JP2019007450A - 空気流量計測装置及び空気流量計測方法 - Google Patents

空気流量計測装置及び空気流量計測方法 Download PDF

Info

Publication number
JP2019007450A
JP2019007450A JP2017125432A JP2017125432A JP2019007450A JP 2019007450 A JP2019007450 A JP 2019007450A JP 2017125432 A JP2017125432 A JP 2017125432A JP 2017125432 A JP2017125432 A JP 2017125432A JP 2019007450 A JP2019007450 A JP 2019007450A
Authority
JP
Japan
Prior art keywords
value
detection
pulsation
attenuation
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017125432A
Other languages
English (en)
Other versions
JP7052230B2 (ja
Inventor
輝明 海部
Teruaki Umibe
輝明 海部
昇 北原
Noboru Kitahara
昇 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2017125432A priority Critical patent/JP7052230B2/ja
Publication of JP2019007450A publication Critical patent/JP2019007450A/ja
Application granted granted Critical
Publication of JP7052230B2 publication Critical patent/JP7052230B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】空気流量の計測精度を向上させることができる空気流量計測装置を提供する。【解決手段】エアフロメータの処理部は、吸入空気の脈動周波数を取得する脈動推定部30を有している。脈動推定部30は、検出値を取得する信号取得部31と、特定期間について検出ピーク値を取得する検出ピーク取得部35と、検出値を減衰させるフィルタ部36と、特定期間について減衰ピーク値を取得する減衰ピーク取得部37とを有している。また、脈動推定部30は、検出ピーク値と減衰ピーク値とを比較して比較値を取得する比較部38と、検出振幅を取得する振幅取得部42と、比較値及び検出振幅に基づいて脈動周波数を取得する周波数取得部43とを有している。周波数取得部43は、脈動周波数を取得する際に、比較値と検出振幅と脈動周波数との関係を示す周波数特性を用いる。【選択図】図5

