JP2019016658A5 - - Google Patents

Download PDF

Info

Publication number
JP2019016658A5
JP2019016658A5 JP2017131656A JP2017131656A JP2019016658A5 JP 2019016658 A5 JP2019016658 A5 JP 2019016658A5 JP 2017131656 A JP2017131656 A JP 2017131656A JP 2017131656 A JP2017131656 A JP 2017131656A JP 2019016658 A5 JP2019016658 A5 JP 2019016658A5
Authority
JP
Japan
Prior art keywords
insulating substrate
solder
semiconductor element
width
metal block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017131656A
Other languages
Japanese (ja)
Other versions
JP2019016658A (en
JP6877271B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2017131656A priority Critical patent/JP6877271B2/en
Priority claimed from JP2017131656A external-priority patent/JP6877271B2/en
Publication of JP2019016658A publication Critical patent/JP2019016658A/en
Publication of JP2019016658A5 publication Critical patent/JP2019016658A5/ja
Application granted granted Critical
Publication of JP6877271B2 publication Critical patent/JP6877271B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

次に、溝31の長さ方向について説明する。図2中(b)で示すように、セラミック基板2を溝31内で接合する時、S1方向にスクラブ動作するため、溝31の長さ方向のサイズはセラミック基板2の長さに加えてスクラブ動作させる寸法分以上に長くする必要がある。例えば、幅が1.0mm、長さが1.5mmのセラミック基板2の組立公差が±0.1mmで、長さ方向に0.1mmスクラブ動作させる場合、溝31の長さ方向のサイズは1.9mm以上とするのが好ましい。またはんだを濡れ拡がらせるために、スクラブ動作させる寸法はスクラブ動作させる部材のスクラブ動作方向の寸法の5%以上程度とするのが好ましい。
また、溝31内に接合されたセラミック基板2の接合面と対向する面には、図1で示すように半導体レーザチップ1がはんだ7によって接合される。この接合時に、半導体レーザチップ1はスクラブ動作するため、この半導体レーザチップ1を保持する治具であるコレットが溝31の壁面に当たらないよう、溝31の深さはセラミック基板2の厚さより浅くするのが好ましい。さらに、セラミック基板2を溝31にはんだ接合する時に、セラミック基板2をセラミック基板2より大きいコレットで保持する場合、セラミック基板2を保持するコレットが金属ブロックの主面に当たらないよう、溝31の深さはセラミック基板2のコレットで覆われていない部分の厚さより浅くするのが好ましい。
Next, the length direction of the groove 31 will be described. As shown in FIG. 2B, when the ceramic substrate 2 is joined in the groove 31, a scrub operation is performed in the S1 direction. Therefore, the size of the groove 31 in the longitudinal direction is the same as the length of the ceramic substrate 2 in addition to the scrub. It is necessary to make it longer than the size to operate. For example, when the assembly tolerance of the ceramic substrate 2 having a width of 1.0 mm and a length of 1.5 mm is ± 0.1 mm and the scrubbing operation is performed by 0.1 mm in the length direction, the size of the groove 31 in the length direction is 1. It is preferable that it is not less than 9 mm. Further, in order to wet and spread the solder, it is preferable that the size of the scrubbing operation is about 5% or more of the size of the member to be scrubbed in the scrubbing operation direction.
Further, as shown in FIG. 1, the semiconductor laser chip 1 is joined by solder 7 to the surface of the ceramic substrate 2 which is joined in the groove 31 and which faces the joining surface. Since the semiconductor laser chip 1 performs a scrubbing operation at the time of this bonding, the depth of the groove 31 is shallower than the thickness of the ceramic substrate 2 so that the collet, which is a jig for holding the semiconductor laser chip 1, does not hit the wall surface of the groove 31. Preferably. Furthermore, when holding the ceramic substrate 2 with a collet larger than the ceramic substrate 2 when soldering the ceramic substrate 2 to the groove 31, the groove 31 is provided so that the collet holding the ceramic substrate 2 does not hit the main surface of the metal block 3. It is preferable that the depth of is smaller than the thickness of the portion of the ceramic substrate 2 not covered with the collet.

