat storage member 4, it is easy to maintain the weight balance of the vehicle.

また、本実施形態2の変形例2に係る車両用電池パック1Fでは、複数の間仕切り壁2dは、車両状態を考慮して、その高さが、流動性を有する蓄熱部材4の液面レベルより低くなることが好ましい。例えば、車両が水平状態にあるときに、複数の間仕切り壁2dの高さが蓄熱部材4の液面レベルより低いことで、間仕切り壁2d間の蓄熱部材4が隣り合う間仕切り壁2d間の蓄熱部材4と連通して、蓄熱部材4の熱伝導性を維持することができる。   Further, in the vehicle battery pack 1F according to the second modification of the second embodiment, the plurality of partition walls 2d have a height higher than the liquid level of the heat storage member 4 having fluidity in consideration of the vehicle state. It is preferable to lower. For example, when the vehicle is in a horizontal state, the heat storage member between the partition walls 2d adjacent to each other due to the height of the plurality of partition walls 2d being lower than the liquid level of the heat storage member 4 4, the thermal conductivity of the heat storage member 4 can be maintained.

[実施形態2の変形例3]
次に、実施形態2の変形例3に係る車両用電池パックについて説明する。図12は、実施形態2の変形例3に係る車両用電池パックの概略構成を示す縦断面図である。
[Modification 3 of Embodiment 2]
Next, a vehicle battery pack according to Modification 3 of Embodiment 2 will be described. FIG. 12 is a longitudinal sectional view showing a schematic configuration of a vehicle battery pack according to Modification 3 of Embodiment 2.

本実施形態2の変形例3に係る車両用電池パック1Gは、熱伝導部材5が鉛直方向の端部に内部底面2bに接触する端部5cを有し、かつ筐体2が内部底面2bに形成された複数の間仕切り壁2dを有する点が上記車両用電池パック1Dと異なる。   In the vehicle battery pack 1G according to the third modification of the second embodiment, the heat conducting member 5 has an end portion 5c in contact with the inner bottom surface 2b at an end portion in the vertical direction, and the housing 2 is formed on the inner bottom surface 2b. It differs from the vehicle battery pack 1D in that it has a plurality of formed partition walls 2d.

本実施形態2の変形例3におけるヒータ9は、幅方向および奥行き方向に延在して形成され、延設部5b間の内部底面2b上にそれぞれ配置されている。ヒータ9は、図9に示すヒータ9と同様に、上下方向から見て奥行き方向に沿って長辺を有する矩形状に形成される。各ヒータ9は、各熱伝導部材5Cの延設部5bの近傍に配置される。   The heaters 9 in Modification 3 of Embodiment 2 are formed to extend in the width direction and the depth direction, and are respectively disposed on the inner bottom surface 2b between the extending portions 5b. Similarly to the heater 9 shown in FIG. 9, the heater 9 is formed in a rectangular shape having long sides along the depth direction when viewed from the vertical direction. Each heater 9 is disposed in the vicinity of the extending portion 5b of each heat conducting member 5C.

次に、実施形態2の変形例3に係る車両用電池パック1Gの熱の移動について説明する。車両の冷間始動時において、ヒータ9の発熱により蓄熱部材4が加熱されると、蓄熱部材4に熱が蓄えられるとともに、蓄熱部材4の温度が上昇する。ここで、ヒータ9の周囲の蓄熱部材4の熱は、一部がヒータ9から最も近い延設部5bを介して熱伝導部材5に伝わり、接触部5aを介して電池3に伝熱される。さらに、ヒータ9の熱の一部が、当該ヒータ9の周囲の蓄熱部材4と隣り合う間仕切り壁2dを介して幅方向に向けて蓄熱部材4に伝熱され、蓄熱部材4全体の昇温を進ませることができる。蓄熱部材4に蓄えられた熱は、延設部5bを介して熱伝導部材5に伝わり、接触部5aを介して各電池3に伝熱される。また、蓄熱部材4から熱伝導部材5に伝わった熱は、端部5cを介して筐体2にも伝わることで、筐体2全体を暖めることができる。   Next, heat transfer of the vehicle battery pack 1G according to the third modification of the second embodiment will be described. When the heat storage member 4 is heated by the heat generated by the heater 9 during cold start of the vehicle, heat is stored in the heat storage member 4 and the temperature of the heat storage member 4 rises. Here, a part of the heat of the heat storage member 4 around the heater 9 is transmitted to the heat conducting member 5 through the extended portion 5b closest to the heater 9, and is transferred to the battery 3 through the contact portion 5a. Further, a part of the heat of the heater 9 is transferred to the heat storage member 4 in the width direction via the partition wall 2d adjacent to the heat storage member 4 around the heater 9 to increase the temperature of the entire heat storage member 4. Can advance. The heat stored in the heat storage member 4 is transmitted to the heat conducting member 5 through the extended portion 5b, and is transferred to each battery 3 through the contact portion 5a. Further, the heat transferred from the heat storage member 4 to the heat conducting member 5 is also transferred to the housing 2 via the end portion 5c, so that the entire housing 2 can be warmed.

[実施形態3]
次に、実施形態3に係る車両用電池パックについて説明する。図13は、実施形態3に係る車両用電池パックの部分平面図である。
[Embodiment 3]
Next, a vehicle battery pack according to Embodiment 3 will be described. FIG. 13 is a partial plan view of the vehicle battery pack according to the third embodiment.

本実施形態3に係る車両用電池パック1Hは、蓄熱部材4が筐体2の内部側面2cに沿って形成され、複数個の電池3と蓄熱部材4とを熱伝導部材5を介して熱的に接続する点が上記実施形態1,2に係る車両用電池パック1A,1Dと異なる。なお、以下の説明において、上記実施形態1,2と共通する構成は同一の符号を付して、その説明を省略または簡略化する。   In the vehicle battery pack 1 </ b> H according to the third embodiment, the heat storage member 4 is formed along the inner side surface 2 c of the housing 2, and the plurality of batteries 3 and the heat storage member 4 are thermally connected via the heat conduction member 5. Is different from the vehicle battery packs 1A and 1D according to the first and second embodiments. In the following description, the same components as those in the first and second embodiments are denoted by the same reference numerals, and the description thereof is omitted or simplified.

本実施形態3に係る車両用電池パック1Hは、図13に示すように、熱伝導部材5を含んで構成される。   The vehicle battery pack 1H according to the third embodiment includes a heat conducting member 5 as shown in FIG.

本実施形態3における複数個の電池3は、それぞれ円筒型のリチウムイオン電池であり、第1配列方向としての幅方向に一列に配列された第1配列方向電池群BGを、第1配列方向と直交する方向である第2配列方向としての奥行き方向に複数配列される。   The plurality of batteries 3 in Embodiment 3 are each a cylindrical lithium ion battery, and the first array direction battery group BG arranged in a row in the width direction as the first array direction is defined as a first array direction. A plurality are arranged in the depth direction as the second arrangement direction which is a direction orthogonal to each other.

熱伝導部材5は、奥行き方向において各第1配列方向電池群BGを挟んで、各第1配列方向電池群BGと熱的に接続される複数の熱伝導板51により構成される。熱伝導板51は、電池3に対して上下方向に延在して形成されており、上下方向から見た場合に、幅方向に配列される各電池3の外周面3aの形状、すなわち曲面に沿って波状に形成され、奥行き方向に電池3が隣り合う場合には、隣り合う電池3に挟まれて形成されており、幅方向における両端部51a,51bが蓄熱部材4の内部に位置して形成される。つまり、熱伝導板51は、幅方向における中央部において、各電池3と熱的に接続され、両端部51a,51bにおいて、蓄熱部材4と熱的に接続される。なお、本実施形態における熱伝導部材5は、2つの熱伝導板51が奥行き方向において各第1配列方向電池群BGを挟んで、各電池3を筐体2に対して保持する保持部材でもある。   The heat conducting member 5 is composed of a plurality of heat conducting plates 51 that are thermally connected to each first array direction battery group BG with each first array direction battery group BG sandwiched in the depth direction. The heat conductive plate 51 is formed to extend in the vertical direction with respect to the battery 3, and when viewed from the vertical direction, the shape of the outer peripheral surface 3a of each battery 3 arranged in the width direction, that is, a curved surface. When the batteries 3 are adjacent to each other in the depth direction, the battery 3 is sandwiched between the adjacent batteries 3, and both end portions 51 a and 51 b in the width direction are located inside the heat storage member 4. It is formed. That is, the heat conducting plate 51 is thermally connected to each battery 3 at the center in the width direction, and is thermally connected to the heat storage member 4 at both ends 51a and 51b. The heat conducting member 5 in the present embodiment is also a holding member that holds each battery 3 with respect to the housing 2 with the two heat conducting plates 51 sandwiching each first array direction battery group BG in the depth direction. .