Description

この明細書による開示は、空気流量計測装置及び空気流量計測方法に関する。
従来、空気流量計測装置の一例として、特許文献1に開示された内燃機関の制御装置がある。この制御装置は、脈動振幅比と脈動周波数とを演算し、脈動振幅比と脈動周波数から脈動誤差を算出する。ここで、この制御装置は、クランク角センサからの信号を用いて内燃機関の回転数を演算し、この回転数を用いて脈動周波数を演算する。そして、制御装置は、脈動振幅比と脈動周波数とから脈動誤差を補正するために必要な補正係数を脈動誤差補正マップから参照し、脈動誤差を補正した空気量を演算する。
特開2014−20212号公報
しかしながら、上記特許文献1では、クランク角センサからの信号が脈動周波数の演算に用いられることになるが、この信号にノイズ等の外乱が含まれていると、脈動周波数の演算精度が低下することが懸念される。このように脈動周波数を安定的に取得することができない場合は、補正誤差が増加するなどして空気量の取得精度も低下してしまう。
本開示の主な目的は、空気流量の計測精度を向上させることができる空気流量計測装置を提供することにある。
上記目的を達成するため、開示された第1の態様は、
空気の流れに応じてセンシング部(25)により検出される検出値(Sa)に基づいて空気流量を計測する空気流量計測装置(26)であって、
所定の特定期間(Ts)について、検出値の最大値(Ap)及び最小値(Au)の少なくとも一方に関連した検出関連値(Ap)を取得する検出取得部(35)と、
検出値を所定のフィルタ(36)により減衰させた減衰値(Sb)について、特定期間について、検出関連値に対応し且つ減衰値の最大値(Bp)及び最小値(Bu)の少なくとも一方に関連した減衰関連値(Bp)を取得する減衰取得部(37)と、
検出関連値と減衰関連値とを比較し、その比較結果として比較値(C)を取得する比較部(38)と、
比較値に基づいて空気の脈動周波数(F)を取得する周波数取得部(43)と、
を備えている空気流量計測装置である。
本発明者は、検出関連値と減衰関連値とを比較した比較値と脈動周波数との間に所定の関係が存在するという知見を得た。この知見によれば、上記第1の態様のように、比較値に基づいて脈動周波数を推定する構成が実現される。この場合、脈動周波数の推定に微分演算を用いる必要がないため、仮にノイズ等の外乱が検出値に含まれていたとしても、外乱の存在によって脈動周波数の推定精度が低下するということを抑制できる。そして、この脈動周波数を用いることで空気流量の計測精度を向上させることができる。
なお、脈動周波数の推定に微分演算が用いられる構成としては、例えば、検出値が増加から減少に切り替わるタイミングを検出値の微分演算により取得し、この取得結果に基づいて脈動周波数を推定する、という構成が挙げられる。この構成では、検出値が外乱による小さな増減を繰り返しながら全体として増加して最大値に到達する場合に、外乱による小さな増減の最大値と検出値の最大値とを判別できないことが懸念される。これは、空気の脈動による検出値の最大値も、外乱による検出値の最大値も、検出値が増加から減少に切り替わる値である、ということに変わりがないためである。このように、脈動周波数の推定に検出値の微分演算が用いられると、外乱による検出値の最大値の存在によって脈動周波数の推定精度が低下しやすくなってしまう。
第2の態様は、
空気の流れに応じてセンシング部(25)により検出される検出値(Sa)に基づいて空気流量を計測する空気流量計測方法であって、
所定の特定期間(Ts)について、検出値の最大値(Ap)及び最小値(Au)の少なくとも一方に関連した検出関連値(Ap)を取得し(35)、
検出値を所定のフィルタ(36)により減衰させた減衰値(Sb)について、特定期間について、検出関連値に対応し且つ減衰値の最大値(Bp)及び最小値(Bu)の少なくとも一方に関連した減衰関連値(Bp)を取得し(37)、
検出関連値と減衰関連値とを比較し、その比較結果として比較値(C)を取得し(38)、
比較値に基づいて空気の脈動周波数(F)を取得する(43)、空気流量計測方法である。
第2の態様によれば、上記第1の態様と同様の効果を奏する。
なお、特許請求の範囲、及びこの項に記載した括弧内の符号は、1つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本開示の技術的範を限定するものではない。
第1実施形態におけるエアフロメータ及びECUの概略構成を示すブロック図。 燃焼システムの構成を示す概略図。 検出値の変化態様及び減衰値の変化態様を示す図。 周波数特性を示す図。 脈動推定部の構成を示すブロック図。 第3実施形態における周波数特性を示す図。 第4実施形態における脈動推定部の構成を示すブロック図。 別の脈動推定部の構成を示すブロック図。 別の脈動推定部の構成を示すブロック図。 第5実施形態における脈動推定部の構成を示すブロック図。 特定期間の設定について説明するための図。 第6実施形態における脈動推定部の構成を示すブロック図。 流量補正部の構成を示すブロック図。 第7実施形態における1次元の補正係数マップを示す図。 脈動振幅と脈動誤差との関係を示す図。 第8実施形態における2次元の補正係数マップを示す図。 第9実施形態における3次元の補正係数マップを示す図。 第10実施形態における3次元の補正係数マップを示す図。 第11実施形態における脈動振幅と脈動誤差との関係を示す図。 補正係数マップを示す図。 第12実施形態における脈動振幅と脈動誤差との関係を示す図。 補正係数マップを示す図。
以下、本開示の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施例の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。そして、複数の実施形態及び変形例に記述された構成同士の明示されていない組み合わせも、以下の説明によって開示されているものとする。
(第1実施形態)
図2に示す燃焼システム10は、ディーゼルエンジン等の内燃機関11、吸気通路12、排気通路13、エアクリーナ14、エアフロメータ15及びECU20を有しており、例えば車両に搭載されている。エアフロメータ15は、吸気通路12に設けられており、内燃機関11に供給される吸入空気の流量や温度、湿度といった物理量を計測する機能を有している。エアフロメータ15は、流体としての吸入空気を計測対象とした物理量計測装置に相当する。吸入空気は、内燃機関11の燃焼室11aに供給される空気であり、気体に相当する。なお、吸入空気を吸気と称することもできる。
エアフロメータ15は、エアクリーナ14の下流側において、吸気通路12を形成する吸気管12aに取り付けられている。エアクリーナ14は、吸入空気に混じった異物を取り除くエレメント14aを有しており、エアフロメータ15にはエアクリーナ14により清浄化された吸入空気が到達するようになっている。エレメント14aは、例えば合成繊維の不織布やろ紙などのろ材によって構成されている。
図1、図2に示すECU(Engine Control Unit)20は、燃焼システム10の動作制御を行う制御装置である。ECU20は、プロセッサ20a、記憶部20b、入出力インターフェース等を含んで構成されたコンピュータを有している。記憶部20bとしては、RAM等の記憶媒体が挙げられる。ECU20においては、燃焼システム10の動作制御を行うためのプログラムが記憶部20b等に記憶されており、このプログラムがプロセッサ20aにより実行される。ECU20は、エアフロメータ15による計測結果を用いて、スロットルバルブ17の開度の制御や、インジェクタ18の燃料噴射量の制御といったエンジン制御を行う。このため、ECU20をエンジン制御装置と称し、燃焼システム10をエンジン制御システムと称することもできる。
なお、燃焼システム10には、図示しないEGRシステムが含まれている。このEGRシステムが有するEGRバルブは、ECU20に電気的に接続されており、ECU20は、EGRバルブの動作制御も行う。
エアフロメータ15は、燃焼システム10に含まれる複数の計測部の1つであり、このエアフロメータ15を含めて複数の計測部がECU20に電気的に接続されている。これら計測部としては、空燃比センサ21やクランク角センサ22、カム角センサ23などが挙げられ、これらセンサ21〜23は、それぞれ検出信号をECU20に対して出力する。空燃比センサ21は、内燃機関11の排気系に設けられており、排気通路13を流れる排気の空燃比を検出する。クランク角センサ22は、例えばシリンダブロックに取り付けられており、クランクシャフトの回転角を検出する。カム角センサ23は、例えばシリンダヘッドに取り付けられており、カムシャフトの回転角を検出する。ECU20は、クランク角センサ22やカム角センサ23の検出信号を用いてエンジン回転数を取得する。
吸気通路12での吸入空気の流量を空気流量と称すると、エアフロメータ15は、空気流量に応じた検出信号を出力するセンシング部25と、センシング部25からの検出信号に基づいて空気流量を計測する処理部26とを有している。
エアフロメータ15は、吸気通路12を流れる吸入空気の一部を取り込むバイパス流路を有しており、センシング部25は、このバイパス流路に設けられている。この場合、センシング部25は、吸入空気が流れる環境において吸入空気に触れるように設けられていることになる。センシング部25は、処理部26に電気的に接続されており、バイパス流路での吸入空気の流速や流量に応じた検出信号を処理部26に対して出力する。この検出信号を出力信号と称することもできる。センシング部25は、発熱抵抗体や測温抵抗体などを有する熱式のセンサ素子であり、流量検出部と称することもできる。本実施形態では、バイパス流路は、吸入空気が通過する通過流路と、通過流路から分岐した分岐流路とを有しており、センシング部25は分岐流路に設けられている。
