JP2019011483A - Copper-based alloy powder for powder metallurgy and sintered body formed of copper-based alloy powder - Google Patents

Copper-based alloy powder for powder metallurgy and sintered body formed of copper-based alloy powder Download PDF

Info

Publication number
JP2019011483A
JP2019011483A JP2017127072A JP2017127072A JP2019011483A JP 2019011483 A JP2019011483 A JP 2019011483A JP 2017127072 A JP2017127072 A JP 2017127072A JP 2017127072 A JP2017127072 A JP 2017127072A JP 2019011483 A JP2019011483 A JP 2019011483A
Authority
JP
Japan
Prior art keywords
copper
alloy powder
powder
based alloy
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017127072A
Other languages
Japanese (ja)
Other versions
JP6860435B2 (en
Inventor
悠太 木越
Yuta Kigoshi
悠太 木越
宮川 智
Satoshi Miyagawa
智 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2017127072A priority Critical patent/JP6860435B2/en
Publication of JP2019011483A publication Critical patent/JP2019011483A/en
Application granted granted Critical
Publication of JP6860435B2 publication Critical patent/JP6860435B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a copper-based alloy powder for powder metallurgy capable of forming a green compact less causing a damage such as corner breakage and excellent in handling ability even if forming a small-sized component or a component shaped complicated, so that a sintered body formed by sintering the copper-based alloy powder is suitably usable in manufacturing a copper-based sintered component because of providing a sintered body having a high matrix strength and a high electrical conductivity and heat dissipation.SOLUTION: A copper-based alloy powder for powder metallurgy contains 0.05-1.6% by weight of Fe, 0.01-0.3% by weight of P and the remainder of Cu and inevitable impurities. The alloy powder has an apparent density of 4.0 g/cmor lower and a particle size distribution of 70% or more falling under 106 μm or smaller.SELECTED DRAWING: None

Description

本発明は軸受や摺動部品等に使用される銅系焼結部品を製造する粉末冶金用銅系合金粉末に関し、詳しくは、該銅系合金粉末は圧粉成形性に優れるから、小型の部品や複雑な形状の部品を成形しても、角欠け等の損傷が生じ難くてハンドリング性に優れた圧粉成形体を成形でき、また、該銅系合金粉末からなる焼結体は、高いマトリックス強度と高い電気伝導性及び放熱性を兼ね備えた焼結体になる粉末冶金用銅系合金粉末に関する。   The present invention relates to a copper-based alloy powder for powder metallurgy that produces copper-based sintered parts used for bearings, sliding parts, etc., and more specifically, since the copper-based alloy powder is excellent in compactibility, it is a small component. Even when molding parts with complicated shapes, it is difficult to cause damage such as corner chipping, and it is possible to form a compact with excellent handling characteristics. The present invention relates to a copper-based alloy powder for powder metallurgy that becomes a sintered body having both strength, high electrical conductivity, and heat dissipation.

銅粉末または銅系合金粉末を焼結して製造される銅系焼結部品は含油軸受け、摺動部材やブラシ等に使用されている。   Copper-based sintered parts produced by sintering copper powder or copper-based alloy powder are used for oil-impregnated bearings, sliding members, brushes, and the like.

近年、エンジンの燃焼効率向上や、パワー半導体の性能改善等の開発が進み、銅系焼結部品には強度に加え、放熱性、即ち、電気伝導性の向上が求められている。   In recent years, developments such as improving the combustion efficiency of engines and improving the performance of power semiconductors have progressed, and copper-based sintered parts are required to improve heat dissipation, that is, electrical conductivity in addition to strength.

粉末冶金において、放熱性、即ち、電気伝導性を向上させるには純銅粉末を用いれば良いのだが、純銅粉末では、軸受等の部品としての強度を満たさない虞がある。   In powder metallurgy, pure copper powder may be used to improve heat dissipation, that is, electrical conductivity. However, pure copper powder may not satisfy strength as a component such as a bearing.

青銅粉末や真鍮粉末を用いると強度は向上するが、青銅粉末や真鍮粉末は放熱性、即ち、電気伝導性が純銅粉末と比較して著しく劣るといった問題がある。   When bronze powder or brass powder is used, the strength is improved, but bronze powder or brass powder has a problem that heat dissipation, that is, electrical conductivity is remarkably inferior to pure copper powder.