本実施形態3におけるヒータ9は、奥行き方向および上下方向にそれぞれ延在して形成され、蓄熱部材4内に筐体2の内部側面2cに沿って配置されている。ヒータ9は、複数の熱伝導板51の各両端部51a,51bの近傍に配置される。   The heater 9 in the third embodiment is formed to extend in the depth direction and the vertical direction, and is disposed in the heat storage member 4 along the inner side surface 2 c of the housing 2. The heater 9 is disposed in the vicinity of both end portions 51a and 51b of the plurality of heat conducting plates 51.

車両の走行当初は各電池3と蓄熱部材4との温度は、同一であるため、熱の移動は発生しないが、走行中は、各電池3で熱が発生し、温度が上昇する。各電池3で発生した熱は、各電池3の外周面3aを介して、熱伝導部材5に伝熱される。熱伝導部材5に伝熱された熱は、蓄熱部材4に伝熱され、蓄熱部材4に一旦蓄熱される。蓄熱部材4に蓄熱された熱は、筐体2に伝熱され、筐体2の外表面から外気等に放熱されるので、蓄熱部材4および熱伝導部材5を介して各電池3が冷却される。   Since the temperature of each battery 3 and the heat storage member 4 is the same at the beginning of traveling of the vehicle, heat transfer does not occur, but heat is generated in each battery 3 and the temperature rises during traveling. The heat generated in each battery 3 is transferred to the heat conducting member 5 through the outer peripheral surface 3 a of each battery 3. The heat transferred to the heat conducting member 5 is transferred to the heat storage member 4 and temporarily stored in the heat storage member 4. Since the heat stored in the heat storage member 4 is transferred to the housing 2 and is radiated from the outer surface of the housing 2 to the outside air or the like, each battery 3 is cooled via the heat storage member 4 and the heat conduction member 5. The

次に、実施形態3に係る車両用電池パック1Hの熱の移動について説明する。車両の冷間始動時において、ヒータ9の発熱により蓄熱部材4が加熱されると、蓄熱部材4に熱が蓄えられるとともに、蓄熱部材4の温度が上昇する。蓄熱部材4に蓄えられた熱は、両端部51a,51bを介して熱伝導板51に伝わり、外周面3aを介して各電池3に伝熱される。蓄熱部材4が、流動性を有する蓄熱材である場合、自然対流によって蓄熱部材4全体の昇温を進ませることができる。   Next, heat transfer of the vehicle battery pack 1H according to the third embodiment will be described. When the heat storage member 4 is heated by the heat generated by the heater 9 during cold start of the vehicle, heat is stored in the heat storage member 4 and the temperature of the heat storage member 4 rises. The heat stored in the heat storage member 4 is transferred to the heat conducting plate 51 through both end portions 51a and 51b, and is transferred to each battery 3 through the outer peripheral surface 3a. When the heat storage member 4 is a fluid heat storage material, the temperature increase of the entire heat storage member 4 can be advanced by natural convection.

上記構成を有する車両用電池パック1Hでは、各電池3を冷却するための空間や、冷却装置を設置するスペースを設けないので、車両用電池パック1Hの容積に対するエネルギー密度の低下を抑制することができる。また、スペースを省略できるので、小型化を容易にすることができる。   In vehicle battery pack 1H having the above-described configuration, a space for cooling each battery 3 and a space for installing a cooling device are not provided, and therefore, a reduction in energy density relative to the volume of vehicle battery pack 1H can be suppressed. it can. Further, since the space can be omitted, the size can be easily reduced.

また、上記構成を有する車両用電池パック1Hでは、各電池3に対して蓄熱部材4の比熱が大きく、温度が上昇しにくいため、各電池3は蓄熱部材4に熱を奪われ続ける。従って、各電池3の温度上昇は、蓄熱部材4が熱を奪わない場合と比較して、緩やかになる。これにより、各電池3の温度が使用可能温度を超えるまでの時間、すなわち適正な温度範囲に維持することができる時間が長くなる。例えば、プラグインハイブリッド車両(PHEV)においては、車両用電池パック1Hを電源とする電気走行、すなわちEVモードでの航続時間を長くすることができる。また、車両加速時等、各電池3に短時間で高い負荷がかかる場合でも、蓄熱部材4に多くの熱を蓄熱することができるので、各電池3を空冷により冷却する場合と比較して、各電池3が発生する熱を素早く奪うことができる。従って、各電池3の温度上昇が緩やかになるので、充放電制限を概ねなくすことができる。これにより、電気車両(EV)、ハイブリッド車両(HEV)、プラグインハイブリッド車両(PHEV)等は、走行中の所定期間における車両用電池パック1Hの出力密度を向上することができる。   In the vehicle battery pack 1 </ b> H having the above-described configuration, the specific heat of the heat storage member 4 is large with respect to each battery 3, and the temperature does not easily rise, so that each battery 3 continues to be deprived of heat by the heat storage member 4. Therefore, the temperature rise of each battery 3 becomes moderate as compared with the case where the heat storage member 4 does not take heat away. Thereby, the time until the temperature of each battery 3 exceeds the usable temperature, that is, the time during which the temperature can be maintained in an appropriate temperature range becomes longer. For example, in a plug-in hybrid vehicle (PHEV), it is possible to increase the cruising time in electric travel using the vehicle battery pack 1H as a power source, that is, in the EV mode. Further, even when a high load is applied to each battery 3 in a short time, such as when the vehicle is accelerated, a large amount of heat can be stored in the heat storage member 4, so that each battery 3 is cooled by air cooling, The heat generated by each battery 3 can be quickly taken away. Therefore, since the temperature rise of each battery 3 becomes moderate, charging / discharging restrictions can be almost eliminated. Thereby, an electric vehicle (EV), a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHEV), etc. can improve the output density of the battery pack 1H for vehicles in the predetermined period during driving | running | working.

以上のように、本実施形態3に係る車両用電池パック1Hは、筐体2と、筐体2の内部空間2aに配列され、かつ筐体2に保持される複数個の電池3と、少なくとも筐体2と熱的に接続されるとともに、筐体2に収容され、かつ筐体2よりも蓄熱量が大きい蓄熱部材4と、少なくとも各電池3および蓄熱部材4と熱的に接続されるとともに、筐体2に収容される熱伝導部材5と、筐体2に収容され、かつ蓄熱部材4を加熱するヒータ9と、ヒータ9で蓄熱部材4を加熱して複数個の電池3を昇温する昇温制御を行う温度調整器10とを備える。   As described above, the vehicle battery pack 1H according to the third embodiment includes the housing 2, the plurality of batteries 3 arranged in the internal space 2a of the housing 2 and held in the housing 2, and at least While thermally connected to the housing 2 and housed in the housing 2 and having a larger amount of heat storage than the housing 2, it is thermally connected to at least each battery 3 and the heat storage member 4. The heat conducting member 5 housed in the housing 2, the heater 9 housed in the housing 2 and heating the heat storage member 4, and the plurality of batteries 3 are heated by heating the heat storage member 4 with the heater 9. And a temperature regulator 10 for performing temperature rise control.