処理部26は、ECU20と同様に、プロセッサ26a、記憶部26b、入出力インターフェース等を含んで構成されたコンピュータを有しており、ECU20に電気的に接続されている。記憶部26bとしては、RAM等の記憶媒体が挙げられる。処理部26においては、空気流量を計測するためのプログラムが記憶部26b等に記憶されており、このプログラムがプロセッサ26aにより実行される。処理部26は、空気流量計測装置に相当し、計測した空気流量に関する情報をECU20に対して出力する。
吸気通路12を流れる吸入空気においては、内燃機関11でのピストンの往復運動などにより、逆流を含む脈動が発生する。この脈動を吸気脈動と称すると、センシング部25の検出信号には、吸気脈動の影響を受けて、真の空気流量に対する誤差が含まれる。特に、センシング部25は、スロットル弁が全開側に操作されると吸気脈動の影響を受けやすくなる。ここで、真の空気流量とは、吸気脈動の影響を受けていない空気流量である。
本発明者は、センシング部25により検出された検出値と、この検出値をフィルタ処理で減衰させた減衰値とを比較した場合に、この比較結果と検出値の脈動周波数との間に所定の関係がある、という知見を得た。この知見によれば、検出値と減衰値との比較結果を用いることで脈動周波数を推定することができる。ここで、検出値は、センシング部25からの検出信号を数値化した値であり、この検出信号に基づいて取得された補正前の空気流量を示す値と言うこともできる。また、脈動周波数は、検出振動に含まれる脈動の周波数のことであり、吸気脈動の周波数のことでもある。
本実施形態では、検出値及び減衰値のそれぞれに含まれる最大値を検出ピーク値及び減衰ピーク値と称し、これら検出ピーク値及び減衰ピーク値を用いて比較を行う。例えば、図3に示す検出値Saについては、あらかじめ定められた特定期間Tsでの最大値を検出ピーク値Apと称し、同じく特定期間Tsでの最小値を検出ボトム値Auと称し、同じく特定期間Tsでの平均値を検出平均値Aaと称する。この場合、特定期間Tsにおいて検出値Saに含まれる脈動の振幅を検出振幅Aamと称すると、この検出振幅Aamは、検出ピーク値Apと検出平均値Aaとの差として算出される。この関係は、Aam=Ap−Aaという数式で示すこともできる。
なお、検出ピーク値Apは最大流量を示す値であり、検出ボトム値Auは最小流量を示す値であり、検出平均値Aaは平均流量を示す値である。これら値は、いずれも補正前の空気流量についての値である。また、検出ピーク値Apが検出関連値に相当する。
また、図3に示す減衰値Sbについては、検出値Saと同様に特定期間Tsでの最大値を減衰ピーク値Bpと称し、同じく特定期間Tsでの最小値を減衰ボトム値Buと称し、同じく特定期間Tsでの平均値を減衰平均値Baと称する。この場合、特定期間Tsにおいて減衰値Sbに含まれる脈動の振幅を減衰振幅Bamと称すると、この減衰振幅Bamは、減衰ピーク値Bpと減衰平均値Baとの差として算出される。この関係は、Bam=Bp−Baという数式で示すこともできる。
なお、検出ピーク値Ap、検出ボトム値Au、減衰ピーク値Bp及び減衰ボトム値Buは、いずれもゼロと基準とした値になっている。本実施形態では、検出ボトム値Auがゼロになっている。この場合、検出ピーク値Ap、減衰ピーク値Bp及び減衰ボトム値Buは、検出ボトム値Auを基準とした値になっていると言うこともできる。また、減衰ピーク値Bpが減衰関連値に相当する。
本実施形態では、検出値Saと減衰値Sbとの比較結果として、検出ピーク値Apと減衰ピーク値Bpとを比較した比較値Cを用いる。また、比較値Cとして、減衰ピーク値Bpを検出ピーク値Apで除した比率を比較値Cとする。この関係は、C=Bp/Apという数式で示すこともできる。
検出値Saに含まれる脈動周波数Fについて、この脈動周波数Fを取得する方法としては、検出値Saの微分演算を行って検出値Saが増加から減少に切り替わるピークのタイミングを取得する、という方法が挙げられる。ところが、この方法では、検出値Saにノイズ等の外乱が含まれていると、検出値Saについて、外乱による小さなピークと吸気脈動による大きなピークとを誤認識することが懸念される。この場合、吸気脈動について脈動周波数Fを取得するのではなく、外乱について脈動周波数を取得することになってしまう。
これに対して、本発明者は、微分演算を行わずに脈動周波数Fを特定できるようにするために周波数特性を新規に作成した。周波数特性においては、比較値Cと検出振幅Aamと脈動周波数Fとの関係が特定されており、この周波数特性を用いることで、比較値C及び検出振幅Aamに基づいて脈動周波数Fを推定することができる。
本実施形態では、周波数特性をマップ化しており、このマップを脈動マップと称する。図4に示す脈動マップにおいては、横軸が検出振幅Aamを示し、縦軸が比較値Cを示し、さらに、検出振幅Aamと比較値Cと脈動周波数Fとの関係を示す周波数線が示されている。この脈動マップにおいては、比較値C及び検出振幅Aamの両方が大きいほど脈動周波数Fが大きくなっており、検出値Saについて比較値C及び検出振幅Aamがプロットされると、このプロット位置が検出値Saの脈動周波数Fを示す。例えば、検出振幅AamがXであり、比較値CがYである場合、脈動周波数Fが80[Hz]であることを示す。
処理部26は、検出値Saについて脈動周波数Fを推定するための脈動推定処理を行う。処理部26は、脈動推定処理を実行する機能を有しており、この機能を脈動推定部30と称する。図5に示す脈動推定部30は、脈動推定処理に含まれる複数の処理を実行する複数の機能を有している。なお、処理部26においては、脈動推定部30が実行する脈動推定処理の手順が空気流量計測方法に相当する。
脈動推定部30は、信号取得部31、期間設定部32、検出ピーク取得部35、フィルタ部36、減衰ピーク取得部37、比較部38、平均取得部41、振幅取得部42、周波数取得部43及び補正量取得部44を有している。処理部26は、推定した脈動周波数Fに関する情報をECU20に対して出力する。
脈動推定部30において、信号取得部31は、センシング部25からの検出信号を取得することで、センシング部25により検出された検出値Saを取得する。期間設定部32は、所定の長さを有する期間を特定期間Tsとして設定する。ここでは、過去の脈動推定部30が推定した脈動周波数Fに関する情報が記憶部26bに記憶されており、この情報を記憶部26bから読み込み、この情報に基づいて特定期間Tsを設定する。例えば、脈動推定部30が前回の処理にて特定期間Tsとして取得した値を、今回の処理にて特定期間Tsに設定する。検出ピーク取得部35は、検出値Saについて特定期間Tsでの検出ピーク値Apを取得する。なお、検出ピーク取得部35が検出取得部に相当する。
フィルタ部36は、検出値Saについてフィルタ処理を行うフィルタであり、フィルタ処理の結果として減衰値Sbを取得する。ここでは、フィルタ処理として、検出値Saについて1次遅れ系をなますなまし処理を行う。このなまし処理を、1次遅れ系を減衰させる減衰処理と称することもできる。このなまし処理においては、例えば図5のフィルタ部36に示す数式のy(t)を減衰値Sbとして取得する。この数式においては、Tを時定数としている。
減衰ピーク取得部37は、減衰値Sbについて特定期間Tsでの減衰ピーク値Bpを取得する。なお、減衰ピーク取得部37減衰取得部に相当する。比較部38は、検出ピーク取得部35が取得した検出ピーク値Apと、減衰ピーク取得部37が取得した減衰ピーク値Bpとの比率を算出し、この算出結果を比較値Cとして取得する。
平均取得部41は、検出値Saについて検出平均値Aaを取得する。振幅取得部42は、検出ピーク取得部35が取得した検出ピーク値Apと、平均取得部41が取得した検出平均値Aaと、を用いて検出振幅Aamを取得する。
周波数取得部43は、比較部38が取得した比較値Cと、振幅取得部42が取得した検出振幅Aamと、を用いて脈動周波数Fを取得する。ここで、図4に示すような脈動マップが記憶部26bに記憶されており、周波数取得部43は、記憶部26bから脈動マップを読み込み、この脈動マップを用いて脈動周波数Fを取得する。具体的には、比較値C及び検出振幅Aamをプロットし、複数の周波数線のうちこのプロット位置に最も近い周波数線を脈動周波数Fとして取得する。
補正量取得部44は、脈動周波数Fを用いて検出値Saの補正量Qを取得する。ここでは、脈動周波数Fに加えて、検出ピーク値Apや検出振幅Aamなどを用いて補正量Qを算出する。補正量Qは、特定期間Tsでの複数のタイミングについて取得されている。特定期間Tsについて、補正量Qの連続的な変化に関する情報を有する信号を補正信号Sqと称すると、検出値Saを補正信号Sqで補正することで、補正後信号Sqaを取得することができる。なお、補正量Qは、補正値及び補正結果に相当する。
脈動推定部30は、補正量Qを用いて検出値Saを補正する補正部を有している。この補正部は、補正量取得部44が補正量Qを取得した後に、補正後信号Sqaを取得し、この補正後信号Sqaを用いて空気流量を算出することで、この算出値を、真の空気流量に近付けることができる。なお、空気流量の脈動が有する特性を脈動特性と称すると、補正部は、補正量Qを用いて脈動特性を補正することになる。また、補正量取得部44及び補正部が検出補正部を構成している。
ここまで説明した本実施形態によれば、脈動周波数Fの推定に際して、検出ピーク値Apと減衰ピーク値Bpとがそれぞれ最大値として比較されるため、検出値Saの微分演算を行う必要がない。このため、吸気脈動による検出値Saのピークと、外乱による検出値Saのピークと、を検出値Saの微分演算を行うことでかえって誤認識しやすくなってしまう、ということを回避できる。したがって、検出値Saに外乱が含まれていたとしても、外乱の存在によって脈動周波数Fの推定精度が低下するということを抑制できる。