また、粉末冶金用銅系合金粉末には強度や電気伝導性の他に、複雑な形状の接点を有する電極材料や小型の部品を製造しても、角欠け等の損傷が生じ難く、ハンドリング性に優れた圧粉成形体を成形できることも必要である。   In addition to strength and electrical conductivity, copper alloy powders for powder metallurgy are not susceptible to damage such as corner chipping even when manufacturing electrode materials or small parts with complex shaped contacts. It is also necessary to be able to form a compact with excellent compactness.

そこで、小型の部品や複雑な形状の部品であっても、角欠け等の損傷が生じ難くて、ハンドリング性に優れた圧粉成形体を成形できる粉末冶金用銅系合金粉末であって、該銅系合金粉末の焼結部品は高い放熱性と導電性及び高い強度を兼ね備えた焼結部品になる粉末冶金用銅系合金粉末の開発が望まれている。   Therefore, a copper alloy powder for powder metallurgy that is capable of forming a compacted body that is less likely to cause damage such as corner chipping and that has excellent handling properties, even if it is a small part or a complicatedly shaped part, It is desired to develop a copper-based alloy powder for powder metallurgy that becomes a sintered part having high heat dissipation, electrical conductivity, and high strength.

特開平7−331359号公報JP 7-331359 A 特開平6−212374号公報JP-A-6-212374 特開昭62−267456号公報Japanese Patent Laid-Open No. 62-267456

通常、銅系の時効硬化型の合金系は、高温で合金元素をCuマトリックス中に固溶させる溶体化処理を行った後、時効処理(加熱処理)によってCuマトリックス中に固溶している元素を微細に析出させるという2つの処理が行われる。   Usually, copper age-hardening type alloy systems are elements that are dissolved in the Cu matrix by aging treatment (heat treatment) after solution treatment in which the alloy element is dissolved in the Cu matrix at a high temperature. Two processes are performed to precipitate the fine particles.

これら二つの処理によって析出硬化が期待でき、さらに、固溶している元素が析出すると、マトリックスが純Cuに近付くため、放熱性、即ち、電気伝導性が向上する。   Precipitation hardening can be expected by these two treatments. Further, when a solid solution element is precipitated, the matrix approaches pure Cu, so that heat dissipation, that is, electrical conductivity is improved.

このような、時効硬化型の合金系として、特許文献1に開示されるような、Cu−Cr系やCu−Cr−Zr系合金等があるが、Crを含む合金系は粉末粒子表面に存在するCr酸化物が焼結を阻害するといった問題がある。   As such age-hardening type alloy systems, there are Cu-Cr-based and Cu-Cr-Zr-based alloys as disclosed in Patent Document 1, but alloy systems containing Cr exist on the surface of the powder particles. There is a problem that the Cr oxide that inhibits the sintering.

また、時効硬化型の合金系としては、特許文献2に開示されるようなCu−Ni−Si系もあるが、Si酸化物が焼結を阻害するといった問題があるため粉末冶金の分野では実用化に至っていない。   Moreover, as an age-hardening type alloy system, there is a Cu-Ni-Si system disclosed in Patent Document 2, but there is a problem that Si oxide inhibits sintering, so that it is practical in the field of powder metallurgy. It has not led to.

一方、特許文献3に開示されるような、Cu−Fe−P系は比較的焼結し易いと考えられるが、純銅粉末等と比較して圧粉成形性が著しく劣るため、粉末冶金用としては用いられていない。   On the other hand, the Cu-Fe-P system as disclosed in Patent Document 3 is considered to be relatively easy to sinter, but the powder moldability is remarkably inferior to that of pure copper powder or the like. Is not used.

また、前述のとおり、時効硬化型の銅系合金粉末を粉末冶金に用いるには、純銅粉末や青銅粉末等とは異なり、溶体化処理と時効処理の二つの処理が必要であるため工数が増加するといった問題もある。   In addition, as mentioned above, in order to use age-hardening type copper-based alloy powder for powder metallurgy, manpower increases because two treatments, solution treatment and aging treatment, are required, unlike pure copper powder and bronze powder. There is also the problem of doing.

