JP2019006670A - Manufacturing method of graphite having metal oxide adhered to surface, graphite having metal oxide and water soluble resin adhered on surface, and manufacturing method of graphite-containing castable refractory - Google Patents

Manufacturing method of graphite having metal oxide adhered to surface, graphite having metal oxide and water soluble resin adhered on surface, and manufacturing method of graphite-containing castable refractory Download PDF

Info

Publication number
JP2019006670A
JP2019006670A JP2018114564A JP2018114564A JP2019006670A JP 2019006670 A JP2019006670 A JP 2019006670A JP 2018114564 A JP2018114564 A JP 2018114564A JP 2018114564 A JP2018114564 A JP 2018114564A JP 2019006670 A JP2019006670 A JP 2019006670A
Authority
JP
Japan
Prior art keywords
graphite
water
metal oxide
mass
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018114564A
Other languages
Japanese (ja)
Other versions
JP6773081B2 (en
Inventor
宮本 陽子
Yoko Miyamoto
陽子 宮本
久宏 松永
Hisahiro Matsunaga
久宏 松永
圭佑 吉田
Keisuke Yoshida
圭佑 吉田
未有 内田
Miu Uchida
未有 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to PCT/JP2018/023656 priority Critical patent/WO2018235908A1/en
Publication of JP2019006670A publication Critical patent/JP2019006670A/en
Application granted granted Critical
Publication of JP6773081B2 publication Critical patent/JP6773081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a manufacturing method of graphite having metal oxide coating such as alumina or silica on a surface of the graphite by wet system without using an organic solvent.SOLUTION: There is provided a manufacturing method of graphite, including mixing a colloidal solution of metal oxide and graphite, drying them and adhering the metal oxide to a surface of the graphite.SELECTED DRAWING: None

Description

本発明は、製鉄所内で使用される黒鉛含有キャスタブル耐火物に用いられる表面に金属酸化物が付着した黒鉛の製造方法および表面に金属酸化物と水溶性レジンとが付着した黒鉛、ならびに黒鉛含有キャスタブル耐火物の製造方法に関する。   The present invention relates to a method for producing graphite in which a metal oxide is attached to a surface used for a graphite-containing castable refractory used in a steelworks, graphite in which a metal oxide and a water-soluble resin are attached to the surface, and a graphite-containing castable The present invention relates to a method for manufacturing a refractory.

近年、製鉄所で使用される耐火物に占める不定形耐火物の比率が増大している。不定形耐火物の1つであるキャスタブル耐火物は、酸化物のみで構成される場合が多い。その理由としては、水を用いて混練するので、疎水性を有する炭化物やカーボン源などを使用すると、混水量が多くなり、施工体の強度が小さくなったり、見かけ気孔率が大きくなるからである。   In recent years, the proportion of amorphous refractories in the refractories used in steelworks has increased. A castable refractory, which is one of amorphous refractories, is often composed of oxides only. The reason for this is that since kneading is performed using water, the use of hydrophobic carbides or carbon sources increases the amount of mixed water, reduces the strength of the construction body, and increases the apparent porosity. .

このような状況下、唯一、高炉樋材は、Al−SiC−C、SiC−C質のキャスタブル耐火物となっているが、高炉樋材で使用されているカーボン源は、ピッチ、カーボンブラックである。ピッチは、残炭率が50〜90質量%となっており、使用時に加熱されて揮発成分がなくなった跡が気孔として残るので、見かけ気孔率の増大や耐食性の低下の原因になる。また、カーボンブラックは、粒子径が20〜120nmと極めて小さく、酸化しやすいという問題がある。これらの欠点は、定型れんがで使用されている黒鉛化度が高く、且つ、熱伝導率や耐酸化性に優れる鱗状黒鉛を用いることで解決できる。 Under such circumstances, the only blast furnace brazing material is Al 2 O 3 -SiC-C, SiC-C quality castable refractory, but the carbon source used in the blast furnace brazing material is pitch, Carbon black. The pitch has a residual carbon ratio of 50 to 90% by mass, and remains as pores when it is heated during use to eliminate volatile components. This causes an increase in apparent porosity and a decrease in corrosion resistance. In addition, carbon black has a problem that the particle size is as small as 20 to 120 nm and is easily oxidized. These disadvantages can be solved by using scaly graphite having a high degree of graphitization used in regular bricks and excellent in thermal conductivity and oxidation resistance.

しかしながら、鱗状黒鉛は、疎水性が最も高く、水を用いて施工するキャスタブル耐火物には使用することが困難である。この問題を解決するために、アルミナなどの金属酸化物小粒子を黒鉛表面に固着させて黒鉛の親水性を向上させることが知られている。   However, scaly graphite has the highest hydrophobicity and is difficult to use for castable refractories constructed using water. In order to solve this problem, it is known that metal oxide small particles such as alumina are fixed to the graphite surface to improve the hydrophilicity of the graphite.

特許文献1には、メタノールなどの溶媒にフェノール樹脂やタールピッチなどの結合剤を希釈し、これにアルミナなどの微粉体を加えてスラリーを作製し、このスラリーを点滴、噴霧し、黒鉛の表面にコーティングすることで、黒鉛表面にアルミナなどの微粉体を固着させる技術が開示されている。また、特許文献2には、黒鉛粒子とアルミナなどの小粒子とを衝撃処理することで黒鉛表面にアルミナなどの小粒子を固着させる技術が開示されている。   In Patent Document 1, a binder such as phenol resin or tar pitch is diluted in a solvent such as methanol, and a fine powder such as alumina is added thereto to produce a slurry. A technique for fixing fine powders such as alumina to the surface of graphite by coating is disclosed. Patent Document 2 discloses a technique in which small particles such as alumina are fixed to the graphite surface by impact-treating graphite particles and small particles such as alumina.

特開平11−310474号公報JP-A-11-310474 特許第3217864号公報Japanese Patent No. 3217864

特許文献1に開示された技術では、エタノール等の有機溶媒で希釈されたフェノール樹脂やタールピッチなどの結合剤を用いてアルミナなどの微粉体を黒鉛の表面に固着させている。このように、特許文献1では、有機溶媒を用いているので人体への影響が懸念されるので換気対策が必要になるという課題があった。また、特許文献2に開示された技術において、アルミナまたはシリカを黒鉛の表面に固着させる場合には、粒径が0.2〜0.6μmの小粒子が高速気流処理装置に投入されて乾式処理される。このように粒径が細かい小粒子は人体への影響が懸念されるので防塵対策が必要になるという課題があった。本発明は、上記課題を鑑みてなされたものであり、その目的とするところは、有機溶媒を用いることなく湿式で黒鉛の表面にアルミナまたはシリカといった金属酸化物被膜を有する黒鉛の製造方法を提供することにある。   In the technique disclosed in Patent Document 1, fine powder such as alumina is fixed to the surface of graphite using a binder such as phenol resin or tar pitch diluted with an organic solvent such as ethanol. Thus, in patent document 1, since the organic solvent was used, since there was a concern about the influence on a human body, there existed a subject that ventilation countermeasures were needed. Further, in the technique disclosed in Patent Document 2, when alumina or silica is fixed to the surface of graphite, small particles having a particle size of 0.2 to 0.6 μm are put into a high-speed air flow treatment device and dry treatment is performed. Is done. Thus, since the small particle | grains with a small particle size are anxious about the influence on a human body, the subject that a dust-proof measure was needed occurred. The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing graphite having a metal oxide film such as alumina or silica on the surface of the graphite wet without using an organic solvent. There is to do.

このような課題を解決するための本発明の特徴は、以下の通りである。
(1)金属酸化物のコロイド溶液と黒鉛とを混合した後に、前記黒鉛を乾燥して、黒鉛の表面に金属酸化物を付着させる、表面に金属酸化物が付着した黒鉛の製造方法。
(2)前記金属酸化物のコロイド溶液と前記黒鉛とを混合し、乾燥する前に沸騰させる、(1)に記載の表面に金属酸化物が付着した黒鉛の製造方法。
(3)前記黒鉛が混合された金属酸化物のコロイド溶液は、減圧されて沸騰される、(2)に記載の表面に金属酸化物が付着した黒鉛の製造方法。
(4)前記黒鉛が混合された金属酸化物のコロイド溶液は、加熱されて沸騰される、(2)に記載の表面に金属酸化物が付着した黒鉛の製造方法。
(5)前記金属酸化物のコロイド溶液は、水溶性レジンを2.6質量%以上29.4質量%以下の範囲内で含有し、乾燥した後に熱処理する、(1)から(4)の何れか1つに記載の表面に金属酸化物が付着した黒鉛の製造方法。
(6)前記金属酸化物のコロイド溶液と前記黒鉛とを混合し、前記黒鉛を乾燥した後に、水溶性レジンを2.6質量%以上29.4質量%以下の範囲内で含有する溶液に混合し、熱処理する、(1)から(4)の何れか1つに記載の表面に金属酸化物が付着した黒鉛の製造方法。
(7)(1)から(6)の何れか1つに記載の表面に金属酸化物が付着した黒鉛の製造方法で製造された、表面に金属酸化物が付着した黒鉛と、アルミナ、マグネシア、スピネルおよび炭化珪素の何れか1種以上と、金属アルミニウム、金属シリコン、金属アルミニウムおよび金属シリコンの合金、および炭化ホウ素の何れか1種以上と、アルミナセメント、シリカゾルおよびアルミナゾルの何れか1種以上と、分散剤と、を混合する黒鉛含有キャスタブル耐火物の製造方法であって、前記表面に金属酸化物が付着した黒鉛を1.0質量%以上20.0質量%以下の範囲内で混合する、黒鉛含有キャスタブル耐火物の製造方法。(8)表面に金属酸化物と水溶性レジンが付着した黒鉛。
The features of the present invention for solving such problems are as follows.
(1) A method for producing graphite having a metal oxide adhered to the surface, wherein the metal oxide colloidal solution and graphite are mixed, and then the graphite is dried to adhere the metal oxide to the surface of the graphite.
(2) The method for producing graphite having metal oxide adhered to the surface according to (1), wherein the colloidal solution of the metal oxide and the graphite are mixed and boiled before drying.
(3) The method for producing graphite in which the metal oxide adheres to the surface according to (2), wherein the colloidal solution of the metal oxide mixed with the graphite is boiled under reduced pressure.
(4) The method for producing graphite in which the metal oxide adheres to the surface according to (2), wherein the colloidal solution of the metal oxide mixed with the graphite is heated and boiled.
(5) The colloidal solution of the metal oxide contains a water-soluble resin in a range of 2.6% by mass to 29.4% by mass, and heat-treats after drying, any of (1) to (4) The manufacturing method of the graphite which the metal oxide adhered to the surface as described in any one.
(6) The colloidal solution of the metal oxide and the graphite are mixed, the graphite is dried, and then mixed with a solution containing a water-soluble resin in the range of 2.6 mass% to 29.4 mass%. The method for producing graphite in which a metal oxide adheres to the surface according to any one of (1) to (4), wherein heat treatment is performed.
(7) manufactured by the method for producing graphite having a metal oxide attached to the surface according to any one of (1) to (6), graphite having a metal oxide attached to the surface, alumina, magnesia, Any one or more of spinel and silicon carbide, any one or more of metal aluminum, metal silicon, metal aluminum and metal silicon, and boron carbide, and any one or more of alumina cement, silica sol and alumina sol A method for producing a graphite-containing castable refractory mixed with a dispersant, wherein graphite having a metal oxide adhered to the surface is mixed within a range of 1.0% by mass or more and 20.0% by mass or less. A method for producing a graphite-containing castable refractory. (8) Graphite with a metal oxide and a water-soluble resin attached to the surface.

本発明の黒鉛の製造方法では、アルミナまたはシリカといった金属酸化物が溶媒に分散されたコロイド溶液と黒鉛と混合させ、あるいは、黒鉛と混合させた後に沸騰させ、乾燥した後に、好ましくは水溶性レジンの水溶液と混合して乾燥させる。または、アルミナまたはシリカといった金属酸化物が溶媒に分散されたコロイド溶液に好ましくは水溶性レジンを加え、黒鉛と混合させ、あるいは沸騰させながら黒鉛と混合する。これにより、コロイド溶液と黒鉛とを均一に混合させることができ、有機溶媒を用いることなく、湿式で黒鉛の表面に金属酸化物を付着させることができる。このように、黒鉛の表面に金属酸化物を付着させることで、黒鉛の表面に親水性を付与できる。そして、表面に親水性が付与された黒鉛を所定量混合することで、施工後における耐火物の耐食性が向上されたキャスタブル耐火物を製造できる。   In the method for producing graphite according to the present invention, a colloidal solution in which a metal oxide such as alumina or silica is dispersed in a solvent and graphite are mixed, or after being mixed with graphite, boiled and dried, preferably a water-soluble resin. Mix with an aqueous solution and dry. Alternatively, a water-soluble resin is preferably added to a colloidal solution in which a metal oxide such as alumina or silica is dispersed in a solvent, mixed with graphite, or mixed with graphite while boiling. Thereby, a colloidal solution and graphite can be mixed uniformly and a metal oxide can be made to adhere to the surface of graphite in a wet manner without using an organic solvent. In this way, hydrophilicity can be imparted to the surface of the graphite by attaching the metal oxide to the surface of the graphite. And the castable refractory in which the corrosion resistance of the refractory after construction was improved can be manufactured by mixing a predetermined amount of graphite having hydrophilicity on the surface.

黒鉛の表面に水滴がのった状態を側面から撮影した写真である。It is the photograph which image | photographed the state which the water drop got on the surface of graphite from the side. 黒鉛の表面にアルミナの被膜を形成させた黒鉛のSEM写真である。It is a SEM photograph of graphite in which an alumina film is formed on the surface of graphite. 黒鉛の表面に水滴がのった状態を側面から撮影した写真である。It is the photograph which image | photographed the state which the water drop got on the surface of graphite from the side.

本発明者らは、アルミナゾルまたはシリカゾルを水で希釈したコロイド溶液と黒鉛とを混合、乾燥させることで、有機溶媒を用いることなく、黒鉛の表面にこれら金属酸化物を付着させることができ、黒鉛の表面に親水性を付与できることを見出した。この黒鉛の表面に付着した金属酸化物は、金属酸化物が混合されたコロイド溶液と黒鉛とを混合し、乾燥させることで形成されるので、金属酸化物の水和物となっている場合もある。金属酸化物の水和物は、単なる金属酸化物よりも親水性が高いので、黒鉛の表面に付着した金属酸化物は、当該金属酸化物の水和物となっていてもよい。   The inventors of the present invention can adhere these metal oxides to the surface of graphite without using an organic solvent by mixing and drying a colloidal solution obtained by diluting alumina sol or silica sol with water, and graphite. It was found that hydrophilicity can be imparted to the surface of the film. The metal oxide adhering to the surface of the graphite is formed by mixing and drying a colloidal solution in which the metal oxide is mixed and graphite, so it may be a hydrate of metal oxide. is there. Since a hydrate of metal oxide has higher hydrophilicity than a simple metal oxide, the metal oxide attached to the surface of graphite may be a hydrate of the metal oxide.

このように表面が親水化された黒鉛をキャスタブル耐火物に用いることで少ない混水量で施工でき、施工後の耐火物の見かけ気孔率は低減し、当該耐火物の耐食性を向上できることを見出して本発明を完成させた。以下、本発明の実施形態を通じて本発明を詳細に説明する。   By using graphite with a hydrophilic surface in this way for castable refractories, it can be constructed with a small amount of mixed water, the apparent porosity of the refractory after construction is reduced, and the corrosion resistance of the refractory can be improved. Completed the invention. Hereinafter, the present invention will be described in detail through embodiments of the present invention.