また、脈動周波数Fの推定に比較値Cが用いられるため、ECU20が取得するエンジン回転数等のエンジン制御情報を用いる必要がない。すなわち、脈動周波数Fを推定する脈動推定処理をECU20で行う必要がない。このように、脈動推定処理をエアフロメータ15の処理部26にて行うことで、ECU20の処理負担を低減することができる。また、処理部26が脈動周波数Fを推定する構成を実現するためにECU20がエンジン回転数等のエンジン制御情報を処理部26に対して出力するという必要もないため、ECU20が情報の出力処理を行うことに関しても、処理負担を低減できる。
さらに、処理部26にて取得された脈動周波数Fを含む情報がECU20に入力される。この場合、ECU20は、自身が取得したエンジン回転数の示すエンジン回転周波数と、処理部26から入力された脈動周波数Fとを比較することで、燃焼システム10についての異常発生を検出することが可能になる。この異常としては、例えば、気筒停止や、バルブタイミングの異常、バルブリフト量の異常、EGRバルブの故障などが挙げられる。また、燃焼システムにターボチャージャが含まれている構成では、ターボチャージャにて発生したサージングと呼ばれる現象も、上記異常として挙げられる。
本実施形態によれば、脈動周波数Fの推定には、比較値Cに加えて検出振幅Aamが用いられるため、比較値Cと検出振幅Aamと脈動周波数Fとの間に所定の関係がある、という本発明者の知見を活用して脈動周波数Fの推定精度を高めることができる。しかも、脈動周波数Fの推定には、比較値Cと検出振幅Aamと脈動周波数Fとの相互関係を示す周波数特性が用いられているため、比較値C及び検出振幅Aamに基づいて脈動周波数Fを精度良く推定することができる。
本実施形態によれば、周波数特性においては、検出振幅Aamが所定値である場合に比較値Cが大きいほど脈動周波数Fが小さい、という関係が成立している。ここで、比較値Cが大きいということは、検出ピーク値Apに対する減衰ピーク値Bpの比率が大きい、すなわち、検出ピーク値Apと減衰ピーク値Bpとの差が小さい、ということになる。このため、検出ピーク値Apと減衰ピーク値Bpとの差が小さいほど脈動周波数Fが小さい、という関係を利用することで、脈動周波数Fの推定精度を高めることができる。
本実施形態によれば、比較値Cが検出ピーク値Apに対する減衰ピーク値Bpの比率とされている。この場合、仮に減衰ピーク値Bpが検出ピーク値Apより大きい値になっていたとしても、比較値Cが、マイナスの値になるのではなく、「1」よりも大きい値になる。このため、何らかの異常発生により減衰ピーク値Bpが検出ピーク値Apになったとすると、比較値Cが「1」よりも大きくなったことで異常発生を把握することができる。換言すれば、比較値Cがマイナスになることを想定しておかなくても、異常発生を把握することができる。
本実施形態によれば、比較値Cを取得する際に、特定期間Tsでの最大値という共通要素を有する項目として、検出ピーク値Ap及び減衰ピーク値Bpが用いられているため、これら検出ピーク値Apと減衰ピーク値Bpとを適正に比較することができる。しかも、特定期間Tsという1つの条件さえ共通していれば、検出値Sa及び減衰値Sbのそれぞれについて単に大きさを検出することで、検出ピーク値Ap及び減衰ピーク値Bpを容易に取得することができる。したがって、比較値Cを取得する際の処理部26での処理負担を低減することができる。
本実施形態によれば、期間設定部32により特定期間Tsが設定されるため、脈動周波数Fにできるだけ近い値を特定期間Tsとして選択することが可能になっている。このため、脈動周波数Fの推定精度を適正化することができる。例えば、特定期間Tsが脈動周波数Fに比べて短いと、検出値Saが増加から減少に切り替わるピークが特定期間Tsに含まれず、ピークでない値が検出ピーク値Apとして選択されることが懸念される。その一方で、減衰値Sbが増加から減少に切り替わるピークが特定期間Tsに含まれていると、減衰値Sbについては、ピークの値が減衰ピーク値Bpとして選択されることになり、比較値Cの算出精度や脈動周波数Fの推定精度が低下してしまう。
本実施形態によれば、比較値Cを用いることで脈動周波数Fの推定精度が高められているため、脈動周波数Fを用いて補正される空気流量の計測精度を高めることができる。
(第2実施形態)
上記第1実施形態では、周波数特性を示す脈動マップにおいて脈動周波数Fを示す周波数線が示されていたが、第2実施形態では、脈動マップにおいて脈動周波数Fを示す周波数エリアが示されている。本実施形態では、上記第1実施形態との相違点を中心に説明する。
図6に示す脈動マップでは、複数の周波数エリアが検出振幅Aamと比較値Cと脈動周波数Fの関係を示している。例えば、複数の周波数エリアには、第1エリアAR1及び第2エリアAR2が含まれており、第1エリアAR1は、脈動周波数Fが100[Hz]であることを示し、第2エリアAR2は、脈動周波数Fが60[Hz]であることを示す。この脈動マップにおいて、検出値Saについて比較値C及び検出振幅Aamがプロットされると、このプロット位置を含む周波数エリアが脈動周波数Fを示す。例えば、検出振幅AamがX1であり、比較値CがY1である場合、脈動周波数Fが100[Hz]であることを示す。また、検出振幅AamがX2であり、比較値CがY2である場合、脈動周波数Fが60[Hz]であることを示す。
本実施形態によれば、脈動マップにおいて複数の周波数エリアが配置されているため、比較値C及び検出振幅Aamのプロット位置がどの周波数エリアに含まれているのかを判定することで、検出値Saについて脈動周波数Fを推定できる。このため、上記第1実施形態のように複数の周波数線が示された脈動マップとは異なり、プロット位置がいずれの周波数線に最も近いかという判定処理を行う必要がない。このため、脈動周波数Fを推定する際の処理負担を低減することが可能になる。
(第3実施形態)
上記第1実施形態では、周波数特性をマップ化した脈動マップを用いて脈動周波数Fを推定したが、第3実施形態では、周波数特性を数式化した数式を用いて脈動周波数Fを推定する。本実施形態では、上記第1実施形態との相違点を中心に説明する。
脈動周波数Fの推定に用いる数式は、比較値Cと検出振幅Aamと脈動周波数Fとの関係を規定しており、例えば、fa=F(C,Aam)で示される。この数式を用いることで、脈動周波数Fが算出される。このように、周波数特性が数式化されると、周波数取得部43は、単に数式の演算を行うことで脈動周波数Fを取得することになるため、処理部26での処理負担を低減することが可能になる。
なお、係数化した係数を用いて脈動周波数を推定してもよい。また、脈動周波数Fの取得については、マップ化した周波数特性及び数式化や係数化した周波数特性の両方が用いられてもよい。例えば、周波数取得部43は、脈動マップを用いて脈動周波数Fを第1推定値として推定し、数式を用いて脈動周波数Fを第2推定値として推定し、さらに、これら第1推定値と第2推定値との平均値を脈動周波数Fとして取得する、という構成にする。
(第4実施形態)
上記第1実施形態では、補正量取得部44が脈動周波数Fを用いて補正量Qを取得したが、第4実施形態では、補正量取得部44は、脈動周波数Fに加えて他のパラメータを用いて補正量Qを取得する。本実施形態では、上記第1実施形態との相違点を中心に説明する。
例えば、図7に示す補正量取得部44は、周波数取得部43が取得した脈動周波数Fに加えて、振幅取得部42が取得した検出振幅Aamに基づいて補正量Qを取得する。この構成では、脈動周波数Fや検出振幅Aamに依存する脈動特性を補正することができる。換言すれば、補正部による検出値Saの補正処理が脈動周波数Fに依存する度合いを検出振幅Aamにより低減させることができる。
また、図8に示す補正量取得部44は、周波数取得部43が取得した脈動周波数Fに加えて、平均取得部41が取得した検出平均値Aaに基づいて補正量Qを取得する。この構成では、脈動周波数Fや検出平均値Aaに依存する脈動特性を補正することができる。換言すれば、補正部による検出値Saの補正処理が脈動周波数Fに依存する度合いを検出平均値Aaにより低減させることができる。
さらに、図9に示す補正量取得部44は、周波数取得部43が取得した脈動周波数Fに加えて、振幅取得部42が取得した検出振幅Aam及び平均取得部41が取得した検出平均値Aaに基づいて補正量Qを取得する。この構成では、脈動周波数Fや検出振幅Aam、検出平均値Aaに依存する脈動特性を補正することができる。換言すれば、補正部による検出値Saの補正処理が脈動周波数Fに依存する度合いを検出振幅Aam及び検出平均値Aaにより低減させることができる。
(第5実施形態)
上記第1実施形態では、脈動推定部30において特定期間Tsが更新されなかったが、第5実施形態では、推定された脈動周波数Fに応じて特定期間Tsが更新される。本実施形態では、上記第1実施形態との相違点を中心に説明する。
図10に示すように、脈動推定部30は、特定期間Tsを更新する期間更新部47を有している。期間更新部47は、周波数取得部43が取得した脈動周波数Fを用いて、吸気脈動の周期である脈動周期を推定し、この脈動周期を用いて特定期間Tsを更新する。具体的には、脈動周波数Fの逆数を脈動周期として取得し、脈動周期の値を特定期間Tsとする。
期間更新部47は、特定期間Tsを更新した情報を検出ピーク取得部35、減衰ピーク取得部37及び平均取得部41に付与する。脈動推定部30において、脈動推定処理において脈動周波数Fを1回目に推定する場合は、取得部35,37,41に特定期間Tsの更新情報が付与されず、期間設定部32にて設定された特定期間Tsの値を用いる。しかし、脈動周波数Fを1度推定した後は、取得部35,37,41が、期間設定部32にて設定された値を特定期間Tsとして用いるのではなく、期間更新部47にて更新された値を特定期間Tsとして用いる。
例えば、期間設定部32にて設定された特定期間Tsを1回目期間Ts1(図11参照)と称すると、脈動推定部30においては、脈動周波数Fを1回目に推定する場合には特定期間Tsとして1回目期間Ts1を用いる。そして、期間更新部47は、1回目に推定された脈動周波数Fの逆数である2回目期間Ts2(図11参照)を特定期間Tsとして取得部35,37,41に付与する。この場合、検出ピーク取得部35、減衰ピーク取得部37及び平均取得部41は、それぞれ2回目期間Ts2を用いて検出ピーク値Ap、減衰ピーク値Bp及び検出平均値Aaを取得する。
