JP2018199113A - Microreactor, and extraction method and reaction method - Google Patents

Microreactor, and extraction method and reaction method Download PDF

Info

Publication number
JP2018199113A
JP2018199113A JP2017105953A JP2017105953A JP2018199113A JP 2018199113 A JP2018199113 A JP 2018199113A JP 2017105953 A JP2017105953 A JP 2017105953A JP 2017105953 A JP2017105953 A JP 2017105953A JP 2018199113 A JP2018199113 A JP 2018199113A
Authority
JP
Japan
Prior art keywords
fluid sample
phase
flow path
fluid
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017105953A
Other languages
Japanese (ja)
Other versions
JP6968578B2 (en
Inventor
新 青田
Shin Aota
新 青田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2017105953A priority Critical patent/JP6968578B2/en
Publication of JP2018199113A publication Critical patent/JP2018199113A/en
Application granted granted Critical
Publication of JP6968578B2 publication Critical patent/JP6968578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

To provide a microreactor in which speeding up of a chemical process involving a plurality of fluids to carry out can be realized.SOLUTION: The microreactor has a first confluent passage 14 to which a first fluid sample 1 and a second fluid sample 2 are supplied, and a second confluent passage 24 to which the first fluid sample 1 and the second fluid sample 2 that have passed through the first confluent passage 14 are supplied as well as a third fluid sample 3 is supplied.SELECTED DRAWING: Figure 1

Description

本発明は、マイクロリアクター並びに抽出方法及び反応方法に関する。さらに詳述すると、本発明は、例えば液液抽出操作や気液抽出操作或いは触媒反応などに用いて好適な技術に関する。   The present invention relates to a microreactor, an extraction method, and a reaction method. More specifically, the present invention relates to a technique suitable for use in, for example, a liquid-liquid extraction operation, a gas-liquid extraction operation, or a catalytic reaction.

光触媒反応に用いられる従来のマイクロリアクターとして、例えば、光透過性材料より成り、反応原料が流通されるマイクロ流路を有するマイクロ反応器と、マイクロ流路に反応原料を送り込む原料送り込み手段と、マイクロ流路の内面に設けられた光触媒の層とを備え、反応原料が、気体原料と、光触媒に対して低親和性の有機液体原料または光触媒に対して低親和性の有機溶媒に反応原料を溶解させた有機溶液原料である場合に対して、原料送り込み手段は、有機液体原料または有機溶液原料がマイクロ流路の内面に沿って流れ、気体原料が中央部を流れる状態のパイプフローを形成可能に構成されているものがある(特許文献1)。   As a conventional microreactor used for photocatalytic reaction, for example, a microreactor made of a light-transmitting material and having a microchannel through which reaction raw materials are circulated, raw material feeding means for feeding the reaction raw material into the microchannel, Photocatalyst layer provided on the inner surface of the flow path, the reaction raw material is dissolved in a gas raw material and an organic liquid raw material having a low affinity for the photocatalyst or an organic solvent having a low affinity for the photocatalyst The raw material feeding means can form a pipe flow in which the organic liquid raw material or the organic solution raw material flows along the inner surface of the micro-channel and the gas raw material flows through the central portion, in contrast to the case where the organic solution raw material is made to flow. There is what is configured (Patent Document 1).

特開2008−86993号公報JP 2008-86993 A

しかしながら、特許文献1のマイクロリアクターでは、光触媒の比表面積の増大や相間の物質移動の効率の向上によって光触媒反応を高効率で進行させることが企図されているものの、界面を介した物質移動を伴う化学プロセスの所要時間が十分に短縮化されているとは言い難い。   However, although the microreactor of Patent Document 1 is intended to advance the photocatalytic reaction with high efficiency by increasing the specific surface area of the photocatalyst and improving the efficiency of mass transfer between phases, it involves mass transfer via the interface. It is hard to say that the time required for the chemical process is sufficiently shortened.

そこで、本発明は、複数の流体が関与して行われる化学プロセスの迅速化を実現することができるマイクロリアクター並びに抽出方法及び反応方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a microreactor, an extraction method, and a reaction method capable of realizing a rapid chemical process performed by involving a plurality of fluids.

かかる目的を達成するため、本発明のマイクロリアクターは、第一の流体試料と第二の流体試料とが供給される第一の合流路と、当該第一の合流路を通過した第一の流体試料及び第二の流体試料が供給されると共に第三の流体試料が供給される第二の合流路とを有するようにしている。   In order to achieve such an object, the microreactor of the present invention includes a first combined channel to which a first fluid sample and a second fluid sample are supplied, and a first fluid that has passed through the first combined channel. The sample and the second fluid sample are supplied, and the second fluid passage is supplied with the third fluid sample.

また、本発明のマイクロリアクターは、流路の一部区間の内部空間を中心部分と当該中心部分を取り囲む筒状の領域とに区画するための外側の仕切りと当該外側の仕切りの内部空間を中心部分と当該中心部分を取り囲む筒状の領域とに区画するための内側の仕切りとを有し、当該内側の仕切りの内部空間へと第一の流体試料が供給され、外側の仕切りと内側の仕切りとの間の空間へと第二の流体試料が供給され、さらに、外側の仕切りの周囲の空間へと第三の流体試料が供給されるようにしている。   Further, the microreactor of the present invention has an outer partition for partitioning an internal space of a partial section of the flow path into a central portion and a cylindrical region surrounding the central portion, and the internal space of the outer partition. And an inner partition for partitioning into a cylindrical region surrounding the central portion, the first fluid sample is supplied to the inner space of the inner partition, the outer partition and the inner partition The second fluid sample is supplied to the space between the second partition and the third fluid sample is supplied to the space around the outer partition.

また、本発明の抽出方法は、第一の流体試料と第二の流体試料とを第一の合流路へと供給し、第一の合流路を通過させた第一の流体試料及び第二の流体試料と第三の流体試料とを第二の合流路へと供給し、第二の流体試料と第三の流体試料との間で抽出操作を行わせるようにしている。   In the extraction method of the present invention, the first fluid sample and the second fluid sample are supplied to the first combined flow path, and the first fluid sample and the second fluid sample are allowed to pass through the first combined flow path. The fluid sample and the third fluid sample are supplied to the second combined channel, and an extraction operation is performed between the second fluid sample and the third fluid sample.

また、本発明の反応方法は、第一の流体試料と第二の流体試料とを第一の合流路へと供給し、第一の合流路を通過させた第一の流体試料及び第二の流体試料と第三の流体試料とを第二の合流路へと供給し、第二の流体試料と第三の流体試料とを反応させるようにしている。   In the reaction method of the present invention, the first fluid sample and the second fluid sample are supplied to the first combined flow path, and the first fluid sample and the second fluid sample that have been passed through the first combined flow path. The fluid sample and the third fluid sample are supplied to the second combined channel, and the second fluid sample and the third fluid sample are caused to react with each other.