本発明者らは、前記諸問題を解決することを技術的課題とし、試行錯誤的な数多くの試作・実験を重ねた結果、Feを0.05〜1.6重量%とPを0.01〜0.3重量%とを含有し残部がCuと不可避不純物とからなる銅系合金粉末であって、見掛け密度が4.0g/cm3以下であり、粒度分布が、70%以上が106μm以下である銅系合金粉末であれば、小型の部品や複雑な形状の部品を成形しても角欠け等の損傷が生じ難く、ハンドリング性に優れる圧粉成形体を成形でき、また、該銅系合金粉末からなる焼結体は電気伝導性に優れるから放熱性にも優れ、かつ、高い強度を備えた焼結体になるという刮目すべき知見を得て、前記技術的課題を達成したものである。 The present inventors made it a technical subject to solve the above-mentioned problems, and as a result of many trial and error trials and experiments, 0.05 to 1.6% by weight of Fe and 0.01 to 0.3% by weight of P were obtained. If it is a copper alloy powder containing Cu and inevitable impurities, the apparent density is 4.0 g / cm 3 or less, and the particle size distribution is 70% or more and 106 μm or less. It is possible to form a compacted body that is less likely to cause damage such as corner chipping even when a small part or a part having a complicated shape is formed, and that is excellent in handling properties. The technical problem has been achieved by obtaining a remarkable knowledge that a sintered body having excellent conductivity and excellent heat dissipation and high strength is obtained.

前記技術的課題は次のとおりの本発明によって解決できる。   The technical problem can be solved by the present invention as follows.

本発明は、粉末冶金用銅系合金粉末であって、前記合金粉末はFeを0.05〜1.6重量%とPを0.01〜0.3重量%とを含有し残部がCuと不可避不純物とからなり、前記合金粉末の見掛け密度は4.0g/cm3以下であり粒度分布は70%以上が106μm以下である粉末冶金用銅系合金粉末である。 The present invention is a copper-based alloy powder for powder metallurgy, wherein the alloy powder contains 0.05 to 1.6% by weight of Fe and 0.01 to 0.3% by weight of P, with the balance being Cu and inevitable impurities, The apparent density of the powder is 4.0 g / cm 3 or less, and the particle size distribution is a copper-based alloy powder for powder metallurgy in which 70% or more is 106 μm or less.

また、本発明は、水アトマイズ法で製造された前記粉末冶金用銅系合金粉末である。   Moreover, this invention is the said copper-type alloy powder for powder metallurgy manufactured by the water atomization method.

また、本発明は、前記粉末冶金用銅系合金粉末の圧粉成形体を焼結してなる焼結体である。   Moreover, this invention is a sintered compact formed by sintering the compacting body of the said copper-type alloy powder for powder metallurgy.

また、本発明は、前記焼結体をさらに加熱処理してなる焼結体である。   Moreover, this invention is a sintered compact formed by further heat-processing the said sintered compact.

本発明に係る銅系合金粉末は、Fe及びPが900℃以上の高温でCuマトリックス中に固溶し、溶融状態から急冷することで過飽和固溶体となる。   The copper-based alloy powder according to the present invention becomes a supersaturated solid solution when Fe and P are solid-solved in a Cu matrix at a high temperature of 900 ° C. or higher and rapidly cooled from a molten state.

この過飽和固溶体は時効処理(加熱処理)をすることで、Fe3Pを主とする金属間化合物が析出して時効硬化し、当該時効処理により、Cuマトリックス中に固溶するFe及びPは大幅に減少する。 This supersaturated solid solution is subjected to an aging treatment (heating treatment), so that an intermetallic compound mainly composed of Fe 3 P precipitates and age hardens, and due to the aging treatment, Fe and P dissolved in the Cu matrix greatly increase. To decrease.

Fe及びPを大幅に減少させて、高い放熱性、即ち、電気伝導性を備える焼結体を得るためには、原子量比でPの3倍量のFeが含まれることが好ましい。   In order to significantly reduce Fe and P to obtain a sintered body having high heat dissipation, that is, electrical conductivity, it is preferable that Fe is included in an amount three times that of P in terms of atomic weight ratio.

FeとPのどちらか一方を過剰に含有すれば、過剰に存在する元素がCuマトリックス中に固溶したまま析出できなくなるため、強度は高くなるが、電気伝導性や放熱性が十分に得られなくなるからである。   If either Fe or P is contained in excess, the excess element cannot be precipitated in a solid solution in the Cu matrix, resulting in increased strength, but sufficient electrical conductivity and heat dissipation can be obtained. Because it disappears.

しかしながら、FeとPの原子量比が3:1であったとしても、Cuに対するFeやPの含有量が低過ぎれば十分な時効硬化性が得られない。   However, even if the atomic weight ratio of Fe and P is 3: 1, sufficient age hardening cannot be obtained if the content of Fe or P relative to Cu is too low.

また、多過ぎれば固溶強化により合金粉末が硬くなって圧粉成形性が低下して溶体化が困難になり、析出物が粗大化し易くなることで強度が低下するため好ましくない。   On the other hand, if the amount is too large, the alloy powder becomes hard due to solid solution strengthening, the compactibility becomes low and solution formation becomes difficult, and the precipitate is easily coarsened, resulting in a decrease in strength.

