JP2018511924A - Zinc ion battery electrode and method for producing zinc ion battery - Google Patents

Zinc ion battery electrode and method for producing zinc ion battery Download PDF

Info

Publication number
JP2018511924A
JP2018511924A JP2018502297A JP2018502297A JP2018511924A JP 2018511924 A JP2018511924 A JP 2018511924A JP 2018502297 A JP2018502297 A JP 2018502297A JP 2018502297 A JP2018502297 A JP 2018502297A JP 2018511924 A JP2018511924 A JP 2018511924A
Authority
JP
Japan
Prior art keywords
ion battery
electrode
zinc ion
layer
manganese dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018502297A
Other languages
Japanese (ja)
Inventor
春光 魏
春光 魏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Cubic Science Co Ltd
Original Assignee
Shenzhen Cubic Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Cubic Science Co Ltd filed Critical Shenzhen Cubic Science Co Ltd
Publication of JP2018511924A publication Critical patent/JP2018511924A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】 電池の大電流性能を向上することが可能な亜鉛イオン電池の電極、及び、亜鉛イオン電池の製造方法を提供する。【解決手段】 亜鉛イオン電池の電極は、金属集電体層3、金属集電体層3に付着する導電層2、及び、導電層2に付着する二酸化マンガン活性層1で構成されている。その製造方法は、先に導電層2を金属集電体層3に付着させ、続いて二酸化マンガン活性層1を導電層2に塗布する。更に該電極を正極とし、亜鉛イオンを含む水溶液を電解質とし、亜鉛を負極として組み立てて充電式電池にする。亜鉛イオン電池の電極は、金属集電体層3と二酸化マンガン活性層1との間に導電層2を付着させることによって金属集電体層3と二酸化マンガン活性層1との粘着性を改善し二酸化マンガン活性層1の導電性が増加するため、電池全体の内部抵抗及び大電流放電特性を改善することができる。【選択図】 図1PROBLEM TO BE SOLVED: To provide an electrode of a zinc ion battery capable of improving the large current performance of the battery and a method for manufacturing the zinc ion battery. An electrode of a zinc ion battery includes a metal current collector layer 3, a conductive layer 2 attached to the metal current collector layer 3, and a manganese dioxide active layer 1 attached to the conductive layer 2. In the manufacturing method, the conductive layer 2 is first attached to the metal current collector layer 3, and then the manganese dioxide active layer 1 is applied to the conductive layer 2. Further, the electrode is used as a positive electrode, an aqueous solution containing zinc ions is used as an electrolyte, and zinc is used as a negative electrode to form a rechargeable battery. The electrode of the zinc ion battery improves the adhesion between the metal current collector layer 3 and the manganese dioxide active layer 1 by attaching the conductive layer 2 between the metal current collector layer 3 and the manganese dioxide active layer 1. Since the conductivity of the manganese dioxide active layer 1 increases, the internal resistance and large current discharge characteristics of the entire battery can be improved. [Selection] Figure 1

Description

本発明は、二次電池に関し、具体的には、亜鉛イオン電池の電極、及び、亜鉛イオン電池の製造方法に関する。   The present invention relates to a secondary battery, and more specifically to a zinc ion battery electrode and a method of manufacturing a zinc ion battery.

充電式の亜鉛イオン電池は、マンガンの酸化物材料を正極活性材料とし、亜鉛を負極活性材料とし、亜鉛イオンを含む水溶液を電解液とする充電式電池であって、安価であるという特徴を有している。   A rechargeable zinc ion battery is a rechargeable battery using a manganese oxide material as a positive electrode active material, zinc as a negative electrode active material, and an aqueous solution containing zinc ions as an electrolyte, and is characterized by being inexpensive. doing.

特開2017−94855号公報JP 2017-94855 A

亜鉛イオン電池が電子を貯蔵するメカニズムは、以下のようになっている。
The mechanism by which the zinc ion battery stores electrons is as follows.