(実施形態1)
実施形態1として、金属酸化物の一例であるアルミナを用いて、黒鉛表面にアルミナを付着させて親水性を付与する実施形態を説明する。実施形態1では、アルミナゾルを水で希釈したコロイド溶液と黒鉛とを混合し、沸騰させた後に当該黒鉛を乾燥させる。これにより、有機溶媒を用いることなく、アルミナゾルの固形分を黒鉛の表面に付着させることができ、黒鉛の表面に親水性を付与できる。
(Embodiment 1)
As Embodiment 1, an embodiment will be described in which alumina is used as an example of a metal oxide, and the hydrophilicity is imparted by attaching alumina to the graphite surface. In Embodiment 1, a colloidal solution obtained by diluting alumina sol with water and graphite are mixed and boiled, and then the graphite is dried. Thereby, the solid content of the alumina sol can be adhered to the surface of the graphite without using an organic solvent, and hydrophilicity can be imparted to the surface of the graphite.

黒鉛が混合されたコロイド溶液は、0.001MPa程度の減圧下で保持することで沸騰させることが好ましい。これにより、黒鉛をコロイド溶液でよく濡らすことができ、黒鉛の表面にアルミナナノ粒子および/またはアルミナゲルからなる金属酸化物を付着させることができる。なお、黒鉛が混合されたコロイド溶液の沸騰は、加熱することで実施してもよい。   The colloidal solution mixed with graphite is preferably boiled by holding it under a reduced pressure of about 0.001 MPa. Thereby, graphite can be wetted well with a colloidal solution, and the metal oxide which consists of an alumina nanoparticle and / or an alumina gel can be made to adhere to the surface of graphite. The boiling of the colloidal solution mixed with graphite may be performed by heating.

アルミナゾルは、固形分の粒子が5〜250nmと非常に小さい。このため、アルミナゾルを水で希釈したコロイド溶液を用いることで、黒鉛の表面に親水性を付与するのに用いるアルミナの量を、従来技術の1μm前後の大きさのアルミナ微粉をそのまま用いた場合よりも少なくできる。なお、表面に親水性を付与する黒鉛としては、鱗状黒鉛、人造黒鉛および土状黒鉛の1種以上を用いてよい。   The alumina sol has very small solid particles of 5 to 250 nm. For this reason, by using a colloidal solution obtained by diluting alumina sol with water, the amount of alumina used for imparting hydrophilicity to the surface of graphite can be reduced as compared with the case where alumina fine powder having a size of about 1 μm is used as it is. Can also be reduced. In addition, as graphite which gives hydrophilicity to the surface, you may use 1 or more types of scale-like graphite, artificial graphite, and earth-like graphite.

実施形態1では、黒鉛の表面に親水性を付与するのに用いる黒鉛の質量に対するアルミナゾルの中のアルミナ固形分の質量の割合を0.2質量%以上10.0質量%以下にしている。なお、黒鉛の質量に対するアルミナ固形分の質量の割合を1.0質量%以上4.0質量%以下にすることがより好ましい。黒鉛の質量に対するアルミナ固形分の質量の割合を0.2質量%未満にすると、黒鉛の表面の親水性が低下するので好ましくない。黒鉛の質量に対するアルミナ固形分の質量の割合を10.0質量%より多くしても黒鉛の親水性は変わらず、アルミナ固形分を増やすことによってコストが上昇する。このため、黒鉛の質量に対するアルミナ固形分の質量の上限を10.0質量%にすることが好ましい。   In Embodiment 1, the ratio of the mass of alumina solid content in the alumina sol to the mass of graphite used for imparting hydrophilicity to the surface of graphite is 0.2 mass% or more and 10.0 mass% or less. In addition, it is more preferable that the ratio of the mass of the alumina solid content to the mass of graphite is 1.0% by mass or more and 4.0% by mass or less. If the ratio of the mass of the alumina solid content to the mass of graphite is less than 0.2% by mass, the hydrophilicity of the surface of the graphite is lowered, which is not preferable. Even if the ratio of the mass of alumina solid content to the mass of graphite is more than 10.0 mass%, the hydrophilicity of graphite does not change, and the cost increases by increasing the alumina solid content. For this reason, it is preferable to make 10.0 the mass upper limit of the mass of the alumina solid content with respect to the mass of graphite.

コロイド溶液と黒鉛とを混合して沸騰させると、コロイド溶液で黒鉛をよく濡らすことができ、黒鉛表面に付着するアルミナを増やすことができる。このため、コロイド溶液と黒鉛とを混合して沸騰させることが好ましいが、コロイド溶液と黒鉛とを沸騰させなくてもよい。なお、コロイド溶液と黒鉛とを混合して沸騰させる場合には、15分以上沸騰させることが好ましい。   When the colloidal solution and graphite are mixed and boiled, the graphite can be well wetted with the colloidal solution, and the alumina adhering to the graphite surface can be increased. For this reason, it is preferable to boil the colloidal solution and graphite, but it is not necessary to boil the colloidal solution and graphite. In addition, when mixing and boiling a colloidal solution and graphite, it is preferable to boil for 15 minutes or more.

黒鉛の乾燥は、100℃以上130℃以下の範囲内の温度で行うことが好ましい。乾燥温度を100℃未満にすると水を蒸発させるのに時間がかかるので好ましくない。また、乾燥温度を130℃より高くすると、コロイド溶液にpH調整材が含まれる場合に、当該pH調整材が蒸発してしまうので好ましくない。このため、乾燥温度は、110℃以上130℃以下の範囲内の温度で行うことがより好ましく、これにより、pH調整材の蒸発を抑制しながら、短時間で水を蒸発させて乾燥させることができる。さらに、アルミナゾルは、溶媒が酢酸のアルミナゾルを用いることが好ましい。   The graphite is preferably dried at a temperature in the range of 100 ° C. to 130 ° C. If the drying temperature is lower than 100 ° C., it takes time to evaporate water, which is not preferable. In addition, when the drying temperature is higher than 130 ° C., the pH adjusting material is evaporated when the colloid solution contains the pH adjusting material, which is not preferable. For this reason, it is more preferable to carry out the drying temperature at a temperature within the range of 110 ° C. or higher and 130 ° C. or lower, thereby allowing water to evaporate and drying in a short time while suppressing evaporation of the pH adjusting material. it can. Further, the alumina sol is preferably an alumina sol in which the solvent is acetic acid.

表面にアルミナが付着した黒鉛の親水性は、写真読み取り法による水の接触角で評価する。写真読み取り法は、以下の手順で実施する。まず、平滑な板の上に10mm×20mmの両面テープを貼り、両面テープ上に0.03gの黒鉛を広げて貼り付ける。次に、黒鉛の表面に薬包紙をのせ、薬包紙を介して黒鉛の表面全体を1kNで20秒間加圧し、薬包紙の平滑な面で黒鉛の表面を平滑化する。次に、黒鉛の表面より高さ10mmの位置から、黒鉛の表面へスポイトで水を1滴(約0.03g)滴下する。黒鉛の表面に水滴がのった状態で側面から写真を撮影して水の接触角を測定する。   The hydrophilicity of graphite with alumina attached to the surface is evaluated by the contact angle of water by a photographic reading method. The photo reading method is carried out according to the following procedure. First, a 10 mm × 20 mm double-sided tape is stuck on a smooth plate, and 0.03 g of graphite is spread and stuck on the double-sided tape. Next, the medicine-wrapping paper is placed on the surface of the graphite, and the entire surface of the graphite is pressurized at 1 kN for 20 seconds through the medicine-wrapping paper to smooth the surface of the graphite with the smooth surface of the medicine-wrapping paper. Next, 1 drop (about 0.03 g) of water is dropped with a dropper onto the surface of the graphite from a position 10 mm higher than the surface of the graphite. The water contact angle is measured by taking a picture from the side with water drops on the graphite surface.

図1は、黒鉛の表面に水滴がのった状態を側面から撮影した写真である。図1(a)は、表面にアルミナが付着した鱗状黒鉛10の表面16に水滴12がのった状態の写真であり、図1(b)は、表面にアルミナが付着していない鱗状黒鉛11の表面16に水滴12がのった状態の写真である。本実施形態における水の接触角は、表面16と水滴12との交点から引いた水滴12の接線14と、表面16とのなす水滴12側の角度である。表面にアルミナが付着した鱗状黒鉛10は親水性が高いので、水滴12と鱗状黒鉛10との接触面積が広くなる。このため、図1(a)では、水滴12の高さは低くなり、水の接触角が小さくなる。一方、表面にアルミナが付着していない鱗状黒鉛11は疎水性が高いので、水滴12と鱗状黒鉛11との接触面積が狭くなる。このため、図1(b)では、水滴12の高さは高くなり、水の接触角が大きくなる。本実施形態では黒鉛の表面にアルミナを付着させ、黒鉛の写真読み取り法による水の接触角を90°未満になるように黒鉛の親水性を向上させている。   FIG. 1 is a photograph taken from the side of a graphite surface with water droplets on it. FIG. 1A is a photograph of a state in which water droplets 12 are on the surface 16 of the scaly graphite 10 having alumina attached thereto, and FIG. 1B is a scaly graphite 11 having no alumina attached to the surface. 6 is a photograph of a state in which water droplets 12 are on the surface 16 of FIG. The contact angle of water in the present embodiment is an angle on the water droplet 12 side formed by the tangent line 14 of the water droplet 12 drawn from the intersection of the surface 16 and the water droplet 12 and the surface 16. Since the scaly graphite 10 having alumina attached to the surface has high hydrophilicity, the contact area between the water droplet 12 and the scaly graphite 10 is widened. For this reason, in Fig.1 (a), the height of the water droplet 12 becomes low and the contact angle of water becomes small. On the other hand, since the scaly graphite 11 having no alumina attached to the surface has high hydrophobicity, the contact area between the water droplet 12 and the scaly graphite 11 becomes narrow. For this reason, in FIG.1 (b), the height of the water droplet 12 becomes high and the contact angle of water becomes large. In the present embodiment, alumina is adhered to the surface of graphite, and the hydrophilicity of graphite is improved so that the contact angle of water by a photographic reading method of graphite is less than 90 °.

鱗状黒鉛の質量に対するアルミナゾルのアルミナ固形分の質量の割合を2.0質量%にし、鱗状黒鉛とコロイド溶液とを混合、沸騰、乾燥させた0.5mm以下の鱗状黒鉛の写真読み取り法による水の接触角は、16.5°[図1(a)]であった。一方、表面にアルミナを付着させていない0.5mm以下の鱗状黒鉛の写真読み取り法による水の接触角は、105.5°[図1(b)]であった。この結果から、黒鉛の親水性を写真読み取り法による水の接触角で評価できることがわかる。アルミナゾルを水で希釈して黒鉛と混合し、減圧下で沸騰させ、乾燥させることで、鱗状黒鉛を親水化でき、写真読み取り法による水の接触角が90°未満となる親水性が付与された黒鉛が製造できる。   The ratio of the mass of the alumina solid content of the alumina sol to the mass of the scaly graphite was 2.0% by mass, and the water by the photoreading method of the scaly graphite of 0.5 mm or less obtained by mixing, boiling and drying the scaly graphite and the colloidal solution. The contact angle was 16.5 ° [FIG. 1 (a)]. On the other hand, the contact angle of water by photographic reading of 0.5 mm or less scaly graphite with no alumina attached to the surface was 105.5 ° [FIG. 1 (b)]. From this result, it can be seen that the hydrophilicity of graphite can be evaluated by the contact angle of water by a photographic reading method. Alumina sol is diluted with water, mixed with graphite, boiled under reduced pressure, and dried to make the scaly graphite hydrophilic and imparted hydrophilicity with a water contact angle of less than 90 ° by photographic reading. Graphite can be produced.

親水性が付与された黒鉛をキャスタブル耐火物に用いることで、キャスタブル耐火物の施工性を向上させることができる。そして、当該キャスタブル耐火物を少ない混水量で施工することで、施工後の耐火物の見かけ気孔率を低減でき、耐火物の耐食性が向上する。本実施形態1では、表面にアルミナを付着させた黒鉛を、黒鉛含有キャスタブル耐火物の質量に対して1.0質量%以上20.0質量%以下の範囲内になるように含有させる。これにより、黒鉛含有キャスタブル耐火物を用いて施工した耐火物の耐食性を向上でき、また、スラグの浸透厚みを低減できる。   By using graphite imparted with hydrophilicity for the castable refractory, the workability of the castable refractory can be improved. And by constructing the castable refractory with a small amount of mixed water, the apparent porosity of the refractory after construction can be reduced, and the corrosion resistance of the refractory is improved. In the first embodiment, graphite having alumina attached to the surface is contained so as to be in the range of 1.0 mass% or more and 20.0 mass% or less with respect to the mass of the graphite-containing castable refractory. Thereby, the corrosion resistance of the refractory constructed using the graphite-containing castable refractory can be improved, and the penetration thickness of the slag can be reduced.

一方、黒鉛含有キャスタブル耐火物の質量に対する表面にアルミナを付着させた黒鉛の含有量が1.0質量%未満になると施工後の耐火物の耐食性が向上せず、スラグ浸透厚みも低減できない。また、黒鉛含有キャスタブル耐火物の質量に対する表面にアルミナを付着させた黒鉛の含有量が20.0質量%を超えると、黒鉛含有キャスタブル耐火物中の微粉量が増加して、黒鉛含有キャスタブル耐火物の施工性が低下する。この施工性の低下により黒鉛含有キャスタブル耐火物の施工時に必要になる混水量が増え、施工後の見かけ気孔率が増加し、耐火物の耐食性が低下する。   On the other hand, when the content of graphite having alumina adhered to the surface with respect to the mass of the graphite-containing castable refractory is less than 1.0% by mass, the corrosion resistance of the refractory after construction cannot be improved, and the slag penetration thickness cannot be reduced. Moreover, when the content of graphite having alumina adhered to the surface with respect to the mass of the graphite-containing castable refractory exceeds 20.0 mass%, the amount of fine powder in the graphite-containing castable refractory increases, and the graphite-containing castable refractory increases. The workability of is reduced. Due to this decrease in workability, the amount of mixed water required for the construction of the graphite-containing castable refractory increases, the apparent porosity after the construction increases, and the corrosion resistance of the refractory decreases.

表面が親水化された黒鉛以外のキャスタブル耐火物原料としては、骨材として、アルミナ、マグネシア、スピネルおよび炭化珪素の何れか1種以上と、酸化防止剤として、金属アルミニウム、金属シリコンおよびこれらの合金、炭化ホウ素の何れか1種以上と、硬化剤として、アルミナセメント、シリカゾルおよびアルミナゾルの何れか1種以上と、分散剤と、を用いてよい。これら黒鉛以外のキャスタブル耐火物原料と、表面にアルミナが付着し親水化された黒鉛とを、黒鉛含有キャスタブル耐火物の質量に対する当該黒鉛の含有量が1.0質量%以上20.0質量%以下の範囲内となるように混合する。これにより、少ない混水量で施工できる黒鉛含有キャスタブル耐火物を製造できる。   As a castable refractory material other than graphite having a hydrophilic surface, any one or more of alumina, magnesia, spinel and silicon carbide as an aggregate, and metal aluminum, metal silicon and alloys thereof as an antioxidant Any one or more of boron carbide, one or more of alumina cement, silica sol and alumina sol, and a dispersant may be used as a curing agent. A castable refractory material other than graphite, and a graphite that is made hydrophilic by adhering alumina to the surface, the graphite content relative to the mass of the graphite-containing castable refractory is 1.0 mass% or more and 20.0 mass% or less. Mix so that it is within the range. Thereby, the graphite containing castable refractory which can be constructed with a small amount of mixed water can be manufactured.