上記構成を有する車両用電池パック1Hによれば、ヒータ9の発熱により蓄熱部材4を加熱し、蓄熱部材4に蓄熱された熱を熱伝導部材5を介して各電池3に伝熱して昇温させるので、冷間始動時であっても電池出力の低下を抑制することができる。また、電池3の昇温のために新たに設けるスペースを最小とすることができ、車両用電池パック1Hの容積に対するエネルギー密度の低下も最小限に抑えることができる。   According to the vehicle battery pack 1 </ b> H having the above configuration, the heat storage member 4 is heated by the heat generated by the heater 9, and the heat stored in the heat storage member 4 is transferred to each battery 3 through the heat conducting member 5 to increase the temperature. Therefore, it is possible to suppress a decrease in battery output even during cold start. Moreover, the space newly provided for raising the temperature of the battery 3 can be minimized, and the decrease in the energy density with respect to the volume of the vehicle battery pack 1H can be minimized.

[実施形態3の変形例1]
次に、実施形態3の変形例1に係る車両用電池パックについて説明する。図14は、実施形態3の変形例1に係る車両用電池パックの平面図である。
[Modification 1 of Embodiment 3]
Next, a vehicle battery pack according to Modification 1 of Embodiment 3 will be described. FIG. 14 is a plan view of a vehicle battery pack according to Modification 1 of Embodiment 3.

本実施形態3の変形例1に係る車両用電池パック1Iは、熱伝導部材5に蓄熱部材4を貫通する貫通部52a,52bが形成される点で、実施形態3に係る車両用電池パック1Hと異なる。なお、以下に説明する実施形態3の変形例において、共通する構成は同一の符号を付して、その説明を省略または簡略化する。   The vehicle battery pack 1I according to the first modification of the third embodiment is such that through portions 52a and 52b that penetrate the heat storage member 4 are formed in the heat conducting member 5, the vehicle battery pack 1H according to the third embodiment. And different. In addition, in the modification of Embodiment 3 demonstrated below, a common structure attaches | subjects the same code | symbol and the description is abbreviate | omitted or simplified.

熱伝導部材5は、複数の熱伝導板51により構成される。熱伝導板51は、幅方向における両端部51a,51bが蓄熱部材4の内部を貫通して、貫通部52a,52bとして形成される。本実施形態における貫通部52aは、各熱伝導板51の端部51aを一体化し、貫通部52bは各熱伝導板51の端部51bを一体化して形成される。貫通部52a,52bは、内部側面2cに接触することで、筐体2と接触し、筐体2と熱的に接続される。つまり、貫通部52a,52bは、蓄熱部材4および筐体2と熱的に接続される。なお、蓄熱部材4が流動性を有する蓄熱材である場合は、蓄熱部材4を収容する蓄熱容器を熱伝導板51が貫通することで、蓄熱部材4が内部空間2aに漏れないよう蓄熱容器に防水構造が形成される。   The heat conducting member 5 is composed of a plurality of heat conducting plates 51. The heat conducting plate 51 is formed as penetrating portions 52a and 52b with both end portions 51a and 51b in the width direction penetrating through the inside of the heat storage member 4. In the present embodiment, the penetrating portion 52a is formed by integrating the end portions 51a of the respective heat conducting plates 51, and the penetrating portion 52b is formed by integrating the end portions 51b of the respective heat conducting plates 51. The through portions 52a and 52b come into contact with the housing 2 by being in contact with the inner side surface 2c, and are thermally connected to the housing 2. That is, the penetrating portions 52 a and 52 b are thermally connected to the heat storage member 4 and the housing 2. When the heat storage member 4 is a fluid heat storage material, the heat conduction plate 51 penetrates the heat storage container that houses the heat storage member 4 so that the heat storage member 4 does not leak into the internal space 2a. A waterproof structure is formed.

本実施形態3の変形例1におけるヒータ9は、奥行き方向および上下方向にそれぞれ延在して形成され、貫通部52a,52bを避けて、筐体2の内部側面2cに沿って配置されている。ヒータ9は、両端部51a,51bの近傍に配置される。   The heater 9 according to the first modification of the third embodiment is formed to extend in the depth direction and the vertical direction, and is disposed along the inner side surface 2c of the housing 2 so as to avoid the through portions 52a and 52b. . The heater 9 is disposed in the vicinity of both end portions 51a and 51b.

次に、実施形態3の変形例1に係る車両用電池パック1Iの熱の移動について説明する。車両の冷間始動時において、ヒータ9の発熱により蓄熱部材4が加熱されると、蓄熱部材4に熱が蓄えられるとともに、蓄熱部材4の温度が上昇する。蓄熱部材4に蓄えられた熱は、一部が両端部51a,51bを介して熱伝導板51に伝わり、外周面3aを介して各電池3に伝熱される。また、蓄熱部材4から熱伝導板51に伝わった熱は、貫通部52a,52bを介して筐体2にも伝わることで、筐体2全体を暖めることができる。蓄熱部材4が、流動性を有する蓄熱材である場合、自然対流によって蓄熱部材4全体の昇温を進ませることができる。   Next, heat transfer of the vehicle battery pack 1I according to the first modification of the third embodiment will be described. When the heat storage member 4 is heated by the heat generated by the heater 9 during cold start of the vehicle, heat is stored in the heat storage member 4 and the temperature of the heat storage member 4 rises. A part of the heat stored in the heat storage member 4 is transferred to the heat conducting plate 51 through both end portions 51a and 51b, and is transferred to each battery 3 through the outer peripheral surface 3a. Further, the heat transmitted from the heat storage member 4 to the heat conducting plate 51 is also transmitted to the housing 2 through the through portions 52a and 52b, so that the entire housing 2 can be warmed. When the heat storage member 4 is a fluid heat storage material, the temperature increase of the entire heat storage member 4 can be advanced by natural convection.

各電池3で熱が発生すると、各電池3で発生した熱は、各電池3の外周面3aを介して、熱伝導部材5に伝熱される。熱伝導部材5に伝熱された熱は、一部が蓄熱部材4に伝熱され、一部が筐体2に伝熱される。蓄熱部材4に伝熱された熱は、蓄熱部材4に一旦蓄熱され、筐体2に伝熱される。熱伝導部材5から直接伝熱された熱および蓄熱部材4を介して伝熱された熱は、筐体2の外表面から外気等に放熱されるので、蓄熱部材4および熱伝導部材5を介して各電池3が冷却される。   When heat is generated in each battery 3, the heat generated in each battery 3 is transferred to the heat conducting member 5 through the outer peripheral surface 3 a of each battery 3. Part of the heat transferred to the heat conducting member 5 is transferred to the heat storage member 4, and part of the heat is transferred to the housing 2. The heat transferred to the heat storage member 4 is once stored in the heat storage member 4 and transferred to the housing 2. The heat directly transferred from the heat conductive member 5 and the heat transferred through the heat storage member 4 are dissipated from the outer surface of the housing 2 to the outside air or the like, so that the heat storage member 4 and the heat conductive member 5 are used. Thus, each battery 3 is cooled.

上記構成を有する車両用電池パック1Iは、上述した車両用電池パック1Hと同様の効果を奏する。   The vehicle battery pack 1I having the above configuration has the same effects as the above-described vehicle battery pack 1H.

[実施形態3の変形例2]
次に、実施形態3の変形例2に係る車両用電池パックについて説明する。図15は、実施形態3の変形例2に係る車両用電池パックの平面図である。
[Modification 2 of Embodiment 3]
Next, a vehicle battery pack according to Modification 2 of Embodiment 3 will be described. FIG. 15 is a plan view of a vehicle battery pack according to a second modification of the third embodiment.

本実施形態3の変形例2に係る車両用電池パック1Jは、各電池3を保持する保持部材6をさらに備える点が上記車両用電池パック1Hと異なる。   The vehicle battery pack 1J according to the second modification of the third embodiment is different from the vehicle battery pack 1H in that the vehicle battery pack 1J further includes a holding member 6 that holds each battery 3.