このような電池は、安価であるという特徴を有している。しかし、二酸化マンガンは、導電性が10-6S/cmと比較的悪く半導体となるため、その高倍率性能がその導電性能に限られている。従来の特許に開示された充電式の亜鉛イオン電池は、二酸化マンガン活性層に直接金属集電体層を塗布しているので、二酸化マンガンの低い導電性により電極の導電性が悪くなり、高電池倍率が好適に発揮しないなどの問題を引き起こしやすい。 Such a battery has a feature that it is inexpensive. However, since manganese dioxide has a relatively poor conductivity of 10 −6 S / cm and becomes a semiconductor, its high magnification performance is limited to its conductive performance. In the rechargeable zinc ion battery disclosed in the conventional patent, since the metal current collector layer is directly applied to the manganese dioxide active layer, the conductivity of the electrode is deteriorated due to the low conductivity of manganese dioxide. It tends to cause problems such as the magnification not being adequately exhibited.

本発明は、正極において二酸化マンガン活性層と金属集電体層との間に導電層を追加することによって、二酸化マンガン活性層と金属集電体層との間の接触を改善し、活性層の導電性を改善することを主な革新点とする。これにより、本発明の亜鉛イオン電池は、電極導電率を10-5S/cmから10-3S/cm以上に高めることができ、電池の大電流性能を向上することができる。 The present invention improves the contact between the manganese dioxide active layer and the metal current collector layer by adding a conductive layer between the manganese dioxide active layer and the metal current collector layer in the positive electrode. The main innovation is to improve conductivity. Thereby, the zinc ion battery of this invention can raise electrode electrical conductivity from 10 <-5 > S / cm to 10 <-3 > S / cm or more, and can improve the large current performance of a battery.

本発明は、亜鉛イオン電池の電極であって、金属集電体層、導電層及び二酸化マンガン活性層を備える。導電層は、金属集電体層に付着している。二酸化マンガン活性層は、導電層に付着している。   The present invention is an electrode of a zinc ion battery, and includes a metal current collector layer, a conductive layer, and a manganese dioxide active layer. The conductive layer is attached to the metal current collector layer. The manganese dioxide active layer is attached to the conductive layer.

本発明の亜鉛イオン電池の電極では、二酸化マンガン活性層は、亜鉛イオンの嵌入と脱出を収納可能な二酸化マンガン、炭素材料又は接着剤で構成される。   In the electrode of the zinc ion battery of the present invention, the manganese dioxide active layer is made of manganese dioxide, a carbon material, or an adhesive that can accommodate insertion and escape of zinc ions.

本発明の亜鉛イオン電池の電極では、導電層は、導電作用を有する、金属粒子、炭素材料、導電セラミックス、導電プラスチックの少なくとも一つを含む導電材料を有する。   In the electrode of the zinc ion battery of the present invention, the conductive layer has a conductive material having at least one of metal particles, carbon material, conductive ceramics, and conductive plastic having a conductive action.

炭素材料は、カーボンブラック、カーボンナノチューブ、炭素繊維、グラフェン、多孔質炭素、発泡炭素、フラーレン、グラファイトシート、グラファイトの少なくとも一つである。   The carbon material is at least one of carbon black, carbon nanotube, carbon fiber, graphene, porous carbon, expanded carbon, fullerene, graphite sheet, and graphite.

金属集電体層は、銅箔、アルミ箔、ステンレス鋼箔、チタン箔、ニッケル箔の少なくとも一つで構成可能である。   The metal current collector layer can be composed of at least one of copper foil, aluminum foil, stainless steel foil, titanium foil, and nickel foil.

本発明の亜鉛イオン電池の製造方法は、金属集電体層、金属集電体層に付着している導電層、及び、導電層に付着している二酸化マンガン活性層で構成される電極を亜鉛イオン電池の正極として製造するステップと、亜鉛負極、電解液及び正極をパッケージして亜鉛イオン電池を製造ステップと、を含む。   The method of manufacturing a zinc ion battery according to the present invention includes an electrode composed of a metal current collector layer, a conductive layer attached to the metal current collector layer, and a manganese dioxide active layer attached to the conductive layer. A step of manufacturing the positive electrode of the ion battery, and a step of manufacturing the zinc ion battery by packaging the zinc negative electrode, the electrolytic solution and the positive electrode.