なお、上記例では、写真読み取り法による水の接触角を測定することによって黒鉛の親水性を評価する例を示したが、黒鉛の親水性を評価する方法は、写真読み取り法による水の接触角の測定に限られない。写真読み取り法による水の接触角の測定に代えて、黒鉛の沈下テストで黒鉛の親水性を評価してもよい。沈下テストとは、水を入れたビーカーに黒鉛を落下させて黒鉛が水に浮いた否かで黒鉛の親水性を評価する方法である。親水性が低い黒鉛は水に浮き、親水性が高い黒鉛は水に沈むので、黒鉛が水に浮いたか否かで黒鉛の親水性を評価できる。   In the above example, the example of evaluating the hydrophilicity of graphite by measuring the contact angle of water by a photographic reading method was shown. However, the method of evaluating the hydrophilicity of graphite is based on the contact angle of water by a photographic reading method. It is not limited to the measurement of. Instead of measuring the contact angle of water by a photographic reading method, the hydrophilicity of graphite may be evaluated by a graphite settlement test. The settlement test is a method for evaluating the hydrophilicity of graphite based on whether graphite falls in water by dropping graphite into a beaker containing water. Since graphite with low hydrophilicity floats in water and graphite with high hydrophilicity sinks in water, the hydrophilicity of graphite can be evaluated based on whether the graphite floats in water.

図2は、黒鉛の表面にアルミナの被膜を形成させた黒鉛のSEM写真である。SEMは、Carl ZEISS社製ULTRA55を用いて加速電圧1.0kVの条件で、アルミナの被膜を形成させた黒鉛をカーボンテープ上に貼り付け、蒸着しないで測定した。図2から、写真画像全体にアルミナ被膜が形成されていることがわかる。上記例では、黒鉛の表面にアルミナを付着させて黒鉛の表面に親水性を付与する例を示したが、図2に示すように、アルミナの被膜を形成させてもよい。アルミナは黒鉛の親水性を高めるので、アルミナナノ粒子および/またはアルミナゲルの被膜を形成させることで黒鉛の親水性をより高めることができる。   FIG. 2 is an SEM photograph of graphite in which an alumina film is formed on the surface of graphite. The SEM was measured without attaching vapor-deposited graphite with an alumina coating on a carbon tape under the condition of an acceleration voltage of 1.0 kV using a Carl ZEISS ULTRA55. FIG. 2 shows that an alumina film is formed on the entire photographic image. In the above example, alumina is attached to the surface of graphite to impart hydrophilicity to the surface of graphite. However, as shown in FIG. 2, an alumina film may be formed. Since alumina increases the hydrophilicity of graphite, the hydrophilicity of graphite can be further increased by forming a film of alumina nanoparticles and / or alumina gel.

(実施形態2)
次に、実施形態2として、金属酸化物の一例であるシリカを用いて、黒鉛表面にシリカを付着させて親水性を付与する実施形態を説明する。実施形態2では、シリカゾルを水で希釈したコロイド溶液と黒鉛とを混合し、沸騰させた後に当該黒鉛を乾燥させる。これにより、有機溶媒を用いることなく、シリカナゾルの固形分を黒鉛に付着させることができ、黒鉛の表面に親水性を付与できる。
(Embodiment 2)
Next, as Embodiment 2, an embodiment in which silica, which is an example of a metal oxide, is attached to the surface of graphite to impart hydrophilicity will be described. In Embodiment 2, a colloidal solution obtained by diluting silica sol with water and graphite are mixed and boiled, and then the graphite is dried. Thereby, without using an organic solvent, the solid content of the silica sol can be attached to the graphite, and hydrophilicity can be imparted to the surface of the graphite.

黒鉛が混合されたコロイド溶液は、0.001MPa程度の減圧下で保持することで沸騰させことが好ましい。これにより、黒鉛をコロイド溶液でよく濡らすことができ、黒鉛の表面にシリカナノ粒子および/またはシリカゲルからなる金属酸化物を付着させることができる。なお、黒鉛が混合されたコロイド溶液の沸騰は、加熱することで実施してもよい。但し、シリカゾルを用いた場合、黒鉛が混合されたコロイド溶液を減圧下で保持して沸騰させると、加熱沸騰させた場合よりも黒鉛表面におけるシリカの凝集を少なくできる。このため、シリカゾルを用いた場合には、黒鉛が混合されたコロイド溶液を減圧下で保持して沸騰させることがより好ましい。   The colloidal solution mixed with graphite is preferably boiled by holding it under a reduced pressure of about 0.001 MPa. Thereby, graphite can be wetted well with a colloidal solution, and the metal oxide which consists of a silica nanoparticle and / or a silica gel can be made to adhere to the surface of graphite. The boiling of the colloidal solution mixed with graphite may be performed by heating. However, when silica sol is used, if the colloidal solution mixed with graphite is boiled while being held under reduced pressure, the aggregation of silica on the graphite surface can be reduced as compared with the case of boiling with heating. For this reason, when silica sol is used, it is more preferable to boil while holding the colloidal solution mixed with graphite under reduced pressure.

また、シリカゾルは、固形分の粒子が8〜25nmと非常に小さい。このため、シリカゾルを水で希釈したコロイド溶液を用いることで、黒鉛の表面に親水性を付与するのに用いるシリカの量を、従来技術の10μm前後の大きさのシリカ微粉をそのまま用いた場合よりも少なくできる。本実施形態2においても、表面に親水性を付与する黒鉛としては、鱗状黒鉛、人造黒鉛および土状黒鉛の1種以上を用いてよい。   Silica sol has very small solid particles of 8 to 25 nm. For this reason, by using a colloidal solution in which silica sol is diluted with water, the amount of silica used for imparting hydrophilicity to the surface of graphite can be reduced as compared with the case where silica fine powder having a size of about 10 μm is used as it is. Can also be reduced. Also in the second embodiment, as the graphite imparting hydrophilicity to the surface, one or more of scale-like graphite, artificial graphite, and earth-like graphite may be used.

本実施形態2では、黒鉛の表面に親水性を付与するのに用いる黒鉛の質量に対するシリカゾル中のシリカ固形分の質量の割合を0.2質量%以上10.0質量%以下にしている。なお、黒鉛の質量に対するアルミナ固形分の質量の割合を1.0質量%以上4.0質量%以下にすることがより好ましい。黒鉛の質量に対するシリカ固形分の質量の割合を0.2質量%未満にすると、黒鉛の表面の親水性が低下するので好ましくない。黒鉛の質量に対する黒鉛の表面に親水性を付与するために用いるシリカ固形分の質量の割合を10質量%より多くするとコストが上昇するとともに当該黒鉛を用いたキャスタブル耐火物の耐食性が低下するので好ましくない。   In this Embodiment 2, the ratio of the mass of the silica solid content in the silica sol with respect to the mass of the graphite used for imparting hydrophilicity to the surface of the graphite is 0.2 mass% or more and 10.0 mass% or less. In addition, it is more preferable that the ratio of the mass of the alumina solid content to the mass of graphite is 1.0% by mass or more and 4.0% by mass or less. When the ratio of the mass of the silica solid content to the mass of graphite is less than 0.2% by mass, the hydrophilicity of the surface of the graphite is lowered, which is not preferable. If the ratio of the mass of the silica solid content used for imparting hydrophilicity to the graphite surface relative to the mass of the graphite is more than 10% by mass, the cost is increased and the corrosion resistance of the castable refractory using the graphite is preferably decreased. Absent.

コロイド溶液と黒鉛とを混合して沸騰させると、コロイド溶液で黒鉛をよく濡らすことができ、黒鉛表面に付着する金属酸化物を増やすことができる。このため、コロイド溶液と黒鉛とを混合して沸騰させることが好ましいが、コロイド溶液と黒鉛とを沸騰させなくてもよい。なお、コロイド溶液と黒鉛とを混合して沸騰させる場合には、15分以上沸騰させることが好ましい。   When the colloidal solution and graphite are mixed and boiled, the graphite can be well wetted with the colloidal solution, and the amount of metal oxide attached to the graphite surface can be increased. For this reason, it is preferable to boil the colloidal solution and graphite, but it is not necessary to boil the colloidal solution and graphite. In addition, when mixing and boiling a colloidal solution and graphite, it is preferable to boil for 15 minutes or more.

黒鉛の乾燥は、100℃以上130℃以下の範囲内の温度で行うことが好ましい。乾燥温度を100℃未満にすると水を蒸発させるのに時間がかかるので好ましくない。また、乾燥温度を130℃より高くすると、コロイド溶液に含まれるpH調整材が蒸発してしまうので好ましくない。乾燥温度は、110℃以上130℃以下の範囲内の温度で行うことがより好ましく、これにより、pH調整材の蒸発を抑制しながら、短時間で水を蒸発させて乾燥させることができる。さらに、シリカゾルは、溶媒がアミンまたは水酸化ナトリウムであるシリカゾルを用いることが好ましい。   The graphite is preferably dried at a temperature in the range of 100 ° C. to 130 ° C. If the drying temperature is lower than 100 ° C., it takes time to evaporate water, which is not preferable. On the other hand, if the drying temperature is higher than 130 ° C., the pH adjusting material contained in the colloidal solution evaporates, which is not preferable. The drying temperature is more preferably 110 ° C. or higher and 130 ° C. or lower, whereby water can be evaporated and dried in a short time while suppressing evaporation of the pH adjusting material. Furthermore, it is preferable to use the silica sol whose solvent is amine or sodium hydroxide.

表面にシリカが付着した黒鉛の親水性も写真読み取り法による水の接触角で評価する。写真読み取り法は、表面にアルミナが付着した黒鉛と同じ手順で実施する。図3は、黒鉛の表面に水滴がのった状態を側面から撮影した写真である。図3(a)は、表面にシリカが付着した鱗状黒鉛20の表面26に水滴22がのった状態の写真であり、図3(b)は、表面にシリカが付着していない鱗状黒鉛21の表面26に水滴22がのった状態の写真である。本実施形態における水の接触角は、表面26と水滴22との交点から引いた水滴22の接線24と、表面26とのなす水滴22側の角度である。表面にシリカが付着した鱗状黒鉛20は親水性が高いので、水滴22と鱗状黒鉛20との接触面積が広くなる。このため、図3(a)では、水滴22の高さは低くなり、水の接触角が小さくなる。一方、表面にシリカが付着した鱗状黒鉛21は疎水性が高いので、水滴22と鱗状黒鉛21との接触面積が狭くなる。このため、図3(b)では、水滴22の高さは高くなり、水の接触角が大きくなる。本実施形態では黒鉛の表面にシリカを付着させ、黒鉛の写真読み取り法による水の接触角を90°未満になるように黒鉛の親水性を向上させている。   The hydrophilicity of graphite with silica attached to the surface is also evaluated by the contact angle of water by a photographic reading method. The photo reading method is carried out in the same procedure as for graphite with alumina attached to the surface. FIG. 3 is a photograph taken from the side of the graphite surface with water droplets on it. FIG. 3A is a photograph of a state in which water droplets 22 are on the surface 26 of the scaly graphite 20 having silica attached thereto, and FIG. 3B is a scaly graphite 21 having no silica attached to the surface. This is a photograph of a state in which water droplets 22 are placed on the surface 26. The contact angle of water in the present embodiment is an angle on the water droplet 22 side formed by the surface 26 and the tangent line 24 of the water droplet 22 drawn from the intersection of the surface 26 and the water droplet 22. Since the scaly graphite 20 having silica attached to its surface has high hydrophilicity, the contact area between the water droplet 22 and the scaly graphite 20 is widened. For this reason, in Fig.3 (a), the height of the water droplet 22 becomes low and the contact angle of water becomes small. On the other hand, since the scaly graphite 21 with silica attached to its surface is highly hydrophobic, the contact area between the water droplet 22 and the scaly graphite 21 becomes narrow. For this reason, in FIG.3 (b), the height of the water droplet 22 becomes high and the contact angle of water becomes large. In this embodiment, silica is attached to the surface of graphite, and the hydrophilicity of graphite is improved so that the contact angle of water by a photographic reading method of graphite is less than 90 °.

鱗状黒鉛の質量に対するシリカゾルのシリカ固形分の質量の割合を2.0質量%にし、鱗状黒鉛とコロイド溶液とを混合、沸騰、乾燥させた0.5mm以下の鱗状黒鉛の写真読み取り法による水の接触角は、47.5°[図3(a)]であった。一方、表面にシリカを付着させていない0.5mm以下の鱗状黒鉛の写真読み取り法による水の接触角は、105.5°[図3(b)]であった。この結果から、黒鉛の親水性を写真読み取り法による水の接触角で評価できることがわかる。シリカゾルを水で希釈して黒鉛と混合し、減圧下で沸騰させ、乾燥させることで、写真読み取り法による水の接触角が90°未満となる親水性が付与された黒鉛が製造できる。   The ratio of the silica solid mass of the silica sol to the mass of the scaly graphite was 2.0% by mass, and the water by the photoreading method of the scaly graphite of 0.5 mm or less obtained by mixing, boiling and drying the scaly graphite and the colloidal solution. The contact angle was 47.5 ° [FIG. 3 (a)]. On the other hand, the contact angle of water by a photographic reading method of scaly graphite of 0.5 mm or less with no silica attached to the surface was 105.5 ° [FIG. 3B]. From this result, it can be seen that the hydrophilicity of graphite can be evaluated by the contact angle of water by a photographic reading method. Silica sol is diluted with water, mixed with graphite, boiled under reduced pressure, and dried to produce a graphite imparted with hydrophilicity so that the contact angle of water by a photographic reading method is less than 90 °.

親水性が付与された黒鉛をキャスタブル耐火物に用いることで、キャスタブル耐火物の施工性を向上させることができる。そして、当該キャスタブル耐火物を少ない混水量で施工することで、施工後の耐火物の見かけ気孔率を低減でき、耐火物の耐食性が向上する。本実施形態2では、表面にシリカを付着させた黒鉛を、黒鉛含有キャスタブル耐火物の質量に対して1.0質量%以上20.0質量%以下の範囲内になるように含有させる。これにより、黒鉛含有キャスタブル耐火物を用いて施工した耐火物の耐食性を向上でき、また、スラグの浸透厚みを低減できる。   By using graphite imparted with hydrophilicity for the castable refractory, the workability of the castable refractory can be improved. And by constructing the castable refractory with a small amount of mixed water, the apparent porosity of the refractory after construction can be reduced, and the corrosion resistance of the refractory is improved. In the second embodiment, graphite having silica attached to the surface is contained so as to be in the range of 1.0 mass% or more and 20.0 mass% or less with respect to the mass of the graphite-containing castable refractory. Thereby, the corrosion resistance of the refractory constructed using the graphite-containing castable refractory can be improved, and the penetration thickness of the slag can be reduced.

一方、黒鉛含有キャスタブル耐火物の質量に対する表面にシリカを付着させた黒鉛の含有量が1.0質量%未満になると施工後の耐火物の耐食性が向上せず、スラグ浸透厚みも低減できない。また、黒鉛含有キャスタブル耐火物の質量に対する表面にシリカを付着させた黒鉛の含有量が20.0質量%を超えると、黒鉛含有キャスタブル耐火物中の微粉量が増加して、黒鉛含有キャスタブル耐火物の施工性が低下する。この施工性の低下により黒鉛含有キャスタブル耐火物の施工時に必要になる混水量が増え、施工後の見かけ気孔率が増加し、耐火物の耐食性が低下する。   On the other hand, if the content of graphite having silica attached to the surface with respect to the mass of the graphite-containing castable refractory is less than 1.0% by mass, the corrosion resistance of the refractory after construction cannot be improved, and the slag penetration thickness cannot be reduced. Moreover, when the content of graphite having silica attached to the surface with respect to the mass of the graphite-containing castable refractory exceeds 20.0 mass%, the amount of fine powder in the graphite-containing castable refractory increases, and the graphite-containing castable refractory increases. The workability of is reduced. Due to this decrease in workability, the amount of mixed water required for the construction of the graphite-containing castable refractory increases, the apparent porosity after the construction increases, and the corrosion resistance of the refractory decreases.