本実施形態によれば、特定期間Tsが脈動周波数Fの推定結果を用いて更新されるため、吸気脈動の振幅や周期が徐々に大きくなったり小さくなったりするように吸気脈動が徐変していたとしても、その脈動周波数Fを精度良く推定できる。これは、特定期間Tsが吸気脈動の実際の周期とほぼ同じ値に設定されると、検出ピーク値Apや検出平均値Aaなどを精度良く取得できるためである。例えば、本実施形態とは異なり、吸気脈動の実際の周期に対して特定期間Tsが短過ぎたり長過ぎたりすると、検出ピーク値Apや検出平均値Aaなどを精度良く取得できないことに起因して、脈動周波数Fの推定精度が低下することが懸念される。
(第6実施形態)
第6実施形態では、脈動推定部30が流量補正部49を有している。本実施形態では、上記第1実施形態との相違点を中心に説明する。図12に示す脈動推定部30は、補正量取得部44に代えて流量補正部49を有しており、流量補正部49は、複数の処理を実行する複数の機能を有している。なお、流量補正部49が検出補正部に相当する。
図13に示す流量補正部49は、補正前の空気流量を取得する補正前取得部50を有している。補正前取得部50は、A/D変換部51、サンプリング部52及び第1変換テーブル53を有している。A/D変換部51には、センシング部25により検出された検出値SaをA/D変換してデジタル値を取得する。サンプリング部52は、デジタル値をサンプリングし、第1変換テーブル53は、デジタル値を空気流量に変換する。このようにして、補正前取得部50において、補正前の空気流量が取得される。
また、流量補正部49は、増幅部55、第2変換テーブル56、サンプリング記憶部57、振幅演算部58、脈動誤差算出部61及び脈動補正部62を有している。増幅部55は、周波数取得部43により取得された脈動周波数Fを用いて、A/D変換部51にて減衰したデジタル値を増幅させることで減衰前の値に戻す。第2変換テーブル56は、増幅部55にて増幅されたデジタル値を、第1変換テーブル53と同様に空気流量に変換する。サンプリング記憶部57は、第2変換テーブル56にて変換された空気流量を記憶しておく。振幅演算部58は、特定期間Tsについての空気流量の最大値、最小値、平均値をサンプリング記憶部57から読み込み、これら値を用いて脈動振幅比を演算する。
脈動誤差算出部61は、周波数取得部43が取得した脈動周波数Fと、振幅演算部58が演算した脈動振幅比とを用いて脈動誤差を推定する。そして、脈動補正部62は、脈動誤差算出部61が算出した脈動誤差と、補正前取得部50が取得した補正前の空気流量とを用いて、脈動誤差が小さくなるようにその脈動誤差を補正することで、補正後の空気流量を取得する。
(第7実施形態)
第7実施形態では、吸気脈動による空気流量の誤差を脈動誤差Err[%]と称し、補正量取得部44が脈動誤差Errを算出する。本実施形態では、上記第1実施形態との相違点を中心に説明する。ここでは、検出平均値Aaを平均流量G[g/s]と称し、検出振幅Aamを脈動振幅Aと称する。また、補正量取得部44は、上記第4実施形態の図9に示すように、平均流量G、検出振幅Aam及び脈動周波数Fを用いて脈動誤差Errを予測する。
補正量取得部44は、平均流量G及び脈動周波数Fに基づいて傾きAnn及び切片Bnnを算出し、これら傾きAnn及び切片Bnnに加えて脈動振幅Aに基づいて脈動誤差Errを予測値として算出する。例えば、補正量取得部44は、平均流量G及び脈動周波数Fに基づいて傾きAnnを算出する場合に、図14に示す補正係数マップを用いる。この補正係数マップは、平均流量Gと脈動周波数Fと傾きAnnとの関係を示す1次元マップである。この1次元マップにおいては、縦軸に平均流量GとしてG1〜Gnが並んでおり、横軸に脈動周波数FとしてF1〜Fnが並んでいる。傾きAnnとしては、平均流量G及び脈動周波数Fに対応してA11〜Annが配置されている。
なお、この補正係数マップは、実験等により得られたデータを用いて作成されたものであり、あらかじめ記憶部26b等に記憶されている。また、切片Bnnについても、傾きAnnと同様にマップを用いて算出する。
補正量取得部44は、傾きAnn、切片Bnn及び脈動振幅Aに基づいて脈動誤差Errを算出する場合に、誤差予測式として下記(式1)を用いる。
Err=Ann×A+Bnn…(式1)
傾きAnnは、脈動振幅Aに依存する値であり、補正係数マップに示すように平均流量G及び脈動周波数Fごとに変更される値である。
図15に示すように、実線で示す補正値、及び破線で示す脈動特性については、いずれも脈動振幅Aが大きくなるほど脈動誤差Errが大きくなっている。図15においては、横軸が脈動振幅Aであり、縦軸が脈動誤差Errである。
(第8実施形態)
上記第7実施形態では、補正係数マップとして1次元マップを用いたが、第8実施形態では、2次元マップを用いる。本実施形態では、上記第7実施形態との相違点を中心に説明する。図16に示す補正係数マップは、平均流量Gと脈動周波数Fと傾きAnnと切片Bnnとの関係を示す2次元マップである。この2次元マップにおいては、傾きAnnと切片Bnnとが互いに対応する一対として、平均流量Gと脈動周波数Fとの組み合わせに対して関連付けられている。
2次元の補正係数マップにおいては、上記第7実施形態の1次元マップと同様に、縦軸が平均流量Gであり、横軸が脈動周波数Fである。傾きAnn及び切片Bnnとしては、平均流量G及び脈動周波数Fに対応してA11,B11〜Ann,Bnnが配置されている。また、補正量取得部44は、脈動誤差Errを算出する場合に、上記第7実施形態と同様に上記(式1)を用いる。
(第9実施形態)
上記第8実施形態では、補正係数マップとして2次元マップを用いたが、第9実施形態では、3次元マップを用いる。本実施形態では、上記第8実施形態との相違点を中心に説明する。図17に示す補正係数マップは、平均流量Gと脈動周波数Fと補正量Qと脈動振幅Aとの関係を示す3次元マップである。この3次元マップにおいては、平均流量Gと脈動周波数Fと補正量Qとの関係を示す2次元マップが脈動振幅Aごとに複数設けられている。この場合、3次元の補正係数マップは、2次元の補正係数マップを複数有していることになる。
2次元の補正係数マップにおいては、上記第8実施形態の2次マップと同様の縦軸及び横軸であり、脈動振幅A1〜Anのそれぞれについて個別に設けられている。例えば、脈動振幅A1についての2次元の補正係数マップにおいては、補正量Qとして、平均流量G及び脈動周波数Fに対応させてQ111〜Q1nnが配置されている。また、脈動振幅Anについての2次元の補正係数マップにおいては、補正量Qとして、Qn11〜Qnnnが配置されている。
補正量取得部44は、平均流量G、脈動周波数F及び脈動振幅Aに基づいて補正量Qを算出する場合に、回帰式として下記(式2)を用いる。
Q=αG+βF+γA…(式2)
この(式2)においては、α,β,γがいずれも定数とされている。
(第10実施形態)
上記第9実施形態では、3次元マップのパラメータが平均流量G、脈動周波数F、補正量Q及び脈動振幅Aであったが、第10実施形態では、補正量Q及び脈動振幅Aに代えて、傾きAnn、切片Bnn及びダクト径Dがパラメータに含まれている。本実施形態では、上記第9実施形態との相違点を中心に説明する。
図18に示す3次元の補正係数マップにおいては、平均流量Gと脈動周波数Fと傾きAnnnと切片Bnnnとの関係を示す2次元マップがダクト径Dごとに複数設けられている。ダクト径Dは吸気管12aの内径であり、ダクト径Dに関する情報は、あらかじめ記憶部26bに記憶されている。
2次元の補正係数マップは、上記第8実施形態の2次元マップと同様の縦軸及び横軸であり、ダクト径D1〜Dnのそれぞれについて個別に設けられている。例えば、ダクト径D1についての2次元マップにおいては、傾きAnnn及び切片Bnnnとして、平均流量G及び脈動周波数Fに対応させてA111,B111〜A1nn,B1nnが配置されている。また、ダクト径Dnについての2次元マップにおいては、傾きAnnn及び切片Bnnnとして、An11,Bn11〜Annn,Bnnnが配置されている。
(第11実施形態)
上記第8実施形態では、補正量取得部44が脈動誤差Errの算出に用いる誤差予測式を1つとしていたが、第11実施形態では、補正量取得部44が用いる誤差予測式を2つとする。本実施形態では、上記第8実施形態との相違点を中心に説明する。
図19に破線で示すように、本実施形態の脈動特性は、脈動振幅Aが大きいほど脈動誤差Errが小さくなる領域と、脈動振幅Aが大きいほど脈動誤差Errも大きくなる領域とを有しており、これら領域の境界部に対して脈動振幅Aの閾値Asが設定されている。そこで、補正量取得部44は、脈動振幅Aが閾値Asより小さい場合(以下、A<Asとも記載する)と、大きい場合(以下、A>Asとも記載する)とで、補正係数マップ及び誤差予測式をそれぞれ使い分ける。なお、閾値Asを設定する必要がある場合としては、吸気通路12において空気流量の逆流が発生した場合が挙げられる。
図20に示すように、2次元の補正係数マップとしては、A<Asの場合に用いる第1マップと、A>Asの場合に用いる第2マップとがある。第1マップにおいては、平均流量Gと脈動周波数Fと傾きAnnと切片Bnnとの関係が示されている。一方、第2マップにおいては、第1マップでの傾きAnn及び切片Bnnに代えて、傾きCnn及び切片Dnnが含まれており、平均流量Gと脈動周波数Fと傾きCnnと切片Dnnとの関係が示されている。第2マップにおいては、傾きCnn及び切片Dnnとして、C11,D11〜Cnn,Dnnが配置されている。
補正量取得部44は、脈動誤差Errを算出する際に、A<Asの場合には上述した(式1)を用い、A>Asの場合に下記(式3)を誤差予測式として用いる。