したがって、これらのマイクロリアクターや抽出方法,反応方法によると、比界面積の増大,流れを乱した撹拌効果の増大,及び拡散距離の短縮化が達成されて延いては例えば液液抽出プロセス,気液抽出プロセス,触媒反応プロセスが迅速に行われ、さらに、流体試料の選択・組み合わせによっては複数のプロセスが同時に行われる。   Therefore, according to these microreactors, extraction methods, and reaction methods, an increase in specific interfacial area, an increase in the stirring effect that disturbed the flow, and a reduction in the diffusion distance have been achieved. A liquid extraction process and a catalytic reaction process are rapidly performed, and a plurality of processes are simultaneously performed depending on selection and combination of fluid samples.

本発明のマイクロリアクターは、第二の合流路の内周面が親水性表面であるようにしても良い。この場合には、第二の合流路の内周面上に水性液体(水相)の液膜が形成されると共に例えば当該液膜中または当該液膜上に油性液体(油相)が液滴状やスラグ状に流れ且つ気体(気相)が流路中心部分を流れる三相の流れを形成することができる。   In the microreactor of the present invention, the inner peripheral surface of the second combined channel may be a hydrophilic surface. In this case, a liquid film of an aqueous liquid (aqueous phase) is formed on the inner peripheral surface of the second combined channel, and an oily liquid (oil phase) drops in the liquid film or on the liquid film, for example. It is possible to form a three-phase flow that flows in the shape of a slag or a gas (gas phase) through the center of the flow path.

本発明のマイクロリアクターは、第二の合流路の内周面が疎水性表面であるようにしても良い。この場合には、第二の合流路の内周面上に油性液体(油相)の液膜が形成されると共に例えば当該液膜中または当該液膜上に水性液体(水相)が液滴状やスラグ状に流れ且つ気体(気相)が流路中心部分を流れる三相の流れを形成することができる。   In the microreactor of the present invention, the inner peripheral surface of the second combined channel may be a hydrophobic surface. In this case, a liquid film of oily liquid (oil phase) is formed on the inner peripheral surface of the second combined flow path, and for example, an aqueous liquid (water phase) is dropped in or on the liquid film. It is possible to form a three-phase flow that flows in the shape of a slag or a gas (gas phase) through the center of the flow path.

本発明のマイクロリアクターは、第二の合流路の内周面に触媒の層が固定化されるようにしても良い。この場合には、いずれかの流体試料を原料として触媒反応を生じさせた上で他の流体試料との間で抽出作用や化学反応などを更に生じさせることができる。   In the microreactor of the present invention, a catalyst layer may be immobilized on the inner peripheral surface of the second combined channel. In this case, after causing a catalytic reaction using any one of the fluid samples as a raw material, an extraction action or a chemical reaction can be further generated between the fluid samples.

本発明のマイクロリアクターや抽出方法,反応方法によれば、液液抽出プロセス,気液抽出プロセス,触媒反応プロセスを迅速に行うことができ、また、複数のプロセスを同時に行うことができるので、反応装置・反応手法としての有用性の向上が可能になる。   According to the microreactor, extraction method, and reaction method of the present invention, a liquid-liquid extraction process, a gas-liquid extraction process, and a catalytic reaction process can be performed quickly, and a plurality of processes can be performed simultaneously. It is possible to improve the usefulness as a device / reaction method.

本発明のマイクロリアクターは、第二の合流路の内周面が親水性表面であるようにした場合には、水相中または水相の表面上に油相が液滴状やスラグ状に流れ且つ気相が流路中心部分を流れる三相の流れを形成することができるので、水性液体と油性液体とによる作用や反応を引き起こすに好適な仕組みとして構成することが可能になる。   In the microreactor of the present invention, when the inner peripheral surface of the second combined channel is a hydrophilic surface, the oil phase flows in the form of droplets or slag in the aqueous phase or on the surface of the aqueous phase. In addition, since a three-phase flow in which the gas phase flows through the central portion of the flow path can be formed, it can be configured as a mechanism suitable for causing an action or reaction between the aqueous liquid and the oil liquid.

本発明のマイクロリアクターは、第二の合流路の内周面が疎水性表面であるようにした場合には、油相中または油相の表面上に水相が液滴状やスラグ状に流れ且つ気相が流路中心部分を流れる三相の流れを形成することができるので、油性液体と水性液体とによる作用や反応を引き起こすに好適な仕組みとして構成することが可能になる。   In the microreactor of the present invention, when the inner peripheral surface of the second combined channel is a hydrophobic surface, the water phase flows in the form of droplets or slag in the oil phase or on the surface of the oil phase. In addition, since a three-phase flow in which the gas phase flows through the central portion of the flow path can be formed, it can be configured as a mechanism suitable for causing an action or reaction between the oily liquid and the aqueous liquid.

本発明のマイクロリアクターは、第二の合流路の内周面に触媒の層が固定化されるようにした場合には、触媒反応に加えて抽出作用や化学反応などを更に生じさせることができるので、複数の作用・反応を同時に生じさせる仕組みとして構成することが可能になり、延いては反応装置・反応手法としての有用性の更なる向上が可能になる。   In the microreactor of the present invention, when the catalyst layer is fixed on the inner peripheral surface of the second combined flow path, an extraction action, a chemical reaction, and the like can be further generated in addition to the catalytic reaction. Therefore, it can be configured as a mechanism for generating a plurality of actions / reactions at the same time, and further, the utility as a reaction apparatus / reaction technique can be further improved.

本発明に係るマイクロリアクターの実施形態の一例の概略構成を示す概念図である。It is a conceptual diagram which shows schematic structure of an example of embodiment of the microreactor which concerns on this invention. 本発明に係るマイクロリアクターの第二の合流路に於ける流れの様子を説明する概念図であり、流路の内周面が親水性表面である場合の様子である。(A)は流路内を通過する流体の流れの方向に沿う断面の図である。(B)は流路内を通過する流体の流れの方向に直交する断面の図である。It is a conceptual diagram explaining the mode of the flow in the 2nd joint channel of the microreactor which concerns on this invention, and is a mode in case the internal peripheral surface of a channel is a hydrophilic surface. (A) is a figure of the cross section in alignment with the direction of the flow of the fluid which passes the inside of a flow path. (B) is a cross-sectional view orthogonal to the direction of flow of fluid passing through the flow path. 本発明に係るマイクロリアクターの第二の合流路に於ける流れの様子を説明する概念図であり、流路の内周面が疎水性表面である場合の様子である。(A)は流路内を通過する流体の流れの方向に沿う断面の図である。(B)は流路内を通過する流体の流れの方向に直交する断面の図である。It is a conceptual diagram explaining the mode of the flow in the 2nd combined flow path of the microreactor which concerns on this invention, and is a mode in case the internal peripheral surface of a flow path is a hydrophobic surface. (A) is a figure of the cross section in alignment with the direction of the flow of the fluid which passes the inside of a flow path. (B) is a cross-sectional view orthogonal to the direction of flow of fluid passing through the flow path. 本発明に係るマイクロリアクターが用いられて行われる処理の具体例を説明する概念図である。(A)は光触媒による脱塩素化における従来の問題点を説明する概念図である。(B)は本発明の適用による問題点解決の仕組みを説明する概念図である。It is a conceptual diagram explaining the specific example of the process performed using the microreactor which concerns on this invention. (A) is a conceptual diagram explaining the conventional problem in dechlorination by a photocatalyst. (B) is a conceptual diagram illustrating a mechanism for solving a problem by applying the present invention. 本発明に係るマイクロリアクターが用いられて行われる処理の他の具体例を説明する概念図である。(A)は触媒反応における従来の問題点を説明する概念図である。(B)は本発明の適用による問題点解決の仕組みを説明する概念図である。It is a conceptual diagram explaining the other specific example of the process performed using the microreactor which concerns on this invention. (A) is a conceptual diagram explaining the conventional problem in a catalytic reaction. (B) is a conceptual diagram illustrating a mechanism for solving a problem by applying the present invention. 本発明に係るマイクロリアクターの実施形態の他の例の概略構成を示す概念図である。It is a conceptual diagram which shows schematic structure of the other example of embodiment of the microreactor which concerns on this invention. 本発明に係るマイクロリアクターの実施形態の更に他の例の概略構成を示す概念図である。(A)は流路内を通過する流体の流れの方向に沿う断面の図である。(B)は、流路内を通過する流体の流れの方向に直交する断面の図であり、(A)におけるI−I矢視図である。It is a conceptual diagram which shows schematic structure of the further another example of embodiment of the microreactor which concerns on this invention. (A) is a figure of the cross section in alignment with the direction of the flow of the fluid which passes the inside of a flow path. (B) is a figure of the cross section orthogonal to the direction of the flow of the fluid which passes through the inside of a flow path, and is a II arrow directional view in (A). 実施例1における第二の合流路内の相流の形成状況を示す図である。It is a figure which shows the formation condition of the phase flow in the 2nd unification channel in Example 1. FIG.