表面が親水化された黒鉛以外のキャスタブル耐火物原料としては、骨材として、アルミナ、マグネシア、スピネルおよび炭化珪素の何れか1種以上と、酸化防止剤として、金属アルミニウム、金属シリコンおよびこれらの合金、炭化ホウ素の何れか1種以上と、硬化剤として、アルミナセメント、シリカゾルおよびアルミナゾルの何れか1種以上と、分散剤と、を用いてよい。これら黒鉛以外のキャスタブル耐火物原料と、表面にシリカが付着し親水化された黒鉛とを、黒鉛含有キャスタブル耐火物の質量に対する当該黒鉛の含有量が1.0質量%以上20.0質量%以下の範囲内となるように混合する。これにより、少ない混水量で施工できる黒鉛含有キャスタブル耐火物を製造できる。
(実施形態3)
実施形態3として、金属酸化物の一例であるアルミナを用いて、黒鉛表面に水溶性レジンとアルミナとを付着させて黒鉛に親水性を付与する実施形態を説明する。実施形態3では、アルミナゾルを、水溶性レジンを含む水で希釈したコロイド溶液と黒鉛とを混合し、沸騰させ、乾燥させた後に熱処理する。これにより、有機溶媒を用いることなく、アルミナゾルの固形分を黒鉛の表面に付着させることができ、黒鉛の表面に親水性を付与できる。
As a castable refractory material other than graphite having a hydrophilic surface, any one or more of alumina, magnesia, spinel and silicon carbide as an aggregate, and metal aluminum, metal silicon and alloys thereof as an antioxidant Any one or more of boron carbide, one or more of alumina cement, silica sol and alumina sol, and a dispersant may be used as a curing agent. A castable refractory material other than graphite, and a graphite having silica adhering to the surface and hydrophilized, the graphite content relative to the mass of the graphite-containing castable refractory is 1.0 mass% or more and 20.0 mass% or less. Mix so that it is within the range. Thereby, the graphite containing castable refractory which can be constructed with a small amount of mixed water can be manufactured.
(Embodiment 3)
As Embodiment 3, an embodiment will be described in which alumina, which is an example of a metal oxide, is used to attach a water-soluble resin and alumina to the graphite surface to impart hydrophilicity to the graphite. In Embodiment 3, a colloidal solution diluted with water containing a water-soluble resin and graphite are mixed in an alumina sol, boiled, dried, and then heat treated. Thereby, the solid content of the alumina sol can be adhered to the surface of the graphite without using an organic solvent, and hydrophilicity can be imparted to the surface of the graphite.

実施形態3における水溶性レジンを含むコロイド溶液を沸騰させる方法、親水性を付与する黒鉛の種類、黒鉛の質量に対するアルミナ固形分の質量の割合、乾燥温度、沸騰させる時間および黒鉛の親水性の評価方法は、実施形態1と同じにしてよい。また、アルミナゾルに代えて、実施形態2で用いたシリカゾルを用いてもよい。   Method of boiling colloidal solution containing water-soluble resin in Embodiment 3, kind of graphite imparting hydrophilicity, ratio of mass of alumina solid content to mass of graphite, drying temperature, boiling time and evaluation of graphite hydrophilicity The method may be the same as in the first embodiment. Further, the silica sol used in Embodiment 2 may be used instead of the alumina sol.

水溶性レジンとしては、水を溶媒とし、レゾール型フェノール樹脂を35〜80質量%含有するものが使用できる。一方、エチレングリコール、ジエチレングリコール、トリエチレングリコール、メタノールおよびアセトン等の有機溶媒に溶解したフェノール樹脂はコロイド溶液中に溶解しないので使用できない。   As a water-soluble resin, what uses water as a solvent and contains 35-80 mass% of resol type phenol resins can be used. On the other hand, a phenol resin dissolved in an organic solvent such as ethylene glycol, diethylene glycol, triethylene glycol, methanol and acetone cannot be used because it does not dissolve in the colloidal solution.

水溶性レジンとして、例えば、レゾール型フェノール樹脂を用いた場合には、水溶性レジンを混合したコロイド溶液に対するレゾール型フェノール樹脂の濃度を2.6質量%以上29.4質量%以下の範囲内にすることが好ましい。レゾール型フェノール樹脂の濃度を2.6質量%未満とすると、黒鉛表面にアルミナを接着する効果が低下するので好ましくない。また、レゾール型フェノール樹脂の濃度を29.4質量%よりも高くすると、黒鉛同士が接着して固化し、熱処理後に黒鉛を解砕するのに要するエネルギーが増大するとともに、粉砕により金属酸化物が付着していない黒鉛が露出し、黒鉛の親水性が低下するので好ましくない。   For example, when a resol type phenol resin is used as the water soluble resin, the concentration of the resol type phenol resin with respect to the colloidal solution mixed with the water soluble resin is within the range of 2.6 mass% or more and 29.4 mass% or less. It is preferable to do. If the concentration of the resol type phenol resin is less than 2.6% by mass, the effect of adhering alumina to the graphite surface is lowered, which is not preferable. Further, when the concentration of the resol type phenol resin is higher than 29.4% by mass, the graphites adhere to each other and solidify, and the energy required for crushing the graphite after the heat treatment increases, and the metal oxide is formed by pulverization. Unattached graphite is exposed, and the hydrophilicity of graphite is lowered, which is not preferable.

乾燥後に実施する熱処理は、水溶性レジンが硬化する範囲内の温度で実施することが好ましい。水溶性レジンとして、例えば、レゾール型フェノール樹脂を用いた場合には、当該レジンが硬化する180℃以上250℃以下の範囲内の温度で熱処理することが好ましい。これにより、レジンを介して黒鉛表面にアルミナを接着させることができ、物流や混練等の衝撃による黒鉛の親水性低下を抑制できる。   The heat treatment performed after drying is preferably performed at a temperature within a range where the water-soluble resin is cured. For example, when a resol type phenol resin is used as the water-soluble resin, it is preferable to perform heat treatment at a temperature within a range of 180 ° C. or more and 250 ° C. or less at which the resin is cured. Thereby, alumina can be adhered to the graphite surface via the resin, and the decrease in the hydrophilicity of graphite due to impacts such as physical distribution or kneading can be suppressed.

レゾール型フェノール樹脂の濃度を2.6質量%としたアルミナ固形分を含むコロイド溶液を用いて、鱗状黒鉛の質量に対するアルミナ固形分の質量の割合が2.0質量%になるように混合、沸騰、乾燥させた後に230℃で熱処理して、表面にアルミナを付着させた0.5mm以下の鱗状黒鉛の写真読み取り法による水の接触角は、34.2°であった。このように、アルミナゾルを、水溶性レジンを含む水で希釈して黒鉛と混合し、減圧下で沸騰させ、乾燥させた後に熱処理を行うことで、写真読み取り法による水の接触角が90°未満となる親水性が付与された黒鉛が製造できる。   Mixing and boiling using a colloidal solution containing alumina solids with a resole-type phenol resin concentration of 2.6% by mass so that the ratio of the mass of alumina solids to the mass of scaly graphite is 2.0% by mass After being dried, the contact angle of water by a photographic reading method of scaly graphite of 0.5 mm or less with heat-treated at 230 ° C. and having alumina attached to the surface was 34.2 °. In this way, the alumina sol is diluted with water containing a water-soluble resin, mixed with graphite, boiled under reduced pressure, dried and then subjected to heat treatment, so that the contact angle of water by photographic reading method is less than 90 ° Thus, it is possible to produce graphite having hydrophilicity.

なお、上記例では、水溶性レジンを含む水でアルミナゾルを希釈したコロイド溶液と黒鉛とを混合する例を示したが、これに限らない。例えば、アルミナゾルを希釈したコロイド溶液と黒鉛とを混合し、減圧下で沸騰させ、乾燥させた黒鉛を、水溶性レジンを含む水溶液と混合させ、乾燥させ、その後、熱処理してもよい。このように、黒鉛の表面にアルミナを付着させた後に、当該黒鉛と水溶性レジンを含む水溶液と混合してもよい。   In the above example, a colloidal solution obtained by diluting an alumina sol with water containing a water-soluble resin is mixed with graphite, but the present invention is not limited thereto. For example, a colloidal solution diluted with alumina sol and graphite may be mixed, boiled under reduced pressure, and dried graphite may be mixed with an aqueous solution containing a water-soluble resin, dried, and then heat-treated. Thus, after making alumina adhere to the surface of graphite, you may mix with the aqueous solution containing the said graphite and water-soluble resin.

(実施例1)
実施例1として、アルミナゾルを用いて表面を親水化した鱗状黒鉛の評価結果を説明する。アルミナゾルは日産化学工業(株)のAS200を使用した。当該アルミナゾルの溶媒は酢酸であった。0.5mm以下の鱗状黒鉛、固形分濃度が10質量%のアルミナゾルおよび水を表1の質量割合で混合し、0.001MPaの減圧下で15分間沸騰した後、当該鱗状黒鉛を110℃で3時間乾燥した。水は、鱗状黒鉛が十分に浸る量にした。このような手順で表面にアルミナを付着させた発明例1〜6の鱗状黒鉛の水接触角を測定し、沈下テストを実施した。また、表面にアルミナを付着させていない鱗状黒鉛(比較例1)および表面にアルミナを付着させていない0.5mm以下の人造黒鉛(比較例2)の水接触角も測定した。表1は、発明例1〜6のアルミナの付着処理条件、水接触角および沈下テストの測定結果と、比較例1、2の水接触角および沈下テストの測定結果を示す。なお、表1のアルミナ固形分(質量%)は、(アルミナ固形分の質量/鱗状黒鉛の質量)×100で算出した値である。
Example 1
As Example 1, evaluation results of scaly graphite whose surface is hydrophilized using alumina sol will be described. As the alumina sol, AS200 manufactured by Nissan Chemical Industries, Ltd. was used. The solvent for the alumina sol was acetic acid. A scaly graphite of 0.5 mm or less, an alumina sol having a solid content concentration of 10% by mass and water were mixed at a mass ratio shown in Table 1 and boiled for 15 minutes under a reduced pressure of 0.001 MPa. Dry for hours. The amount of water was such that the scaly graphite was sufficiently immersed. The water contact angle of the scaly graphites of Invention Examples 1 to 6 having alumina attached to the surface in such a procedure was measured, and a settlement test was performed. Further, the water contact angle of scaly graphite (Comparative Example 1) with no alumina attached to the surface and artificial graphite of 0.5 mm or less (Comparative Example 2) with no alumina attached to the surface was also measured. Table 1 shows the measurement results of the adhesion treatment conditions, water contact angle and settlement test of Examples 1 to 6, and the water contact angle and settlement test results of Comparative Examples 1 and 2. In addition, the alumina solid content (mass%) in Table 1 is a value calculated by (mass solid alumina content / mass of scaly graphite) × 100.

表1から、アルミナ固形分を0.2質量%以上含むコロイド溶液で表面にアルミナを付着させた発明例1〜6の鱗状黒鉛は、表面にアルミナを付着させていない比較例1の鱗状黒鉛よりも水接触角が小さくなった。また、比較例1の鱗状黒鉛は、沈下テストで水に沈まなかったのに対し、表面にアルミナを付着させた発明例1〜6の鱗状黒鉛は水に沈むようになった。この結果から、アルミナ固形分を0.2質量%以上含むコロイド溶液と黒鉛とを混合、沸騰、乾燥させることで、有機溶媒を用いることなく、湿式処理で鱗状黒鉛に親水性を付与できることが確認された。   From Table 1, the scaly graphites of Invention Examples 1 to 6 in which alumina was adhered to the surface with a colloidal solution containing alumina solid content of 0.2% by mass or more than the scaly graphite of Comparative Example 1 in which no alumina was adhered to the surface. The water contact angle became smaller. In addition, the scaly graphite of Comparative Example 1 did not sink in water in the subsidence test, whereas the scaly graphites of Invention Examples 1 to 6 having alumina attached to the surface submerged in water. From this result, we confirmed that hydrophilicity can be imparted to scaly graphite by wet processing without using an organic solvent by mixing, boiling and drying a colloidal solution containing 0.2% by mass or more of alumina solid content. It was done.

一方、アルミナ固形分が1.0質量%以上10.0質量%以下のコロイド溶液を用いて表面にアルミナを付着させた発明例3〜6の鱗状黒鉛の水接触角はほとんど同じであった。このことから、コロイド溶液を用いて鱗状黒鉛を親水化する効果は、アルミナ固形分が1.0質量%で飽和し、アルミナ固形分の質量をこれ以上多くしても黒鉛の親水性を向上できないことがわかった。また、比較例2の人造黒鉛は、親水性が高いとされている黒鉛であるが、写真読み取り法によれば、比較例1の鱗状黒鉛よりも接触角が大きく、沈下テストでは水に沈まず、鱗状黒鉛よりも親水性が劣ることがわかった。   On the other hand, the water contact angles of the scaly graphites of Invention Examples 3 to 6 in which alumina was adhered to the surface using a colloidal solution having an alumina solid content of 1.0% by mass or more and 10.0% by mass or less were almost the same. From this, the effect of hydrophilizing scaly graphite using a colloidal solution is that the alumina solid content is saturated at 1.0% by mass, and the hydrophilicity of graphite cannot be improved even if the mass of the alumina solid content is increased further. I understood it. Further, the artificial graphite of Comparative Example 2 is graphite that is said to have high hydrophilicity. However, according to the photographic reading method, the contact angle is larger than that of the scaly graphite of Comparative Example 1, and in the settlement test, it does not sink into water. It was found that the hydrophilicity is inferior to that of scaly graphite.

また、発明例4の鱗状黒鉛におけるアルミナ接着層の厚みは270nmであった。実施例1で用いたアルミナゾル固形分の粒子の大きさが7〜15nmであることから、アルミナゾルを水で希釈したコロイド溶液と黒鉛とを混合、沸騰、乾燥させることで、鱗状黒鉛の表面に18〜38層のアルミナナノ粒子および/またはアルミナゲルの接着層が形成されたことがわかった。   Moreover, the thickness of the alumina adhesive layer in the scaly graphite of Invention Example 4 was 270 nm. Since the size of the alumina sol solid particles used in Example 1 is 7 to 15 nm, the colloidal solution obtained by diluting the alumina sol with water and graphite are mixed, boiled, and dried, so that the surface of the scaly graphite is 18 It was found that ~ 38 layers of alumina nanoparticles and / or an alumina gel adhesion layer were formed.

次に、アルミナゾルの溶媒の影響について確認した結果を説明する。0.5mm以下の鱗状黒鉛と、溶媒の異なるアルミナゾルと水とを表2に示した割合で混合させ、15分間0.001MPa程度の減圧下で沸騰させた後、110℃で3時間乾燥させた。水は、鱗状黒鉛が十分に浸る量にした。このようにして表面にアルミナを付着させた発明例7〜11の鱗状黒鉛の水接触角を測定した。表2は、発明例7〜11のアルミナの付着処理条件および水接触角の測定結果と、比較例1の水接触角の測定結果を示す。   Next, the result confirmed about the influence of the solvent of an alumina sol is demonstrated. Scalar graphite of 0.5 mm or less, alumina sol with different solvents, and water were mixed in the proportions shown in Table 2, boiled under a reduced pressure of about 0.001 MPa for 15 minutes, and then dried at 110 ° C. for 3 hours. . The amount of water was such that the scaly graphite was sufficiently immersed. Thus, the water contact angle of the scaly graphites of Invention Examples 7 to 11 having alumina attached to the surface was measured. Table 2 shows the measurement results of the adhesion treatment conditions and water contact angle of alumina of Invention Examples 7 to 11, and the measurement result of water contact angle of Comparative Example 1.

