JP2019020389A - Method for monitoring state of thermosetting resin and state monitoring system - Google Patents

Method for monitoring state of thermosetting resin and state monitoring system Download PDF

Info

Publication number
JP2019020389A
JP2019020389A JP2018105739A JP2018105739A JP2019020389A JP 2019020389 A JP2019020389 A JP 2019020389A JP 2018105739 A JP2018105739 A JP 2018105739A JP 2018105739 A JP2018105739 A JP 2018105739A JP 2019020389 A JP2019020389 A JP 2019020389A
Authority
JP
Japan
Prior art keywords
thermosetting resin
state
moisture content
crosslinking
curing process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018105739A
Other languages
Japanese (ja)
Other versions
JP6650587B2 (en
Inventor
南尾 匡紀
Masanori Nano
匡紀 南尾
泰啓 中村
Yasuhiro Nakamura
泰啓 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to CN201810710745.5A priority Critical patent/CN109254141B/en
Priority to US16/029,021 priority patent/US10913184B2/en
Publication of JP2019020389A publication Critical patent/JP2019020389A/en
Application granted granted Critical
Publication of JP6650587B2 publication Critical patent/JP6650587B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

To provide a state monitoring system of thermosetting resin capable of allowing a user to comprehend the state of crosslinking of the thermosetting resin during curing processing, and a state monitoring method.SOLUTION: The state monitoring method of thermosetting resin comprises of the steps of: in curing processing of the thermosetting resin, detecting moisture content of the thermosetting resin under curing processing; and comprehending the state of crosslinking of the thermosetting resin in curing processing on the basis of the detected moisture content. By detecting the moisture content of the thermosetting resin under curing processing, the state of the crosslinking of the thermosetting resin can be comprehended.SELECTED DRAWING: Figure 3

Description

本発明は、熱硬化性樹脂の硬化処理中に架橋の状態を把握することを可能とする、熱硬化性樹脂の状態監視方法および状態監視システムに関する。   The present invention relates to a thermosetting resin state monitoring method and a state monitoring system that make it possible to grasp the state of crosslinking during the curing process of a thermosetting resin.

従来、熱硬化性樹脂は、電子材料の封止用樹脂などとして、各種の用途に適用されている(例えば、特許文献1参照)。一般的に熱硬化性樹脂は、硬化剤と樹脂の混合物が調製され、硬化装置で加熱処理されることで硬化し、作製される。熱硬化性樹脂は、適切な硬化処理によって架橋が進行し、目的とする物性(例えば、強度や耐熱性)を備えた樹脂硬化物となる。   Conventionally, thermosetting resins have been applied to various applications as resins for sealing electronic materials (see, for example, Patent Document 1). In general, a thermosetting resin is prepared by preparing a mixture of a curing agent and a resin and curing it by heat treatment with a curing device. The thermosetting resin undergoes crosslinking through an appropriate curing treatment, and becomes a cured resin product having desired physical properties (for example, strength and heat resistance).

樹脂硬化物の物性に関係する架橋密度は、硬化処理における加熱温度や反応時間などの硬化条件(温度プロファイル)によって変化する。硬化処理における温度プロファイルが適切でない場合、樹脂硬化物の架橋密度が不足し、機械的性質(強度、弾性率等)が低下する場合がある。例えば、LEDパッケージ(LED部品)であれば、経時劣化によりボンディングワイヤと封止樹脂との間に剥離が発生し、その間隙に水分が入り込む。   The crosslink density related to the physical properties of the cured resin varies depending on the curing conditions (temperature profile) such as heating temperature and reaction time in the curing process. If the temperature profile in the curing process is not appropriate, the crosslink density of the cured resin may be insufficient, and the mechanical properties (strength, elastic modulus, etc.) may decrease. For example, in the case of an LED package (LED component), peeling occurs between the bonding wire and the sealing resin due to deterioration over time, and moisture enters the gap.

このようなLEDパッケージをプリント基板樹脂に実装すると、リフローの温度により水蒸気爆発が起こり、断線する恐れがある。また、高温で長時間の加熱処理を行うことで封止樹脂自体が変色する場合があり、LEDパッケージであれば光透過性が損なわれて発光輝度が低下する原因となる。   When such an LED package is mounted on a printed circuit board resin, a steam explosion occurs due to the temperature of reflow, and there is a risk of disconnection. In addition, when the heat treatment is performed at a high temperature for a long time, the sealing resin itself may be discolored. If the LED package is used, the light transmittance is impaired and the light emission luminance is reduced.

特開2016−88972号公報Japanese Patent Laid-Open No. 2006-88972

このように、樹脂硬化物の硬化処理において適切な温度プロファイルを設定することは、目的とする樹脂硬化物の物性を得るうえでとても重要である。しかしながら、温度プロファイルを適切に設定する作業は容易ではない。   Thus, setting an appropriate temperature profile in the curing treatment of the cured resin product is very important for obtaining the physical properties of the target cured resin product. However, it is not easy to set the temperature profile appropriately.