例えば、幅が1.0mm、長さが1.5mm、厚さが0.3mmのセラミック基板2を用いて、このセラミック基板2より大きいコレットでセラミック基板2の表面から0.1mmまで保持し、片側1.0mmスクラブ動作させてはんだ接合する場合、溝31は幅を1.0mm、長さを2.5mmより大きく、深さを0.2mmより浅くするのが好ましい。さらには、例えば溝31の深さを0.1mmより浅くして、コレットおよび溝31で周囲を覆われていないセラミック基板の側面の厚さが0.1mm以上程度確保できるようにすることで、コレットが多少傾いてもコレットの先端が金属ブロックの主面に接触しなくなるため、より好ましい。 For example, a ceramic substrate 2 having a width of 1.0 mm, a length of 1.5 mm and a thickness of 0.3 mm is used, and a collet larger than the ceramic substrate 2 holds the ceramic substrate 2 up to 0.1 mm from the surface, When performing a soldering operation by scrubbing 1.0 mm on one side, the groove 31 preferably has a width of 1.0 mm, a length of more than 2.5 mm, and a depth of less than 0.2 mm. Further, for example, by making the depth of the groove 31 shallower than 0.1 mm, the thickness of the side surface of the ceramic substrate 2 which is not covered with the collet and the groove 31 can be ensured to be about 0.1 mm or more. Even if the collet is slightly inclined, the tip of the collet does not come into contact with the main surface of the metal block 3 , which is more preferable.

次にはんだ6、はんだ7、はんだ8について説明する。
はんだ6はセラミック基板2の一方の面に形成された電極パターン21bと金属ブロック3に設けられた溝31の底面との接合に用いられる。はんだ6によってセラミック基板2が接合される時は、金属ブロック3はサーモモジュール4にはんだ8によって接合されている。よって、はんだ6の材料は、はんだ6の接合時にはんだ8が再溶融しないように、融点がはんだ8より低く、熱伝導率の大きい金属が好ましい。そのため、はんだは、一般的にはSn、Pb、Au、Ag、Cu、Zn、Ni、Sb、Bi、In、Ge等を含有し、その融点が450℃未満の合金が用いられるが、はんだ6には、主にSnにAgやCu等を含有し、その融点が250℃未満の合金を用いるのが好ましい。また、はんだの接合後の厚さは放熱性の観点から、0.3mm以下とするのが好ましい。さらには0.1mm以下とするのがより好ましい。
Next, the solder 6, the solder 7, and the solder 8 will be described.
The solder 6 is used for joining the electrode pattern 21b formed on one surface of the ceramic substrate 2 and the bottom surface of the groove 31 provided in the metal block 3. When the ceramic substrate 2 is joined by the solder 6, the metal block 3 is joined by the solder 8 to the thermo module 4. Therefore, the material of the solder 6 is preferably a metal having a lower melting point and a higher thermal conductivity than the solder 8 so that the solder 8 is not remelted when the solder 6 is joined. Therefore, the solder generally contains Sn, Pb, Au, Ag, Cu, Zn, Ni, Sb, Bi, In, Ge and the like, and an alloy having a melting point of less than 450 ° C. is used. It is preferable to use an alloy mainly containing Sn, Ag, Cu or the like and having a melting point of less than 250 ° C. In addition, the thickness of the solder 6 after joining is preferably 0.3 mm or less from the viewpoint of heat dissipation. Furthermore, it is more preferable that the thickness is 0.1 mm or less.