電解液は、亜鉛イオン、又は、亜鉛イオン及び二価マンガンイオンを含む。   The electrolytic solution contains zinc ions or zinc ions and divalent manganese ions.

本発明の亜鉛イオン電池では、金属集電体層と二酸化マンガン活性層との間に導電層を付着させることによって金属集電体層と二酸化マンガン活性層との粘着性を改善し、二酸化マンガン活性層の導電性を増加することができる。これにより、電池全体の内部抵抗及び大電流放電特性を改善することができる。
また、実験から明らかなように、本発明の亜鉛イオン電池は、容量が高く、倍率性能が優れている。このような充電式の亜鉛イオン電池は、更に、容量が高く、安全で、環境に優しく、コストが低いなどの特徴を有している。このような電池は民生電子機器、電動車、通信、航空宇宙及び軍事などの分野に広く応用できることが予見可能である。
In the zinc ion battery of the present invention, the adhesion between the metal current collector layer and the manganese dioxide active layer is improved by attaching a conductive layer between the metal current collector layer and the manganese dioxide active layer, and the manganese dioxide active The conductivity of the layer can be increased. Thereby, the internal resistance and large current discharge characteristics of the entire battery can be improved.
Further, as is clear from the experiment, the zinc ion battery of the present invention has a high capacity and excellent magnification performance. Such rechargeable zinc ion batteries are further characterized by high capacity, safety, environmental friendliness, and low cost. It can be foreseen that such a battery can be widely applied to fields such as consumer electronics, electric vehicles, communications, aerospace, and military.

亜鉛イオン電池の電極の構造の模式図であり、a)片面付着構造の模式図であり、b)両面付着構造の模式図である。It is a schematic diagram of the structure of the electrode of a zinc ion battery, a) It is a schematic diagram of a single-sided adhesion structure, b) It is a schematic diagram of a double-sided adhesion structure. 実施例1で製造された電池B1,B2の異なったC倍率(CR)での倍率性能を説明する特性図である。6 is a characteristic diagram illustrating magnification performance at different C magnifications (CR) of batteries B1 and B2 manufactured in Example 1. FIG.

以下、発明の好ましい実施例を更に詳細に説明する。   Hereinafter, preferred embodiments of the invention will be described in more detail.

(実施例1)
ステンレス鋼箔を金属集電体層3とし、カーボンブラックと接着剤PVDFを4:6の割合でステンレス鋼箔に塗布して導電層2とする。二酸化マンガン、炭素及び接着剤を90:5:5で導電層2に塗布して二酸化マンガン活性層1とし、電極E1を製造する。導電層2の作用を比較するために、製造過程において、導電層を有しない電極E0を製造した。電極E1のダイヤフラム導電率を検出した結果、8.3×10-3S/cmであって、電極E0のダイヤフラム導電率は、僅か2.3×10-5S/cmであった。
Example 1
Stainless steel foil is used as the metal current collector layer 3, and carbon black and adhesive PVDF are applied to the stainless steel foil at a ratio of 4: 6 to form the conductive layer 2. Manganese dioxide, carbon, and an adhesive are applied to the conductive layer 2 at 90: 5: 5 to form the manganese dioxide active layer 1 to produce the electrode E1. In order to compare the action of the conductive layer 2, an electrode E0 having no conductive layer was manufactured in the manufacturing process. As a result of detecting the diaphragm conductivity of the electrode E1, it was 8.3 × 10 −3 S / cm, and the diaphragm conductivity of the electrode E0 was only 2.3 × 10 −5 S / cm.