従来は、硬化処理試験によって試作品を製造し、得られた試作品に対して硬度測定、環境試験(HAST(Highly Accelerated Temperature and Humidity Stress Test)、温度サイクル試験等)を実施し、トライアンドエラーで温度プロファイルを決定していた。このような温度プロファイルの決定手順は煩雑であり、温度プロファイルの決定までに多大な時間を要していた。また、樹脂硬化物の架橋密度は、樹脂硬化物の物性に相関関係を有するが、架橋密度を直接測定することも困難であった。   Conventionally, a trial product is manufactured by a curing treatment test, and a hardness measurement and an environmental test (HAST (Highly Accelerated Temperature and Humidity Stress Test), temperature cycle test, etc.) are performed on the obtained prototype, and a trial and error is performed. The temperature profile was determined. Such a procedure for determining the temperature profile is complicated, and it takes a long time to determine the temperature profile. Moreover, although the crosslinked density of the cured resin has a correlation with the physical properties of the cured resin, it is difficult to directly measure the crosslinked density.

本発明は、上記従来の課題を解決するものであり、硬化処理中に熱硬化性樹脂の架橋の状態を把握することを可能とする、熱硬化性樹脂の状態監視システムおよび状態監視方法を提供することを目的とする。   The present invention solves the above-described conventional problems, and provides a thermosetting resin state monitoring system and a state monitoring method that make it possible to grasp the state of crosslinking of the thermosetting resin during the curing process. The purpose is to do.

本発明に係る熱硬化性樹脂の状態監視方法は、
熱硬化性樹脂の硬化処理において、硬化処理中の熱硬化性樹脂の水分量を検出し、前記検出された水分量に基づいて、前記硬化処理中の熱硬化性樹脂の架橋の状態を把握する、
熱硬化性樹脂の状態監視方法である。
The method of monitoring the state of the thermosetting resin according to the present invention is as follows.
In the curing process of the thermosetting resin, the moisture content of the thermosetting resin during the curing process is detected, and the crosslinking state of the thermosetting resin during the curing process is grasped based on the detected moisture content. ,
It is a state monitoring method of a thermosetting resin.

本発明に係る熱硬化性樹脂の状態監視システムは、
硬化処理中の熱硬化性樹脂の水分量を検出する検出部と、
前記検出部で検出された水分量に基づいて、前記硬化処理中の熱硬化性樹脂の架橋の状態を算出する算出部と、
を含む、熱硬化性樹脂の状態監視システムである。
The thermosetting resin state monitoring system according to the present invention is:
A detection unit for detecting the moisture content of the thermosetting resin during the curing process;
Based on the amount of water detected by the detection unit, a calculation unit that calculates the state of crosslinking of the thermosetting resin during the curing process;
Is a state monitoring system for a thermosetting resin.

本発明によれば、硬化処理中に熱硬化性樹脂の水分量を検出することにより、熱硬化性樹脂の架橋の状態を把握することが可能となる。   According to the present invention, it is possible to grasp the state of crosslinking of the thermosetting resin by detecting the moisture content of the thermosetting resin during the curing process.

LEDパッケージの断面図LED package cross section 硬化装置の概略を示す断面図Sectional view showing the outline of the curing device 硬化処理制御システムの構成を示す概略図Schematic showing the configuration of the curing process control system 硬化処理試験の試験結果を示す図The figure which shows the test result of hardening treatment test 水分に基づいて硬化処理中の封止樹脂の架橋の状態を算出するフローを示す図The figure which shows the flow which calculates the state of the bridge | crosslinking of sealing resin in the hardening process based on a water | moisture content 図4の試験結果をグラフ化し、架橋が安定する領域を示す図FIG. 4 is a graph showing the test results of FIG. 4 and shows a region where crosslinking is stable.

以下、図面を参照し、本発明の実施形態に係る熱硬化性樹脂の状態監視システムを適用した硬化装置100について説明する。   Hereinafter, a curing apparatus 100 to which a thermosetting resin state monitoring system according to an embodiment of the present invention is applied will be described with reference to the drawings.

硬化装置100は、LEDパッケージ製造におけるモールド工程に使用される装置を一例とするものであり、基板上に搭載されたLED素子を封止するための熱硬化性樹脂に対して加熱処理を行う装置である。図中同一または相当部分には同一符号を付してその説明は繰り返さない。   The curing device 100 is an example of a device used in a molding process in LED package manufacturing, and performs a heat treatment on a thermosetting resin for sealing an LED element mounted on a substrate. It is. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

なお、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。また、各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。   In addition, in order to make the explanation easy to understand, in the drawings referred to below, the configuration is shown in a simplified or schematic manner, or some components are omitted. Further, the dimensional ratio between the constituent members shown in each drawing does not necessarily indicate an actual dimensional ratio.