そこで、本発明に係る合金粉末は、Feを0.05〜1.6重量%とPを0.01〜0.3重量%とを含有し、残部がCuと不可避不純物とからなる銅系合金粉末とした。   Therefore, the alloy powder according to the present invention was a copper-based alloy powder containing 0.05 to 1.6% by weight of Fe and 0.01 to 0.3% by weight of P, with the balance being Cu and inevitable impurities.

Cuに対するFe及びPの含有量が当該範囲内であれば、該銅系合金粉末からなる焼結体は電気伝導性が高くて放熱性に優れ、かつ、軸受等の部品に要求される強度を備えた焼結体になる。   If the content of Fe and P with respect to Cu is within this range, the sintered body made of the copper-based alloy powder has high electrical conductivity and excellent heat dissipation, and has the strength required for components such as bearings. The sintered body is provided.

また、焼結後にさらに時効処理(加熱処理)を行うことで所望の強度と電気伝導性を備えた焼結体に調整することもできる。   Moreover, it can also adjust to the sintered compact provided with desired intensity | strength and electrical conductivity by performing an aging process (heat processing) after sintering.

本発明における銅系合金粉末であれば、電気伝導率が50%IACS以上、ビッカース硬さが70以上という電気伝導性や放熱性と強度とをバランスよく兼ね備えた焼結体を製造することができる。   With the copper-based alloy powder in the present invention, a sintered body having a good balance of electrical conductivity, heat dissipation and strength with an electrical conductivity of 50% IACS or more and a Vickers hardness of 70 or more can be produced. .

また、本発明における銅系合金粉末は見掛け密度が4.0g/cm3以下と低く、70%以上が106μm以下の微細粒子からなる銅系合金粉末であって、該銅系合金粉末からなる成形体の抗折力を8MPa以上にすることができるから、角欠け等の損傷が生じ難くてハンドリング性に優れ、複雑な形状の接点を有する電極材料や小型の部品の圧粉成形体を成形することができる。 Further, the copper-based alloy powder in the present invention is a copper-based alloy powder having an apparent density as low as 4.0 g / cm 3 or less and 70% or more of fine particles of 106 μm or less, and a molded body made of the copper-based alloy powder Since the bending strength of the material can be 8MPa or more, it is difficult to cause damage such as corner chipping, it is easy to handle, and it is possible to mold electrode materials with complex shaped contacts and compact parts of compact parts Can do.

本発明における銅系合金粉末は、水アトマイズ法で製造すれば、溶質元素であるFe及びPを過飽和の状態で粉末化することができ、過飽和固溶体となった銅系合金粉末を焼結することで、溶体化処理を省略することができるため、作業効率に優れた銅系合金粉末になる。   If the copper-based alloy powder in the present invention is produced by the water atomization method, the solute elements Fe and P can be powdered in a supersaturated state, and the copper-based alloy powder in a supersaturated solid solution is sintered. Thus, since the solution treatment can be omitted, the copper-based alloy powder is excellent in work efficiency.

本発明における銅系合金粉末は、Feを0.05〜1.6重量%とPを0.01〜0.3重量%とを含有し、残部がCuと不可避不純物とからなる。   The copper-based alloy powder in the present invention contains 0.05 to 1.6% by weight of Fe and 0.01 to 0.3% by weight of P, with the balance being Cu and inevitable impurities.

Feが0.05重量%未満、Pが0.01重量%未満の場合は、十分な時効硬化性が得られないため好ましくない。   When Fe is less than 0.05% by weight and P is less than 0.01% by weight, sufficient age-curing property cannot be obtained, which is not preferable.

Feが1.6重量%、Pが0.3重量%を超える場合には、固溶強化により合金粉末が硬くなって圧粉成形性が低下すると共に、溶体化が困難になり、析出物が粗大化し易くなることで強度が低下するため好ましくない。   When Fe exceeds 1.6% by weight and P exceeds 0.3% by weight, the alloy powder becomes hard due to solid solution strengthening, and the compactability is reduced, and it becomes difficult to form a solution and the precipitates are likely to become coarse. This is not preferable because the strength decreases.

また、Feの含有量が0.01〜0.3重量%、Pの含有量が0.01〜0.3重量%であれば、電気伝導性や放熱性と強度のバランスが非常に優れ、より好ましい。   Further, if the Fe content is 0.01 to 0.3% by weight and the P content is 0.01 to 0.3% by weight, the balance of electrical conductivity, heat dissipation and strength is very excellent, and more preferable.