はんだ7はセラミック基板2の他方の面に形成された電極パターン21aと半導体レーザチップ1との接合に用いられる。はんだ7によって半導体レーザチップ1が接合される時は、セラミック基板2は金属ブロック3にはんだ6によって接合されており、金属ブロック3はサーモモジュール4にはんだ8によって接合されている。よって、はんだ7の材料は、はんだ6と同様に、はんだ7の接合時にはんだ8が再溶融しないように、融点がはんだ8より低く、熱伝導率の大きい金属が好ましい。この時、はんだ6は再溶融しても全く問題ない。そのためはんだ7も、主にSnにAgやCu等を含有し、その融点が250℃未満の合金を用いるのが好ましい。はんだ6と全く同じ材料を用いてもよい。また、はんだの接合後の厚さは放熱性の観点から、はんだ6と同様に、0.3mm以下とするのが好ましい。さらには0.1mm以下とするのがより好ましい。 The solder 7 is used for joining the electrode pattern 21 a formed on the other surface of the ceramic substrate 2 and the semiconductor laser chip 1. When the semiconductor laser chip 1 is joined by the solder 7, the ceramic substrate 2 is joined by the solder 6 to the metal block 3, and the metal block 3 is joined by the solder 8 to the thermo module 4. Therefore, like the solder 6, the material of the solder 7 is preferably a metal having a lower melting point and a higher thermal conductivity than the solder 8 so that the solder 8 does not remelt when the solder 7 is joined. At this time, there is no problem even if the solder 6 is remelted. Therefore, the solder 7 is also preferably made of an alloy mainly containing Ag, Cu, etc. in Sn and having a melting point of less than 250 ° C. The same material as the solder 6 may be used. The thickness of the solder 7 after joining is preferably 0.3 mm or less from the viewpoint of heat dissipation, like the solder 6. Furthermore, it is more preferable that the thickness is 0.1 mm or less.

以上のように構成された本実施の形態1に係る光モジュール101の効果について説明する。
ここでは、はんだ6およびはんだ7を溶融してはんだ接合するため、サーモモジュール4の底面からのホットプレートによる全体加熱を行うものとする。
金属ブロック3の主面のセラミック基板2がはんだ6によって接合される位置に、セラミック基板2より大きく、少なくとも幅の一部がセラミック基板2の幅と略等しい溝31を設けることで、はんだ6とはんだ7に融点が同程度のはんだを用いても、はんだ接合時にセラミック基板2を溝31の長さ方向へ、半導体レーザチップ1を溝31の幅方向へスクラブ動作することができる。一方、少なくとも幅の一部がセラミック基板2の幅と略等しい、すなわち幅方向の余裕がセラミック基板2の組立公差以下であるので、半導体レーザチップ1を溝31の幅方向へスクラブ動作時にはセラミック基板2は幅方向には固定されている。これによって、各工程でのはんだ接合時にスクラブ動作が可能となり、はんだ表面の酸化被膜を除去して、はんだを確実にお互いの部材に濡れ広がらせて確実にはんだ接合することができる。加えて、はんだ内の気泡も除去できるため、はんだボイドを低減することができる。したがって、信頼性が高く熱抵抗の小さい、高品質なはんだ接合部を得ることができる。
The effects of the optical module 101 according to the first embodiment configured as above will be described.
Here, since the solder 6 and the solder 7 are melted and solder-joined, the entire heating by the hot plate from the bottom surface of the thermo module 4 is performed.
By providing a groove 31 that is larger than the ceramic substrate 2 and has a width at least partially equal to the width of the ceramic substrate 2 at a position where the ceramic substrate 2 on the main surface of the metal block 3 is joined by the solder 6, Even when the solder having the same melting point is used as the solder 7, the ceramic substrate 2 can be scrubbed in the length direction of the groove 31 and the semiconductor laser chip 1 can be scrubbed in the width direction of the groove 31 at the time of solder joining. On the other hand, at least a part of the width is substantially equal to the width of the ceramic substrate 2 , that is, the margin in the width direction is less than or equal to the assembly tolerance of the ceramic substrate 2, so the semiconductor laser chip 1 is scrubbed in the width direction of the groove 31 when the ceramic substrate is scrubbed. 2 is fixed in the width direction. As a result, a scrubbing operation can be performed at the time of solder joining in each step, the oxide film on the solder surface can be removed, and the solder can be surely wetted and spread on the respective members for reliable solder joining. In addition, since bubbles in the solder can be removed, solder voids can be reduced. Therefore, it is possible to obtain a high-quality solder joint having high reliability and low thermal resistance.