[LEDパッケージ]
まず、完成品であるLEDパッケージPについて説明する。
[LED package]
First, the finished LED package P will be described.

図1は、LEDパッケージPの断面図である。LEDパッケージPは、例えば、各種の照明装置の光源となる白色光を照射する機能を有している。LEDパッケージPは、基板1、LED実装部4、LED素子6、および封止樹脂8を有している。   FIG. 1 is a cross-sectional view of the LED package P. The LED package P has a function of irradiating white light serving as a light source of various lighting devices, for example. The LED package P includes a substrate 1, an LED mounting portion 4, an LED element 6, and a sealing resin 8.

基板1は、完成品であるLEDパッケージPのベースとなる部分である。製造工程においては、基板1が複数個作り込まれた多連型基板に、それぞれLED実装部4が形成されている。LED実装部4は、LED素子6が実装されると共に、液状の封止樹脂8が塗布される部分である。LED実装部4には、平面視で円形や楕円形の環状堤を有するキャビティ形状の反射部7が設けられている。   The board | substrate 1 is a part used as the base of LED package P which is a finished product. In the manufacturing process, the LED mounting portions 4 are respectively formed on the multiple substrate in which a plurality of substrates 1 are formed. The LED mounting portion 4 is a portion on which the LED element 6 is mounted and a liquid sealing resin 8 is applied. The LED mounting part 4 is provided with a cavity-shaped reflecting part 7 having a circular or elliptical circular bank in plan view.

LED素子6は、例えば青色LEDであり、各基板1の反射部7内に実装される。LED素子6の電極は、基板1の上面に形成された配線層2に対してボンディングワイヤ9によって接続される。   The LED element 6 is, for example, a blue LED, and is mounted in the reflection portion 7 of each substrate 1. The electrodes of the LED element 6 are connected to the wiring layer 2 formed on the upper surface of the substrate 1 by bonding wires 9.

封止樹脂8は、LED素子6及びボンディングワイヤ9を保護する機能と、光を外部に取り出す機能を有している。このため、封止樹脂8は、光透過性が高く、熱や光で劣化しにくい特性が要求される。封止樹脂8は、例えばエポキシ樹脂やシリコン樹脂等の熱硬化性樹脂が用いられる。封止樹脂8は、液状の状態でLED素子6を覆うように反射部7の内側に所定厚みで塗布され、硬化装置100によって所定温度で所定時間加熱処理されることにより硬化される。封止樹脂8には、蛍光体が含まれている。   The sealing resin 8 has a function of protecting the LED element 6 and the bonding wire 9 and a function of extracting light to the outside. For this reason, the sealing resin 8 is required to have a high light-transmitting property and hardly deteriorate with heat or light. As the sealing resin 8, for example, a thermosetting resin such as an epoxy resin or a silicon resin is used. The sealing resin 8 is applied to the inside of the reflective portion 7 with a predetermined thickness so as to cover the LED element 6 in a liquid state, and is cured by being heated by the curing device 100 at a predetermined temperature for a predetermined time. The sealing resin 8 contains a phosphor.

LED素子6が青色LEDである場合、青色と補色関係にある黄色の蛍光を発する蛍光体を含んだ封止樹脂8とを組み合わせることにより、擬似白色光を得ることができる。封止樹脂8の硬化処理後に多連型基板を基板1毎に切断することにより、LEDパッケージPが完成する。   When the LED element 6 is a blue LED, pseudo white light can be obtained by combining the sealing resin 8 containing a phosphor that emits yellow fluorescence that is complementary to blue. The LED package P is completed by cutting the multiple substrate for each substrate 1 after the curing treatment of the sealing resin 8.

[硬化装置]
続いて、硬化装置100について説明する。
[Curing equipment]
Next, the curing device 100 will be described.

図2は、硬化装置100の概略を示す断面図である。図2に示すように、硬化装置100は、加熱処理部10、検出部30、および制御部50を備えている。   FIG. 2 is a cross-sectional view showing an outline of the curing device 100. As shown in FIG. 2, the curing device 100 includes a heat treatment unit 10, a detection unit 30, and a control unit 50.

加熱処理部10は、LED実装部4に液状の封止樹脂8(熱硬化性樹脂)を塗布した多連型基板(図1参照。以下、被処理物Wとする)に対して加熱処理を行い、封止樹脂8を硬化させる部分である。加熱処理部10は、処理空間12、および加熱ユニット14を有している。   The heat treatment unit 10 performs heat treatment on a multiple substrate (see FIG. 1, hereinafter referred to as an object to be processed W) in which a liquid sealing resin 8 (thermosetting resin) is applied to the LED mounting unit 4. It is a part which performs and hardens the sealing resin 8. FIG. The heat processing unit 10 includes a processing space 12 and a heating unit 14.