車両用電池パック1Jは、保持部材6を備える。保持部材6は、筐体2に収容されており、複数個の電池3を筐体2に対して保持するものである。本実施形態における保持部材6は、第1配列方向電池群BGごとに複数個の電池3を保持するものであり、基台61と、保持片62とを有する。基台61は、内部空間2aを構成する底面に固定されるものであり、幅方向に延在する。ここで、筐体2への基台61の固定は、ネジ等の公知の固定具(不図示)により行われる。保持片62は、基台61から上下方向のうち上方向に向かって形成される。保持片62は、基台61に対して複数形成されており、幅方向において各電池3を挟んで対向して形成される。保持片62は、電池3の外周面3aと対向する保持面62aが外周面3aの形状に沿って、すなわち曲面に形成されており、電池3に幅方向において対向して電池3を狭持することで、電池3を保持する。保持部材6は、熱伝導性を有するものであり、鉄、銅、アルミニウム等により構成され、各電池3および筐体2と熱的に接続される。ここで、保持部材6が各電池3および筐体2と熱的に接続されるとは、直接各電池3および筐体2と接触することで保持部材6と各電池3および筐体2との間で直接的に熱の授受が可能な場合、あるいは固定具や絶縁部材等の保持部材6と電池3との間、あるいは保持部材6と筐体2との間に要求される条件に基づいた機能を有し、かつ熱伝導性を有する介在部材を介して保持部材6と各電池3および筐体2とで間接的に熱の授受が可能な場合をいう。なお、保持部材6は、熱伝導部材5と比較して、熱伝導性が同じあるいは低いことが好ましいが、保持部材6が熱伝導部材5よりも熱伝導性が高くとも問題ない。   The vehicle battery pack 1 </ b> J includes a holding member 6. The holding member 6 is housed in the housing 2 and holds a plurality of batteries 3 with respect to the housing 2. The holding member 6 in this embodiment holds a plurality of batteries 3 for each first array direction battery group BG, and includes a base 61 and a holding piece 62. The base 61 is fixed to the bottom surface constituting the internal space 2a and extends in the width direction. Here, the base 61 is fixed to the housing 2 by a known fixing tool (not shown) such as a screw. The holding piece 62 is formed upward from the base 61 in the up-down direction. A plurality of holding pieces 62 are formed with respect to the base 61 and are formed to face each other with the batteries 3 sandwiched in the width direction. In the holding piece 62, the holding surface 62a facing the outer peripheral surface 3a of the battery 3 is formed along the shape of the outer peripheral surface 3a, that is, a curved surface, and the battery 3 is opposed to the battery 3 in the width direction to sandwich the battery 3. Thus, the battery 3 is held. The holding member 6 has thermal conductivity, is made of iron, copper, aluminum, or the like, and is thermally connected to each battery 3 and the housing 2. Here, that the holding member 6 is thermally connected to each battery 3 and the case 2 means that the holding member 6, each battery 3, and the case 2 are in direct contact with each battery 3 and the case 2. Based on the conditions required between the holding member 6 such as a fixture or insulating member and the battery 3 or between the holding member 6 and the housing 2. This refers to a case where heat can be indirectly exchanged between the holding member 6 and each battery 3 and the housing 2 through an intervening member having a function and thermal conductivity. The holding member 6 preferably has the same or lower thermal conductivity than the heat conducting member 5, but there is no problem even if the holding member 6 has a higher thermal conductivity than the heat conducting member 5.

本実施形態3の変形例2におけるヒータ9は、奥行き方向および上下方向にそれぞれ延在して形成され、筐体2の内部側面2cに沿って配置されている。ヒータ9は、両端部51a,51bの近傍に配置される。   The heater 9 according to the second modification of the third embodiment is formed to extend in the depth direction and the vertical direction, and is disposed along the inner side surface 2 c of the housing 2. The heater 9 is disposed in the vicinity of both end portions 51a and 51b.

次に、実施形態3の変形例2に係る車両用電池パック1Jの熱の移動について説明する。車両の冷間始動時において、ヒータ9の発熱により蓄熱部材4が加熱されると、蓄熱部材4に熱が蓄えられるとともに、蓄熱部材4の温度が上昇する。蓄熱部材4に蓄えられた熱は、両端部51a,51bを介して熱伝導板51に伝わり、外周面3aを介して各電池3に伝熱される。さらに、熱伝導板51に伝わった熱は、保持部材6を介して各電池3に伝熱される。   Next, heat transfer of the vehicle battery pack 1J according to the second modification of the third embodiment will be described. When the heat storage member 4 is heated by the heat generated by the heater 9 during cold start of the vehicle, heat is stored in the heat storage member 4 and the temperature of the heat storage member 4 rises. The heat stored in the heat storage member 4 is transferred to the heat conducting plate 51 through both end portions 51a and 51b, and is transferred to each battery 3 through the outer peripheral surface 3a. Further, the heat transmitted to the heat conductive plate 51 is transferred to each battery 3 through the holding member 6.

各電池3で熱が発生すると、各電池3で発生した熱は、各電池3の外周面3aを介して、熱伝導部材5に伝熱される。熱伝導部材5に伝熱された熱は、一部が蓄熱部材4に伝熱され、一部が保持部材6に伝熱される。蓄熱部材4に伝熱された熱は、蓄熱部材4に一旦蓄熱され、筐体2に伝熱される。保持部材6に伝熱された熱は、筐体2に伝熱される。保持部材6を介して筐体2に伝熱された熱および蓄熱部材4を介して筐体2に伝熱された熱は、筐体2の外表面から外気等に放熱されるので、蓄熱部材4、熱伝導部材5および保持部材6を介して各電池3が冷却される。   When heat is generated in each battery 3, the heat generated in each battery 3 is transferred to the heat conducting member 5 through the outer peripheral surface 3 a of each battery 3. Part of the heat transferred to the heat conducting member 5 is transferred to the heat storage member 4, and part of the heat is transferred to the holding member 6. The heat transferred to the heat storage member 4 is once stored in the heat storage member 4 and transferred to the housing 2. The heat transferred to the holding member 6 is transferred to the housing 2. Since the heat transferred to the housing 2 via the holding member 6 and the heat transferred to the housing 2 via the heat storage member 4 are radiated from the outer surface of the housing 2 to the outside air, etc., the heat storage member 4. Each battery 3 is cooled via the heat conducting member 5 and the holding member 6.

上記構成を有する車両用電池パック1Jは、上述した車両用電池パック1Hと同様の効果を奏する。   The vehicle battery pack 1J having the above configuration has the same effects as the above-described vehicle battery pack 1H.

[実施形態3の変形例3]
次に、実施形態3の変形例3に係る車両用電池パックについて説明する。図16は、実施形態3の変形例3に係る車両用電池パックの平面図である。
[Modification 3 of Embodiment 3]
Next, a vehicle battery pack according to Modification 3 of Embodiment 3 will be described. FIG. 16 is a plan view of a vehicle battery pack according to Modification 3 of Embodiment 3.

本実施形態3の変形例3に係る車両用電池パック1Kは、蓄熱部材4が蓄熱容器7に封入される点が上記車両用電池パック1Hと異なる。なお、図16(図17も同様)は、蓄熱容器7のみ断面として図示した図である。   The vehicle battery pack 1K according to the third modification of the third embodiment is different from the vehicle battery pack 1H in that the heat storage member 4 is enclosed in the heat storage container 7. In addition, FIG. 16 (FIG. 17 is the same) is the figure which illustrated only the heat storage container 7 as a cross section.