また、開口部51は実施の形態1の溝31と同様、図3A〜図3Iで示したように、幅方向の少なくとも一部がセラミック基板2の幅と略等しくなるように形成されていればよい。開口部51は貫通していなくても、溝形状であってもよい。開口部51が金属プレート5を貫通している場合、熱抵抗の増加を防止することができだけでなく、金属ブロック3に対し開口部51の壁面を容易に垂直に形成でき、セラミック基板2を金属ブロック3に接合する時、開口部51の内壁面にセラミック基板2が接することでセラミック基板2が傾くことなく位置決めできる。
実施の形態1と同様に、セラミック基板2が開口部51内で開口部51の長さ方向にスクラブ動作されてはんだ6により接合され、その後、半導体レーザチップ1が開口部51の幅方向にスクラブ動作されながらはんだ7により接合される。
このように、半導体レーザチップ1の接合時に、開口部51の幅方向にスクラブ動作が行われても、セラミック基板2は開口部51の幅で固定され、実施の形態1の金属ブロックに溝31を設けた場合と同様、はんだ接合工程が簡便となり、組み立て精度の高い、信頼性の高い光モジュールを提供できるという効果を得ることができる。
加えて、このように構成することで、製品の種類ごとに光軸の位置が異なっていても、金属プレート5を適宜取り換えることで全て同じ金属ブロック3を用いることができるため、より好ましい。
Further, as in the groove 31 of the first embodiment, the opening 51 may be formed so that at least a part in the width direction is substantially equal to the width of the ceramic substrate 2, as shown in FIGS. 3A to 3I. Good. The opening 51 does not have to penetrate, and may have a groove shape. When the opening 51 penetrates the metal plate 5, not only an increase in thermal resistance can be prevented, but also the wall surface of the opening 51 can be easily formed perpendicular to the metal block 3, and the ceramic substrate 2 can be formed. When the ceramic substrate 2 is joined to the metal block 3, the ceramic substrate 2 contacts the inner wall surface of the opening 51, so that the ceramic substrate 2 can be positioned without tilting.
Similar to the first embodiment, the ceramic substrate 2 is scrubbed in the opening 51 in the length direction of the opening 51 and joined by the solder 6, and then the semiconductor laser chip 1 is scrubbed in the width direction of the opening 51. It is joined by the solder 7 while being operated.
As described above, when the semiconductor laser chip 1 is bonded, even if the scrubbing operation is performed in the width direction of the opening 51, the ceramic substrate 2 is fixed by the width of the opening 51 and the metal block 3 of the first embodiment is provided with the groove. Similar to the case where 31 is provided, it is possible to obtain the effect that the solder joining process is simplified and an optical module with high assembly accuracy and high reliability can be provided.
In addition, with such a configuration, even if the position of the optical axis differs depending on the type of product, the same metal block 3 can be used by appropriately replacing the metal plate 5, which is more preferable.

さらに、開口部51の長さ方向を半導体レーザチップ1の光軸の方向と平行となるように設けることで、セラミック基板2の搭載位置精度を向上し、組立て時および動作時の半導体レーザチップ1の光軸の位置ずれを抑制することができる。
その結果、高品質なはんだ接合部を備えた信頼性の高い、安価な光モジュールを得ることができる。



Further, by providing the opening 51 so that the longitudinal direction thereof is parallel to the optical axis direction of the semiconductor laser chip 1, the mounting position accuracy of the ceramic substrate 2 is improved, and the semiconductor laser chip 1 during assembly and operation is improved. The positional deviation of the optical axis can be suppressed.
As a result, it is possible to obtain a highly reliable and inexpensive optical module having a high quality solder joint.