処理空間12は、被処理物Wを収容すると共に、封止樹脂8を硬化処理する温度に温度制御されている密閉可能な空間である。処理空間12には、加熱台13が配置されており、加熱台13に被処理物Wが載置されて加熱処理が行われる。   The processing space 12 is a sealable space that accommodates the workpiece W and is temperature-controlled to a temperature at which the sealing resin 8 is cured. A heating table 13 is disposed in the processing space 12, and the workpiece W is placed on the heating table 13 and heat treatment is performed.

加熱ユニット14は、処理空間12の下部に配置されている。加熱ユニット14は、ヒータ15、ファン16および温度センサ(図示せず)を備えている。ヒータ15は処理空間12を加熱する加熱手段であり、ファン16は、加熱された雰囲気を処理空間12内に循環させる送風手段である。加熱ユニット14は、処理空間12が所定の温度環境となるように制御部50によって制御されている。   The heating unit 14 is disposed below the processing space 12. The heating unit 14 includes a heater 15, a fan 16, and a temperature sensor (not shown). The heater 15 is a heating unit that heats the processing space 12, and the fan 16 is a blowing unit that circulates the heated atmosphere in the processing space 12. The heating unit 14 is controlled by the control unit 50 so that the processing space 12 has a predetermined temperature environment.

検出部30は、加熱処理部10内で硬化処理が行われている被処理物Wの状態に関する情報を検出する。具体的には、被処理物Wに塗布されている封止樹脂8に含まれている水分量を検出する。検出部30は、硬化処理中の熱硬化性樹脂に含まれている水分量を継続して検出するセンサである。検出部30は、例えば、マイクロ波水分センサを用いることができる。マイクロ波水分センサは、マイクロ波の到達時間が水分量に応じて遅延することを利用したセンサである。   The detection unit 30 detects information related to the state of the workpiece W that is being cured in the heat processing unit 10. Specifically, the amount of moisture contained in the sealing resin 8 applied to the workpiece W is detected. The detection unit 30 is a sensor that continuously detects the amount of water contained in the thermosetting resin during the curing process. As the detection unit 30, for example, a microwave moisture sensor can be used. The microwave moisture sensor is a sensor that utilizes the fact that the microwave arrival time is delayed according to the amount of moisture.

制御部50は、加熱ユニット14を制御することにより、処理空間12の加熱温度および反応時間を制御する。   The controller 50 controls the heating temperature and the reaction time of the processing space 12 by controlling the heating unit 14.

[制御部]
図3は、硬化処理制御システム200の構成を示す概略図である。
[Control unit]
FIG. 3 is a schematic diagram showing the configuration of the curing process control system 200.

硬化処理制御システム200は、硬化装置100の硬化処理を制御するシステムである。図3では、硬化処理制御システム200のうち、主に封止樹脂8(熱硬化性樹脂)の架橋の状態を把握するための構成を示している。硬化処理制御システム200は、制御部50および検出部30を備えている。   The curing process control system 200 is a system that controls the curing process of the curing apparatus 100. In FIG. 3, the structure for grasping | ascertaining the bridge | crosslinking state of sealing resin 8 (thermosetting resin) mainly among the hardening process control systems 200 is shown. The curing process control system 200 includes a control unit 50 and a detection unit 30.

検出部30は、硬化処理中において、被処理物Wに塗布されている封止樹脂8に含まれている水分量を検出する。検出部30からの検出信号は、制御部50に入力される。制御部50は、検出部30からの検出信号に基づいて、封止樹脂8に含まれる水分量を算出する。   The detection unit 30 detects the amount of moisture contained in the sealing resin 8 applied to the workpiece W during the curing process. A detection signal from the detection unit 30 is input to the control unit 50. The control unit 50 calculates the amount of moisture contained in the sealing resin 8 based on the detection signal from the detection unit 30.

制御部50は、メモリ52、および架橋状態算出部54を備えている。   The control unit 50 includes a memory 52 and a bridging state calculation unit 54.

メモリ52は、熱硬化性樹脂の架橋の状態に関するデータを記憶している。メモリ52には、架橋状態算出基準データDE1が保存されている。架橋状態算出基準データDE1には、例えば、硬化処理中の熱硬化性樹脂の水分量と、熱硬化性樹脂の架橋の状態に関する算出基準データが記録されている。   The memory 52 stores data regarding the state of crosslinking of the thermosetting resin. The memory 52 stores crosslinking state calculation reference data DE1. In the crosslinking state calculation reference data DE1, for example, calculation reference data relating to the moisture content of the thermosetting resin during the curing process and the crosslinking state of the thermosetting resin are recorded.