以下、本発明の構成を図面に示す実施の形態の一例に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on an example of an embodiment shown in the drawings.

図1乃至図5に、本発明に係るマイクロリアクター並びに抽出方法及び反応方法の実施形態の一例を示す。なお、図1乃至図5は、本発明に係るマイクロリアクターに纏わる機器・装置の構成や相流の形態のあくまでも概要を説明するための概念図・模式図であり、各部相互・部材相互の寸法関係や具体詳細な構造・形態を規定するものではない。   1 to 5 show an example of embodiments of a microreactor, an extraction method, and a reaction method according to the present invention. 1 to 5 are conceptual diagrams / schematic diagrams for explaining the outline of the configuration and phase flow configuration of the devices / devices related to the microreactor according to the present invention. It does not stipulate relationships or specific detailed structures / forms.

本実施形態のマイクロリアクターは、第一の流体試料1と第二の流体試料2とが供給される第一の合流路14と、当該第一の合流路14を通過した第一の流体試料1及び第二の流体試料2が供給されると共に第三の流体試料3が供給される第二の合流路24とを有するようにしている。   The microreactor of the present embodiment includes a first combined channel 14 to which the first fluid sample 1 and the second fluid sample 2 are supplied, and the first fluid sample 1 that has passed through the first combined channel 14. And the second fluid sample 2 and the second fluid channel 24 to which the third fluid sample 3 is supplied.

《前段合流部》
前段合流部10は、基板11の内部に形成された、第一の流体試料1(尚、図1では、マイクロチューブ34を通過するものとして矢印で表されている)が注入される第一の供給路12及び第二の流体試料2(尚、図1では、マイクロチューブ35を通過するものとして矢印で表されている)が注入される第二の供給路13と、これら二つの供給路12,13が合流した先の流路であって第一の流体試料1及び第二の流体試料2が供給される第一の合流路14とを有する。
《Pre-merging section》
The pre-merging portion 10 is a first fluid sample 1 (indicated by an arrow as passing through the microtube 34 in FIG. 1) formed inside the substrate 11. The second supply path 13 into which the supply path 12 and the second fluid sample 2 (indicated by arrows as passing through the microtube 35 in FIG. 1) are injected, and these two supply paths 12 , 13 is a previous flow path where the first fluid sample 1 and the second fluid sample 2 are supplied.

基板11の材質は、特定の種類に限定されるものではなく、例えば第一・第二の供給路12,13や第一の合流路14を流れる流体試料などと反応しないものであることが考慮されるなどした上で、適当なものが適宜選択される。基板11の材質としては、具体的には例えば、ガラス(石英),シリコン,金属,或いは樹脂が用いられ得る。   The material of the substrate 11 is not limited to a specific type, and for example, it is considered that it does not react with the fluid sample flowing through the first and second supply channels 12 and 13 and the first combined channel 14. Then, an appropriate one is appropriately selected. Specifically, for example, glass (quartz), silicon, metal, or resin can be used as the material of the substrate 11.

基板11の寸法は、特定の数値に限定されるものではなく、例えば所定の形態の相流を形成するために必要な各流路の長さが考慮されるなどした上で、適当な数値に適宜設定される。基板11は、具体的には例えば、あくまで一例として挙げると、板面視(即ち、基板11が水平に載置されている状態での平面視)の寸法が10〜100 mm 程度の範囲である部材として形成され得る。   The dimensions of the substrate 11 are not limited to specific numerical values. For example, the length of each flow path necessary for forming a predetermined phase flow is taken into account, and the appropriate values are obtained. Set as appropriate. Specifically, for example, the substrate 11 has a dimension in a plate view (that is, a plan view in a state where the substrate 11 is horizontally placed) of about 10 to 100 mm, for example. It can be formed as a member.

基板11は、図1に示す例では矩形状に形成されているが、矩形状に限定されるものではなく、例えば他の多角形状或いは円形状や楕円形状に形成されても良い。   The substrate 11 is formed in a rectangular shape in the example shown in FIG. 1, but is not limited to a rectangular shape, and may be formed in, for example, another polygonal shape, a circular shape, or an elliptical shape.

第一の供給路12と第二の供給路13とが合流して第一の合流路14へと至る(言い換えると、連通する,連続する)合流ポイント15は、流入の二口と流出の一口とからなる三叉路を構成する。   The first supply path 12 and the second supply path 13 are merged to reach the first merge path 14 (in other words, communicated and continuous). A three-way road consisting of

第一の供給路12の、流入口(別言すれば、注入口)に相当する一端は基板11の上面に形成された開口16へと連通し、流出口に相当する他端は合流ポイント15へと連通する。   One end of the first supply path 12 corresponding to an inlet (in other words, an inlet) communicates with an opening 16 formed on the upper surface of the substrate 11, and the other end corresponding to the outlet is a junction point 15. Communicating with

第二の供給路13の、流入口(別言すれば、注入口)に相当する一端は基板11の上面に形成された開口17へと連通し、流出口に相当する他端は合流ポイント15へと連通する。   One end of the second supply path 13 corresponding to the inlet (in other words, the inlet) communicates with the opening 17 formed on the upper surface of the substrate 11, and the other end corresponding to the outlet is the junction point 15. Communicating with

第一の合流路14の、流入口(別言すれば、供給口)に相当する一端は合流ポイント15へと連通し、流出口に相当する他端は基板11の上面に形成された開口18へと連通する。   One end of the first combined channel 14 corresponding to the inlet (in other words, the supply port) communicates with the junction point 15, and the other end corresponding to the outlet is the opening 18 formed on the upper surface of the substrate 11. Communicating with