Claims (9)

金属ブロックの上に、絶縁基板、光半導体素子を順次はんだで接合する光モジュールの製造方法であって、
前記金属ブロックに形成され、前記絶縁基板の外形より大きい溝であって、少なくとも幅の一部が前記絶縁基板の幅と略等しい溝に、第一のはんだを挟んで前記絶縁基板を配置し、
前記絶縁基板を前記溝の長さ方向にスクラブ動作を行いはんだ接合し、
前記絶縁基板に第二のはんだを挟んで前記光半導体素子を配置し、
前記光半導体素子を上記溝の幅方向にスクラブ動作を行いはんだ接合する、ことを特徴とする光モジュールの製造方法。
A method for manufacturing an optical module, in which an insulating substrate and an optical semiconductor element are sequentially soldered on a metal block,
A groove that is formed in the metal block and is larger than the outer shape of the insulating substrate, at least a part of the width of which is substantially equal to the width of the insulating substrate, and the insulating substrate is arranged with the first solder interposed therebetween.
Scrubbing the insulating substrate in the length direction of the groove for solder joining,
Arranging the optical semiconductor element sandwiching the second solder on the insulating substrate,
A method of manufacturing an optical module, characterized in that the optical semiconductor element is subjected to a scrubbing operation in the width direction of the groove to perform solder bonding.
金属ブロックの上に、絶縁基板、光半導体素子を順次はんだで接合する光モジュールの製造方法であって、
前記金属ブロックの上に、開口部が前記絶縁基板の外形より大きい開口部であって、少なくとも幅の一部が前記絶縁基板の幅と略等しい開口部を有する金属プレートを接合し、
前記開口部に第一のはんだを挟んで前記絶縁基板を配置し、
前記絶縁基板を前記開口部の長さ方向にスクラブ動作を行いはんだ接合し、
前記絶縁基板に第二のはんだを挟んで前記光半導体素子を配置し、
前記光半導体素子を上記開口部の幅方向にスクラブ動作を行いはんだ接合する、ことを特徴とする光モジュールの製造方法。
A method for manufacturing an optical module, in which an insulating substrate and an optical semiconductor element are sequentially soldered on a metal block,
On the metal block, a metal plate having an opening whose opening is larger than the outer shape of the insulating substrate and at least a part of the width of which is substantially equal to the width of the insulating substrate is joined,
Arranging the insulating substrate with the first solder sandwiched in the opening,
Scrubbing the insulating substrate in the length direction of the opening for solder joining,
Arranging the optical semiconductor element sandwiching the second solder on the insulating substrate,
A method for manufacturing an optical module, characterized in that the optical semiconductor element is subjected to a scrubbing operation in the width direction of the opening to perform solder bonding.
金属ブロックの上に、絶縁基板、光半導体素子を順次はんだで接合する光モジュールの製造方法であって、
形状が前記絶縁基板の外形より大きく、少なくとも幅の一部が前記絶縁基板の幅と略等しい形状を有するダムが設けられた前記金属ブロックのダム内に、第一のはんだを挟んで前記絶縁基板を配置し、
前記絶縁基板を前記ダムの長さ方向にスクラブ動作を行いはんだ接合し、
前記絶縁基板に第二のはんだを挟んで前記光半導体素子を配置し、
前記光半導体素子を上記ダムの幅方向にスクラブ動作を行いはんだ接合する、ことを特徴とする光モジュールの製造方法。
A method for manufacturing an optical module, in which an insulating substrate and an optical semiconductor element are sequentially soldered on a metal block,
The insulating substrate is sandwiched by a first solder in a dam of the metal block in which a dam having a shape larger than the outer shape of the insulating substrate and at least a part of the width of which is substantially equal to the width of the insulating substrate is provided. Place
The insulating substrate is soldered by performing a scrubbing operation in the length direction of the dam,
Arranging the optical semiconductor element sandwiching the second solder on the insulating substrate,
A method for manufacturing an optical module, characterized in that the optical semiconductor element is subjected to a scrubbing operation in the width direction of the dam to be soldered.