なお、熱硬化性樹脂の架橋の状態は直接測定することが困難であるが、本発明者らによる試験および研究により、架橋の状態と、熱硬化性樹脂のガラス転移点との間に相関関係があり、ガラス転移点と熱硬化性樹脂の水分量との間にも相関関係があるとの知見が得られた。このため、これらの関係から、硬化処理中の熱硬化性樹脂の水分量と、熱硬化性樹脂の架橋の状態との関係を導き出すことが可能である。   Although it is difficult to directly measure the state of crosslinking of the thermosetting resin, the correlation between the state of crosslinking and the glass transition point of the thermosetting resin is based on tests and research by the present inventors. There was a knowledge that there is also a correlation between the glass transition point and the moisture content of the thermosetting resin. For this reason, it is possible to derive the relationship between the moisture content of the thermosetting resin during the curing process and the crosslinked state of the thermosetting resin from these relationships.

架橋状態算出部54は、封止樹脂8に含まれる水分量、および架橋状態算出基準データDE1に記憶されている、硬化処理中の熱硬化性樹脂の水分量と、熱硬化性樹脂の架橋の状態に関する算出基準データとに基づいて、硬化処理中の封止樹脂8の架橋の状態を算出する。   The crosslinked state calculation unit 54 stores the amount of moisture contained in the sealing resin 8 and the amount of moisture of the thermosetting resin that is stored in the crosslinking state calculation reference data DE1 and the crosslinking of the thermosetting resin. Based on the calculation reference data regarding the state, the state of crosslinking of the sealing resin 8 during the curing process is calculated.

図4は、異なる加熱温度および反応時間で硬化処理試験を行った試験結果を示している。図4では、硬化条件(加熱温度、反応時間)、ガラス転移点温度、および水分量の関係と、HAST試験および変色の有無についての試験結果が示されている。   FIG. 4 shows test results obtained by performing a curing treatment test at different heating temperatures and reaction times. FIG. 4 shows the relationship between the curing conditions (heating temperature, reaction time), glass transition temperature, and moisture content, and the test results for the HAST test and the presence or absence of discoloration.

図4に示すように、硬化条件、ガラス転移点、および水分量との間には、加熱温度が高く、かつ反応時間が長いほど、水分量が低くなり、ガラス転移点温度が上昇する傾向が示されている。また、ガラス転移点温度が比較的低く、かつ水分量が比較的多いほど、HAST試験において不良率が上昇する傾向があるため、ガラス転移点温度が比較的低く、かつ水分量が比較的多いほど架橋密度が不足していることが推測される。   As shown in FIG. 4, between the curing conditions, the glass transition point, and the moisture content, the higher the heating temperature and the longer the reaction time, the lower the moisture content and the higher the glass transition temperature. It is shown. Moreover, since the defect rate tends to increase in the HAST test as the glass transition temperature is relatively low and the water content is relatively large, the glass transition temperature is relatively low and the water content is relatively large. It is estimated that the crosslinking density is insufficient.

一方、ガラス転移点温度が比較的高く、かつ硬化時間が比較的長くなると、熱硬化性樹脂の変色が認められることも示される。図4のような試験結果を蓄積することにより、硬化処理中の熱硬化性樹脂の水分量と、熱硬化性樹脂の架橋の状態との関係を導き出すことが可能である。図6は、図4で示されるデータをグラフ化したものである。図6から、ガラス転移点120℃以上(125℃、3時間以上)で、水分量が0.03〜0.05%であると好適であることがわかる。   On the other hand, it is also shown that when the glass transition temperature is relatively high and the curing time is relatively long, discoloration of the thermosetting resin is observed. By accumulating the test results as shown in FIG. 4, it is possible to derive the relationship between the moisture content of the thermosetting resin during the curing process and the crosslinked state of the thermosetting resin. FIG. 6 is a graph of the data shown in FIG. FIG. 6 shows that it is preferable that the glass transition point is 120 ° C. or higher (125 ° C., 3 hours or longer) and the moisture content is 0.03 to 0.05%.

なお、熱硬化性樹脂のガラス転移点温度は、示差走査熱量計(DSC)によって測定可能である。示差走査熱量計は、吸熱・発熱に伴う熱流の変化を検知して熱硬化樹脂の硬化反応を観測する装置である。   The glass transition temperature of the thermosetting resin can be measured with a differential scanning calorimeter (DSC). The differential scanning calorimeter is a device that observes a curing reaction of a thermosetting resin by detecting a change in heat flow due to endotherm and heat generation.