基板11は基底部を構成する板状部材と天板部を構成する板状部材とから構成され、基底部の板表面に例えばエッチングや研削等の微細機械加工によって第一の供給路12及び第二の供給路13並びに第一の合流路14が例えば溝として形成される。そして、基底部の板表面に溝が形成された状態で天板部の板表面が基底部の板表面へと貼り合わされて接合されて基板11が構成され、また、第一・第二の供給路12,13並びに第一の合流路14が構成される。   The substrate 11 is composed of a plate-like member constituting the base portion and a plate-like member constituting the top plate portion, and the first supply path 12 and the first supply passage 12 are formed on the plate surface of the base portion by fine machining such as etching or grinding. The second supply path 13 and the first combined path 14 are formed as grooves, for example. And the board | substrate 11 is comprised by affixing and bonding the board surface of a top-plate part to the board surface of a base part in the state in which the groove | channel was formed in the board surface of a base part, and 1st, 2nd supply The paths 12, 13 and the first combined flow path 14 are configured.

各流路12−14の構成態様は上述の態様に限定されるものではなく、基板11の天板部を構成する板状部材の板表面に溝が形成された上で基底部を構成する板状部材の板表面と貼り合わされて結合されて構成されるようにしても良く、或いは、基板11の基底部を構成する板状部材の板表面と天板部を構成する板状部材の板表面とのそれぞれの対向する位置に溝が形成された上でこれら二つの板状部材の板表面が貼り合わされて結合されて構成されるようにしても良く、更に或いは、基板11の基底部を構成する板状部材の板表面に各流路12−14のうちの一部に相当する溝が形成されると共に天板部を構成する板状部材の板表面に各流路12−14のうちの一部に相当する溝が形成された上でこれら二つの板状部材の板表面が貼り合わされて結合されて構成されるようにしても良い。   The configuration aspect of each flow path 12-14 is not limited to the above-described aspect, and a plate constituting the base portion after a groove is formed on the plate surface of the plate-like member constituting the top plate portion of the substrate 11. The plate surface of the plate-like member may be configured to be bonded and bonded to the plate surface of the plate-like member, or the plate surface of the plate-like member constituting the base portion of the substrate 11 and the plate surface of the plate-like member constituting the top plate portion. And the surface of the two plate-like members may be bonded and joined together, or the base portion of the substrate 11 may be configured. A groove corresponding to a part of each of the flow paths 12-14 is formed on the plate surface of the plate-like member to be formed, and at the plate surface of the plate-like member constituting the top plate portion, of the respective flow paths 12-14 A groove corresponding to a part is formed, and the plate surfaces of these two plate members are bonded together May be constituted coupled it is.

また、上述の開口16,17,及び18は、天板部に、貫通孔として形成される。   Moreover, the above-mentioned openings 16, 17, and 18 are formed as through holes in the top plate portion.

第一の供給路12は第一の合流路14へと第一の流体試料1を供給するための流路であり、当該第一の供給路12の開口16には、マイクロチューブ34を介して第一の供給路12へと第一の流体試料1を注入するための第一の流体供給手段31が接続され連結される。   The first supply path 12 is a flow path for supplying the first fluid sample 1 to the first combined flow path 14, and the opening 16 of the first supply path 12 is connected to the opening 16 via the microtube 34. A first fluid supply means 31 for injecting the first fluid sample 1 into the first supply path 12 is connected and connected.

第二の供給路13は第一の合流路14へと第二の流体試料2を供給するための流路であり、当該第二の供給路13の開口17には、マイクロチューブ35を介して第二の供給路13へと第二の流体試料2を注入するための第二の流体供給手段32が接続され連結される。   The second supply path 13 is a flow path for supplying the second fluid sample 2 to the first combined flow path 14, and the opening 17 of the second supply path 13 is connected to the opening 17 via the microtube 35. A second fluid supply means 32 for injecting the second fluid sample 2 into the second supply path 13 is connected and connected.

第一の流体供給手段31が操作されることによって所定の流量で第一の流体試料1が第一の供給路12へと注入されると共に第二の流体供給手段32が操作されることによって所定の流量で第二の流体試料2が第二の供給路13へと注入され、延いては第一の流体試料1及び第二の流体試料2が第一の合流路14へと供給される。   When the first fluid supply means 31 is operated, the first fluid sample 1 is injected into the first supply path 12 at a predetermined flow rate, and the second fluid supply means 32 is operated so as to be predetermined. The second fluid sample 2 is injected into the second supply path 13 at a flow rate of, and then the first fluid sample 1 and the second fluid sample 2 are supplied to the first combined flow path 14.

第一・第二の流体供給手段31,32は、特定の機器や仕組みに限定されるものではなく、第一の供給路12や第二の供給路13へと供給される流体試料の種別・種類や性状に合わせて適当なものが適宜選択される。   The first and second fluid supply means 31 and 32 are not limited to specific devices and mechanisms, but are the types of fluid samples supplied to the first supply path 12 and the second supply path 13. Appropriate ones are selected according to the type and properties.

第一・第二の流体供給手段31,32としては、具体的には例えば、流体試料が気体である場合には、あくまで一例としては、マスフローコントローラーや圧力制御型ポンプが挙げられ、また、流体試料が液体である場合には、あくまで一例としては、シリンジポンプ,ダイヤフラムポンプ,或いは圧力制御型ポンプが挙げられる。   Specifically, as the first and second fluid supply means 31 and 32, for example, when the fluid sample is a gas, examples include a mass flow controller and a pressure control type pump, When the sample is a liquid, as an example, a syringe pump, a diaphragm pump, or a pressure control type pump can be cited as an example.

第一・第二の流体供給手段31,32は、前段合流部10を経て後段合流部20の第二の合流路24内に於いて三相の流れが形成され得るように流体試料の供給流量が調整され得るように、流体送出速度を制御するなどして流量を調整する機能を備えていることが好ましい。   The first and second fluid supply means 31 and 32 supply the flow rate of the fluid sample so that a three-phase flow can be formed in the second merging channel 24 of the rear merging portion 20 via the front merging portion 10. It is preferable to have a function of adjusting the flow rate by controlling the fluid delivery speed or the like.

第一の供給路12及び第二の供給路13並びに第一の合流路14は、マイクロ流路(別言すれば、小径流路)として形成される。   The first supply path 12, the second supply path 13, and the first combined flow path 14 are formed as micro flow paths (in other words, small diameter flow paths).

第一の供給路12及び第二の供給路13並びに第一の合流路14それぞれの、流路内を通過する流体の流れの方向(言い換えると、流路の軸心方向)に直交する断面(「流路断面」と呼ぶ)の形状は、特定の形状に限定されるものではなく、例えば、円形や半円形或いは楕円形や半楕円形でも良く、また、三角形や四角形或いは他の多角形でも良い。   Cross sections orthogonal to the flow direction of the fluid passing through the flow path (in other words, the axial direction of the flow path) of each of the first supply path 12, the second supply path 13, and the first combined flow path 14 The shape of the “channel cross section”) is not limited to a specific shape, and may be, for example, a circle, a semicircle, an ellipse, or a semi-ellipse, and may be a triangle, a rectangle, or another polygon. good.