上記第一のはんだと上記第二のはんだとが共にSnを主成分とするはんだであることを特徴とする請求項1から3のいずれか1項に記載の光モジュールの製造方法。 The method of manufacturing an optical module according to any one of claims 1 to 3, characterized in that the said first solder and said second solder is a solder composed mainly of Sn together. 上記第一のはんだと上記第二のはんだとが同一材料であることを特徴とする請求項1から4のいずれか1項に記載の光モジュールの製造方法。 The said 1st solder and the said 2nd solder are the same material, The manufacturing method of the optical module of any one of Claim 1 to 4 characterized by the above-mentioned. 前記光半導体素子を前記光半導体素子の光軸方向と直交する方向にスクラブ動作を行うことを特徴とする請求項1から5のいずれか1項に記載の光モジュールの製造方法。 The method of manufacturing an optical module according to claim 1 , wherein the optical semiconductor element is scrubbed in a direction orthogonal to an optical axis direction of the optical semiconductor element . 金属ブロックと、
前記金属ブロックに形成された溝部に第一のはんだを介して接合された絶縁基板と、
前記絶縁基板に第二のはんだを介して接合された光半導体素子と、を備え、
前記金属ブロックの溝部は、前記絶縁基板の外形より大きい溝であって、少なくとも幅の一部が前記絶縁基板の幅と略等しく、長さ方向は前記光半導体素子の光軸方向となるように形成された、ことを特徴とする光モジュール。
A metal block,
An insulating substrate joined to the groove formed in the metal block via the first solder,
An optical semiconductor element joined to the insulating substrate via a second solder,
The groove portion of the metal block is a groove larger than the outer shape of the insulating substrate, at least a part of the width of which is substantially equal to the width of the insulating substrate, and the length direction is the optical axis direction of the optical semiconductor element. An optical module, which is formed.
金属ブロックと、
前記金属ブロックに接合され、開口部を有する金属プレートと、
前記開口部で第一のはんだを介して前記金属ブロックと接合された絶縁基板と、
前記絶縁基板に第二のはんだを介して接合された光半導体素子と、を備え、
前記金属プレートの開口部は、前記絶縁基板の外形より大きい開口部であって、少なくとも幅の一部が前記絶縁基板の幅と略等しく、長さ方向は前記光半導体素子の光軸方向となるように形成された、ことを特徴とする光モジュール。
A metal block,
A metal plate joined to the metal block and having an opening;
An insulating substrate joined to the metal block via the first solder in the opening,
An optical semiconductor element joined to the insulating substrate via a second solder,
The opening of the metal plate is larger than the outer shape of the insulating substrate, at least a part of the width is substantially equal to the width of the insulating substrate, and the length direction is the optical axis direction of the optical semiconductor element. An optical module, which is formed as described above.
ダムの形成された金属ブロックと、
前記金属ブロックのダム内に、第一のはんだを介して接合された絶縁基板と、
前記絶縁基板に第二のはんだを介して接合された光半導体素子と、を備え、
前記ダムの形状は、前記絶縁基板の外形より大きな形状であって、少なくとも幅の一部が前記絶縁基板の幅と略等しく、長さ方向は前記光半導体素子の光軸方向となるように形成された、ことを特徴とする光モジュール。
A metal block with a dam formed,
In the dam of the metal block, an insulating substrate joined via the first solder,
An optical semiconductor element joined to the insulating substrate via a second solder,
The shape of the dam is larger than the outer shape of the insulating substrate, at least a part of the width is substantially equal to the width of the insulating substrate, and the length direction is formed to be the optical axis direction of the optical semiconductor element. The optical module characterized in that
JP2017131656A 2017-07-05 2017-07-05 Manufacturing method of optical module Active JP6877271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017131656A JP6877271B2 (en) 2017-07-05 2017-07-05 Manufacturing method of optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017131656A JP6877271B2 (en) 2017-07-05 2017-07-05 Manufacturing method of optical module