[架橋状態算出フロー]
図5は、封止樹脂8に含まれる水分に基づいて硬化処理中の封止樹脂8の架橋の状態を算出するフローを示す図である。
[Crosslinking state calculation flow]
FIG. 5 is a diagram illustrating a flow for calculating the state of crosslinking of the sealing resin 8 during the curing process based on the moisture contained in the sealing resin 8.

図5に示す架橋状態算出フローがスタートすると、まず、ステップSA1で、制御部50は、検出部30からの検出信号に基づいて、封止樹脂8に含まれる水分量を算出する。   When the cross-linking state calculation flow shown in FIG. 5 starts, first, in step SA1, the control unit 50 calculates the amount of water contained in the sealing resin 8 based on the detection signal from the detection unit 30.

ステップSA2では、架橋状態算出部54は、メモリ52に記憶されている架橋状態算出基準データDE1を参照し、封止樹脂8に含まれる水分量に基づいて、硬化処理中の封止樹脂8の架橋の状態を算出して、フローを終了する。   In step SA2, the crosslinked state calculation unit 54 refers to the crosslinked state calculation reference data DE1 stored in the memory 52, and determines the sealing resin 8 being cured based on the amount of moisture contained in the sealing resin 8. The state of crosslinking is calculated and the flow is terminated.

以上説明した硬化装置100によれば、硬化処理中に熱硬化性樹脂の水分量を検出することにより、熱硬化性樹脂の架橋の状態を把握することが可能となる。また、硬化処理中に熱硬化性樹脂の水分量を検出する工程と、検出された水分量に基づいて熱硬化性樹脂の架橋の状態を算出する工程、により、硬化処理中に熱硬化性樹脂の架橋の状態を把握することが可能となる。   According to the curing device 100 described above, it is possible to grasp the state of crosslinking of the thermosetting resin by detecting the moisture content of the thermosetting resin during the curing process. In addition, the process of detecting the moisture content of the thermosetting resin during the curing process and the process of calculating the crosslinking state of the thermosetting resin based on the detected moisture content, the thermosetting resin during the curing process. It becomes possible to grasp the state of cross-linking.

硬化処理中に熱硬化性樹脂の水分量を検出部30で検出し、検出された水分量に基づいて熱硬化性樹脂の架橋の状態を架橋状態算出部54で算出することにより、硬化処理中に熱硬化性樹脂の架橋の状態を把握することが可能となる。   During the curing process, the moisture content of the thermosetting resin is detected by the detection unit 30 and the crosslinking state of the thermosetting resin is calculated by the crosslinking state calculation unit 54 based on the detected moisture content. In addition, it is possible to grasp the state of crosslinking of the thermosetting resin.

メモリ52に記憶された熱硬化性樹脂の水分量と熱硬化性樹脂の架橋の状態との関係に基づいて、熱硬化性樹脂の架橋の状態を算出することにより、硬化処理中に熱硬化性樹脂の架橋の状態を把握することが可能となる。   Based on the relationship between the moisture content of the thermosetting resin stored in the memory 52 and the crosslinking state of the thermosetting resin, the thermosetting resin is calculated during the curing process by calculating the crosslinking state of the thermosetting resin. It becomes possible to grasp the state of cross-linking of the resin.

[変形例]
本発明に係る熱硬化性樹脂の状態監視方法および状態監視システムは、上記説明した本実施形態に限定されるものではない。また、本発明を適用する硬化装置についても本実施形態に限定されない。
[Modification]
The state monitoring method and state monitoring system of the thermosetting resin according to the present invention are not limited to the above-described embodiment. Further, the curing apparatus to which the present invention is applied is not limited to this embodiment.

例えば、本実施形態の硬化装置では、封止樹脂8に含まれる水分量に基づいて、硬化処理中の封止樹脂8の架橋の状態を算出したが、算出された架橋の状態に基づいて、硬化処理における加熱温度や反応時間などの硬化条件(温度プロファイル)を制御しても良い。   For example, in the curing device of the present embodiment, the state of crosslinking of the sealing resin 8 during the curing process is calculated based on the amount of moisture contained in the sealing resin 8, but based on the calculated state of crosslinking, Curing conditions (temperature profile) such as heating temperature and reaction time in the curing process may be controlled.

具体的には、制御部50は、検出部30で検出された封止樹脂8に含まれる水分量に基づいて硬化処理中の封止樹脂8の架橋の状態を把握し、その封止樹脂8の架橋の状態に基づいて加熱ユニット14を制御することにより、当該被処理物Wに対して適切な温度プロファイルで加熱処理を行う。   Specifically, the control unit 50 grasps the state of crosslinking of the sealing resin 8 during the curing process based on the amount of water contained in the sealing resin 8 detected by the detection unit 30, and the sealing resin 8 By controlling the heating unit 14 based on the state of cross-linking, the heat treatment is performed on the workpiece W with an appropriate temperature profile.