本発明における不可避不純物とは、意図的に添加していないが、製造工程等で不可避的に混入する不純物のことであり、これらの総和は0.1重量%以下である。   The inevitable impurities in the present invention are impurities that are not intentionally added but are inevitably mixed in the production process and the like, and the total of these is 0.1% by weight or less.

本発明における銅系合金粉末は、噴霧法(以下「アトマイズ法」と言う)によって製造することが好ましく、特に、水アトマイズ法で製造した銅系合金粉末が好ましい。   The copper-based alloy powder in the present invention is preferably produced by a spray method (hereinafter referred to as “atomizing method”), and in particular, a copper-based alloy powder produced by a water atomizing method is preferred.

水アトマイズ法であれば、高圧で噴射された水を溶融金属に衝突させて溶融金属を液滴にし、該液滴は水と接することで急冷されるため、ガスを噴霧媒体とするガスアトマイズ法に比べ、液滴の冷却速度が速く、溶質元素であるFeやPを過飽和の状態で粉末化することができるからである。   In the case of the water atomization method, the water jetted at a high pressure collides with the molten metal to make the molten metal into droplets, and the droplets are rapidly cooled by being in contact with water. This is because the cooling rate of the droplets is faster and Fe and P, which are solute elements, can be powdered in a supersaturated state.

Fe及びPが過飽和固溶体となった銅系合金粉末からなる圧粉成形体の焼結であれば、溶体化処理が不要になり、時効処理のみで析出硬化させることができる。   If the green compact formed of a copper-based alloy powder in which Fe and P are a supersaturated solid solution is sintered, the solution treatment is unnecessary, and precipitation hardening can be performed only by an aging treatment.

本発明における銅系合金粉末は、見掛け密度が4.0 g/cm3以下と低く、70%以上が106μm以下の微細粒子からなるため、圧粉成形性に優れる。 The copper-based alloy powder according to the present invention has an apparent density as low as 4.0 g / cm 3 or less and 70% or more is composed of fine particles having a size of 106 μm or less, and thus has excellent compactability.

見掛け密度が4.0 g/cm3を超える、又は、106μm以下の粒子が70%未満の粒度分布であると圧粉成形が困難になる。 If the apparent density exceeds 4.0 g / cm 3 or the particle size distribution of particles of 106 μm or less is less than 70%, compacting becomes difficult.

本発明によれば、圧粉体密度が6〜8g/cm3で抗折力が8MPa以上の圧粉成形体を成形することができる。 According to the present invention, a green compact having a green density of 6 to 8 g / cm 3 and a bending strength of 8 MPa or more can be formed.

見掛け密度はISO 3923-1規格の測定法で求めることができる。   The apparent density can be determined by the measurement method of ISO 3923-1 standard.

粒度分布は、ISO 4497規格に従い求めた粒度分布の値を元に、全体のうち106μm以下の粉末の割合を算出することで求めることができる。   The particle size distribution can be obtained by calculating the ratio of the powder of 106 μm or less based on the value of the particle size distribution obtained according to the ISO 4497 standard.

本発明においては、焼結体の強度と電気伝導率や放熱性のバランスが不十分な場合には、さらに加熱処理(時効処理)を行い、性能を向上させて、所望の強度及び電気伝導率の焼結体に調整することもできる。   In the present invention, when the balance between the strength of the sintered body, electrical conductivity, and heat dissipation is insufficient, heat treatment (aging treatment) is further performed to improve the performance, and desired strength and electrical conductivity. It can also be adjusted to a sintered body.

水アトマイズ法、焼結方法及び時効処理方法は公知の方法を採用することができる。   Known methods can be adopted as the water atomizing method, sintering method, and aging treatment method.

本発明の実施例を示すが、本発明はこれらに限定されるものではない。   Although the Example of this invention is shown, this invention is not limited to these.

表1記載の通りの組成である溶融状態の合金成分を落下させながら15MPaの高圧水と接触させることで急冷凝固させて実施例及び比較例の銅系合金粉末を作製した。   Copper alloy powders of Examples and Comparative Examples were prepared by rapidly solidifying by bringing them into contact with high pressure water of 15 MPa while dropping molten alloy components having compositions as shown in Table 1.

実施例及び比較例の各銅系合金粉末の見掛け密度(AD)は、ISO 3923-1規格の測定法に従い求めた。   The apparent density (AD) of each copper-based alloy powder in Examples and Comparative Examples was determined according to the measurement method of ISO 3923-1 standard.