表2から、溶媒が酢酸のアルミナゾルで表面にアルミナを付着させた鱗状黒鉛の水接触角は、溶媒が他の酸のアルミナゾルで表面にアルミナを付着させた鱗状黒鉛の水接触角よりも小さくなった。このことから、鱗状黒鉛の親水性を高めるには、溶媒が酢酸のアルミナゾルを用いることが好ましいことが確認された。   From Table 2, the water contact angle of scaly graphite with an alumina sol of acetic acid and alumina attached to the surface is smaller than the water contact angle of scaly graphite with alumina sol of another acid and alumina attached to the surface. It was. From this, it was confirmed that in order to increase the hydrophilicity of the scaly graphite, it is preferable to use an alumina sol of acetic acid as a solvent.

次に、水溶性レジンとして住友ベークライト株式会社製の液体レゾールレジン「PR961A(レジン濃度64質量%)」およびアルミナゾルを用いて親水化した鱗状黒鉛の評価結果を説明する。0.5mm以下の鱗状黒鉛と、固形分濃度が10質量%のアルミナゾルおよび水、水溶性レジンまたは粉末レジンを表3に示す質量割合で混合し、0.001MPaの減圧下で15分間沸騰した後、70℃で3時間乾燥し、その後、230℃で3時間熱処理した。このような手順で表面にアルミナを付着させた発明例12〜18の鱗状黒鉛の水接触角を測定し、沈下テストを実施した。表3は、発明例12〜18のアルミナの付着処理条件、水接触角および沈下テストの測定結果を示す。なお、評価に用いた粉末レジンは、住友ベークライト(株)社製のPR−311である。PR−311の融点は82℃、固定炭素率は56%である。   Next, the evaluation result of liquid graphite resin “PR961A (resin concentration 64 mass%)” manufactured by Sumitomo Bakelite Co., Ltd. as water-soluble resin and scale-like graphite hydrophilized using alumina sol will be described. After scaly graphite of 0.5 mm or less, alumina sol having a solid content concentration of 10% by mass, water, water-soluble resin or powder resin are mixed at a mass ratio shown in Table 3, and boiled for 15 minutes under a reduced pressure of 0.001 MPa. , Dried at 70 ° C. for 3 hours, and then heat treated at 230 ° C. for 3 hours. The water contact angle of the scaly graphites of Invention Examples 12 to 18 having alumina attached to the surface in such a procedure was measured, and a settlement test was performed. Table 3 shows the measurement results of the adhesion treatment conditions, the water contact angle, and the settlement test of Examples 12 to 18 for alumina. In addition, the powder resin used for evaluation is Sumitomo Bakelite Co., Ltd. PR-311. PR-311 has a melting point of 82 ° C. and a fixed carbon ratio of 56%.

表3から、レジン濃度を2.6質量%以上29.4質量%以下の範囲内にすることで、鱗状黒鉛に親水性を付与できることが確認できた。また、粉末レジンを用いた発明例17の水接触角は、液体レゾールレジンを用いた発明例14とほぼ同じであった。この結果から、液体レゾールレジンに代えて粉末レジンを用いても、鱗状黒鉛に親水性を付与できることが確認できた。   From Table 3, it was confirmed that the hydrophilicity can be imparted to the scaly graphite by setting the resin concentration in the range of 2.6% by mass or more and 29.4% by mass or less. The water contact angle of Invention Example 17 using a powder resin was almost the same as that of Invention Example 14 using a liquid resin. From this result, it was confirmed that even when powder resin was used instead of liquid resin, hydrophilicity could be imparted to the scaly graphite.

次に、アルミナゾルを用いて表面を親水化した鱗状黒鉛と、水溶性レジンとを混合し、乾燥させ、熱処理した鱗状黒鉛の評価結果を説明する。0.5mm以下の鱗状黒鉛と、固形分濃度が10質量%のアルミナゾルおよび水を表4に示す質量割合で混合し、15分間0.001MPa程度の減圧下で沸騰させた後、110℃で3時間乾燥した(1回目処理)。乾燥させた鱗状黒鉛を液体レゾールレジンに混合し、0.001MPaの減圧下で15分間沸騰した後、70℃で3時間乾燥し、その後、230℃で3時間熱処理した(2回目処理)。このような手順で表面にアルミナを付着させた発明例19〜24の鱗状黒鉛の水接触角を測定し、沈下テストを実施した。表4は、発明例19〜24のアルミナの付着処理条件、水接触角および沈下テストの測定結果を示す。   Next, the evaluation result of the scaly graphite obtained by mixing the scaly graphite whose surface is hydrophilized with alumina sol and the water-soluble resin, drying, and heat treatment will be described. A scaly graphite of 0.5 mm or less, alumina sol having a solid content concentration of 10% by mass and water are mixed at a mass ratio shown in Table 4, and boiled under a reduced pressure of about 0.001 MPa for 15 minutes. Dried for hours (first treatment). The dried scaly graphite was mixed with a liquid resol resin, boiled for 15 minutes under a reduced pressure of 0.001 MPa, dried at 70 ° C. for 3 hours, and then heat-treated at 230 ° C. for 3 hours (second treatment). The water contact angle of the scaly graphites of Invention Examples 19 to 24 having alumina attached to the surface in such a procedure was measured, and a settlement test was performed. Table 4 shows the measurement results of the adhesion treatment conditions, the water contact angle, and the settlement test of the aluminas of Invention Examples 19 to 24.

表4から、1回目の処理として鱗状黒鉛の表面にアルミナを付着させ、2回目の処理として当該鱗状黒鉛を水溶性レジン溶液に混合し、熱処理してレジンを硬化させても、鱗状黒鉛に親水性を付与できることが確認できた。さらに、この場合においても液体レゾールレジンに代えて粉末レジンを用いてもよく、水溶性レジン溶液を用いた場合と同じ効果が得られることが確認できた。   From Table 4, even if alumina is attached to the surface of the scaly graphite as the first treatment, the scaly graphite is mixed with the water-soluble resin solution as the second treatment and the resin is cured by heat treatment. It was confirmed that sex could be imparted. Furthermore, in this case as well, a powder resin may be used instead of the liquid resin, and it was confirmed that the same effect as that obtained when a water-soluble resin solution was used was obtained.

次に、表面にアルミナを付着させ、親水性を付与した鱗状黒鉛が混合されたAl−MgO−Cキャスタブル耐火物の耐食性およびスラグ浸透厚みの評価結果について説明する。表1における発明例4の鱗状黒鉛を用いて、発明例25〜28のAl−MgO−Cキャスタブル耐火物を作製した。 Next, the evaluation results of the corrosion resistance and slag penetration thickness of the Al 2 O 3 —MgO—C castable refractory mixed with scaly graphite imparted with hydrophilicity by attaching alumina to the surface will be described. Using the scaly graphite of Invention Example 4 in Table 1, Al 2 O 3 —MgO—C castable refractories of Invention Examples 25 to 28 were produced.

また、黒鉛を含有しないAl−MgOキャスタブル耐火物(比較例3)と、表面にアルミナを付着させていない鱗状黒鉛を用いたAl−MgO−Cキャスタブル耐火物(比較例4)と、発明例4の鱗状黒鉛を25質量%含むAl−MgO−Cキャスタブル耐火物(比較例5)も作製した。表5は、これら発明例および比較例のキャスタブル耐火物の作製条件、混水量および溶損+スラグ浸透深さの評価結果を示す。 Further, Al 2 O 3 —MgO castable refractory containing no graphite (Comparative Example 3) and Al 2 O 3 —MgO—C castable refractory using scale-like graphite not adhered with alumina on the surface (Comparative Example 4) And an Al 2 O 3 —MgO—C castable refractory (Comparative Example 5) containing 25% by mass of the scaly graphite of Invention Example 4 was also produced. Table 5 shows the evaluation results of the production conditions, the amount of mixed water, and the melting loss + slag penetration depth of the castable refractories of the invention examples and comparative examples.

キャスタブル耐火物の作製は以下の手順で行った。まず、表5に示した質量割合で各原料を混合し、万能混練機で1分間空練後、水を添加して3分間混練した。これをφ50mm×高さ100mmの円柱形状の型枠に流し込み、1日養生した後に脱枠し、110℃で24時間乾燥した。その後、Al−MgO−Cキャスタブル耐火物である発明例25〜28、比較例4および比較例5は、1400℃で3時間、還元焼成して製造した。また、Al−MgOキャスタブル耐火物である比較例3は、1400℃で3時間、大気焼成を行って作製した。 The castable refractory was produced according to the following procedure. First, each raw material was mixed in the mass ratio shown in Table 5, and after kneading for 1 minute with a universal kneader, water was added and kneaded for 3 minutes. This was poured into a cylindrical mold having a diameter of 50 mm and a height of 100 mm, cured for one day, deframed, and dried at 110 ° C. for 24 hours. Thereafter, Invention Examples 25 to 28, Comparative Example 4 and Comparative Example 5 which are Al 2 O 3 —MgO—C castable refractories were produced by reduction firing at 1400 ° C. for 3 hours. Further, Al 2 O 3 -MgO Castable Comparative Example 3 is a refractory, 3 hours at 1400 ° C., was prepared by performing the air annealing.

溶損+スラグ浸透厚みの評価は、るつぼ法で行った。るつぼ法による評価は以下の手順で行った。作製したそれぞれの耐火物にφ30mmで高さ30mmの穴あけ加工を行い、当該穴に表6に示す転炉スラグ45gを充填し、1600℃で3時間、窒素雰囲気下で熱処理を行った。その後、サンプルを切断し、孔径が拡大した長さを溶損厚み(mm)とし、蛍光X線でCaの浸透が確認された深さをスラグ浸透厚み(mm)として、これらの長さを加算した長さを溶損+スラグ浸透厚み(mm)とした。なお、スラグ浸透厚みが長くなると、スラグが浸透した部分とスラグが浸透していない部分の境界で耐火物の割れが発生するので、スラグ浸透厚みは短いことが好ましい。   The evaluation of the melting loss + slag penetration thickness was performed by the crucible method. Evaluation by the crucible method was performed according to the following procedure. Each of the manufactured refractories was drilled with a diameter of 30 mm and a height of 30 mm. The holes were filled with 45 g of converter slag shown in Table 6, and heat-treated at 1600 ° C. for 3 hours in a nitrogen atmosphere. After that, the sample is cut, the length of the expanded pore diameter is defined as the erosion thickness (mm), and the depth at which the penetration of Ca is confirmed by fluorescent X-ray is defined as the slag penetration thickness (mm). The obtained length was defined as melting loss + slag penetration thickness (mm). In addition, since the crack of a refractory material will generate | occur | produce in the boundary of the part which the slag penetrate | infiltrated, and the part which the slag has not penetrate | infiltrated when the slag penetration thickness becomes long, it is preferable that the slag penetration thickness is short.

表5から、発明例25〜28は、いずれも比較例3〜5よりも溶損+スラグ浸透厚みが短くなり、比較例3〜5よりも施工後の耐火物の耐食性が向上した。比較例3は、黒鉛を含有しないキャスタブル耐火物である。比較例3は、黒鉛を含有しないので少ない混水量で施工できたが、黒鉛を含有しないので溶損+スラグ浸透厚みが長くなり、耐食性が大幅に悪化した。比較例4は、発明例26と同じ量の親水化されていない鱗状黒鉛を含む黒鉛含有キャスタブル耐火物である。比較例4に用いた鱗状黒鉛は、親水化されておらず疎水性が高いので、黒鉛含有キャスタブル耐火物の施工性が悪化した。このため、施工時の混水量が増加して施工後の耐火物の見かけ気孔率が高くなり、この結果、発明例25〜28よりも耐火物の耐食性が悪化し、溶損+スラグ浸透厚みが長くなった。   From Table 5, invention example 25-28 all became shorter than the comparative examples 3-5, and the erosion + slag penetration thickness became short, and the corrosion resistance of the refractory after construction improved rather than the comparative examples 3-5. Comparative Example 3 is a castable refractory containing no graphite. Since Comparative Example 3 did not contain graphite, it could be constructed with a small amount of mixed water. However, since it did not contain graphite, the erosion + slag penetration thickness was increased, and the corrosion resistance was greatly deteriorated. Comparative Example 4 is a graphite-containing castable refractory containing the same amount of non-hydrophilic scaly graphite as in Invention Example 26. Since the scaly graphite used in Comparative Example 4 was not hydrophilized and highly hydrophobic, the workability of the graphite-containing castable refractory deteriorated. For this reason, the amount of mixed water at the time of construction increases and the apparent porosity of the refractory after construction increases, and as a result, the corrosion resistance of the refractory deteriorates more than Invention Examples 25 to 28, and the erosion + slag penetration thickness is reduced. It became long.

比較例5は、比較例4よりも耐食性が悪化し、溶損+スラグ浸透厚みが長くなった。比較例5は、親水化された黒鉛を25.0質量%含有する黒鉛含有キャスタブル耐火物である。比較例5の黒鉛含有キャスタブル耐火物は、耐火物中の黒鉛の微粉量が多くなり過ぎて黒鉛含有キャスタブル耐火物の施工性が悪化した。このため、施工時の混水量が増加して施工後の耐火物の見かけ気孔率が高くなり、この結果、発明例25〜28よりも耐食性が悪化し、溶損+スラグ浸透厚みが長くなった。   In Comparative Example 5, the corrosion resistance was worse than that in Comparative Example 4, and the melting loss + slag penetration thickness was longer. Comparative Example 5 is a graphite-containing castable refractory containing 25.0% by mass of hydrophilic graphite. In the graphite-containing castable refractory of Comparative Example 5, the workability of the graphite-containing castable refractory deteriorated because the amount of graphite fine powder in the refractory increased too much. For this reason, the amount of mixed water at the time of construction increases and the apparent porosity of the refractory after construction becomes high. As a result, the corrosion resistance is worse than that of Invention Examples 25 to 28, and the erosion + slag penetration thickness becomes long. .

次に、水溶性レジンを用いて表面にアルミナを付着させ、親水性を付与した鱗状黒鉛が混合されたAl−MgO−Cキャスタブル耐火物の耐食性およびスラグ浸透厚みの評価結果について説明する。表3における発明例14の鱗状黒鉛を用いて、発明例29〜32のAl−MgO−Cキャスタブル耐火物を作製した。表7は、これら発明例および比較例のキャスタブル耐火物の作製条件、混水量および溶損+スラグ浸透厚み指数の評価結果を示す。 Next, the evaluation results of the corrosion resistance and slag penetration thickness of Al 2 O 3 —MgO—C castable refractory mixed with scaly graphite imparted with hydrophilicity by attaching alumina to the surface using a water-soluble resin will be described. . Using the scaly graphite of Invention Example 14 in Table 3, Al 2 O 3 —MgO—C castable refractories of Invention Examples 29 to 32 were produced. Table 7 shows the evaluation results of the production conditions, the amount of mixed water, and the erosion loss + slag infiltration thickness index of the castable refractories of these invention examples and comparative examples.

Al−MgO−Cキャスタブル耐火物の作製は以下の手順で行った。まず、表7に示した質量割合で各原料を合計が2.5kgになるように混合し、黒鉛以外の材料を万能混練機で1分間空練した。次いで、フロー試験で15回タップ後のフロー値が170になるように水を添加して2分間混練し、その後、黒鉛を添加してさらに1分間混練した。 The production of the Al 2 O 3 —MgO—C castable refractory was performed according to the following procedure. First, the raw materials were mixed at a mass ratio shown in Table 7 so that the total amount was 2.5 kg, and materials other than graphite were kneaded for 1 minute with a universal kneader. Next, water was added and kneaded for 2 minutes so that the flow value after tapping 15 times was 170 in the flow test, and then graphite was added and further kneaded for 1 minute.