第一の供給路12及び第二の供給路13並びに第一の合流路14は、内径(別言すれば、流路断面の差渡し)の最大寸法が例えば0.05〜1 mm 程度の範囲で設定されて形成される。なお、本発明における流路の内径に纏わる最大寸法とは、流路断面の形状が、円形や半円形である場合には直径の大きさであり、楕円形や半楕円形である場合には長軸の長さであり、三角形である場合には最も長い辺の長さであり、また、四角以上の多角形である場合には複数の対角線のうちの最も長い対角線の長さである。   The first supply path 12, the second supply path 13, and the first combined flow path 14 have a maximum dimension of an inner diameter (in other words, a flow path cross-section difference) in a range of, for example, about 0.05 to 1 mm. Is set and formed. In the present invention, the maximum dimension associated with the inner diameter of the flow path is the diameter when the cross-sectional shape of the flow path is circular or semi-circular, and when the shape is elliptical or semi-elliptical. The length of the long axis is the length of the longest side in the case of a triangle, and the length of the longest diagonal of a plurality of diagonal lines in the case of a polygon of four or more squares.

合流ポイント15に於いて、第一の供給路12から供給される第一の流体試料1と第二の供給路13から供給される第二の流体試料2とが受ける圧力の差を小さくすることにより、第一の合流路14への第一の流体試料1や第二の流体試料2の供給の制御が容易になる(具体的には、合流ポイント15に於ける第一の流体試料1と第二の流体試料2との圧力の釣り合いの調整が容易になり、延いては第一の流体試料1と第二の流体試料2とをどちらも途切れること無く連続流として供給することが容易になる)。このため、第一の供給路12及び第二の供給路13の流路断面は、第一・第二の流体試料1,2の粘性や流量が考慮された上で、適当な形状及び適当な大きさに適宜設定されることが好ましい。   To reduce the difference in pressure received by the first fluid sample 1 supplied from the first supply passage 12 and the second fluid sample 2 supplied from the second supply passage 13 at the junction 15. This facilitates the control of the supply of the first fluid sample 1 and the second fluid sample 2 to the first merge channel 14 (specifically, the first fluid sample 1 at the merge point 15 and It is easy to adjust the balance of pressure with the second fluid sample 2, and thus it is easy to supply both the first fluid sample 1 and the second fluid sample 2 as a continuous flow without interruption. Become). For this reason, the flow path cross sections of the first supply path 12 and the second supply path 13 have an appropriate shape and an appropriate shape in consideration of the viscosity and flow rate of the first and second fluid samples 1 and 2. It is preferable that the size is appropriately set.

《後段合流部》
後段合流部20は、基板21の内部に形成された、前段合流部10から流出した第一の流体試料1及び第二の流体試料2が流入する前段合流路22と、第三の流体試料3(尚、図1では、マイクロチューブ36A,36Bを通過するものとして矢印で表されている)が注入される一対の第三の供給路23A,23Bと、これら前段合流路22及び一対の第三の供給路23A,23Bが合流した先の流路であって第一乃至第三の流体試料1−3が供給される第二の合流路24とを有する。
《Post-merging section》
The rear stage merging section 20 includes a front stage merging channel 22 that is formed inside the substrate 21 and into which the first fluid sample 1 and the second fluid sample 2 that have flowed out from the front stage merging section 10 and a third fluid sample 3. In FIG. 1, a pair of third supply passages 23A and 23B into which the microtubes 36A and 36B pass are shown, and the pre-stage joint passage 22 and the pair of third supply passages. The supply passages 23A and 23B are the previous flow paths where the first and third fluid samples 1-3 are supplied.

図1に示す例では、前段合流部10と後段合流部20とが別個の基板11,21によって構成され、前段合流部10の第一の合流路14の開口18と後段合流部20の前段合流路22の開口26とがマイクロチューブ19によって接続される(言い換えると、連結される,連通する)ようにしている。しかしながら、前段合流部10と後段合流部20とがどちらも同じ一つの基板に形成され構成されるようにしたり、前段合流部10の第一の合流路14と後段合流部20の前段合流路22とが直接連通して一体のものとして形成され構成されるようにしたりしても良い。   In the example shown in FIG. 1, the front-stage merging section 10 and the rear-stage merging section 20 are configured by separate substrates 11 and 21, and the opening 18 of the first merging channel 14 of the front-stage merging section 10 and the front-stage merging section 20 are joined. The opening 26 of the path 22 is connected by the microtube 19 (in other words, connected and communicated). However, both the front-stage merging section 10 and the rear-stage merging section 20 are formed on the same substrate, or the first merging path 14 of the front-stage merging section 10 and the front-stage merging section 22 of the rear-stage merging section 20. Or may be formed and configured as an integrated unit.

基板21の材質は、特定の種類に限定されるものではなく、例えば前段合流路22,一対の第三の供給路23A,23B,及び第二の合流路24を流れる流体試料などと反応しないものであることが考慮されるなどした上で、適当なものが適宜選択される。基板21の材質としては、具体的には例えば、ガラス(石英),シリコン,金属,或いは樹脂が用いられ得る。   The material of the substrate 21 is not limited to a specific type. For example, the substrate 21 does not react with a fluid sample flowing through the front-stage combined channel 22, the pair of third supply channels 23 </ b> A and 23 </ b> B, and the second combined channel 24. Appropriate ones are appropriately selected in consideration of the above. Specifically, for example, glass (quartz), silicon, metal, or resin can be used as the material of the substrate 21.

基板21の寸法は、特定の数値に限定されるものではなく、例えば所定の形態の三相の流れを形成すると共に所望の操作や反応を進行させるために必要な各流路の長さが考慮されるなどした上で、適当な数値に適宜設定される。基板21は、具体的には例えば、あくまで一例として挙げると、板面視の寸法が10〜100 mm 程度の範囲である部材として形成され得る。   The dimensions of the substrate 21 are not limited to specific numerical values. For example, the length of each flow path necessary for forming a predetermined three-phase flow and a desired operation or reaction is taken into consideration. Is appropriately set to an appropriate numerical value. Specifically, for example, the substrate 21 may be formed as a member having a dimension in a plan view in the range of about 10 to 100 mm, for example.

基板21は、図1に示す例では矩形状に形成されているが、矩形状に限定されるものではなく、例えば他の多角形状或いは円形状や楕円形状に形成されても良い。   In the example shown in FIG. 1, the substrate 21 is formed in a rectangular shape, but is not limited to a rectangular shape, and may be formed in, for example, another polygonal shape, a circular shape, or an elliptical shape.

一対の第三の供給路23A,23Bが前段合流路22へと合流して第二の合流路24へと至る(言い換えると、連通する,連続する)合流ポイント25は、流入の三口と流出の一口とからなる四叉路を構成する。   A pair of third supply passages 23A and 23B joins the upstream joint passage 22 and leads to the second joint passage 24 (in other words, communicates and is continuous). Constructs a four-way with a single mouth.