(実施例2)
ステンレス鋼箔を金属集電体層3とし、導電ポリマーのポリアニリンを金属集電体層3に塗布して導電層2とする。二酸化マンガン、グラフェン、カーボンブラック及び接着剤を80:10:5:5で導電層2に塗布して二酸化マンガン活性層1とし、電極E2を製造する。電極E2のダイヤフラム導電率を検出した結果、6.7×10-2S/cmであって、導電層を有しない電極のダイヤフラム導電率は、僅か4.2×10-3S/cmであった。
(Example 2)
The stainless steel foil is used as the metal current collector layer 3, and the conductive polymer polyaniline is applied to the metal current collector layer 3 to form the conductive layer 2. Manganese dioxide, graphene, carbon black and an adhesive are applied to the conductive layer 2 at 80: 10: 5: 5 to form the manganese dioxide active layer 1 to produce the electrode E2. As a result of detecting the diaphragm conductivity of the electrode E2, it was 6.7 × 10 −2 S / cm, and the diaphragm conductivity of the electrode without the conductive layer was only 4.2 × 10 −3 S / cm. It was.

(実施例3)
ステンレス鋼箔を金属集電体層3とし、カーボンナノチューブを金属集電体層3に沈積させて導電層2とする。二酸化マンガン、ナノ炭素繊維、カーボンブラック及び接着剤を80:10:5:5で導電層2に塗布して二酸化マンガン活性層1とし、電極E3とする。電極E3のダイヤフラム導電率を検出した結果、1.1×10-1S/cmであった。
(Example 3)
The stainless steel foil is used as the metal current collector layer 3, and the carbon nanotubes are deposited on the metal current collector layer 3 as the conductive layer 2. Manganese dioxide, nanocarbon fibers, carbon black, and an adhesive are applied to the conductive layer 2 at 80: 10: 5: 5 to form a manganese dioxide active layer 1 and an electrode E3. As a result of detecting the diaphragm conductivity of the electrode E3, it was 1.1 × 10 −1 S / cm.

(実施例4)
金属チタン箔を金属集電体層3とし、ITO薄膜をチタン箔に沈積させて導電層2とする。二酸化マンガン、炭素及び接着剤を90:5:5で導電層2に塗布して二酸化マンガン活性層1とし、電極E4を製造する。電極E4のダイヤフラム導電率を検出した結果、3.4×10-3S/cmであった。
Example 4
The metal titanium foil is used as the metal current collector layer 3, and the ITO thin film is deposited on the titanium foil as the conductive layer 2. Manganese dioxide, carbon, and an adhesive are applied to the conductive layer 2 at 90: 5: 5 to form the manganese dioxide active layer 1 to produce the electrode E4. As a result of detecting the diaphragm conductivity of the electrode E4, it was 3.4 × 10 −3 S / cm.

(実施例5)
電極E1を正極とし、厚さが0.1mmの亜鉛箔を負極とし、1molL-1のZnSO4に0.5molL-1のMnSO4を添加した水溶液を電解液として組み立てたものを電池B1とした。電極E0を正極とし、厚さが0.1mmの亜鉛箔を負極とし、1molL-1のZnSO4に0.5molL-1のMnSO4を添加した水溶液を電解液として組み立てたものを電池B2とした。電池B1と電池B2との倍率性能を図2に示す。
(Example 5)
The electrodes E1 and the cathode, the thickness is zinc foil 0.1mm and the negative electrode, those assembled aqueous solution was added MnSO 4 of 0.5MolL -1 to ZnSO 4 of 1MolL -1 as an electrolytic solution was the battery B1 . The electrode E0 as a positive electrode, a thickness of the zinc foil 0.1mm and the negative electrode, those assembled aqueous solution was added MnSO 4 of 0.5MolL -1 to ZnSO 4 of 1MolL -1 as an electrolytic solution was a battery B2 . The magnification performance of the battery B1 and the battery B2 is shown in FIG.