混練後の原料を(53/78)×35×160mmの台形柱の型枠に流し込み、卓上バイブレータにて20秒間加振した。1日養生した後に脱枠し、110℃で24時間乾燥した。その後、Al−MgO−Cキャスタブル耐火物である発明例29〜33、比較例6は、コークスブリーズ中にて1400℃で3時間、還元焼成して作製した。 The kneaded raw material was poured into a (53/78) × 35 × 160 mm trapezoidal column form and vibrated for 20 seconds with a desktop vibrator. After curing for 1 day, the frame was removed and dried at 110 ° C. for 24 hours. Thereafter, Invention Examples 29 to 33 and Comparative Example 6 which are Al 2 O 3 —MgO—C castable refractories were produced by reduction firing at 1400 ° C. for 3 hours in coke breeze.

溶損+スラグ浸透厚み指数の評価は、以下の手順で行った。作製したそれぞれの耐火物を8本1組にして高周波誘導炉内に設置し、その中で電解鉄6.8kgを1650℃で3時間保持した。1650℃に到達した後に下記表8に示す組成のRHスラグを200g投入し、1時間毎にスラグを入れ替えた。試験前後の寸法変化が最も大きかった部位の寸法変化とスラグ浸透厚みを測定し、これらを加算した長さを溶損+スラグ浸透厚みとした。溶損+スラグ浸透厚み指数は、表7の比較例3の溶損+スラグ浸透厚みを100として算出した値である。この指数が小さいことは、耐食性及び耐構造スポーリング性が優れることを意味する。   The evaluation of the melting loss + slag penetration thickness index was performed according to the following procedure. Each of the produced refractories was made into a set of 8 pieces and installed in a high frequency induction furnace, in which 6.8 kg of electrolytic iron was held at 1650 ° C. for 3 hours. After reaching 1650 ° C., 200 g of RH slag having the composition shown in Table 8 below was added, and the slag was replaced every hour. The dimensional change and the slag penetration thickness of the part where the dimensional change before and after the test was the largest were measured, and the sum of these was taken as the erosion loss + slag penetration thickness. The melting loss + slag penetration thickness index is a value calculated by setting the melting loss + slag penetration thickness of Comparative Example 3 in Table 7 to 100. A small index means that the corrosion resistance and the structure spalling resistance are excellent.

表7から、発明例29〜32は、いずれも比較例3、4、6よりも溶損+スラグ浸透厚み指数が小さくなり、レジンを用いずに表面にアルミナを付着させた鱗状黒鉛を用いた場合と同じ結果となった。一方、水溶性レジンを用いた発明例30と、水溶性レジンを用いていない発明例33とを比較すると、水溶性レジンを用いた発明例30の方が水溶性レジンを用いていない発明例33よりも混水量は少なくなり、溶損+スラグ浸透厚み指数が小さくなった。この結果から、水溶性レジンを用いることで、レジンを介して鱗状黒鉛の表面にアルミナがより強固に付着し、これにより、物流や混練を経た後においても鱗状黒鉛の親水性の低下が抑制されて混水量が低減し、溶損+スラグ浸透厚み指数が小さくなったと考えられる。   From Table 7, Invention Examples 29 to 32 all used scaly graphite having a melting loss + slag permeation thickness index smaller than those of Comparative Examples 3, 4, and 6, and having alumina attached to the surface without using a resin. The result was the same as the case. On the other hand, when Invention Example 30 using a water-soluble resin and Invention Example 33 not using a water-soluble resin are compared, Invention Example 30 using a water-soluble resin does not use a water-soluble resin. The amount of mixed water was smaller than that, and the melting loss + slag penetration thickness index was reduced. From this result, by using a water-soluble resin, alumina adheres more firmly to the surface of the scaly graphite via the resin, and this suppresses the decrease in the hydrophilicity of the scaly graphite even after physical distribution and kneading. It is thought that the amount of mixed water was reduced, and the melting loss + slag penetration thickness index was reduced.

次に、水溶性レジンを用いて表面にアルミナを付着させ、親水性を付与した鱗状黒鉛が混合されたAl−SiC−Cキャスタブル耐火物の耐食性の評価結果について説明する。表3における発明例17の鱗状黒鉛を用いて、発明例34〜38のAl−SiC−Cキャスタブル耐火物を作製した。表9は、これら発明例および比較例のキャスタブル耐火物の作製条件、混水量および溶損指数の評価結果を示す。 Next, the evaluation result of the corrosion resistance of the Al 2 O 3 —SiC—C castable refractory mixed with the scaly graphite imparted with hydrophilicity by attaching alumina to the surface using a water-soluble resin will be described. Using the scaly graphite of Invention Example 17 in Table 3, Al 2 O 3 —SiC—C castable refractories of Invention Examples 34 to 38 were produced. Table 9 shows the evaluation results of the production conditions, the amount of mixed water, and the erosion index of the castable refractories of these inventive examples and comparative examples.

Al−SiC−Cキャスタブル耐火物の作製は以下の手順で行った。まず、表9に示した質量割合で各原料を合計が2.5kgになるように混合し、黒鉛以外の材料を万能混練機で1分間空練した。次いで、フロー試験で15回タップ後のフロー値が150になるように水を添加して2分間混練し、その後、黒鉛を添加してさらに1分間混練した。 The production of the Al 2 O 3 —SiC—C castable refractory was performed according to the following procedure. First, the raw materials were mixed at a mass ratio shown in Table 9 so that the total amount was 2.5 kg, and materials other than graphite were kneaded for 1 minute with a universal kneader. Next, water was added and kneaded for 2 minutes so that the flow value after 15 taps was 150 in the flow test, and then graphite was added and kneaded for another 1 minute.

混練後の原料を(53/78)×35×160mmの台形柱の型枠に流し込み、卓上バイブレータにて20秒間加振した。1日養生した後脱枠し、110℃で24時間乾燥した。その後、全てのサンプルをコークスブリーズ中にて1400℃で3時間、還元焼成して作製した。   The kneaded raw material was poured into a (53/78) × 35 × 160 mm trapezoidal column form and vibrated for 20 seconds with a desktop vibrator. After curing for 1 day, the frame was removed and dried at 110 ° C. for 24 hours. Thereafter, all the samples were produced by reduction firing in a coke breeze at 1400 ° C. for 3 hours.

溶損指数評価は、以下の手順で行った。作製したそれぞれの耐火物を8本1組にして高周波誘導炉内に設置し、その中で銑鉄6.8kgを1600℃で3時間保持した。1600℃に到達した後に下記表10に示す組成の高炉スラグを200g投入し、1時間毎にスラグを入れ替えた。試験前後の寸法変化が最も大きかった部位の寸法変化を測定した。溶損指数は、表9の比較例7の溶損寸法を100として算出した値である。この指数が小さいことは、耐食性が優れることを意味する。   The erosion index was evaluated according to the following procedure. Each of the produced refractories was made into a set of 8 pieces and installed in a high-frequency induction furnace, in which 6.8 kg of pig iron was kept at 1600 ° C. for 3 hours. After reaching 1600 ° C., 200 g of blast furnace slag having the composition shown in Table 10 below was added, and the slag was replaced every hour. The dimensional change of the part where the dimensional change before and after the test was the largest was measured. The erosion index is a value calculated by setting the erosion dimension of Comparative Example 7 in Table 9 to 100. A small index means that the corrosion resistance is excellent.

表9から、発明例34〜38は、いずれも比較例7〜9よりも溶損指数が小さくなり、表7に示したAl−MgO−Cキャスタブル耐火物と同じ結果となった。また、水溶性レジンを用いた発明例35と、水溶性レジンを用いていない発明例38とを比較すると、水溶性レジンを用いた発明例35の方が水溶性レジンを用いていない発明例38よりも混水量が少なくなり、溶損指数も小さくなった。この結果から、Al−SiC−Cキャスタブル耐火物においても水溶性レジンを用いることによる効果が確認できた。 From Table 9, Invention Examples 34 to 38 all had a melting index smaller than that of Comparative Examples 7 to 9, and the same results as the Al 2 O 3 —MgO—C castable refractories shown in Table 7. Further, when Invention Example 35 using a water-soluble resin is compared with Invention Example 38 not using a water-soluble resin, Invention Example 38 using a water-soluble resin does not use a water-soluble resin. The amount of mixed water was less than that, and the erosion index was also reduced. From this result, it was confirmed that the effect by the use of a water-soluble resin in the Al 2 O 3 -SiC-C castable refractory.

このように、アルミナゾルを水で希釈したコロイド溶液と黒鉛を混合、沸騰、乾燥させることで、有機溶媒を用いることなく、黒鉛の表面にアルミナナノ粒子および/またはアルミナゲルを付着させることができ、これにより、黒鉛の表面を親水化できることが確認された。さらに、アルミナゾルを、水溶性レジンを含む水で希釈したコロイド溶液と黒鉛とを混合、沸騰、乾燥させることで、当該レジンを介してアルミナナノ粒子および/またはアルミナゲルを強固に付着させることができ、物流や混練を経た後においても鱗状黒鉛の親水性の低下を抑制できる。そして、当該黒鉛を1.0質量%以上20.0質量%以下の範囲内でキャスタブル耐火物に混合することで、黒鉛含有キャスタブル耐火物の施工性を向上でき、当該黒鉛含有キャスタブル耐火物を少ない混水量で施工することで、施工後の耐火物の耐食性を向上できることが確認できた。   Thus, by mixing, boiling, and drying a colloidal solution obtained by diluting alumina sol with water, it is possible to adhere alumina nanoparticles and / or alumina gel to the surface of graphite without using an organic solvent, Thereby, it was confirmed that the surface of graphite can be hydrophilized. Furthermore, by mixing, boiling, and drying a colloidal solution obtained by diluting alumina sol with water containing a water-soluble resin and graphite, alumina nanoparticles and / or alumina gel can be firmly attached via the resin. Even after physical distribution and kneading, a decrease in the hydrophilicity of the scaly graphite can be suppressed. And, by mixing the graphite with castable refractory within a range of 1.0% by mass or more and 20.0% by mass or less, the workability of the graphite-containing castable refractory can be improved, and the graphite-containing castable refractory is reduced. It was confirmed that the corrosion resistance of the refractory after construction can be improved by constructing with mixed water.

(実施例2)
次に、実施例2として、シリカゾルを用いて表面を親水化した鱗状黒鉛および当該鱗状黒鉛を混合して作製したキャスタブル耐火物の評価結果を説明する。シリカゾルは日産化学工業(株)のQAS−40を使用した。当該シリカゾルの溶媒はアミンであった。0.5mm以下の鱗状黒鉛と固形分濃度が10質量%のシリカゾルおよび水を表5の質量割合で混合し、0.001MPaの減圧下で15分間沸騰した後、110℃で3時間乾燥した。水は、鱗状黒鉛が十分に浸る量にした。このような手順で表面にシリカを付着させた発明例39〜43の鱗状黒鉛の水接触角を測定し、沈下テストを実施した。また、表面にシリカを付着させていない鱗状黒鉛(比較例1)および表面にシリカを付着させていない0.5mm以下の人造黒鉛(比較例2)の水接触角も測定した。表11は、発明例39〜43のシリカの付着処理条件、水接触角および沈下テストの測定結果と、比較例1、2の水接触角および沈下テストの測定結果を示す。なお、表11のシリカ固形分(質量%)は、(シリカ固形分の質量/鱗状黒鉛の質量)×100で算出した値である。
(Example 2)
Next, as Example 2, the evaluation results of scaly graphite whose surface is hydrophilized using silica sol and a castable refractory prepared by mixing the scaly graphite will be described. As the silica sol, QAS-40 manufactured by Nissan Chemical Industries, Ltd. was used. The solvent for the silica sol was an amine. Scalar graphite of 0.5 mm or less, silica sol having a solid content concentration of 10% by mass and water were mixed at a mass ratio shown in Table 5, boiled under a reduced pressure of 0.001 MPa for 15 minutes, and then dried at 110 ° C. for 3 hours. The amount of water was such that the scaly graphite was sufficiently immersed. The water contact angle of the scaly graphites of Invention Examples 39 to 43 having silica attached to the surface in such a procedure was measured, and a settlement test was performed. Further, the water contact angle of scaly graphite (Comparative Example 1) with no silica attached to the surface and artificial graphite of 0.5 mm or less (Comparative Example 2) with no silica attached to the surface was also measured. Table 11 shows the silica adhesion treatment conditions, water contact angle and settlement test results of Invention Examples 39 to 43, and the water contact angle and settlement test measurement results of Comparative Examples 1 and 2. In addition, the silica solid content (mass%) in Table 11 is a value calculated by (mass of silica solid content / mass of scaly graphite) × 100.

表11から、シリカ固形分を0.2質量%以上含むコロイド溶液で表面にシリカゾルを付着させた発明例39〜43の鱗状黒鉛は、表面にシリカを付着させていない比較例1の鱗状黒鉛よりも水接触角が小さくなった。また、比較例1の鱗状黒鉛は、沈下テストで水に沈まなかったのに対し、表面にシリカを付着させた発明例39〜43の鱗状黒鉛は水に沈むようになった。この結果から、シリカ固形分を0.2質量%以上含むコロイド溶液と黒鉛を混合、沸騰、乾燥させることで、有機溶媒を用いることなく、湿式処理で鱗状黒鉛に親水性を付与できることが確認できた。   From Table 11, the scaly graphites of Invention Examples 39 to 43 in which silica sol was adhered to the surface with a colloidal solution containing silica solid content of 0.2% by mass or more were compared with the scaly graphite of Comparative Example 1 in which silica was not adhered to the surface. The water contact angle became smaller. In addition, the scaly graphite of Comparative Example 1 did not sink in water in the subsidence test, whereas the scaly graphites of Invention Examples 39 to 43 having silica attached to the surface submerged in water. From this result, it can be confirmed that hydrophilicity can be imparted to scaly graphite by wet processing without using an organic solvent by mixing, boiling, and drying a colloidal solution containing 0.2% by mass or more of silica solid content. It was.

一方、シリカ固形分が0.2質量%以上10.0質量%のコロイド溶液を用いて表面にシリカを付着させた発明例39〜43の鱗状黒鉛の水接触角はほとんど同じであった。このことから、コロイド溶液を用いて鱗状黒鉛を親水化する効果は、シリカ固形分が0.2質量%で飽和し、シリカ固形分の質量をこれ以上多くしても鱗状黒鉛の親水性を向上できないことがわかった。   On the other hand, the water contact angles of the scaly graphites of Invention Examples 39 to 43 in which silica was adhered to the surface using a colloidal solution having a silica solid content of 0.2% by mass or more and 10.0% by mass were almost the same. From this, the effect of hydrophilizing scaly graphite using a colloidal solution is that the silica solid content is saturated at 0.2% by mass, and the hydrophilicity of the scaly graphite is improved even if the silica solid content is increased further. I found it impossible.

また、発明例40の鱗状黒鉛におけるシリカ接着層の厚みは160nmであった。実施例2で用いたシリカゾルの固形分の粒子の大きさが10〜15nmであることから、シリカゾルを水で希釈したコロイド溶液と鱗状黒鉛を混合、沸騰、乾燥させることで、鱗状黒鉛の表面に11〜16層のシリカナノ粒子および/またはシリカゲルの接着層が形成されたことがわかった。   The thickness of the silica adhesive layer in the scaly graphite of Invention Example 40 was 160 nm. Since the size of the solid content of the silica sol used in Example 2 is 10 to 15 nm, the colloidal solution obtained by diluting the silica sol with water and the scaly graphite are mixed, boiled, and dried, so that the surface of the scaly graphite is obtained. It was found that 11 to 16 layers of silica nanoparticles and / or a silica gel adhesive layer were formed.