車両用電池パック1Kは、図16に示すように、蓄熱容器7を備える。蓄熱容器7は、筐体2に収容されており、収容空間7aに蓄熱部材4が封入される。蓄熱容器7は、熱伝導性を有するものであり、鉄、銅、アルミニウム等により構成され、筐体2と接触することで、筐体2と熱的に接続される。本実施形態における蓄熱容器7は、内部空間2aのうち、幅方向における両端部に筐体2と接触した状態で配置されており、収容空間7aに蓄熱部材4とともに内部熱伝導板71が形成される。内部熱伝導板71は、内部熱伝導部材であり、収容空間7aに複数形成されており、表面積を拡大するために幅方向に向かって波状に形成される。内部熱伝導板71は、熱伝導性を有するものであり、鉄、銅、アルミニウム等により構成され、蓄熱部材4と接触することで、蓄熱部材4と熱的に接続される。また、内部熱伝導板71は、幅方向における両端部が蓄熱容器7と接触して形成されており、蓄熱容器7とも熱的に接続される。さらに、内部熱伝導板71は、幅方向における両端部のうち、一方、すなわち電池3側の端部71aが蓄熱容器7から内部空間2aに露出して形成されており、幅方向において対向する熱伝導板51の各両端部51a,51bとそれぞれ、例えば圧着や溶接等により接触することで、熱的に接続される。ここで、内部熱伝導板71は、熱伝導部材5と比較して、熱伝導性が同じあるいは低いことが好ましいが内部熱伝導板71が熱伝導部材5よりも熱伝導性が高くとも問題ない。   The vehicle battery pack 1K includes a heat storage container 7 as shown in FIG. The heat storage container 7 is accommodated in the housing 2, and the heat storage member 4 is enclosed in the accommodation space 7a. The heat storage container 7 has thermal conductivity, is made of iron, copper, aluminum, or the like, and is thermally connected to the housing 2 by contacting the housing 2. The heat storage container 7 in the present embodiment is disposed in contact with the housing 2 at both ends in the width direction of the internal space 2a, and the internal heat conductive plate 71 is formed together with the heat storage member 4 in the housing space 7a. The The internal heat conductive plate 71 is an internal heat conductive member, and a plurality of internal heat conductive plates 71 are formed in the accommodation space 7a. The internal heat conductive plate 71 is formed in a wave shape in the width direction in order to increase the surface area. The internal heat conductive plate 71 has thermal conductivity, is made of iron, copper, aluminum, or the like, and is thermally connected to the heat storage member 4 by being in contact with the heat storage member 4. The internal heat conductive plate 71 is formed such that both end portions in the width direction are in contact with the heat storage container 7 and are also thermally connected to the heat storage container 7. Furthermore, the internal heat conductive plate 71 is formed so that one of the two end portions in the width direction, that is, the end portion 71a on the battery 3 side is exposed from the heat storage container 7 to the internal space 2a, and the internal heat conducting plate 71 is opposed to the heat in the width direction. The two ends 51a and 51b of the conductive plate 51 are thermally connected by contact with each other by, for example, crimping or welding. Here, it is preferable that the internal heat conductive plate 71 has the same or lower thermal conductivity than the heat conductive member 5, but there is no problem even if the internal heat conductive plate 71 has a higher thermal conductivity than the heat conductive member 5. .

本実施形態3の変形例3におけるヒータ9は、蓄熱部材4に埋設されている。各ヒータ9は、幅方向および上下方向にそれぞれ延在して形成され、内部熱伝導板71に沿って配置されている。各ヒータ9は、内部熱伝導板71を効率よく伝熱するために、奥行き方向に配列された内部熱伝導板71間に配置されている。   The heater 9 in Modification 3 of Embodiment 3 is embedded in the heat storage member 4. Each heater 9 is formed so as to extend in the width direction and the vertical direction, and is disposed along the internal heat conductive plate 71. Each heater 9 is disposed between the internal heat conductive plates 71 arranged in the depth direction in order to efficiently transfer the heat of the internal heat conductive plate 71.

次に、実施形態3の変形例3に係る車両用電池パック1Kの熱の移動について説明する。車両の冷間始動時において、ヒータ9の発熱により蓄熱部材4が加熱されると、蓄熱部材4に熱が蓄えられるとともに、蓄熱部材4の温度が上昇する。蓄熱部材4に蓄えられた熱は、内部熱伝導板71および両端部51a,51bを介して熱伝導板51に伝わり、外周面3aを介して各電池3に伝熱される。   Next, heat transfer of the vehicle battery pack 1K according to the third modification of the third embodiment will be described. When the heat storage member 4 is heated by the heat generated by the heater 9 during cold start of the vehicle, heat is stored in the heat storage member 4 and the temperature of the heat storage member 4 rises. The heat stored in the heat storage member 4 is transferred to the heat conductive plate 51 via the internal heat conductive plate 71 and both end portions 51a and 51b, and is transferred to each battery 3 via the outer peripheral surface 3a.

各電池3で熱が発生すると、各電池3で発生した熱は、各電池3の外周面3aを介して、熱伝導部材5に伝熱される。熱伝導部材5に伝熱された熱は、内部熱伝導板71に伝熱され、一部が収容空間7a内の蓄熱部材4に伝熱され、一部が蓄熱容器7を介して筐体2に伝熱される。蓄熱部材4に蓄熱された熱は、蓄熱部材4に一旦蓄熱され、蓄熱容器7を介して筐体2に伝熱される。蓄熱容器7を介して筐体2に伝熱された熱は、筐体2の外表面から外気等に放熱されるので、蓄熱部材4、熱伝導部材5および蓄熱容器7を介して各電池3が冷却される。   When heat is generated in each battery 3, the heat generated in each battery 3 is transferred to the heat conducting member 5 through the outer peripheral surface 3 a of each battery 3. The heat transferred to the heat conductive member 5 is transferred to the internal heat conductive plate 71, partly transferred to the heat storage member 4 in the accommodation space 7 a, and partly transferred to the housing 2 via the heat storage container 7. Heat is transferred to. The heat stored in the heat storage member 4 is once stored in the heat storage member 4 and transferred to the housing 2 via the heat storage container 7. Since the heat transferred to the housing 2 through the heat storage container 7 is radiated from the outer surface of the housing 2 to the outside air or the like, each battery 3 is passed through the heat storage member 4, the heat conduction member 5, and the heat storage container 7. Is cooled.

上記構成を有する車両用電池パック1Kは、上述した車両用電池パック1Hと同様の効果を奏する。   The vehicle battery pack 1K having the above configuration has the same effects as the above-described vehicle battery pack 1H.

なお、蓄熱容器7は、幅方向において電池3を挟んで対向して設けられているが、これに限定されるものではなく、全ての電池3を囲うように形成されていてもよい。   In addition, although the heat storage container 7 is provided facing the battery 3 in the width direction, the heat storage container 7 is not limited to this and may be formed so as to surround all the batteries 3.

[実施形態3の変形例4]
上記実施形態3の変形例3では、内部熱伝導板71の一方の端部71aを蓄熱容器7から内部空間2aに露出させたがこれに限定されるものではない。図17は、実施形態3の変形例4に係る車両用電池パックの平面図である。図17に示すように、車両用電池パック1Lは、内部熱伝導板71の幅方向における両端部を蓄熱容器7の収容空間7a内において、蓄熱容器7に接触させてもよい。この場合、熱伝導板51の両端部51a,51bは、幅方向において各電池3を挟んで対向する各蓄熱容器7にそれぞれ接触させる。本変形例4においては、熱伝導板51と蓄熱容器7との接触面積を拡大するために、両端部51a,51bが奥行き方向に延在して形成される。本変形例4におけるヒータ9は、変形例3におけるヒータ9と同様の構成を有する。
[Modification 4 of Embodiment 3]
In the third modification of the third embodiment, one end 71a of the internal heat conducting plate 71 is exposed from the heat storage container 7 to the internal space 2a, but the present invention is not limited to this. FIG. 17 is a plan view of a vehicle battery pack according to Modification 4 of Embodiment 3. As shown in FIG. 17, the vehicle battery pack 1 </ b> L may bring both end portions in the width direction of the internal heat conducting plate 71 into contact with the heat storage container 7 in the accommodation space 7 a of the heat storage container 7. In this case, both end portions 51a and 51b of the heat conducting plate 51 are brought into contact with the respective heat storage containers 7 facing each other with the batteries 3 interposed therebetween in the width direction. In the fourth modification, in order to enlarge the contact area between the heat conducting plate 51 and the heat storage container 7, both end portions 51a and 51b are formed extending in the depth direction. The heater 9 in the fourth modification has the same configuration as the heater 9 in the third modification.