Err=Cnn×A+Dnn…(式3)
補正量取得部44は、A<Asの場合に、第1マップ及び上述した(式1)を用いることで、上記第8実施形態と同様に脈動誤差Errを算出する。一方、A>Asの場合には、第2マップを用いることで、平均流量G及び脈動周波数Fに対応した傾きCnn及び切片Dnnを算出し、上記(式3)を用いることで傾きCnn及び切片Dnnに応じた脈動誤差Errを算出する。
本実施形態によれば、脈動誤差Errを計測する際に、吸気通路12での逆流の発生の有無に応じて、補正係数マップ及び誤差予測式を使い分けることができる。このため、逆流の有無に関係なく脈動誤差Errの計測に同じ補正係数マップ及び誤差予測式が用いられる構成に比べて、脈動誤差Errの計測精度を高めることができる。
(第12実施形態)
上記第11実施形態では、脈動振幅Aの大きさに応じて補正係数マップを使い分けたが、第12実施形態では、脈動率Pの大きさに応じて補正係数マップを使い分ける。本実施形態では、上記第11実施形態との相違点を中心に説明する。
図21に示す脈動特性は、上記第11実施形態とは異なり、横軸が脈動振幅Aではなく脈動率Pになっている。脈動率Pは、脈動振幅Aを平均流量Gで除した値である。この関係は、P=A/G×100[%]で示すこともできる。また、脈動特性は、脈動率Pが大きいほど脈動誤差Errが小さくなる領域と、脈動率Pが大きいほど脈動誤差Errが大きくなる領域とを有しており、これら領域の境界部に対して脈動率Pの閾値Psが設定されている。そこで、補正量取得部44は、脈動率Pが閾値Psより小さい場合(以下、P<Psとも記載する)と、大きい場合(以下、P>Psとも記載する)とで、補正係数マップ及び誤差予測式をそれぞれ使い分ける。なお、閾値Psを設定する必要がある場合としては、吸気通路12において空気流量の逆流が発生した場合が挙げられる。
図22に示すように、2次元の補正係数マップとしては、P<Psの場合に用いる第3マップと、P>Psの場合に用いる第4マップとがある。第3マップにおいては、上記第11実施形態の第1マップと同様に、平均流量Gと脈動周波数Fと傾きAnnと切片Bnnとの関係が示されている。第4マップにおいては、上記第11実施形態の第2マップと同様に、平均流量Gと脈動周波数Fと傾きCnnと切片Dnnとの関係が示されている。
補正量取得部44は、脈動誤差Errを算出する場合に、P<Psの場合には誤差予測式として下記(式4)を用い、P>Psの場合には誤差予測式として下記(式5)を用いる。
Err=Ann×P+Bnn…(式4)
Err=Cnn×P+Dnn…(式5)
傾きAnn,Cnnは、脈動率Pに依存する値であり、補正係数マップに示すように平均流量G及び脈動周波数Fごとに変更される値である。
本実施形態によれば、上記第11実施形態と同様に、吸気通路12での逆流の有無に応じて、補正係数マップ及び誤差予測式を使い分けることで、脈動誤差Errの計測精度を高めることができる。
本実施形態によれば、補正係数マップ及び誤差予測式について、脈動振幅Aではなく脈動率Pが用いられている。このため、脈動率Pについては、吸気通路12での逆流の有無に応じて補正係数マップや誤差予測式を使い分ける際に、平均流量Gに関係なく閾値Psを100[%]に設定することができる。この場合、補正係数マップや誤差予測式を使い分ける際に、閾値Psを平均流量Gに応じて変更するという必要がないため、脈動誤差Errを算出するための演算を簡略化できる。すなわち、脈動誤差Errを算出する際の処理負担を低減できる。これに対して、例えば上記第11実施形態のように、補正係数マップ及び誤差予測式について脈動振幅Aが用いられる構成では、閾値Asを平均流量Gに応じて変更する必要が生じると考えらえる。
(他の実施形態)
以上、本開示による複数の実施形態について説明したが、本開示は、上記実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
変形例1として、周波数特性には、検出振幅Aamに代えて検出振幅率として脈動振幅率が含まれていてもよい。脈動振幅率は、検出ピーク値Apと検出平均値Aaとの差を検出平均値Aaで除した値である。この脈動振幅率は、(Ap−Aa)/Aa×100と表現することもできる。脈動周波数Fの推定に脈動振幅率を用いた構成でも、上記各実施形態のように脈動周波数Fの推定に検出振幅Aamを用いた構成と同様の効果を奏することができる。なお、検出振幅Aamに加えて脈動振幅率も振幅関連値に相当する。
変形例2として、検出関連値及び減衰関連値として検出ピーク値Ap及び減衰ピーク値Bpを用いて比較値Cを算出していたが、比較値Cの算出にはこれらピーク値Ap,Bpとは異なる検出関連値及び減衰関連値を用いてもよい。例えば、ピーク値Ap,Bpを所定値又は所定率だけ増減させた値を検出関連値及び減衰関連値として用いる構成とする。
また、所定タイミングでの検出値Sa及び減衰値Sbを検出関連値及び減衰関連値としてもよい。例えば、検出ピーク値Apを検出関連値とし、検出ピーク値Apを検出した検出タイミングでの減衰値Sbを減衰関連値とする。この場合でも、検出関連値と減衰関連値とを互いに対応する値として比較することで比較値を取得できる。
さらに、検出関連値及び減衰関連値として検出ボトム値Au及び減衰ボトム値Buを用いて比較値Cを算出してもよい。例えば、検出ボトム値Auをゼロより大きい値であれば、比較値Cとして減衰ボトム値Buと検出ボトム値Auとの比率を算出することもできる。また、ボトム値Au,Buについても、ピーク値Ap,Bpと同様に、ボトム値Au,Buを所定値又は所定率だけ増減させた値を検出関連値及び減衰関連値として比較値を算出してもよい。
変形例3として、検出ピーク値Apに対する減衰ピーク値Bpの比率(例えばBp/Ap)を比較値Cとするのではなく、減衰ピーク値Bpに対する検出ピーク値Apの比率(例えばAp/Bp)を比較値としてもよい。
変形例4として、比較値Cは、検出ピーク値Apと減衰ピーク値Bpとの比率ではなく、検出ピーク値Apと減衰ピーク値Bpとの差分であってもよい。例えば、検出ピーク値Apから減衰ピーク値Bpを引いた値を比較値Cとする。この構成では、検出ピーク値Ap等の検出関連値又は減衰ピーク値Bp等の減衰関連値がゼロであったとしても、比較値Cを算出することができるため、比較値Cを用いて脈動周波数Fを推定する際の推定精度が低下することを抑制できる。例えば、上記第1実施形態のように検出関連値と減衰関連値との比率が比較値とされた構成では、検出関連値又は減衰関連値がゼロの場合に比較値の算出を適正に行うことができないことが懸念される。
変形例5として、比較値Cと脈動周波数Fと検出振幅Aamとの関係を示す周波数特性において、検出振幅Aamに代えて検出振幅Aamとは異なる値が振幅関連値として含まれていてもよい。検出関連値としては、検出振幅Aamを所定値又は所定率だけ増減させた値や、検出ピーク値Apと検出ボトム値Auとの差、検出平均値Aaと検出ボトム値Auとの差、などが挙げられる。
変形例6として、上記各実施形態では、検出値Saを減衰させるフィルタ部36が処理部26の機能の1つとして実現されていたが、フィルタ部36は、電気回路等により構造として実現されていてもよい。
変形例7として、フィルタ部36は、検出値Saではなく、センシング部25からの検出信号を対象として減衰処理を行ってもよい。この場合は、検出信号と検出信号を減衰させた減衰信号とを比較した比較結果を比較値として、脈動周波数Fの推定に用いることになる。
変形例8として、上記各実施形態では、比較値C及び検出振幅Aamの両方を用いて脈動周波数Fを推定したが、検出振幅Aamを用いずに比較値Cに基づいて脈動周波数Fを推定してもよい。例えば、比較値Cから直接的に脈動周波数Fを推定できるように、比較値Cに対する数式や係数が設定された構成とする。
変形例9として、上記第5実施形態では、周波数取得部43の前回の処理で取得された脈動周波数Fから今回の特定期間Tsが設定されたが、今回の特定期間Tsは、前回よりも更に過去の処理で周波数取得部43が取得した脈動周波数Fにて設定されてもよい。また、特定期間Tsは、脈動周波数Fの逆数とは異なる値に設定されていてもよい。例えば、脈動周波数Fの逆数から所定値又は所定率だけ増減させた値が特定期間Tsとして設定される構成とする。
変形例10として、上記各実施形態では、脈動推定部30がエアフロメータ15の処理部26に含まれていたが、脈動推定部30はECU20に含まれていてもよい。この場合、ECU20が空気流量計測装置に相当することになる。また、脈動推定部30が有する機能の一部が処理部26に含まれ、残りの機能がECU20に含まれていてもよい。この場合、処理部26及びECU20が複数の演算装置として協働で空気流量計測装置としての機能を発揮することになる。また、各演算装置に設けられたフラッシュメモリやハードディスク等の非遷移的実体的記憶媒体に各種プログラムが記憶されていてもよい。
変形例11として、ECU20や処理部26は、少なくとも1つの集積回路や受動素子を有する専用の電気回路部を含んで構成されていてもよい。例えば、処理部26が専用の電気回路部を複数有している構成では、処理部26において脈動推定部30が有する信号取得部31等の複数の機能が、少なくとも1つの専用の電気回路部により構成されている。
25…センシング部、26…空気流量計測装置としての処理部、32…期間設定部、35…検出取得部としての検出ピーク取得部、36…フィルタとしてのフィルタ部、37…減衰取得部としての減衰ピーク取得部、38…比較部、42…振幅取得部、43…周波数取得部、44…検出補正部を構成する補正量取得部、49…検出補正部としての流量補正部、Aa…検出平均値、Aam…振幅関連値としての検出振幅、Ap…検出関連値及び最大値としての検出ピーク値、Au…最小値としての検出ボトム値、Bp…減衰関連値及び最大値としての減衰ピーク値、Bu…最小値としての減衰ボトム値、C…比較値、F…脈動周波数、Q…補正値としての補正量、Sa…検出値、Sb…減衰値、Ts…特定期間。