次に、シリカゾルの溶媒の影響について確認した結果を説明する。0.5mm以下の鱗状黒鉛と、溶媒の異なるシリカゾルと水とを表12に示した割合で混合させ、15分間減圧下で沸騰させた後、110℃で3時間乾燥させた。水は、鱗状黒鉛が十分に浸る量にした。このようにして表面にシリカを付着させた発明例44〜46の鱗状黒鉛の水接触角を測定した。表12は、発明例44〜46のシリカの付着処理条件および水接触角の測定結果と、比較例1の水接触角の測定結果を示す。   Next, the result confirmed about the influence of the solvent of a silica sol is demonstrated. Scalar graphite of 0.5 mm or less, silica sol and water having different solvents were mixed at a ratio shown in Table 12, boiled for 15 minutes under reduced pressure, and then dried at 110 ° C. for 3 hours. The amount of water was such that the scaly graphite was sufficiently immersed. Thus, the water contact angle of the scaly graphite of the invention examples 44-46 which made the silica adhere to the surface was measured. Table 12 shows the measurement results of the silica adhesion treatment conditions and water contact angles of Invention Examples 44 to 46, and the water contact angle measurement results of Comparative Example 1.

表12から、溶媒がアミンもしくは水酸化ナトリウムのシリカゾルで表面にシリカを付着させた鱗状黒鉛の水接触角は、溶媒がアンモニアのシリカゾルで表面にシリカを付着させた鱗状黒鉛の水接触角よりも小さくなった。このことから、黒鉛の表面の親水性を高めるには、溶媒がアミンもしくは水酸化ナトリウムのシリカゾルを用いることが好ましいことが確認された。   From Table 12, the water contact angle of scaly graphite with silica attached to the surface with an amine or sodium hydroxide silica sol is larger than the water contact angle of scaly graphite with silica attached to the surface with ammonia silica sol as the solvent. It has become smaller. From this, it was confirmed that in order to increase the hydrophilicity of the graphite surface, it is preferable to use silica sol of amine or sodium hydroxide as the solvent.

次に、水溶性レジンとして住友ベークライト株式会社製の液体レゾールレジン「PR961A(レジン濃度64質量%)」およびシリカゾルを用いて表面を親水化した鱗状黒鉛の評価結果を説明する。0.5mm以下の鱗状黒鉛と、固形分濃度が10質量%のシリカゾルおよび水、水溶性レジンまたは粉末レジンを表13に示す質量割合で混合し、0.001MPaの減圧下で15分間沸騰した後、70℃で3時間乾燥させ、その後、230℃で3時間熱処理した。このような手順で表面にシリカを付着させた発明例47〜51の鱗状黒鉛の水接触角を測定し、沈下テストを実施した。表13は、発明例47〜52のシリカの付着処理条件、水接触角および沈下テストの測定結果を示す。なお、評価に用いた粉末レジンは、住友ベークライト(株)社製のPR−311である。PR−311の融点は82℃、固定炭素率は56%である。   Next, evaluation results of liquid graphite resin “PR961A (resin concentration 64 mass%)” manufactured by Sumitomo Bakelite Co., Ltd. as a water-soluble resin and scaly graphite whose surface is hydrophilized using silica sol will be described. After scaly graphite of 0.5 mm or less, silica sol having a solid content concentration of 10% by mass, water, water-soluble resin or powder resin are mixed at a mass ratio shown in Table 13, and boiled for 15 minutes under a reduced pressure of 0.001 MPa. , Dried at 70 ° C. for 3 hours, and then heat-treated at 230 ° C. for 3 hours. The water contact angle of the scaly graphites of Invention Examples 47 to 51 having silica attached to the surface in such a procedure was measured, and a settlement test was performed. Table 13 shows the measurement results of the silica adhesion treatment conditions, water contact angle, and settlement test of Invention Examples 47-52. In addition, the powder resin used for evaluation is Sumitomo Bakelite Co., Ltd. PR-311. PR-311 has a melting point of 82 ° C. and a fixed carbon ratio of 56%.

表13から、レジン濃度を2.6質量%以上にすることで、鱗状黒鉛に親水性を付与できることが確認できた。また、シリカゾルを用いた場合においても、液体レゾールレジンに代えて粉末レジンを用いてもよいことが確認できた。   From Table 13, it was confirmed that the hydrophilicity can be imparted to the scaly graphite by setting the resin concentration to 2.6% by mass or more. In addition, even when silica sol was used, it was confirmed that a powder resin could be used instead of the liquid resin.

次に、シリカゾルを用いて表面を親水化した鱗状黒鉛と、水溶性レジンとを混合し、乾燥させ、熱処理した鱗状黒鉛の評価結果を説明する。0.5mm以下の鱗状黒鉛と、固形分濃度が10質量%のシリカゾルおよび水を表14に示す質量割合で混合し、0.001MPaの減圧下で15分間沸騰した後、110℃で3時間乾燥した(1回目処理)。乾燥させた鱗状黒鉛を水溶性レジンに混合し、0.001MPaの減圧下で15分間沸騰した後、70℃で3時間乾燥し、その後、230℃で3時間熱処理した(2回目処理)。このような手順で表面にシリカを付着させた発明例53〜57の鱗状黒鉛の水接触角を測定し、沈下テストを実施した。表14は、発明例53〜57のシリカの付着処理条件、水接触角および沈下テストの測定結果を示す。   Next, the evaluation results of scaly graphite obtained by mixing and drying heat-treated scaly graphite whose surface is hydrophilized using silica sol will be described. Scalar graphite of 0.5 mm or less, silica sol having a solid content concentration of 10% by mass and water are mixed at a mass ratio shown in Table 14, boiled for 15 minutes under a reduced pressure of 0.001 MPa, and then dried at 110 ° C. for 3 hours. (First treatment). The dried scaly graphite was mixed with a water-soluble resin, boiled for 15 minutes under a reduced pressure of 0.001 MPa, dried at 70 ° C. for 3 hours, and then heat-treated at 230 ° C. for 3 hours (second treatment). The water contact angle of the scaly graphites of Invention Examples 53 to 57 having silica attached to the surface in such a procedure was measured, and a settlement test was performed. Table 14 shows measurement results of silica adhesion treatment conditions, water contact angles, and settlement tests of Invention Examples 53 to 57.

表14から、1回目の処理として鱗状黒鉛の表面にシリカを付着させ、2回目の処理として当該鱗状黒鉛を水溶性レジン溶液に混合し、熱処理してレジンを硬化させても鱗状黒鉛に親水性を付与できることが確認できた。この場合においても、液体レゾールレジンに代えて粉末レジンを用いてもよいことが確認できた。   From Table 14, even if silica is attached to the surface of the scaly graphite as the first treatment, the scaly graphite is mixed with the water-soluble resin solution as the second treatment, and the scaly graphite is hydrophilic even if the resin is cured by heat treatment. It was confirmed that can be imparted. Also in this case, it was confirmed that a powder resin could be used instead of the liquid resin.

次に、表面にシリカを付着させ、親水性を付与した鱗状黒鉛が混合されたAl−MgO−Cキャスタブル耐火物の耐食性およびスラグ浸透厚みの評価結果について説明する。表11における発明例40の鱗状黒鉛を用いて、発明例58〜61のAl−MgO−Cキャスタブル耐火物を作製した。 Next, the evaluation results of the corrosion resistance and the slag penetration thickness of the Al 2 O 3 —MgO—C castable refractory mixed with the scaly graphite imparted with hydrophilicity with silica attached to the surface will be described. Using the scaly graphite of Invention Example 40 in Table 11, Al 2 O 3 —MgO—C castable refractories of Invention Examples 58 to 61 were produced.

また、黒鉛を含有しないAl−MgOキャスタブル耐火物(比較例3)と、表面にシリカを付着させていない鱗状黒鉛を用いたAl−MgO−Cキャスタブル耐火物(比較例4)と、発明例40の鱗状黒鉛を25質量%含むAl−MgO−Cキャスタブル耐火物(比較例10)も作製した。表15は、これら発明例および比較例のキャスタブル耐火物の作製条件、混水量および溶損+スラグ浸透厚みの評価結果を示す。 Further, Al 2 O 3 —MgO castable refractory containing no graphite (Comparative Example 3) and Al 2 O 3 —MgO—C castable refractory using scale-like graphite not having silica attached to the surface (Comparative Example 4) And Al 2 O 3 —MgO—C castable refractory (Comparative Example 10) containing 25% by mass of the scaly graphite of Inventive Example 40. Table 15 shows the evaluation results of the production conditions, the amount of mixed water and the erosion loss + slag infiltration thickness of the castable refractories of these invention examples and comparative examples.

キャスタブル耐火物の作製は、表15に示した条件であって表5の説明に記載した手順で行った。また、溶損+スラグ浸透厚みの評価も、表5の説明に記載した手順で行った。表15から、発明例58〜61は、いずれも比較例3、4、10よりも溶損+スラグ浸透厚みが短くなり、比較例3、4、10よりも施工後の耐火物の耐食性が向上した。比較例3は、黒鉛を含有しないキャスタブル耐火物である。比較例3は、黒鉛を含有しないので少ない混水量で施工できたが、黒鉛を含有しないので溶損+スラグ浸透厚みが長くなり、耐食性が大幅に悪化した。比較例4は、発明例59と同じ量の親水化されていない鱗状黒鉛を含む黒鉛含有キャスタブル耐火物である。比較例4に用いた鱗状黒鉛は親水化されておらず疎水性が高いので、黒鉛含有キャスタブル耐火物の施工性が悪化した。このため、施工時の混水量が増加して施工後の耐火物の見かけ気孔率が高くなり、この結果、発明例58〜61よりも耐火物の耐食性が悪化し、溶損+スラグ浸透厚みが長くなった。   The castable refractory was manufactured according to the procedure shown in the description of Table 5 under the conditions shown in Table 15. Moreover, the evaluation of melt | dissolution loss + slag penetration thickness was also performed in the procedure described in description of Table 5. From Table 15, Invention Examples 58 to 61 all have a shorter erosion + slag penetration thickness than Comparative Examples 3, 4, and 10, and improve the corrosion resistance of the refractory after construction than Comparative Examples 3, 4, and 10. did. Comparative Example 3 is a castable refractory containing no graphite. Since Comparative Example 3 did not contain graphite, it could be constructed with a small amount of mixed water. However, since it did not contain graphite, the erosion + slag penetration thickness was increased, and the corrosion resistance was greatly deteriorated. Comparative Example 4 is a graphite-containing castable refractory containing the same amount of non-hydrophilic scaly graphite as in Invention Example 59. Since the scaly graphite used in Comparative Example 4 was not hydrophilized and highly hydrophobic, the workability of the graphite-containing castable refractory deteriorated. For this reason, the amount of mixed water at the time of construction increases and the apparent porosity of the refractory after construction increases, and as a result, the corrosion resistance of the refractory deteriorates more than Invention Examples 58 to 61, and the erosion + slag penetration thickness is reduced. It became long.

比較例10は、比較例4よりも耐食性が悪化し、溶損+スラグ浸透厚みが長くなった。比較例10は、親水化された黒鉛を25.0質量%含有する黒鉛含有キャスタブル耐火物である。比較例10の黒鉛含有キャスタブル耐火物は、耐火物中の黒鉛の微粉量が多くなり過ぎて黒鉛含有キャスタブル耐火物の施工性が悪化した。このため、施工時の混水量が増加して施工後の耐火物の見かけ気孔率が高くなり、この結果、発明例12〜15よりも耐食性が悪化し、溶損+スラグ浸透厚みが長くなった。   In Comparative Example 10, the corrosion resistance was worse than that in Comparative Example 4, and the melting loss + slag penetration thickness was increased. Comparative Example 10 is a graphite-containing castable refractory containing 25.0% by mass of hydrophilized graphite. In the graphite-containing castable refractory of Comparative Example 10, the workability of the graphite-containing castable refractory deteriorated because the amount of fine graphite powder in the refractory was excessive. For this reason, the amount of mixed water at the time of construction increases and the apparent porosity of the refractory after construction becomes high. As a result, the corrosion resistance is worse than those of Invention Examples 12 to 15, and the erosion + slag penetration thickness is increased. .

次に、水溶性レジンを用いて表面にシリカを付着させ、親水性を付与した鱗状黒鉛が混合されたAl−MgO−Cキャスタブル耐火物の耐食性およびスラグ浸透厚みの評価結果について説明する。表13における発明例50の鱗状黒鉛を用いて、発明例62〜66のAl−MgO−Cキャスタブル耐火物を作製した。表16は、これら発明例および比較例のキャスタブル耐火物の作製条件、混水量および溶損+スラグ浸透厚み指数の測定結果を示す。 Next, the evaluation results of the corrosion resistance and slag penetration thickness of Al 2 O 3 —MgO—C castable refractory mixed with scaly graphite imparted with hydrophilicity by attaching silica to the surface using a water-soluble resin will be described. . Using the scaly graphite of Invention Example 50 in Table 13, Al 2 O 3 —MgO—C castable refractories of Invention Examples 62 to 66 were produced. Table 16 shows the measurement conditions of the castable refractories of these invention examples and comparative examples, the amount of mixed water, and the melting loss + slag penetration thickness index.

Al−MgO−Cキャスタブル耐火物の作製は、表16に示した条件であって表7の説明に記載した手順で行った。また、溶損+スラグ浸透厚み指数の評価も、表7の説明に記載した手順で行った。表16から、発明例62〜66は、いずれも比較例3、4、11よりも溶損+スラグ浸透厚み指数が小さくなり、表15に示したAl−MgO−Cキャスタブル耐火物と同じ結果となった。また、水溶性レジンを用いた発明例63と、水溶性レジンを用いていない発明例66とを比較すると、水溶性レジンを用いた発明例63の方が水溶性レジンを用いていない発明例66よりも混水量は少なくなり、溶損+スラグ浸透厚み指数が小さくなった。この結果から、Al−MgO−Cキャスタブル耐火物においても水溶性レジンを用いる効果が確認された。 The production of the Al 2 O 3 —MgO—C castable refractory was performed under the conditions shown in Table 16 and the procedure described in the description of Table 7. In addition, the evaluation of melting loss + slag penetration thickness index was also performed according to the procedure described in the description of Table 7. From Table 16, Invention Examples 62 to 66 all have a melting loss + slag penetration thickness index smaller than those of Comparative Examples 3, 4, and 11, and the Al 2 O 3 —MgO—C castable refractories shown in Table 15 The same result. Further, when Invention Example 63 using a water-soluble resin is compared with Invention Example 66 not using a water-soluble resin, Invention Example 66 using a water-soluble resin is less invention example 66 using no water-soluble resin. The amount of mixed water was smaller than that, and the melting loss + slag penetration thickness index was reduced. From this result, the effect of using the water-soluble resin was confirmed also in the Al 2 O 3 —MgO—C castable refractory.

次に、水溶性レジンを用いて表面にシリカを付着させ、親水性を付与した鱗状黒鉛が混合されたAl−SiC−Cキャスタブル耐火物の耐食性の評価結果について説明する。表13における発明例50の鱗状黒鉛を用いて、発明例67〜71のAl−SiC−Cキャスタブル耐火物を作製した。表17は、これら発明例および比較例のキャスタブル耐火物の作製条件、混水量および溶損指数の測定結果を示す。 Next, the evaluation result of the corrosion resistance of the Al 2 O 3 —SiC—C castable refractory mixed with scaly graphite imparted with hydrophilicity by attaching silica to the surface using a water-soluble resin will be described. Using the scaly graphite of Invention Example 50 in Table 13, Al 2 O 3 —SiC—C castable refractories of Invention Examples 67 to 71 were produced. Table 17 shows the measurement conditions of the castable refractories of these invention examples and comparative examples, the amount of mixed water, and the erosion index.