この場合、例えば、異なる種類のLEDパッケージや、初めて加熱処理を行うLEDパッケージであっても、事前に硬化条件を決定することなく、加熱処理中に温度プロファイルを制御することができ、最初から適切に硬化処理を行うことができる。   In this case, for example, even for different types of LED packages or LED packages that are subjected to heat treatment for the first time, the temperature profile can be controlled during the heat treatment without determining the curing conditions in advance. Can be cured.

また、本実施形態では、バッチ式の硬化装置について説明したが、搬送しながら加熱する連続式の硬化装置であっても良い。連続式の硬化装置の場合、例えば、被処理物Wの封止樹脂8の状態に基づいて搬送速度を制御することにより、当該被処理物Wに対して適切な温度プロファイルで加熱処理を行うことが可能となる。   Further, in the present embodiment, the batch type curing apparatus has been described, but a continuous type curing apparatus that heats while transporting may be used. In the case of a continuous curing apparatus, for example, by controlling the transport speed based on the state of the sealing resin 8 of the workpiece W, the workpiece W is subjected to heat treatment with an appropriate temperature profile. Is possible.

本実施形態は、封止樹脂8に含まれる水分量からガラス転移点を導き出してから、架橋の状態を把握したが、これに限定されるものではない。例えば、封止樹脂8に含まれる水分量から硬度を導き出してから、架橋の状態を把握してもよい。   In the present embodiment, the glass transition point is derived from the amount of water contained in the sealing resin 8 and then the state of crosslinking is grasped. However, the present invention is not limited to this. For example, after the hardness is derived from the amount of moisture contained in the sealing resin 8, the state of crosslinking may be grasped.

以上、本発明の実施形態を説明したが、上述した実施形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施形態を適宜変形して実施することが可能である。   As mentioned above, although embodiment of this invention was described, embodiment mentioned above is only the illustration for implementing this invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately modifying the above-described embodiment without departing from the spirit thereof.

本発明に係る熱硬化性樹脂の状態監視方法および状態監視システムは、熱硬化性樹脂の硬化処理に利用することができる。   The thermosetting resin state monitoring method and state monitoring system according to the present invention can be used for the thermosetting resin curing process.

100 硬化装置
10 加熱処理部
30 検出部
50 制御部
DESCRIPTION OF SYMBOLS 100 Curing apparatus 10 Heat processing part 30 Detection part 50 Control part

Claims (8)

熱硬化性樹脂の硬化処理において、硬化処理中の熱硬化性樹脂の水分量を検出し、前記検出された水分量に基づいて、前記硬化処理中の熱硬化性樹脂の架橋の状態を把握する、
熱硬化性樹脂の状態監視方法。
In the curing process of the thermosetting resin, the moisture content of the thermosetting resin during the curing process is detected, and the crosslinking state of the thermosetting resin during the curing process is grasped based on the detected moisture content. ,
A method for monitoring the state of a thermosetting resin.
熱硬化性樹脂の硬化処理において、
硬化処理中の熱硬化性樹脂の水分量を検出する工程と、
前記検出された水分量に基づいて、前記硬化処理中の熱硬化性樹脂の架橋の状態を算出する工程と、
を含む、熱硬化性樹脂の状態監視方法。
In the curing process of thermosetting resin,
Detecting the moisture content of the thermosetting resin during the curing process;
Calculating the state of crosslinking of the thermosetting resin during the curing process based on the detected moisture content;
A method for monitoring the state of a thermosetting resin.
前記熱硬化性樹脂の水分量は、0.03〜0.05%である、請求項1又は2に記載の熱硬化性樹脂の状態監視方法。 The state monitoring method of the thermosetting resin according to claim 1 or 2, wherein the moisture content of the thermosetting resin is 0.03 to 0.05%. 熱硬化性樹脂の硬化処理において、前記熱硬化性樹脂のガラス転移点が120℃以上である、請求項2又は3に記載の熱硬化性樹脂の状態監視方法。 The thermosetting resin state monitoring method according to claim 2 or 3, wherein a glass transition point of the thermosetting resin is 120 ° C or higher in the curing treatment of the thermosetting resin. 硬化処理中の熱硬化性樹脂の水分量を検出する検出部と、
前記検出部で検出された水分量に基づいて、前記硬化処理中の熱硬化性樹脂の架橋の状態を算出する算出部と、
を含む、熱硬化性樹脂の状態監視システム。
A detection unit for detecting the moisture content of the thermosetting resin during the curing process;
Based on the amount of water detected by the detection unit, a calculation unit that calculates the state of crosslinking of the thermosetting resin during the curing process;
Including thermosetting resin condition monitoring system.
熱硬化性樹脂の水分量と、熱硬化性樹脂の架橋の状態との関係を記憶する記憶部をさらに有し、
前記算出部は、
前記検出部で検出された水分量、および前記記憶部に記憶された熱硬化性樹脂の水分量と熱硬化性樹脂の架橋の状態との関係に基づいて、前記硬化処理中の熱硬化性樹脂の架橋の状態を算出する、
請求項5に記載の熱硬化性樹脂の状態監視システム。
It further has a storage unit for storing the relationship between the moisture content of the thermosetting resin and the state of crosslinking of the thermosetting resin,
The calculation unit includes:
Based on the moisture content detected by the detection unit and the relationship between the moisture content of the thermosetting resin stored in the storage unit and the crosslinked state of the thermosetting resin, the thermosetting resin during the curing process Calculating the state of crosslinking of
The state monitoring system of the thermosetting resin according to claim 5.
前記熱硬化性樹脂の水分量は、0.03〜0.05%である、請求項5又は6に記載の熱硬化性樹脂の状態監視方法。 The thermosetting resin state monitoring method according to claim 5 or 6, wherein the moisture content of the thermosetting resin is 0.03 to 0.05%. 硬化処理中の熱硬化性樹脂のガラス転移点が120℃以上である、請求項6又は7に記載の熱硬化性樹脂の状態監視方法。 The thermosetting resin state monitoring method according to claim 6 or 7, wherein the glass transition point of the thermosetting resin during the curing treatment is 120 ° C or higher.
JP2018105739A 2017-07-13 2018-06-01 Method and system for monitoring state of thermosetting resin Active JP6650587B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810710745.5A CN109254141B (en) 2017-07-13 2018-07-02 Method and system for monitoring state of thermosetting resin
US16/029,021 US10913184B2 (en) 2017-07-13 2018-07-06 State monitoring method and state monitoring system for thermosetting resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017136762 2017-07-13
JP2017136762 2017-07-13