Claims (11)

  1. 空気の流れに応じてセンシング部(25)により検出される検出値(Sa)に基づいて空気流量を計測する空気流量計測装置(26)であって、
    所定の特定期間(Ts)について、前記検出値の最大値(Ap)及び最小値(Au)の少なくとも一方に関連した検出関連値(Ap)を取得する検出取得部(35)と、
    前記検出値を所定のフィルタ(36)により減衰させた減衰値(Sb)について、前記特定期間について、前記検出関連値に対応し且つ前記減衰値の最大値(Bp)及び最小値(Bu)の少なくとも一方に関連した減衰関連値(Bp)を取得する減衰取得部(37)と、
    前記検出関連値と前記減衰関連値とを比較し、その比較結果として比較値(C)を取得する比較部(38)と、
    前記比較値に基づいて前記空気の脈動周波数(F)を取得する周波数取得部(43)と、
    を備えている空気流量計測装置。
  2. 前記特定期間について、前記検出値の振幅に関連した振幅関連値(Aam)を取得する振幅取得部(42)を備え、
    前記周波数取得部は、前記比較値に加えて前記振幅関連値を用いて前記脈動周波数を推定する、請求項1に記載の空気流量計測装置。
  3. 前記周波数取得部は、
    前記検出値を減衰させる前記フィルタについてあらかじめ定められ且つ前記比較値と前記振幅関連値と前記脈動周波数との関係を示す周波数特性を用いて、前記比較値及び前記振幅関連値に基づいて前記脈動周波数を推定する、請求項2に記載の空気流量計測装置。
  4. 前記周波数特性は、前記振幅関連値が所定値である場合に、前記比較値が前記検出関連値と前記減衰関連値との差が小さいことを示すほど前記脈動周波数が小さいという関係を示す、請求項3に記載の空気流量計測装置。
  5. 前記比較部は、
    前記検出関連値と前記減衰関連値との比率を前記比較値として取得する、請求項1〜4のいずれか1つに記載の空気流量計測装置。
  6. 前記比較部は、
    前記検出関連値と前記減衰関連値との差分を前記比較値として取得する、請求項1〜5のいずれか1つに記載の空気流量計測装置。
  7. 前記検出取得部は、前記検出関連値として、前記特定期間について前記検出値の最大値を検出ピーク値(Ap)として取得し、
    前記減衰取得部は、前記減衰関連値として、前記特定期間について前記減衰値の最大値を減衰ピーク値(Bp)として取得し、
    前記比較部は、前記検出ピーク値と前記減衰ピーク値とを比較し、その比較結果として前記比較値を取得する、請求項1〜6のいずれか1つに記載の空気流量計測装置。
  8. 過去に前記周波数取得部により推定された前記脈動周波数を用いて前記特定期間を設定する期間設定部(32)を備えている、請求項1〜7のいずれか1つに記載の空気流量計測装置。
  9. 前記脈動周波数を用いて前記検出値を補正し、その補正結果として補正値(Q)を取得する検出補正部(44)を備えている、請求項1〜8のいずれか1つに記載の空気流量計測装置。
  10. 前記検出補正部は、前記脈動周波数に加えて、前記検出値の振幅(Aam)に関連した値(Aam)と前記特定期間での前記検出値の平均値(Aa)に関連した値(Aa)との少なくとも一方を用いて、前記検出値を補正する、請求項9に記載の空気流量計測装置。
  11. 空気の流れに応じてセンシング部(25)により検出される検出値(Sa)に基づいて空気流量を計測する空気流量計測方法であって、
    所定の特定期間(Ts)について、前記検出値の最大値(Ap)及び最小値(Au)の少なくとも一方に関連した検出関連値(Ap)を取得し(35)、
    前記検出値を所定のフィルタ(36)により減衰させた減衰値(Sb)について、前記特定期間について、前記検出関連値に対応し且つ前記減衰値の最大値(Bp)及び最小値(Bu)の少なくとも一方に関連した減衰関連値(Bp)を取得し(37)、
    前記検出関連値と前記減衰関連値とを比較し、その比較結果として比較値(C)を取得し(38)、
    前記比較値に基づいて前記空気の脈動周波数(F)を取得する(43)、空気流量計測方法。
JP2017125432A 2017-06-27 2017-06-27 空気流量計測装置及び空気流量計測方法 Active JP7052230B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017125432A JP7052230B2 (ja) 2017-06-27 2017-06-27 空気流量計測装置及び空気流量計測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017125432A JP7052230B2 (ja) 2017-06-27 2017-06-27 空気流量計測装置及び空気流量計測方法