以上の内容は、具体的な好ましい実施形態に基づいて本発明を更に詳細に説明するものであり、本発明の具体的な実施がこれらの説明のみに限定されると考えてならない。当業者であれば、本発明の構想から逸脱することなく、更に複数種の簡単な推断演繹又は取り替えを行うことができ、それらは全て本発明の提示する請求の範囲により確定された特許の保護範囲に含まれるものと見なすべきである。   The above description is to describe the present invention in more detail based on specific preferred embodiments, and it should not be considered that the specific implementation of the present invention is limited only to these descriptions. A person skilled in the art can also make several simple deductions or replacements without departing from the concept of the present invention, all of which protect the patent as defined by the claims presented by the present invention. It should be considered as included in the scope.

1 二酸化マンガン活性層
2 導電層
3 金属集電体層
1 Manganese dioxide active layer 2 Conductive layer 3 Metal current collector layer

Claims (7)

金属集電体層、導電層及び二酸化マンガン活性層で構成される亜鉛イオン電池の電極であって、
前記導電層は、前記金属集電体層に付着し、
前記二酸化マンガン活性層は、前記導電層に付着する亜鉛イオン電池の電極。
An electrode of a zinc ion battery comprising a metal current collector layer, a conductive layer and a manganese dioxide active layer,
The conductive layer adheres to the metal current collector layer;
The manganese dioxide active layer is an electrode of a zinc ion battery attached to the conductive layer.
前記二酸化マンガン活性層は、亜鉛イオンとの結合及び亜鉛イオンからの離脱が可能な二酸化マンガン、炭素材料又は接着剤で構成される請求項1に記載の亜鉛イオン電池の電極。   2. The electrode of a zinc ion battery according to claim 1, wherein the manganese dioxide active layer is composed of manganese dioxide, a carbon material, or an adhesive that can be bonded to and desorbed from zinc ions. 前記導電層は、導電作用を有する、金属粒子、炭素材料、導電セラミックス、導電プラスチックの少なくとも一つを含む導電材料を有する請求項1に記載の亜鉛イオン電池の電極。   The electrode of the zinc ion battery according to claim 1, wherein the conductive layer has a conductive material having at least one of metal particles, carbon material, conductive ceramics, and conductive plastic having a conductive action. 前記炭素材料は、カーボンブラック、カーボンナノチューブ、炭素繊維、グラフェン、多孔質炭素、発泡炭素、フラーレン、グラファイトシート、グラファイトの少なくとも一つである請求項2又は3に記載の亜鉛イオン電池の電極。   4. The electrode of a zinc ion battery according to claim 2, wherein the carbon material is at least one of carbon black, carbon nanotube, carbon fiber, graphene, porous carbon, foamed carbon, fullerene, a graphite sheet, and graphite. 前記金属集電体層は、銅箔、アルミ箔、ステンレス鋼箔、チタン箔、ニッケル箔の少なくとも一つで構成可能である請求項1に記載の亜鉛イオン電池の電極。   2. The electrode of a zinc ion battery according to claim 1, wherein the metal current collector layer can be composed of at least one of copper foil, aluminum foil, stainless steel foil, titanium foil, and nickel foil. 金属集電体層、前記金属集電体層に付着する導電層、及び、前記導電層に付着する二酸化マンガン活性層で構成される電極を亜鉛イオン電池の正極として製造するステップと、
亜鉛負極、電解液及び前記正極をパッケージして亜鉛イオン電池を製造するステップと、
を含む亜鉛イオン電池の製造方法。
Producing an electrode composed of a metal current collector layer, a conductive layer attached to the metal current collector layer, and a manganese dioxide active layer attached to the conductive layer as a positive electrode of a zinc ion battery;
Packaging a zinc negative electrode, an electrolyte and the positive electrode to produce a zinc ion battery;
The manufacturing method of the zinc ion battery containing this.
前記電解液は、亜鉛イオン、又は、亜鉛イオン及び二価マンガンイオンを含むことを特徴とする請求項6に記載の亜鉛イオン電池の製造方法。   The method for manufacturing a zinc ion battery according to claim 6, wherein the electrolytic solution contains zinc ions, or zinc ions and divalent manganese ions.
JP2018502297A 2015-03-31 2015-03-31 Zinc ion battery electrode and method for producing zinc ion battery Pending JP2018511924A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/075478 WO2016154885A1 (en) 2015-03-31 2015-03-31 Method for manufacturing electrode of a zinc ion battery and rechargeable battery based on same