粒度分布はISO 4497規格に従い求めた粒度分布の値を元に、全体のうち106μm以下の粉末の割合を算出して求めた。   The particle size distribution was obtained by calculating the proportion of powder of 106 μm or less based on the value of the particle size distribution obtained according to the ISO 4497 standard.

実施例1、3、5、7、9、11、12、及び、比較例1〜6、 8の銅系合金粉末は、圧粉体密度が8.0 g/cm3となるように成形し、水素雰囲気中で1000℃、120 min保持して焼結させ、水冷した後、再び水素雰囲気中で550℃、60 min保持して時効処理を行い、その後水冷して各焼結体を得た(時効処理有り)。 The copper-based alloy powders of Examples 1, 3, 5, 7, 9, 11, 12, and Comparative Examples 1-6, 8 were molded so that the green density was 8.0 g / cm 3 , hydrogen Sintered by holding at 1000 ° C for 120 min in the atmosphere, water-cooled, then again aging at 550 ° C for 60 min in a hydrogen atmosphere, then water-cooled to obtain each sintered body (aging) There is processing).

実施例2、4、6、8、10、及び、比較例9、10の銅系合金粉末は、圧粉体密度が8.0 g/cm3となるように成形し、水素雰囲気中で800℃、20min保持して焼結させ、その後空冷して各焼結体を得た(時効処理なし)。 The copper-based alloy powders of Examples 2, 4, 6, 8, 10 and Comparative Examples 9 and 10 were molded so that the green compact density was 8.0 g / cm 3 , 800 ° C. in a hydrogen atmosphere, Sintering was carried out for 20 minutes, followed by air cooling to obtain each sintered body (no aging treatment).

焼結体の電気伝導率(%IACS)は、粉末を圧粉体密度が8.0 g/cm3になるように成形し、上記の各熱処理を行った後、各焼結体を5×30×1 mmに切断加工し、端子間距離20mmの体積抵抗値を抵抗計3541(日置電機株式会社製)で測定し、その値から真密度換算の電気伝導率(%IACS)を求めた。 The electrical conductivity (% IACS) of the sintered body was determined by molding the powder so that the green compact density was 8.0 g / cm 3, and after performing each of the above heat treatments, each sintered body was 5 × 30 × After cutting into 1 mm, the volume resistance value with a distance between terminals of 20 mm was measured with an ohmmeter 3541 (manufactured by Hioki Electric Co., Ltd.), and the electrical conductivity (% IACS) in terms of true density was determined from the value.

焼結体のビッカース硬さは微小硬度計HMV−G(株式会社島津製作所製)を用い、荷重25 gfで求めた。   The Vickers hardness of the sintered body was determined with a load of 25 gf using a micro hardness tester HMV-G (manufactured by Shimadzu Corporation).

成形性の指標である抗折力は、圧粉体密度が6.6g/cm3となるように30×12×6 mmの直方体にプレス成形し、圧粉体抗折力試験機(ミネルバ機器株式会社製)を用いて、ISO 3995規格の測定法に従い求めた。 The bending strength, which is an index of moldability, is press-molded into a 30 x 12 x 6 mm cuboid so that the green density is 6.6 g / cm 3 Was obtained according to the measurement method of ISO 3995 standard.

結果を表1に示す。   The results are shown in Table 1.

Figure 2019011483
Figure 2019011483

表1のとおり、本発明における銅系合金粉末を成形した圧粉成形体は8MPa以上の抗折力を示して、ハンドリング性に優れる圧粉成形体であること及び、本発明における銅系合金粉末の焼結体、又は、焼結後に時効処理を施した焼結体は、50%IACS以上の高い電気伝導率が得られ、また一般的な青銅粉末である比較例9に匹敵する焼結体のマトリックス硬さ、即ち、ビッカース硬さ70以上の焼結体を得られることが証明された。   As shown in Table 1, the green compact formed from the copper-based alloy powder in the present invention is a green compact that exhibits a bending strength of 8 MPa or more and is excellent in handling properties, and the copper-based alloy powder in the present invention. Or a sintered body that has been subjected to an aging treatment after sintering has a high electrical conductivity of 50% IACS or more, and is comparable to Comparative Example 9 that is a general bronze powder. It was proved that a sintered body having a matrix hardness of, that is, a Vickers hardness of 70 or more can be obtained.