Publications (2)

Publication Number Publication Date
JP2019020389A true JP2019020389A (en) 2019-02-07
JP6650587B2 JP6650587B2 (en) 2020-02-19

Family

ID=65353720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018105739A Active JP6650587B2 (en) 2017-07-13 2018-06-01 Method and system for monitoring state of thermosetting resin

Country Status (1)

Country Link
JP (1) JP6650587B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132322A1 (en) * 2019-12-26 2021-07-01 住友電気工業株式会社 Method for evaluating curing degree of thermosetting resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132322A1 (en) * 2019-12-26 2021-07-01 住友電気工業株式会社 Method for evaluating curing degree of thermosetting resin

Also Published As

Publication number Publication date
JP6650587B2 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
JP2005181222A5 (en)
CN109254141B (en) Method and system for monitoring state of thermosetting resin
JP6650587B2 (en) Method and system for monitoring state of thermosetting resin
George et al. Reliability of plastic-encapsulated electronic components in supersaturated steam environments
US20120007074A1 (en) Thermally sensitive material embedded in the substrate
CN105302179B (en) Temprature control method and temperature control system
Schirmer et al. Evaluation of mechanical stress on electronic assemblies during thermoforming and injection molding for conformable electronics
Oi et al. Warpage control of liquid molding compound for fan-out wafer level packaging
TWI443584B (en) Ic package tray embedded rfid, station with the same and method for manufacturing electrical components
Elger et al. In-Situ measurements of the relative thermal resistance: Highly sensitive method to detect crack propagation in solder joints
JP6975420B2 (en) Thermal cycle test equipment, thermal cycle test methods, semiconductor device manufacturing methods, and programs
JP2015141152A (en) Evaluation method of resin film
Adamietz et al. Reliability testing and stress measurement of QFN packages encapsulated by an open-ended microwave curing system
JP5013528B2 (en) Method and apparatus for managing moisture content of semiconductor package
CN106291299B (en) Power semiconductor module and thermal fatigue life judging method of power semiconductor module
Kuczynska et al. The influence of PBGAs post-manufacturing warpage simulation, viscoelastic material properties and evaluation methodology on accuracy of solder joints damage prediction
JP2007073859A (en) Reliability analysis system and reliability analysis method
Lai et al. Influence of material property of photosensitive polyimide on typical structural stress in redistribution layer of fan-out package
Tao Modelling of LED light source reliability
Pufall et al. Understanding delamination for fast development of reliable packages for automotive applications. A consideration of robustness for new packages based on simulation
JP2012037411A (en) Semiconductor device inspection method and inspection apparatus
Stoyanov et al. Modelling and testing the impact of hot solder dip process on leaded components
TWI553762B (en) Method for checking result of chip probing test and chip thereof
Liu et al. Study on delamination variation trend of two plastic packaging devices in combination reliability test
George et al. Analysis of dynamic moisture diffusion in packaging materials during steam sterilization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180607

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R151 Written notification of patent or utility model registration

Ref document number: 6650587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151