流入の三口のうちの、中央/真ん中の口に前段合流路22が連通し、前記中央/真ん中の口の両側の口には一対の第三の供給路23A,23Bのそれぞれが連通する。   Of the three inlets, the front / middle channel 22 communicates with the center / middle port, and the pair of third supply channels 23A and 23B communicate with the ports on both sides of the center / middle port.

そして、前段合流路22と第二の合流路24とは合流ポイント25を挟んで配設される。   The pre-joining channel 22 and the second joining channel 24 are arranged with the joining point 25 interposed therebetween.

また、板面視において前段合流路22の、一方の側に一対のうちの一方の第三の供給路23Aが配設されて一端が合流ポイント25へと至り、他方の側に(言い換えると、前段合流路22を挟んで上記の第三の供給路23Aとは反対側に)一対のうちの他方の第三の供給路23Bが配設されて一端が合流ポイント25へと至る。   Further, in the plan view, one of the pair of third supply passages 23A is disposed on one side of the front-stage joint passage 22 and one end reaches the joining point 25, and on the other side (in other words, The other third supply path 23B of the pair is disposed on the opposite side of the third supply path 23A with the front-stage combined flow path 22 interposed therebetween, and one end reaches the confluence point 25.

これにより、前段合流路22から供給される第一の流体試料1及び第二の流体試料2によって形成される二相の流れが第二の合流路24の真ん中/中心部分に流され、前記二相の流れを両側から挟むように第三の流体試料3(別言すれば、第三の相)が流される。   As a result, the two-phase flow formed by the first fluid sample 1 and the second fluid sample 2 supplied from the front-stage combined channel 22 is caused to flow in the middle / center portion of the second combined channel 24, and the two The third fluid sample 3 (in other words, the third phase) is flowed so as to sandwich the phase flow from both sides.

前段合流路22の、流入口(別言すれば、供給口)に相当する一端は基板21の上面に形成された開口26へと連通し、流出口に相当する他端は合流ポイント25へと連通する。   One end corresponding to the inlet (in other words, the supply port) of the upstream joint channel 22 communicates with an opening 26 formed on the upper surface of the substrate 21, and the other end corresponding to the outlet passes to the junction point 25. Communicate.

一対のうちの一方の第三の供給路23Aの、流入口(換言すれば、注入口)に相当する一端は基板21の上面に形成された開口27Aへと連通し、流出口に相当する他端は合流ポイント25へと連通する。   One end of the third supply path 23A of one of the pair communicates with an opening 27A formed on the upper surface of the substrate 21 and corresponds to the other outlet. The end communicates with the junction point 25.

一対のうちの他方の第三の供給路23Bの、流入口(換言すれば、注入口)に相当する一端は基板21の上面に形成された開口27Bへと連通し、流出口に相当する他端は合流ポイント25へと連通する。   One end of the other third supply path 23B of the pair corresponding to the inlet (in other words, the inlet) communicates with an opening 27B formed on the upper surface of the substrate 21 and corresponds to the outlet. The end communicates with the junction point 25.

第二の合流路24の、流入口(別言すれば、供給口)に相当する一端は合流ポイント25へと連通し、流出口(換言すれば、排出口,取出し口)に相当する他端は基板21の上面に形成された開口28へと連通する。   One end of the second junction 24 corresponding to the inlet (in other words, the supply port) communicates with the junction point 25, and the other end corresponding to the outlet (in other words, the outlet and the outlet). Communicates with an opening 28 formed in the upper surface of the substrate 21.

基板21は基底部を構成する板状部材と天板部を構成する板状部材とから構成され、基底部の板表面に例えばエッチングや研削等の微細機械加工によって前段合流路22,一対の第三の供給路23A・23B,及び第二の合流路24が例えば溝として形成される。そして、基底部の板表面に溝が形成された状態で天板部の板表面が基底部の板表面へと貼り合わされて接合されて基板21が構成され、また、前段合流路22,一対の第三の供給路23A,23B,及び第二の合流路24が構成される。   The substrate 21 is composed of a plate-like member constituting the base portion and a plate-like member constituting the top plate portion. The three supply paths 23A and 23B and the second combined path 24 are formed as grooves, for example. And the board | substrate 21 is comprised by affixing the board | plate surface of a top-plate part on the board | plate surface of a base | substrate part in the state in which the groove | channel was formed in the board | substrate surface of a base | base part, and it joins, and also the front-stage joint flow path 22, Third supply paths 23A and 23B and a second combined path 24 are configured.

各流路22−24の構成態様は上述の態様に限定されるものではなく、基板21の天板部を構成する板状部材の板表面に溝が形成された上で基底部を構成する板状部材の板表面と貼り合わされて結合されて構成されるようにしても良く、或いは、基板21の基底部を構成する板状部材の板表面と天板部を構成する板状部材の板表面とのそれぞれの対向する位置に溝が形成された上でこれら二つの板状部材の板表面が貼り合わされて結合されて構成されるようにしても良く、更に或いは、基板21の基底部を構成する板状部材の板表面に各流路22−24のうちの一部に相当する溝が形成された上で天板部を構成する板状部材の板表面に各流路22−24のうちの一部に相当する溝が形成された上でこれら二つの板状部材の板表面が貼り合わされて結合されて構成されるようにしても良い。   The configuration mode of each flow path 22-24 is not limited to the above-described mode, and a plate that forms a base portion after a groove is formed on the plate surface of a plate-like member that forms the top plate portion of the substrate 21. The plate surface of the plate-like member may be configured to be bonded and bonded to the plate surface of the plate-like member, or the plate surface of the plate-like member constituting the base portion of the substrate 21 and the plate surface of the plate-like member constituting the top plate portion. And the surface of these two plate-like members may be bonded and joined together, and the base portion of the substrate 21 may be configured. A groove corresponding to a part of each flow path 22-24 is formed on the plate surface of the plate-like member to be formed, and the flow path 22-24 is formed on the plate surface of the plate-like member constituting the top plate portion. After the grooves corresponding to a part of the plate are formed, the plate surfaces of these two plate-like members are bonded together. It may be constituted coupled Te.

また、上述の開口26,27A及び27B,並びに28は、天板部に、貫通孔として形成される。   Moreover, the above-mentioned openings 26, 27A and 27B, and 28 are formed as through holes in the top plate portion.

前段合流路22は前段合流部10の第一の合流路14から流出する第一の流体試料1及び第二の流体試料2を第二の合流路24へと供給するための流路であり、前段合流部10の第一の合流路14の開口18へと一端が接続しているマイクロチューブ19の他端が前段合流路22の開口26に接続される。   The pre-joint flow path 22 is a flow path for supplying the first fluid sample 1 and the second fluid sample 2 flowing out from the first join flow path 14 of the pre-stage join section 10 to the second join flow path 24, The other end of the microtube 19, one end of which is connected to the opening 18 of the first joining channel 14 of the preceding joining unit 10, is connected to the opening 26 of the preceding joining channel 22.