[実施形態3の変形例5]
上記実施形態3の変形例3,4では、内部空間2aに蓄熱容器7を設けたがこれに限定されるものではない。図18は、実施形態3の変形例5に係る車両用電池パックの平面図である。図18に示すように、車両用電池パック1Mは、蓄熱材が蓄熱容器として機能する筐体2に封入される。筐体2には、電池3と熱伝導板51とにより構成される電池モジュールBMが複数個収容されている。筐体2は、幅方向の両端部に、壁部21により、収容空間2eがそれぞれ形成される。筐体2は、収容空間2eに蓄熱部材4とともに内部熱伝導板22が形成される。収容空間2eは、筐体2の奥行き方向における両端部まで形成される。つまり、収容空間2eは、奥行き方向に配列された複数の電池モジュールBMと幅方向において対向して形成される。内部熱伝導板22は、表面積を拡大するために奥行き方向に向かって波状に形成され、奥行き方向における両端部が収容空間2e内において筐体2と接触する。熱伝導板51の両端部51a,51bは、幅方向において収容空間2eと対向する筐体2の内部側面2cとそれぞれ接触する。本変形例5においては、熱伝導板51と筐体2との接触面積を拡大するために、両端部51a,51bが奥行き方向に延在して形成される。本変形例5におけるヒータ9は、例えば、上下方向に延在して丸棒状に形成され、収容空間2eに収容されている。ヒータ9は、内部熱伝導板22の近傍であって、かつ壁部21の近傍に配置されている。
[Modification 5 of Embodiment 3]
In the modified examples 3 and 4 of the said Embodiment 3, the heat storage container 7 was provided in the internal space 2a, but it is not limited to this. FIG. 18 is a plan view of a vehicle battery pack according to Modification 5 of Embodiment 3. As shown in FIG. 18, the battery pack 1M for vehicles is enclosed in the housing | casing 2 in which a thermal storage material functions as a thermal storage container. The housing 2 accommodates a plurality of battery modules BM composed of the battery 3 and the heat conducting plate 51. The housing 2 has accommodation spaces 2e formed by wall portions 21 at both ends in the width direction. In the housing 2, an internal heat conductive plate 22 is formed in the housing space 2 e together with the heat storage member 4. The accommodation space 2e is formed up to both ends in the depth direction of the housing 2. That is, the accommodation space 2e is formed to face the plurality of battery modules BM arranged in the depth direction in the width direction. The internal heat conductive plate 22 is formed in a wave shape toward the depth direction in order to increase the surface area, and both end portions in the depth direction are in contact with the housing 2 in the accommodation space 2e. Both end portions 51a and 51b of the heat conductive plate 51 are in contact with the inner side surface 2c of the housing 2 facing the accommodation space 2e in the width direction. In Modification 5, in order to increase the contact area between the heat conducting plate 51 and the housing 2, both end portions 51a and 51b are formed extending in the depth direction. For example, the heater 9 in the fifth modification is formed in a round bar shape extending in the vertical direction, and is accommodated in the accommodation space 2e. The heater 9 is disposed in the vicinity of the internal heat conductive plate 22 and in the vicinity of the wall portion 21.

[実施形態3の変形例6]
上記実施形態3および変形例1〜5では、熱伝導板51の幅方向における両端部51a,51bが蓄熱部材4と熱的に接続されているが、これに限定されるものではない。図19は、実施形態3の変形例6に係る車両用電池パックの平面図である。図19に示すように、車両用電池パック1Nの熱伝導部材5は、奥行き方向において、第1配列方向電池群BGを挟み、第1配列方向電池群BGと熱的に接続される熱伝導板53,54を有している場合に、各熱伝導板53,54の幅方向における一方の端部53a,54bが自由端であり、他方の端部53b,54aが蓄熱部材4と熱的に接続されていてもよい。本変形例6においては、熱伝導板53,54が蓄熱部材4と接触することで熱的に接続されるが、蓄熱部材4と接触する端部の方向が熱伝導板53と熱伝導板54とで異なる。つまり、各電池3は、熱伝導板53,54の一方で幅方向における一方にて蓄熱部材4と接触し、熱伝導板53,54の他方で幅方向における他方にて蓄熱部材4と接触する。従って、電池3を挟む各熱伝導板53,54は、蓄熱部材4に熱が移動する方向が反対方向となる。ここで、熱伝導板53,54が幅方向における一方の端部のみで蓄熱部材4と接触する場合は、蓄熱部材4から熱的に離れている電池3で発生する熱が蓄熱部材4に伝熱されにくくなる。しかしながら、本変形例6においては、電池3で発生する熱を、熱伝導板53,54のうち電池3から見て熱的に蓄熱部材4に近い熱伝導板により蓄熱部材4に伝熱させることができる。これにより、一列に配列された複数の電池3の温度を均一化することができ、一部の電池3が高温状態を維持することで生じる、各電池3間の内部抵抗の変化や劣化量の変化を抑制することができる。本変形例6におけるヒータ9は、奥行き方向および上下方向にそれぞれ延在して形成され、蓄熱部材4内に筐体2の内部側面2cに沿って配置されている。ヒータ9は、複数の熱伝導板53の端部53b、複数の熱伝導板54の端部54aの近傍に配置される。
[Modification 6 of Embodiment 3]
In the said Embodiment 3 and the modifications 1-5, although the both ends 51a and 51b in the width direction of the heat conductive board 51 are thermally connected with the thermal storage member 4, it is not limited to this. FIG. 19 is a plan view of a vehicle battery pack according to Modification 6 of Embodiment 3. As shown in FIG. 19, the heat conductive member 5 of the vehicle battery pack 1 </ b> N sandwiches the first array direction battery group BG in the depth direction and is thermally connected to the first array direction battery group BG. 53, 54, one end 53a, 54b in the width direction of each heat conducting plate 53, 54 is a free end, and the other end 53b, 54a is thermally connected to the heat storage member 4. It may be connected. In the sixth modification, the heat conductive plates 53 and 54 are thermally connected by contacting the heat storage member 4, but the direction of the end portion in contact with the heat storage member 4 is the heat conductive plate 53 and the heat conductive plate 54. And different. That is, each battery 3 is in contact with the heat storage member 4 at one of the heat conducting plates 53 and 54 in the width direction, and is in contact with the heat storage member 4 at the other of the heat conducting plates 53 and 54 in the width direction. . Therefore, in each of the heat conductive plates 53 and 54 sandwiching the battery 3, the direction in which heat is transferred to the heat storage member 4 is opposite. Here, when the heat conductive plates 53 and 54 are in contact with the heat storage member 4 only at one end in the width direction, heat generated in the battery 3 that is thermally separated from the heat storage member 4 is transmitted to the heat storage member 4. It becomes hard to be heated. However, in the sixth modification, heat generated in the battery 3 is transferred to the heat storage member 4 by a heat conduction plate that is thermally close to the heat storage member 4 when viewed from the battery 3 among the heat conduction plates 53 and 54. Can do. Thereby, the temperature of the some battery 3 arranged in a line can be equalize | homogenized, and the change of internal resistance between each battery 3 and degradation amount which arise when some batteries 3 maintain a high temperature state Change can be suppressed. The heater 9 in the present modification 6 is formed to extend in the depth direction and the vertical direction, and is disposed in the heat storage member 4 along the inner side surface 2 c of the housing 2. The heater 9 is disposed in the vicinity of the end portions 53 b of the plurality of heat conduction plates 53 and the end portions 54 a of the plurality of heat conduction plates 54.

[実施形態3の変形例7]
上記実施形態1〜3および変形例では、電池3を円筒型としたがこれに限定されるものではない。図20、図21は、実施形態3の変形例7に係る車両用電池パックの平面図である。図22は、実施形態3の変形例7に係る車両用電池パックの要部断面図である。なお、図20に示す車両用電池パック1Pと図21に示す車両用電池パック1Qとは、筐体2に収容される複数個の電池8の一部の積層方向が異なるものである。また、図22は、車両用電池パック1Qの内部空間2aを奥行き方向から見た図である。
[Modification 7 of Embodiment 3]
In the first to third embodiments and the modified examples, the battery 3 is cylindrical, but the present invention is not limited to this. 20 and 21 are plan views of the vehicle battery pack according to the modified example 7 of the third embodiment. FIG. 22 is a cross-sectional view of main parts of a vehicle battery pack according to Modification 7 of Embodiment 3. The vehicle battery pack 1P shown in FIG. 20 and the vehicle battery pack 1Q shown in FIG. 21 are different in the stacking direction of some of the plurality of batteries 8 housed in the housing 2. FIG. 22 is a view of the internal space 2a of the vehicle battery pack 1Q as viewed from the depth direction.