本発明における銅系合金粉末からなる焼結体は電気伝導性や放熱性に優れると共に強度も高いから軸受や摺動部品等の焼結部品に好適である。
また、ハンドリング性に優れる圧粉成形体を成形できるから、従来の銅粉末や青銅粉末と同様の幅広い使用環境に対応可能であり、粉末冶金法によって製造される多くの焼結部品を成形できる。
したがって、本発明は産業上の利用可能性の高い発明であると言える。
The sintered body made of the copper-based alloy powder in the present invention is suitable for sintered parts such as bearings and sliding parts because it is excellent in electrical conductivity and heat dissipation and has high strength.
Moreover, since the compacting body excellent in handling property can be shape | molded, it can respond to the same wide use environment as the conventional copper powder and bronze powder, and many sintered parts manufactured by the powder metallurgy method can be shape | molded.
Therefore, it can be said that the present invention is a highly industrially applicable invention.

また、Feの含有量が0.1〜1.0重量%、Pの含有量が0.01〜0.3重量%であれば、電気伝導性や放熱性と強度のバランスが非常に優れ、より好ましい。 Further, if the Fe content is 0.1 to 1.0 % by weight and the P content is 0.01 to 0.3% by weight, the balance between electrical conductivity, heat dissipation and strength is very excellent, and more preferable.

Claims (4)

粉末冶金用銅系合金粉末であって、前記合金粉末はFeを0.05〜1.6重量%とPを0.01〜0.3重量%とを含有し残部がCuと不可避不純物とからなり、前記合金粉末の見掛け密度は4.0g/cm3以下であり粒度分布は70%以上が106μm以下である粉末冶金用銅系合金粉末。 A copper-based alloy powder for powder metallurgy, wherein the alloy powder contains 0.05 to 1.6% by weight of Fe and 0.01 to 0.3% by weight of P, with the balance being Cu and inevitable impurities, and the apparent density of the alloy powder powder metallurgical copper-based alloy powder is 4.0 g / cm 3 or less and the particle size distribution is 70% or more is less than 106 [mu] m. 水アトマイズ法で製造された請求項1記載の粉末冶金用銅系合金粉末。 The copper-based alloy powder for powder metallurgy according to claim 1 manufactured by a water atomization method. 請求項1又は2記載の粉末冶金用銅系合金粉末の圧粉成形体を焼結してなる焼結体。 The sintered compact formed by sintering the compacting body of the copper alloy powder for powder metallurgy of Claim 1 or 2. 請求項3記載の焼結体をさらに加熱処理してなる焼結体。 A sintered body obtained by further heat-treating the sintered body according to claim 3.
JP2017127072A 2017-06-29 2017-06-29 A sintered body composed of a copper-based alloy powder for powder metallurgy and the copper-based alloy powder. Active JP6860435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017127072A JP6860435B2 (en) 2017-06-29 2017-06-29 A sintered body composed of a copper-based alloy powder for powder metallurgy and the copper-based alloy powder.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017127072A JP6860435B2 (en) 2017-06-29 2017-06-29 A sintered body composed of a copper-based alloy powder for powder metallurgy and the copper-based alloy powder.

Publications (2)

Publication Number Publication Date
JP2019011483A true JP2019011483A (en) 2019-01-24
JP6860435B2 JP6860435B2 (en) 2021-04-14

Family

ID=65227713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017127072A Active JP6860435B2 (en) 2017-06-29 2017-06-29 A sintered body composed of a copper-based alloy powder for powder metallurgy and the copper-based alloy powder.

Country Status (1)

Country Link
JP (1) JP6860435B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109825739A (en) * 2019-03-29 2019-05-31 安徽众源新材料股份有限公司 A kind of fuse cap copper alloy and production technology

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344434A (en) * 1989-07-12 1991-02-26 Furukawa Electric Co Ltd:The Copper alloy fiber and copper alloy fiber bundle for adding to conductive resin
JPH03294459A (en) * 1990-04-13 1991-12-25 Furukawa Electric Co Ltd:The Solution treatment for precipitation hardening copper alloy
JPH04131335A (en) * 1990-09-20 1992-05-06 Mitsubishi Materials Corp Sintered copper-base alloy excellent in wear resistance
JP2001131660A (en) * 1999-11-09 2001-05-15 Fukuda Metal Foil & Powder Co Ltd Alloy powder for copper series high strength sintered parts
CN102161098A (en) * 2011-03-29 2011-08-24 长沙拓智金属材料科技有限责任公司 Method for preparing low-oxygen content superfine pre-alloyed powder through ultrahigh pressure water and gas combined atomization
JP2012097323A (en) * 2010-11-02 2012-05-24 Fukuda Metal Foil & Powder Co Ltd Copper-based alloy powder for powder metallurgy
US20130149189A1 (en) * 2011-12-09 2013-06-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength copper alloy plate excellent in oxide film adhesiveness
WO2014157089A1 (en) * 2013-03-25 2014-10-02 新日鐵住金株式会社 Copper alloy powder, sintered copper alloy body and brake lining for use in high-speed railway