一対の第三の供給路23A,23Bは第二の合流路24へと第三の流体試料3を供給するための流路であり、これら一対の第三の供給路23A,23Bの開口27A,27Bの各々には、マイクロチューブ36A,36Bを介して一対の第三の供給路23A,23Bへと第三の流体試料3を注入するための第三の流体供給手段33A,33Bが接続され連結される。   The pair of third supply passages 23A and 23B is a passage for supplying the third fluid sample 3 to the second combined passage 24, and the openings 27A and the pairs of the third supply passages 23A and 23B. 27B is connected to third fluid supply means 33A and 33B for injecting the third fluid sample 3 into the pair of third supply paths 23A and 23B via the microtubes 36A and 36B. Is done.

一対の第三の流体供給手段33A,33Bのそれぞれが操作されることによって所定の流量で第三の流体試料3が一対の第三の供給路23A,23Bのそれぞれへと注入され、延いては第三の流体試料3が第二の合流路24へと供給される。   By operating each of the pair of third fluid supply means 33A and 33B, the third fluid sample 3 is injected into each of the pair of third supply passages 23A and 23B at a predetermined flow rate, and thus The third fluid sample 3 is supplied to the second combined channel 24.

上述の構成により、第一乃至第三の流体試料1−3が第二の合流路24へと供給される。   With the above configuration, the first to third fluid samples 1-3 are supplied to the second combined channel 24.

第二の合流路24は、例えば液液抽出操作や気液抽出操作或いは触媒反応などの、所望の操作や反応を進行させるための区間である。   The second combined channel 24 is a section for advancing a desired operation or reaction such as a liquid-liquid extraction operation, a gas-liquid extraction operation, or a catalytic reaction.

第二の合流路24は、図1に示す例では直線状に表されているが、直線状に限定されるものではなく、所望の操作や反応を進行させる区間を確保するために例えば蛇行する(具体的には、直線状の流路と湾曲形状の流路とが交互に複数連接して連続する)ように形成されても良い。   In the example shown in FIG. 1, the second combined channel 24 is linearly represented, but is not limited to a linear shape, and for example, meanders in order to secure a section in which a desired operation or reaction proceeds. (Specifically, a plurality of linear flow paths and curved flow paths may be continuously connected in succession).

第三の流体供給手段33A,33Bは、特定の機器や仕組みに限定されるものではなく、一対の第三の供給路23A,23Bへと供給される流体試料の種別・種類や性状に合わせて適当なものが適宜選択される。   The third fluid supply means 33A, 33B is not limited to a specific device or mechanism, and is adapted to the type, type, and properties of the fluid sample supplied to the pair of third supply paths 23A, 23B. An appropriate one is appropriately selected.

第三の流体供給手段33A,33Bとしては、具体的には例えば、流体試料が気体である場合には、あくまで一例としては、マスフローコントローラーや圧力制御型ポンプが挙げられ、また、流体試料が液体である場合には、あくまで一例としては、シリンジポンプ,ダイヤフラムポンプ,或いは圧力制御型ポンプが挙げられる。   Specifically, as the third fluid supply means 33A and 33B, for example, when the fluid sample is a gas, examples include a mass flow controller and a pressure control type pump, and the fluid sample is a liquid. In this case, as an example, a syringe pump, a diaphragm pump, or a pressure control type pump can be cited as an example.

第三の流体供給手段33A,33Bは、前段合流部10を経て後段合流部20の第二の合流路24内に於いて三相の流れが形成され得るように流体試料の供給流量が調整され得るように、流体送出速度を制御するなどして流量を調整する機能を備えていることが好ましい。   In the third fluid supply means 33A and 33B, the supply flow rate of the fluid sample is adjusted so that a three-phase flow can be formed in the second junction channel 24 of the rear-stage junction section 20 via the front-stage junction section 10. It is preferable to have a function of adjusting the flow rate by controlling the fluid delivery speed, for example.

一対の第三の流体供給手段33A,33Bは、一対の第三の供給路23A,23Bのそれぞれへと等しい供給流量で第三の流体試料3を注入するようにそれぞれが調整されることが好ましい。   Each of the pair of third fluid supply means 33A and 33B is preferably adjusted so as to inject the third fluid sample 3 at an equal supply flow rate to each of the pair of third supply paths 23A and 23B. .

一対の第三の供給路23A,23Bのそれぞれへと等しい流量で第三の流体試料3が注入されると共に一対の第三の供給路23A,23Bを介して第一及び第二の流体試料1,2の二相の流れを両側から挟むように第三の流体試料3が流されることにより、釣り合いがとられた流量の流体試料が両側から供給されるようになり、本発明が企図する形態の相流が一層確実に第二の合流路24内に形成されるようになる。   The third fluid sample 3 is injected at an equal flow rate into each of the pair of third supply paths 23A and 23B, and the first and second fluid samples 1 are passed through the pair of third supply paths 23A and 23B. , 2 so as to sandwich the two-phase flow from both sides, a balanced flow rate of the fluid sample is supplied from both sides, and the form contemplated by the present invention This phase flow is more reliably formed in the second combined flow path 24.

前段合流路22,一対の第三の供給路23A・23B,及び第二の合流路24は、マイクロ流路(別言すれば、小径流路)として形成される。   The front-stage combined channel 22, the pair of third supply channels 23A and 23B, and the second combined channel 24 are formed as micro channels (in other words, small-diameter channels).

前段合流路22,一対の第三の供給路23A・23B,及び第二の合流路24それぞれの、流路断面の形状は、特定の形状に限定されるものではなく、例えば、円形や半円形或いは楕円形や半楕円形でも良く、また、三角形や四角形或いは他の多角形でも良い。   The shape of the cross section of each of the upstream combined flow path 22, the pair of third supply paths 23A and 23B, and the second combined flow path 24 is not limited to a specific shape. Alternatively, an elliptical shape or a semi-elliptical shape may be used, and a triangular shape, a rectangular shape, or another polygonal shape may be used.

前段合流路22,一対の第三の供給路23A・23B,及び第二の合流路24は、内径(別言すれば、流路断面の差渡し)の最大寸法が例えば0.1〜2 mm 程度の範囲で設定されて形成される。   The maximum dimension of the inner diameter (in other words, the difference in flow path cross section) of the front combined flow path 22, the pair of third supply paths 23A and 23B, and the second combined flow path 24 is, for example, 0.1 to 2 mm. It is set and formed within a range.