車両用電池パック1Pの電池8は、図20に示すように、上下方向から見た場合に、矩形状であり、本変形例7では平板状に形成されている。筐体2には、複数個の電池8が収容されている。本変形例7の筐体2には、内部空間2aに奥行き方向に積層された複数個の電池8と、幅方向に積層された複数個の電池8が収容される。奥行き方向に積層された複数個の電池8は、奥行き方向において熱伝導板55に挟まれて、各熱伝導板55に熱的に接続されている。幅方向に積層された複数個の電池8は、幅方向において熱伝導板55に挟まれて、各熱伝導板55に熱的に接続されている。熱伝導板55は、幅方向における一方の端部55aが蓄熱部材4の内部に位置して形成され、蓄熱部材4と熱的に接続される。   As shown in FIG. 20, the battery 8 of the vehicle battery pack 1 </ b> P has a rectangular shape when viewed from above and below, and is formed in a flat plate shape in the seventh modification. A plurality of batteries 8 are accommodated in the housing 2. The casing 2 of the modified example 7 accommodates a plurality of batteries 8 stacked in the depth direction in the internal space 2a and a plurality of batteries 8 stacked in the width direction. The plurality of batteries 8 stacked in the depth direction are sandwiched between the heat conduction plates 55 in the depth direction and are thermally connected to the heat conduction plates 55. The plurality of batteries 8 stacked in the width direction are sandwiched between the heat conduction plates 55 in the width direction and are thermally connected to the heat conduction plates 55. The heat conduction plate 55 is formed such that one end portion 55 a in the width direction is located inside the heat storage member 4 and is thermally connected to the heat storage member 4.

車両用電池パック1Pのヒータ9は、蓄熱部材4内に筐体2の内部側面2cに沿って配置されている。ヒータ9は、奥行き方向に積層された複数個の電池8に対して上下方向に延在して形成され、かつ幅方向に積層された複数個の電池8に対して上下方向に延在して形成されている。ヒータ9は、複数の熱伝導板55の各端部55aの近傍に配置される。   The heater 9 of the battery pack 1P for vehicles is arrange | positioned along the internal side surface 2c of the housing | casing 2 in the thermal storage member 4. FIG. The heater 9 extends in the vertical direction with respect to the plurality of batteries 8 stacked in the depth direction, and extends in the vertical direction with respect to the plurality of batteries 8 stacked in the width direction. Is formed. The heater 9 is disposed in the vicinity of each end 55a of the plurality of heat conducting plates 55.

車両用電池パック1Qの電池8は、図21および図22に示すように、上下方向から見た場合に、矩形状であり、本変形例7では平板状に形成されている。筐体2には、複数個の電池8が収容されている。本変形例7における筐体2には、内部空間2aに奥行き方向に積層された複数個の電池8と、上下方向に積層された複数個の電池8が収容される。奥行き方向に積層された複数個の電池8は、奥行き方向において熱伝導板55に挟まれて、各熱伝導板55に熱的に接続されている。熱伝導板55は、幅方向における一方の端部55aが蓄熱部材4の内部に位置して形成され、蓄熱部材4と熱的に接続される。上下方向に積層された複数個の電池8は、上下方向において隣り合う電池8と熱伝導板56を挟み、各熱伝導板56に熱的に接続されている。熱伝導板56は、奥行き方向における一方の端部56aが蓄熱部材4の内部に位置して形成され、蓄熱部材4と熱的に接続される。なお、熱伝導板56は、蓄熱材と熱的に接続されるのであれば、筐体2に対して保持するための板保持部材を兼ねた板に限らず、シート、箔等により構成されてもよい。   As shown in FIGS. 21 and 22, the battery 8 of the vehicle battery pack 1 </ b> Q has a rectangular shape when viewed from above and below, and is formed in a flat plate shape in the seventh modification. A plurality of batteries 8 are accommodated in the housing 2. The casing 2 in Modification 7 accommodates a plurality of batteries 8 stacked in the depth direction in the internal space 2a and a plurality of batteries 8 stacked in the vertical direction. The plurality of batteries 8 stacked in the depth direction are sandwiched between the heat conduction plates 55 in the depth direction and are thermally connected to the heat conduction plates 55. The heat conduction plate 55 is formed such that one end portion 55 a in the width direction is located inside the heat storage member 4 and is thermally connected to the heat storage member 4. The plurality of batteries 8 stacked in the vertical direction are thermally connected to each of the heat conductive plates 56 with the battery 8 and the heat conductive plate 56 adjacent to each other in the vertical direction interposed therebetween. The heat conduction plate 56 is formed such that one end portion 56 a in the depth direction is located inside the heat storage member 4 and is thermally connected to the heat storage member 4. The heat conduction plate 56 is not limited to a plate that also serves as a plate holding member for holding the housing 2 as long as it is thermally connected to the heat storage material, and is configured by a sheet, foil, or the like. Also good.

車両用電池パック1Qのヒータ9は、蓄熱部材4内に筐体2の内部側面2cに沿って、3箇所に分けて配置されている。ヒータ9は、上下方向に積層された複数個の電池8に対して上下方向に延在して形成されており、奥行き方向に積層された複数個の電池8に対して奥行き方向に延在して形成されている。ヒータ9は、ヒータ9は、複数の熱伝導板55の各端部55aの近傍、および、複数の熱伝導板56の各端部56aの近傍に配置される。   The heater 9 of the vehicle battery pack 1 </ b> Q is arranged in three locations along the inner side surface 2 c of the housing 2 in the heat storage member 4. The heater 9 is formed to extend in the vertical direction with respect to the plurality of batteries 8 stacked in the vertical direction, and extends in the depth direction with respect to the plurality of batteries 8 stacked in the depth direction. Is formed. The heater 9 is disposed in the vicinity of each end 55 a of the plurality of heat conducting plates 55 and in the vicinity of each end 56 a of the plurality of heat conducting plates 56.

なお、以上の説明では、電池3は、円筒型のリチウムイオン電池である場合について説明したが、これに限定されるものではない。例えば、四角柱型の電池であってもよいし、リチウムイオン電池以外の電池であってもよい。   In the above description, the case where the battery 3 is a cylindrical lithium ion battery has been described. However, the present invention is not limited to this. For example, a quadrangular prism type battery or a battery other than a lithium ion battery may be used.

また、以上の説明では、ヒータ9の形状は、表面積を広くとるために、図示のように鋸形状を有しているものがあるが、これに限定されるものではない。また、ヒータ9は、蓄熱部材4に埋設されているが、これに限定されるものではない。すなわち、蓄熱部材4を加熱できる構成であれば、図示の位置に限らず、蓄熱部材4に外部から接触するように構成してもよい。   In the above description, the heater 9 has a saw shape as illustrated in order to increase the surface area, but is not limited thereto. Moreover, although the heater 9 is embed | buried under the thermal storage member 4, it is not limited to this. That is, as long as the heat storage member 4 can be heated, the heat storage member 4 is not limited to the illustrated position, and may be configured to contact the heat storage member 4 from the outside.