Publications (2)

Publication Number Publication Date
JP2019007450A true JP2019007450A (ja) 2019-01-17
JP7052230B2 JP7052230B2 (ja) 2022-04-12

Family

ID=65029376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017125432A Active JP7052230B2 (ja) 2017-06-27 2017-06-27 空気流量計測装置及び空気流量計測方法

Country Status (1)

Country Link
JP (1) JP7052230B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115213725A (zh) * 2022-06-29 2022-10-21 浙江傅氏机械科技有限公司 一种具有自检***的数控机床

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233322A (ja) * 1987-03-20 1988-09-29 Mitsubishi Electric Corp エンジンの吸気量測定装置
JPH10300544A (ja) * 1997-04-24 1998-11-13 Hitachi Ltd 空気流量測定方法及び装置
JP2004132274A (ja) * 2002-10-10 2004-04-30 Denso Corp 内燃機関の吸入空気量検出装置
JP2012159044A (ja) * 2011-02-01 2012-08-23 Mitsubishi Electric Corp 内燃機関の制御装置
JP2013160121A (ja) * 2012-02-03 2013-08-19 Hitachi Automotive Systems Ltd 内燃機関の空気量計測装置及び空気量計測方法
JP2014020212A (ja) * 2012-07-12 2014-02-03 Hitachi Automotive Systems Ltd 内燃機関の制御装置
JP2016163427A (ja) * 2015-03-02 2016-09-05 愛知電機株式会社 電力平準化システムにおける電力伝達関数の設計方法と、電力平準化システムにおける蓄電池容量の算出方法
US20160258799A1 (en) * 2015-03-03 2016-09-08 Robert Bosch Gmbh Method and device for recognizing an error in the acquisition of sensor quantities relating to a mass flow or to a pressure in a gas line system of an internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233322A (ja) * 1987-03-20 1988-09-29 Mitsubishi Electric Corp エンジンの吸気量測定装置
JPH10300544A (ja) * 1997-04-24 1998-11-13 Hitachi Ltd 空気流量測定方法及び装置
JP2004132274A (ja) * 2002-10-10 2004-04-30 Denso Corp 内燃機関の吸入空気量検出装置
JP2012159044A (ja) * 2011-02-01 2012-08-23 Mitsubishi Electric Corp 内燃機関の制御装置
JP2013160121A (ja) * 2012-02-03 2013-08-19 Hitachi Automotive Systems Ltd 内燃機関の空気量計測装置及び空気量計測方法
JP2014020212A (ja) * 2012-07-12 2014-02-03 Hitachi Automotive Systems Ltd 内燃機関の制御装置
JP2016163427A (ja) * 2015-03-02 2016-09-05 愛知電機株式会社 電力平準化システムにおける電力伝達関数の設計方法と、電力平準化システムにおける蓄電池容量の算出方法
US20160258799A1 (en) * 2015-03-03 2016-09-08 Robert Bosch Gmbh Method and device for recognizing an error in the acquisition of sensor quantities relating to a mass flow or to a pressure in a gas line system of an internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115213725A (zh) * 2022-06-29 2022-10-21 浙江傅氏机械科技有限公司 一种具有自检***的数控机床

Also Published As

Publication number Publication date
JP7052230B2 (ja) 2022-04-12

Similar Documents

Publication Publication Date Title
US20200264023A1 (en) Air flow rate measuring device and air flow rate measuring system
US10975793B2 (en) Air flow measurement device
KR102004547B1 (ko) 에어 덕트 내에 배치된 차압 센서에 의해 측정되는 압력차의 오프셋을 보정하기 위한 방법
CN108351235A (zh) 空气流量测定装置
JP5872349B2 (ja) 外部egrガスの質量流量の算出方法、外部egrガスの質量流量の算出装置、及びエンジン
JP6540747B2 (ja) 空気流量測定装置
JP5854131B2 (ja) 過給機付き内燃機関の制御装置
JP2009002281A (ja) 吸入空気量検出装置
JP2019007450A (ja) 空気流量計測装置及び空気流量計測方法
US9448136B2 (en) Sensor control apparatus, sensor control system, and sensor control method
CN105715395A (zh) 用于检查在用于内燃机的供气***中的基于压力的质量流量传感器的方法和装置
JP2019128308A (ja) 空気流量測定装置
KR101998932B1 (ko) 엔진
JP6609642B2 (ja) 内燃機関制御装置
CN105673234A (zh) 内燃机控制仪中提供滤波空气***状态参量的方法和装置
US10280824B2 (en) Variable tail pipe valve system
JP2013019400A (ja) 吸入空気量演算方法
JP2006090212A (ja) 内燃機関の制御装置
JP7211356B2 (ja) 計測制御装置
FR3081555B1 (fr) « Procédé de diagnostic de capteurs de gaz d’échappement »
JP6702484B2 (ja) 空気流量測定装置
JPWO2015156013A1 (ja) 内燃機関の制御装置および制御方法
GB2560573B (en) An apparatus, method and computer program for controlling an engine within a vehicle
US9423792B2 (en) Method for suppressing interference
JP4906815B2 (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220124

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220124

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220201

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220314

R151 Written notification of patent or utility model registration

Ref document number: 7052230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151