Al−SiC−Cキャスタブル耐火物の作製は、表17に示した条件であって表9の説明に記載した手順で行った。また、溶損指数の評価も、表9の説明に記載した手順で行った。表17から、発明例67〜71は、いずれも比較例7、8、12よりも溶損指数が小さくなり、表16に示したAl−MgO−Cキャスタブル耐火物と同じ結果となった。また、水溶性レジンを用いた発明例68と、水溶性レジンを用いていない発明例71とを比較すると、水溶性レジンを用いた発明例68の方が水溶性レジンを用いていない発明例71よりも混水量が少なくなり、溶損指数も小さくなった。この結果から、Al−SiC−Cキャスタブル耐火物においても水溶性レジンを用いることによる効果が確認された。 The production of the Al 2 O 3 —SiC—C castable refractory was performed under the conditions shown in Table 17 and the procedure described in the description of Table 9. The evaluation of the melt index was also performed according to the procedure described in the explanation of Table 9. From Table 17, Invention Examples 67 to 71 all have the same melting loss index as Comparative Examples 7, 8, and 12, and the same results as the Al 2 O 3 —MgO—C castable refractories shown in Table 16 are obtained. It was. Further, when Invention Example 68 using a water-soluble resin is compared with Invention Example 71 not using a water-soluble resin, Invention Example 71 using a water-soluble resin is less Invention Example 71 using no water-soluble resin. The amount of mixed water was less than that, and the erosion index was also reduced. From this result, effects of using the water-soluble resin also in the Al 2 O 3 -SiC-C castable was confirmed.

このように、シリカゾルを水で希釈したコロイド溶液と黒鉛を混合、沸騰、乾燥させることで、有機溶媒を用いることなく、黒鉛の表面にシリカナノ粒子および/またはシリカゲルを付着させることができ、これにより、黒鉛の表面を親水化できることが確認された。さらに、シリカゾルを、水溶性レジンを含む水で希釈したコロイド溶液と黒鉛とを混合、沸騰、乾燥させることで、当該レジンを介してシリカナノ粒子および/またはシリカゲルを強固に付着させることができ、物流や混練を経た後においても鱗状黒鉛の親水性の低下を抑制できる。そして、当該黒鉛を1.0質量%以上20.0質量%以下の範囲内でキャスタブル耐火物に混合することで、黒鉛含有キャスタブル耐火物の施工性を向上でき、当該黒鉛含有キャスタブル耐火物を少ない混水量で施工することで、施工後の耐火物の耐食性を向上できることが確認された。   In this way, by mixing, boiling and drying a colloidal solution in which silica sol is diluted with water and boiling, silica nanoparticles and / or silica gel can be attached to the surface of graphite without using an organic solvent. It was confirmed that the surface of graphite can be hydrophilized. Furthermore, silica nanoparticles and / or silica gel can be firmly attached via the resin by mixing, boiling and drying a colloidal solution in which silica sol is diluted with water containing a water-soluble resin and graphite. Further, the decrease in hydrophilicity of the scaly graphite can be suppressed even after the kneading. And, by mixing the graphite with castable refractory within a range of 1.0% by mass or more and 20.0% by mass or less, the workability of the graphite-containing castable refractory can be improved, and the graphite-containing castable refractory is reduced. It was confirmed that the corrosion resistance of the refractory after construction can be improved by constructing with mixed water.

10 鱗状黒鉛
11 鱗状黒鉛
12 水滴
14 接線
16 表面
20 鱗状黒鉛
21 鱗状黒鉛
22 水滴
24 接線
26 表面
DESCRIPTION OF SYMBOLS 10 Scale-like graphite 11 Scale-like graphite 12 Water drop 14 Tangent 16 Surface 20 Scale-like graphite 21 Scale-like graphite 22 Water drop 24 Tangent 26 Surface

Claims (8)

金属酸化物のコロイド溶液と黒鉛とを混合した後に、前記黒鉛を乾燥して、黒鉛の表面に金属酸化物を付着させる、表面に金属酸化物が付着した黒鉛の製造方法。   A method for producing graphite having a metal oxide adhered to the surface, wherein the metal oxide colloidal solution and graphite are mixed, and then the graphite is dried to adhere the metal oxide to the surface of the graphite. 前記金属酸化物のコロイド溶液と前記黒鉛とを混合し、乾燥する前に沸騰させる、請求項1に記載の表面に金属酸化物が付着した黒鉛の製造方法。   The method for producing graphite with metal oxide adhered to the surface according to claim 1, wherein the colloidal solution of the metal oxide and the graphite are mixed and boiled before drying. 前記黒鉛が混合された金属酸化物のコロイド溶液は、減圧されて沸騰される、請求項2に記載の表面に金属酸化物が付着した黒鉛の製造方法。   The method for producing graphite with metal oxide adhered to a surface according to claim 2, wherein the colloidal solution of metal oxide mixed with graphite is boiled under reduced pressure. 前記黒鉛が混合された金属酸化物のコロイド溶液は、加熱されて沸騰される、請求項2に記載の表面に金属酸化物が付着した黒鉛の製造方法。   The method for producing graphite with metal oxide adhered to a surface according to claim 2, wherein the colloidal solution of metal oxide mixed with graphite is heated and boiled. 前記金属酸化物のコロイド溶液は、水溶性レジンを2.6質量%以上29.4質量%以下の範囲内で含有し、乾燥した後に熱処理する、請求項1から請求項4の何れか一項に記載の表面に金属酸化物が付着した黒鉛の製造方法。   The colloidal solution of the metal oxide contains a water-soluble resin in a range of 2.6% by mass or more and 29.4% by mass or less, and is heat-treated after being dried. The manufacturing method of the graphite which the metal oxide adhered to the surface of description. 前記金属酸化物のコロイド溶液と前記黒鉛とを混合し、前記黒鉛を乾燥した後に、水溶性レジンを2.6質量%以上29.4質量%以下の範囲内で含有する溶液に混合し、熱処理する、請求項1から請求項4の何れか一項に記載の表面に金属酸化物が付着した黒鉛の製造方法。   The metal oxide colloidal solution and the graphite are mixed, the graphite is dried, and then mixed with a solution containing a water-soluble resin in a range of 2.6% by mass to 29.4% by mass, followed by heat treatment. The manufacturing method of the graphite which the metal oxide adhered to the surface as described in any one of Claims 1-4. 請求項1から請求項6の何れか一項に記載の表面に金属酸化物が付着した黒鉛の製造方法で製造された、表面に金属酸化物が付着した黒鉛と、
アルミナ、マグネシア、スピネルおよび炭化珪素の何れか1種以上と、
金属アルミニウム、金属シリコン、金属アルミニウムおよび金属シリコンの合金、および炭化ホウ素の何れか1種以上と、
アルミナセメント、シリカゾルおよびアルミナゾルの何れか1種以上と、
分散剤と、を混合する黒鉛含有キャスタブル耐火物の製造方法であって、
前記表面に金属酸化物が付着した黒鉛を1.0質量%以上20.0質量%以下の範囲内で混合する、黒鉛含有キャスタブル耐火物の製造方法。
A graphite produced by the method for producing graphite having a metal oxide attached to the surface according to any one of claims 1 to 6, and having a metal oxide attached to the surface,
Any one or more of alumina, magnesia, spinel and silicon carbide;
Any one or more of metallic aluminum, metallic silicon, metallic aluminum and metallic silicon alloy, and boron carbide;
Any one or more of alumina cement, silica sol and alumina sol;
A method for producing a graphite-containing castable refractory that mixes with a dispersant,
A method for producing a graphite-containing castable refractory, wherein graphite having a metal oxide adhered to the surface is mixed within a range of 1.0% by mass to 20.0% by mass.
表面に金属酸化物と水溶性レジンとが付着した黒鉛。   Graphite with metal oxide and water-soluble resin attached to its surface.
JP2018114564A 2017-06-23 2018-06-15 Method for manufacturing graphite with metal oxide attached to the surface and method for manufacturing graphite-containing castable refractory Active JP6773081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/023656 WO2018235908A1 (en) 2017-06-23 2018-06-21 Method for producing graphite having surface to which metal oxide adheres, graphite having surface to which metal oxide and water-soluble resin adhere, graphite-containing castable refractory and method for producing graphite-containing castable refractory

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017122949 2017-06-23
JP2017122949 2017-06-23

Publications (2)

Publication Number Publication Date
JP2019006670A true JP2019006670A (en) 2019-01-17
JP6773081B2 JP6773081B2 (en) 2020-10-21

Family

ID=65026686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018114564A Active JP6773081B2 (en) 2017-06-23 2018-06-15 Method for manufacturing graphite with metal oxide attached to the surface and method for manufacturing graphite-containing castable refractory

Country Status (1)

Country Link
JP (1) JP6773081B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021006495A (en) * 2019-06-28 2021-01-21 Jfeスチール株式会社 Method for mixing carbon-containing monolithic refractory, and method for producing molded body of carbon-containing monolithic refractory using the same
JP2022054940A (en) * 2020-09-28 2022-04-07 品川リフラクトリーズ株式会社 Castable refractory and manufacturing method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249645A (en) * 1988-03-31 1989-10-04 Shinagawa Refract Co Ltd Refractory material containing carbon
JPH04243981A (en) * 1991-01-28 1992-09-01 Harima Ceramic Co Ltd Refractory for casting execution of silicon carbide
JPH04280869A (en) * 1991-03-05 1992-10-06 Nippon Steel Chem Co Ltd Carbon product for melted glass-receiving gutter and its production
JPH09110538A (en) * 1995-10-25 1997-04-28 Kawasaki Steel Corp Fine powder composition for magnesia-graphite based castable, its production and magnesia-graphite based castable
JPH11310474A (en) * 1998-04-28 1999-11-09 Okayama Ceramics Gijutsu Shinko Zaidan Surface-treated graphite and carbon indeterminate refractory by using the same
JP2002167283A (en) * 2000-11-27 2002-06-11 Kurosaki Harima Corp Monolithic refractory of iron spout for blast furnace
JP2004043272A (en) * 2002-07-10 2004-02-12 Jfe Steel Kk Method for manufacturing coated graphite
JP2005053752A (en) * 2003-08-06 2005-03-03 Hitachi Powdered Metals Co Ltd Modified graphite particle and paint with which the modified graphite particle is compounded
JP2006008462A (en) * 2004-06-28 2006-01-12 Jfe Chemical Corp Granular composite carbon material and its manufacturing method, and negative electrode material for lithium ion secondary cell, negative electrode for lithium ion secondary cell and lithium ion secondary cell
KR20130071134A (en) * 2011-12-20 2013-06-28 주식회사 인텍 Method for preparing ladle filler and device used therein

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249645A (en) * 1988-03-31 1989-10-04 Shinagawa Refract Co Ltd Refractory material containing carbon
JPH04243981A (en) * 1991-01-28 1992-09-01 Harima Ceramic Co Ltd Refractory for casting execution of silicon carbide
JPH04280869A (en) * 1991-03-05 1992-10-06 Nippon Steel Chem Co Ltd Carbon product for melted glass-receiving gutter and its production
JPH09110538A (en) * 1995-10-25 1997-04-28 Kawasaki Steel Corp Fine powder composition for magnesia-graphite based castable, its production and magnesia-graphite based castable
JPH11310474A (en) * 1998-04-28 1999-11-09 Okayama Ceramics Gijutsu Shinko Zaidan Surface-treated graphite and carbon indeterminate refractory by using the same
JP2002167283A (en) * 2000-11-27 2002-06-11 Kurosaki Harima Corp Monolithic refractory of iron spout for blast furnace
JP2004043272A (en) * 2002-07-10 2004-02-12 Jfe Steel Kk Method for manufacturing coated graphite
JP2005053752A (en) * 2003-08-06 2005-03-03 Hitachi Powdered Metals Co Ltd Modified graphite particle and paint with which the modified graphite particle is compounded
JP2006008462A (en) * 2004-06-28 2006-01-12 Jfe Chemical Corp Granular composite carbon material and its manufacturing method, and negative electrode material for lithium ion secondary cell, negative electrode for lithium ion secondary cell and lithium ion secondary cell
KR20130071134A (en) * 2011-12-20 2013-06-28 주식회사 인텍 Method for preparing ladle filler and device used therein

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MUKHOPADHYAY, S.: "Improved sol gel spinel(MgAl2O4) coatings on graphite for application in carbon containing high alum", J SOL-GEL SCI TECHNOL, vol. 56, JPN6018036123, 2010, pages 66 - 74, XP019824956, ISSN: 0004250565 *
竹内信行ほか: "オゾン処理による黒鉛の表面改質", 耐火物, vol. 59, no. 11, JPN6018036124, 2007, pages 600 - 603, ISSN: 0004193307 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021006495A (en) * 2019-06-28 2021-01-21 Jfeスチール株式会社 Method for mixing carbon-containing monolithic refractory, and method for producing molded body of carbon-containing monolithic refractory using the same
JP7088130B2 (en) 2019-06-28 2022-06-21 Jfeスチール株式会社 A method of kneading a carbon-containing amorphous refractory and a method of manufacturing a molded body of a carbon-containing amorphous refractory using the same.
JP2022054940A (en) * 2020-09-28 2022-04-07 品川リフラクトリーズ株式会社 Castable refractory and manufacturing method thereof
JP7121311B2 (en) 2020-09-28 2022-08-18 品川リフラクトリーズ株式会社 Castable refractory and its manufacturing method

Also Published As

Publication number Publication date
JP6773081B2 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
Jana et al. Effect of porosity on structure, Young's modulus, and thermal conductivity of SiC foams by direct foaming and gelcasting
JP4681456B2 (en) Low carbon magnesia carbon brick
EP3533774B1 (en) Magnesia carbon brick and production method therefor
JP6773081B2 (en) Method for manufacturing graphite with metal oxide attached to the surface and method for manufacturing graphite-containing castable refractory
JP2007076980A (en) Magnesia carbon brick
WO2018235908A1 (en) Method for producing graphite having surface to which metal oxide adheres, graphite having surface to which metal oxide and water-soluble resin adhere, graphite-containing castable refractory and method for producing graphite-containing castable refractory
Chen et al. Effect of carbon aggregates on the properties of carbon refractories for a blast furnace
WO2007011038A1 (en) Carbon-containing refractory, method for manufacture thereof, and pitch-containing refractory raw material
Wetzig et al. Carbon‐Bonded Alumina Spaghetti Filters by Alginate‐Based Robo Gel Casting
JP6642596B2 (en) Graphite-containing castable refractories and method for producing graphite-containing castable refractories
JP2016527083A (en) Batches for making carbon-bonded or resin-bonded shaped refractory products, methods for making the products, the products, and the use of magnesia spinel-zirconium oxide
JP2010254545A (en) Silicon nitride-based composite ceramic and method for producing the same
JP2009234830A (en) Chromium free monolithic refractory and waste melting furnace
JP4496090B2 (en) Method for producing amorphous refractories containing water-based carbon
JP2012251228A (en) Coating film, method for forming the same, and in-furnace structure of combustion furnace
TW201141811A (en) Flame retardant substance, nozzle made of flame retardant substance and used in continuous casting, production method of nozzle used in continuous casting, and continuous casting method of using nozzle thereof
JPH11310474A (en) Surface-treated graphite and carbon indeterminate refractory by using the same
EP2690078A1 (en) Refractory composition and method of installation
TW201245095A (en) Magnesia carbon brick having high durability and used in converter
JP6658662B2 (en) Castable refractory and method of manufacturing castable refractory
JP7088130B2 (en) A method of kneading a carbon-containing amorphous refractory and a method of manufacturing a molded body of a carbon-containing amorphous refractory using the same.
JP3725910B2 (en) Method for manufacturing irregular refractories for hot repair
da Silveira et al. Reinforced cellular carbon matrix–MgO composites for high temperature applications: microstructural aspects and colloidal processing
JP7369106B2 (en) Method for sorting graphite and manufacturing method for castable refractories containing graphite
JPH09110538A (en) Fine powder composition for magnesia-graphite based castable, its production and magnesia-graphite based castable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190124

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6773081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250