1A 車両用電池パック
2 筐体
2a 内部空間
2b 内部底面
2c 内部側面
2d 間仕切り壁
2e,7a 収容空間
3,8 電池
3a 外周面
4 蓄熱部材
5 熱伝導部材
5a 接触部
6 保持部材
7 蓄熱容器
9 ヒータ
10 温度調整器
11 ヒータドライバ
12 BMU
13 温度センサ信号
14 ヒータ電流
20 電源
21 壁部
51,53〜56 熱伝導板
52a,52b 貫通部
22,71 内部熱伝導板(内部熱伝導部材)
BG 第1配列方向電池群
BM 電池モジュール
DESCRIPTION OF SYMBOLS 1A Battery pack for vehicles 2 Case 2a Internal space 2b Internal bottom surface 2c Internal side surface 2d Partition wall 2e, 7a Housing space 3, 8 Battery 3a Outer surface 4 Heat storage member 5 Heat conduction member 5a Contact part 6 Holding member 7 Heat storage container 9 Heater 10 Temperature regulator 11 Heater driver 12 BMU
13 Temperature sensor signal 14 Heater current 20 Power supply 21 Wall part 51, 53-56 Heat conduction plate 52a, 52b Through part 22, 71 Internal heat conduction plate (internal heat conduction member)
BG first array direction battery group BM battery module

Claims (4)

熱伝導性を有する筐体と、
前記筐体の内部空間に配列され、かつ前記筐体に保持される複数個の電池と、
少なくとも各前記電池および前記筐体と直接熱的に接続されるとともに、前記筐体に収容され、かつ前記筐体よりも蓄熱量が大きい蓄熱部材と、
前記筐体に収容され、かつ前記蓄熱部材を加熱する発熱体と、
前記発熱体で前記蓄熱部材を加熱して複数個の前記電池を昇温する昇温制御を行う温度調整器と、
を備えることを特徴とする車両用電池パック。
A housing having thermal conductivity;
A plurality of batteries arranged in the internal space of the housing and held in the housing;
A thermal storage member that is directly thermally connected to at least each of the batteries and the casing, is housed in the casing, and has a larger heat storage amount than the casing;
A heating element housed in the housing and heating the heat storage member;
A temperature regulator for performing temperature rise control for heating the heat storage member with the heating element to raise the temperature of the plurality of batteries;
A vehicle battery pack comprising:
熱伝導性を有する筐体と、
前記筐体の内部空間に配列され、かつ前記筐体に保持される複数個の電池と、
少なくとも前記筐体と熱的に接続されるとともに、前記筐体に収容され、かつ前記筐体よりも蓄熱量が大きい蓄熱部材と、
少なくとも各前記電池および前記蓄熱部材と熱的に接続されるとともに、前記筐体に収容される熱伝導部材と、
前記筐体に収容され、かつ前記蓄熱部材を加熱する発熱体と、
前記発熱体で前記蓄熱部材を加熱して複数個の前記電池を昇温する昇温制御を行う温度調整器と、
を備えることを特徴とする車両用電池パック。
A housing having thermal conductivity;
A plurality of batteries arranged in the internal space of the housing and held in the housing;
A heat storage member that is thermally connected to at least the housing, is housed in the housing, and has a larger amount of heat storage than the housing;
A thermal conduction member that is thermally connected to at least each of the batteries and the heat storage member, and is housed in the housing;
A heating element housed in the housing and heating the heat storage member;
A temperature regulator for performing temperature rise control for heating the heat storage member with the heating element to raise the temperature of the plurality of batteries;
A vehicle battery pack comprising:
前記蓄熱部材は、
流動性を有し、複数個の前記電池と鉛直方向に対向する前記筐体の内部底面に貯留する、
請求項1または2に記載の車両用電池パック。
The heat storage member is
It has fluidity and is stored on the inner bottom surface of the casing that faces the plurality of batteries in the vertical direction.
The battery pack for vehicles according to claim 1 or 2.
前記蓄熱部材は、
潜熱蓄熱材または顕熱蓄熱材の少なくとも一方が含まれる、
請求項1〜3のいずれか1項に記載の車両用電池パック。
The heat storage member is
Including at least one of latent heat storage material or sensible heat storage material,
The vehicle battery pack according to any one of claims 1 to 3.
JP2017136054A 2017-07-12 2017-07-12 Vehicle battery pack Active JP6946083B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017136054A JP6946083B2 (en) 2017-07-12 2017-07-12 Vehicle battery pack
CN201810758225.1A CN109256606A (en) 2017-07-12 2018-07-11 Vehicle battery group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017136054A JP6946083B2 (en) 2017-07-12 2017-07-12 Vehicle battery pack

Publications (2)

Publication Number Publication Date
JP2019021402A true JP2019021402A (en) 2019-02-07
JP6946083B2 JP6946083B2 (en) 2021-10-06

Family

ID=65051613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017136054A Active JP6946083B2 (en) 2017-07-12 2017-07-12 Vehicle battery pack

Country Status (2)

Country Link
JP (1) JP6946083B2 (en)
CN (1) CN109256606A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3793018A1 (en) * 2019-09-10 2021-03-17 Yazaki Corporation Vehicle battery pack
WO2021215197A1 (en) * 2020-04-23 2021-10-28 豊田合成株式会社 Battery pack
JP2022109680A (en) * 2021-01-15 2022-07-28 尚士 柴山 Temperature change suppression device and self-propelled vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144361A (en) * 1996-11-12 1998-05-29 Furukawa Electric Co Ltd:The Battery system and transportation machine provided with the same
JP2001236145A (en) * 2000-02-22 2001-08-31 Hitachi Ltd Battery and cooling system to be used as battery charger
JP2014103005A (en) * 2012-11-20 2014-06-05 Toshiba Corp Battery pack and in-vehicle heating system
JP2015029036A (en) * 2013-06-27 2015-02-12 ソニー株式会社 Electronic apparatus and control method of electronic apparatus
JP2017216099A (en) * 2016-05-31 2017-12-07 マツダ株式会社 Secondary battery warming device of vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513816B2 (en) * 2007-02-20 2010-07-28 トヨタ自動車株式会社 Temperature control mechanism and vehicle
CN103053068B (en) * 2010-08-12 2016-01-20 古河电气工业株式会社 Battery temp regulating system and battery temp adjusting part

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144361A (en) * 1996-11-12 1998-05-29 Furukawa Electric Co Ltd:The Battery system and transportation machine provided with the same
JP2001236145A (en) * 2000-02-22 2001-08-31 Hitachi Ltd Battery and cooling system to be used as battery charger
JP2014103005A (en) * 2012-11-20 2014-06-05 Toshiba Corp Battery pack and in-vehicle heating system
JP2015029036A (en) * 2013-06-27 2015-02-12 ソニー株式会社 Electronic apparatus and control method of electronic apparatus
JP2017216099A (en) * 2016-05-31 2017-12-07 マツダ株式会社 Secondary battery warming device of vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3793018A1 (en) * 2019-09-10 2021-03-17 Yazaki Corporation Vehicle battery pack
WO2021215197A1 (en) * 2020-04-23 2021-10-28 豊田合成株式会社 Battery pack
JP2021174647A (en) * 2020-04-23 2021-11-01 株式会社豊田中央研究所 Battery pack
JP7503933B2 (en) 2020-04-23 2024-06-21 株式会社豊田中央研究所 Battery pack
JP2022109680A (en) * 2021-01-15 2022-07-28 尚士 柴山 Temperature change suppression device and self-propelled vehicle

Also Published As

Publication number Publication date
JP6946083B2 (en) 2021-10-06
CN109256606A (en) 2019-01-22

Similar Documents

Publication Publication Date Title
JP5209036B2 (en) Battery assembly, electric vehicle, and battery housing
US7531270B2 (en) Battery pack with integral cooling and bussing devices
US8197958B2 (en) Electric battery comprising a mechanical and thermal conditioning system
JP5464168B2 (en) Power supply
US11695282B2 (en) Battery device
US20110091760A1 (en) System and Method for Inhibiting the Propagation of an Exothermic Event
US20100151308A1 (en) Increased resistance to thermal runaway through differential heat transfer
KR20100095457A (en) Battery assembly with temperature control device
JP2009004237A (en) Power storage device and vehicle
CN109659643B (en) Battery cell module, secondary battery pack, and motor vehicle
CN112563610B (en) Battery pack for vehicle
JP2009016238A (en) Electric storage device and vehicle
JP2019021402A (en) Vehicle battery pack
JP2010015955A (en) Power storage device
JP2014089839A (en) Power supply device and vehicle having the same
JP2008204762A (en) Power source device
US20190386359A1 (en) Cell carrier comprising phase change material
CN113853708A (en) Battery module
KR20180029602A (en) Battery pack
JP2018063921A (en) Cell device
JP6751320B2 (en) Vehicle battery pack
JP6929623B2 (en) Vehicle battery pack
JP2007329047A (en) Battery pack
JP2010146883A (en) Power storage device
US20200328487A1 (en) Thermal management system for an on-vehicle battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210811

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210811

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210818

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210915

R150 Certificate of patent or registration of utility model

Ref document number: 6946083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350