Publications (3)

Publication Number Publication Date
JP2019016658A JP2019016658A (en) 2019-01-31
JP2019016658A5 true JP2019016658A5 (en) 2020-04-23
JP6877271B2 JP6877271B2 (en) 2021-05-26

Family

ID=65359408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017131656A Active JP6877271B2 (en) 2017-07-05 2017-07-05 Manufacturing method of optical module

Country Status (1)

Country Link
JP (1) JP6877271B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112367773A (en) * 2020-10-28 2021-02-12 安徽瑞迪微电子有限公司 DBC substrate and chip welding method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196545A (en) * 1985-02-26 1986-08-30 Rohm Co Ltd Bonding for pellet
JPS6252947U (en) * 1985-09-24 1987-04-02
JPS62140484A (en) * 1985-12-16 1987-06-24 Hitachi Ltd Optical semiconductor device
JP2622029B2 (en) * 1990-05-18 1997-06-18 株式会社東芝 Semiconductor light emitting device
JP3183247B2 (en) * 1998-02-27 2001-07-09 日本電気株式会社 Semiconductor laser module
JP2000068583A (en) * 1998-08-18 2000-03-03 Mitsubishi Electric Corp Semiconductor laser
JP2000349099A (en) * 1999-06-07 2000-12-15 Toshiba Corp Method of bonding with solder and manufacture of semiconductor device
JP2004325826A (en) * 2003-04-25 2004-11-18 Fuji Photo Film Co Ltd Fixing method and fixed structure of optical member
US20060018355A1 (en) * 2004-07-23 2006-01-26 Comlasc.Nt-Ab Laser diode arrays with reduced heat induced strain and stress
JP2010161159A (en) * 2009-01-07 2010-07-22 Calsonic Kansei Corp Die bonding method for bare chip, and bare chip mounting component
US9455547B2 (en) * 2013-05-13 2016-09-27 Mitsubishi Electric Corporation Semiconductor laser device

Similar Documents

Publication Publication Date Title
JP4904767B2 (en) Semiconductor device
JP5115524B2 (en) Electronic component unit and reinforcing adhesive
JP5800778B2 (en) Bonding method and semiconductor device manufacturing method
JP2010109132A (en) Thermoelectric module package and method of manufacturing the same
JP5819052B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2009049272A (en) Semiconductor device, and its manufacturing method
JP4765098B2 (en) Semiconductor device and manufacturing method thereof
JP4557804B2 (en) Semiconductor device and manufacturing method thereof
JP6008750B2 (en) Semiconductor device
JP4228926B2 (en) Semiconductor device
JP2019016658A5 (en)
JP2007243118A (en) Semiconductor device
JP2009147123A (en) Semiconductor device, and manufacturing method therefor
JP6504762B2 (en) Module manufacturing method
JP2019133965A (en) Semiconductor device and manufacturing method thereof
JP6690017B2 (en) Thermoelectric module
TWI619215B (en) Heating header of semiconductor mounting apparatus and bonding method for semiconductor
JP6586352B2 (en) Manufacturing method of semiconductor device
JP4574560B2 (en) Manufacturing method of chip parts
JP6877271B2 (en) Manufacturing method of optical module
JP4667922B2 (en) Method for manufacturing thermoelectric element
JP4596946B2 (en) Semiconductor mounting method
JP2008270846A (en) Method for manufacturing semiconductor device
JP6348759B2 (en) Semiconductor module, joining jig, and manufacturing method of semiconductor module
KR101905574B1 (en) Joint structure of semiconductor device and bonding method