Publications (1)

Publication Number Publication Date
JP2018511924A true JP2018511924A (en) 2018-04-26

Family

ID=57004732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018502297A Pending JP2018511924A (en) 2015-03-31 2015-03-31 Zinc ion battery electrode and method for producing zinc ion battery

Country Status (2)

Country Link
JP (1) JP2018511924A (en)
WO (1) WO2016154885A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054844A1 (en) * 2021-09-29 2023-04-06 경상국립대학교산학협력단 Current collector and negative electrode material for zinc-ion battery, method for manufacturing same, and zinc-ion battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113594466B (en) * 2021-07-05 2023-07-28 东莞新能安科技有限公司 Current collector, battery core and electricity utilization device
CN113636554B (en) * 2021-08-12 2022-12-20 电子科技大学长三角研究院(湖州) Titanium carbide-carbon core-shell array loaded vertical graphene/manganese dioxide composite material and preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683756B (en) * 2011-03-15 2014-10-22 清华大学深圳研究生院 Polymer rechargeable zinc ion battery
FR2977364B1 (en) * 2011-07-01 2015-02-06 Hutchinson CURRENT COLLECTOR AND METHOD FOR MANUFACTURING THE SAME
CN102299389A (en) * 2011-07-19 2011-12-28 浙江理工大学 High-performance rechargeable battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054844A1 (en) * 2021-09-29 2023-04-06 경상국립대학교산학협력단 Current collector and negative electrode material for zinc-ion battery, method for manufacturing same, and zinc-ion battery

Also Published As

Publication number Publication date
WO2016154885A1 (en) 2016-10-06

Similar Documents

Publication Publication Date Title
JP2020503639A (en) Current collectors, their electrode sheets and electrochemical devices
US9219280B2 (en) Current collector, electrode of electrochemical battery, and electrochemical battery using the same
TWI611443B (en) Current collector for electrode, positive electrode for non-aqueous electrolytic secondary battery, negative electrode for non-aqueous electrolytic secondary battery, non-aqueous electrolytic secondary battery, electrode for non-aqueous electrolytic elec
JP2019102429A (en) Current collector, electrode sheet thereof, and electrochemical device
CN108682788A (en) Flexible lithium battery electrode
CN106560946B (en) Battery with a battery cell
CN102292288A (en) Substrate for forming carbon nanotubes, carbon nanotube composite, energy device, method for producing same, and device incorporating same
JP2013089951A (en) Electric double layer capacitor
RU2015144284A (en) ANODES FOR LITHIUM-ION BATTERY CONTAINING GRAPHENE CARBON PARTICLES
CN106469826B (en) Battery with a battery cell
WO2020105439A1 (en) Lithium secondary battery and manufacturing method thereof
US20150064571A1 (en) Current collector structure
US9269959B2 (en) Lithium ion battery electrode
JP2020009764A (en) Grid current collector, and related device and methods
JP2018511924A (en) Zinc ion battery electrode and method for producing zinc ion battery
JP2007088410A (en) Electric double layer capacitor
US20200194793A1 (en) Battery comprising an electrode having carbon additives
JP2019175838A (en) Anode, and sulfide solid-state battery
WO2020105431A1 (en) Sodium secondary battery and manufacturing method thereof
JP2013541139A (en) Electrical conductors for electrochemical cells
JP2006269827A (en) Composition for electrochemical element electrode
JP2017068911A (en) All-solid battery
CN204741043U (en) Zinc ion battery electrode and because its zinc ion chargeable call
KR20210101448A (en) Method for manufacturing carbon material-coated current collector and carbon material-coated current collector thereby
KR100731417B1 (en) Lithium secondary battery