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344434A (en) * 1989-07-12 1991-02-26 Furukawa Electric Co Ltd:The Copper alloy fiber and copper alloy fiber bundle for adding to conductive resin
JPH03294459A (en) * 1990-04-13 1991-12-25 Furukawa Electric Co Ltd:The Solution treatment for precipitation hardening copper alloy
JPH04131335A (en) * 1990-09-20 1992-05-06 Mitsubishi Materials Corp Sintered copper-base alloy excellent in wear resistance
JP2001131660A (en) * 1999-11-09 2001-05-15 Fukuda Metal Foil & Powder Co Ltd Alloy powder for copper series high strength sintered parts
JP2012097323A (en) * 2010-11-02 2012-05-24 Fukuda Metal Foil & Powder Co Ltd Copper-based alloy powder for powder metallurgy
CN102161098A (en) * 2011-03-29 2011-08-24 长沙拓智金属材料科技有限责任公司 Method for preparing low-oxygen content superfine pre-alloyed powder through ultrahigh pressure water and gas combined atomization
US20130149189A1 (en) * 2011-12-09 2013-06-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength copper alloy plate excellent in oxide film adhesiveness
JP2013122070A (en) * 2011-12-09 2013-06-20 Kobe Steel Ltd High-strength copper alloy plate excellent in oxide film adhesiveness
WO2014157089A1 (en) * 2013-03-25 2014-10-02 新日鐵住金株式会社 Copper alloy powder, sintered copper alloy body and brake lining for use in high-speed railway

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109825739A (en) * 2019-03-29 2019-05-31 安徽众源新材料股份有限公司 A kind of fuse cap copper alloy and production technology

Also Published As

Publication number Publication date
JP6860435B2 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
JP5156328B2 (en) Copper alloy powder for conductive material paste
JP6333099B2 (en) Method for producing Ag / SnO2 electrical contact powder and method for producing Ag / SnO2 electrical contact material
JP5124734B2 (en) Electrode material for vacuum circuit breaker and manufacturing method thereof
CN101333610B (en) Ultra-high strengthen, high-conductivity CuNiSi series elastic copper alloy and method for preparing same
JP5250388B2 (en) Composite metal glass having both strength and conductivity and method for producing the same
JP2015196902A (en) POWDER FOR Ag/SnO2 ELECTRIC CONTACT, Ag/SnO2 ELECTRIC CONTACT MATERIAL AND MANUFACTURING METHOD THEREFOR
JP3763006B2 (en) Copper tungsten alloy and method for producing the same
JP2016074950A (en) Copper alloy and manufacturing method therefor
JP6860435B2 (en) A sintered body composed of a copper-based alloy powder for powder metallurgy and the copper-based alloy powder.
CN101658931A (en) Rare earth powder metallurgy iron aldurbra-containing oil bearing material and preparation technology thereof
JPS62502813A (en) New alloys with high electrical and mechanical properties, processes for their production and their use in particular in electrical, electronic and related fields
CN100487839C (en) Silver-economizing low-voltage electrical-appliance contact materials
CN105695792A (en) Preparation method for graphene/silver nickel electrical contact material
JP6837542B2 (en) Copper alloy plate material with excellent heat resistance and heat dissipation
JP2012097323A (en) Copper-based alloy powder for powder metallurgy
JPH11269579A (en) Silver-tungsten/wc base sintered type electric contact material and its production
JP2004190084A (en) Sintered alloy and manufacturing method therefor
JP2006183121A (en) Iron based powder for powder magnetic core and powder magnetic core using the same
CN105369051A (en) Novel copper alloy and preparation method thereof
CN114974645A (en) Silver-based multi-element alloy powder material and preparation method and application thereof
JPH07166273A (en) Powder metallurgical product of injection molded copper
JP4177534B2 (en) Alloy powder for copper-based high strength sintered parts
CN109500392B (en) Preparation method of silver zinc oxide contact material for improving sintering property of ingot blank
KR20200015357A (en) Iron-copper alloy material coated with copper and method for manufacturing the same
JP2016216775A (en) Ag-ZnO-BASED ELECTRICAL CONTACT MATERIAL AND PRODUCTION METHOD THEREFOR

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210326

R150 Certificate of patent or registration of utility model

Ref document number: 6860435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250