合流ポイント25に於いて、前段合流路22から供給される第一の流体試料1及び第二の流体試料2と一対の第三の供給路23A,23Bから供給される第三の流体試料3とが受ける圧力の差を小さくすることにより、第一の合流路14への第一の流体試料1や第二の流体試料2の供給も含めて一対の第三の供給路23A,23Bへの第三の流体試料3の供給の制御が容易になる(具体的には、合流ポイント25に於ける第一の流体試料1及び第二の流体試料2と第三の流体試料3との圧力の釣り合いの調整が容易になり、延いては第一の流体試料1及び第二の流体試料2と第三の流体試料3とをどちらも途切れること無く連続流として供給することが容易になる)。このため、前段合流路22及び一対の第三の供給路23A,23Bの流路断面は、第一乃至第三の流体試料1−3の粘性や流量が考慮された上で、適当な形状及び適当な大きさに適宜設定されることが好ましい。   At the confluence point 25, the first fluid sample 1 and the second fluid sample 2 supplied from the previous stage combined flow path 22, and the third fluid sample 3 supplied from the pair of third supply paths 23A and 23B, By reducing the pressure difference received by the first fluid sample 1 and the second fluid sample 2 to the first combined channel 14, the first to the third supply channels 23A, 23B including the first fluid sample 1 and the second fluid sample 2 is supplied. The supply of the three fluid samples 3 can be easily controlled (specifically, the pressure balance between the first fluid sample 1 and the second fluid sample 2 and the third fluid sample 3 at the junction point 25). Adjustment of the first fluid sample 1 and the second fluid sample 2 and the third fluid sample 3 can be easily performed without interruption. For this reason, the flow path cross sections of the front-stage combined flow path 22 and the pair of third supply paths 23A and 23B have an appropriate shape and the viscosity and flow rate of the first to third fluid samples 1-3 are considered. It is preferable that the size is appropriately set.

また、一対の第三の供給路23A,23Bのそれぞれから供給される第三の流体試料3が第二の合流路24に於いて均一な液膜を形成し得るようにするために、一対の第三の供給路23A,23Bのそれぞれから供給される第三の流体試料3の流速が同一であることが好ましく、一対の第三の供給路23A,23Bの流路断面の形状及び大きさが同一であるように形成されることが好ましい。   Further, in order to allow the third fluid sample 3 supplied from each of the pair of third supply paths 23A and 23B to form a uniform liquid film in the second combined path 24, a pair of It is preferable that the flow rate of the third fluid sample 3 supplied from each of the third supply paths 23A and 23B is the same, and the shape and size of the channel cross-section of the pair of third supply paths 23A and 23B are the same. It is preferable that they are formed to be the same.

また、前段合流部10の第一の供給路12及び第二の供給路13並びに第一の合流路14の流路断面の大きさよりも、後段合流部20の前段合流路22,第三の供給路23A・23B,及び第二の合流路24の断面の大きさの方が、小さいことは好ましくなく、大きいことが好ましい。後段合流部20の第二の合流路24の方が前段合流部10の第一の合流路14よりも流路断面が大きくなるように調節されて形成されることにより、第二の合流路24に於ける流体試料の流速の増大が抑制され、第二の合流路24に於ける所望の操作や反応を進行させるための時間が適切に調整され得る。
《流体試料,相流の形態》
Further, the first supply path 12, the second supply path 13 and the first supply path 14 of the front-stage merge section 10 are larger than the size of the cross-section of the first merge path 14, and the front-stage merge path 22 and the third supply of the rear-stage merge section 20 are compared. It is not preferable that the cross-sectional sizes of the paths 23A and 23B and the second combined flow path 24 are small, and it is preferable that the size is large. The second joining channel 24 is formed such that the second joining channel 24 of the rear joining unit 20 is adjusted to have a larger channel cross section than the first joining channel 14 of the preceding joining unit 10. The increase in the flow rate of the fluid sample in the second channel is suppressed, and the time for a desired operation or reaction in the second combined channel 24 to proceed can be adjusted appropriately.
<< Fluid sample, phase flow >>

本発明では、第二の合流路24内に、三相の流れが形成され、具体的には、中心相と当該中心相の周囲を取り囲む膜相(別言すれば、液膜)と当該膜相中又は当該膜相上(即ち、膜相の流路中心側の表面上;言い換えると、膜相と流路中心部分を流れる相との間)を流れる不連続相とからなる三相の流れ、或いは、中心相と当該中心相の周囲を取り囲む連続する二相のパイプフローからなる三相の流れが形成される。前記における不連続相は、(流体供給手段から流体試料が継続的・連続的に供給されたとしても)液体が例えば液滴状やスラグ状に流れることによって構成される。   In the present invention, a three-phase flow is formed in the second combined flow path 24, specifically, a central phase and a membrane phase surrounding the central phase (in other words, a liquid film) and the membrane A three-phase flow composed of a discontinuous phase flowing in the phase or on the membrane phase (that is, on the surface of the membrane phase on the channel center side; in other words, between the membrane phase and the phase flowing in the center of the channel) Alternatively, a three-phase flow is formed that consists of a central phase and a continuous two-phase pipe flow surrounding the central phase. The discontinuous phase in the above is constituted by the liquid flowing, for example, in the form of droplets or slugs (even if the fluid sample is continuously or continuously supplied from the fluid supply means).

上記の三相の流れが形成されるようにするため、第一乃至第三の流体試料1−3としては、性状が異なって互いに混ざり合うことがない(別言すれば、相互に不混和の)流体、言い換えると、相互に液液界面若しくは気液界面を形成する流体が選択される。なお、相互に混ざり合うことがない(言い換えると、液液界面や気液界面が形成される)液体であれば第一乃至第三の流体試料1−3の全てが液体でも良く、或いは、第一の流体試料1若しくは第二の流体試料2のうちの一方が気体でも良い。   In order to form the above three-phase flow, the first to third fluid samples 1-3 have different properties and do not mix with each other (in other words, they are immiscible with each other). ) A fluid, in other words, a fluid that forms a liquid-liquid interface or a gas-liquid interface with each other is selected. If the liquid does not mix with each other (in other words, a liquid-liquid interface or a gas-liquid interface is formed), all of the first to third fluid samples 1-3 may be liquid, or the first One of the one fluid sample 1 or the second fluid sample 2 may be a gas.

第一乃至第三の流体試料1−3として全て液体が選択される場合には、具体的には例えば、あくまで一例としては、水性液体と油性液体とに加えてこれら水性液体や油性液体と混ざり合うことがない(言い換えると、溶けない)フッ素系溶媒が選択され得る。   When all of the liquids are selected as the first to third fluid samples 1-3, specifically, for example, as an example, in addition to the aqueous liquid and the oily liquid, the aqueous liquid and the oily liquid are mixed. A fluorine-based solvent that does not fit (in other words, does not dissolve) can be selected.

第一乃至第三の流体試料1−3について、具体的には例えば、第二の合流路24内に気相,水相,及び油相が流れる(言い換えると、気相,水相,及び油相からなる三相の流れが形成される)ようにし、第二の合流路24の内周面に水相と油相とのうちのどちらか一方の液相の液膜が形成されると共に、当該液膜中または当該液膜上(即ち、液膜の流路中心側の表面上;言い換えると、液膜と流路中心部分を流れる相との間)をもう一方の液相が流れ、且つ、流路中心部分を気相が流れる形態が構成されるようにすることが考えられる。   For the first to third fluid samples 1-3, specifically, for example, the gas phase, the water phase, and the oil phase flow in the second combined channel 24 (in other words, the gas phase, the water phase, and the oil). And a liquid film of one of the water phase and the oil phase is formed on the inner peripheral surface of the second combined flow path 24, The other liquid phase flows in the liquid film or on the liquid film (that is, on the surface of the liquid film on the channel center side; in other words, between the liquid film and the phase flowing in the center of the channel), and It is conceivable that a configuration in which the gas phase flows in the center portion of the flow path is configured.

第二の合流路24内に水相と油相とが流れるようにした場合には、第二の合流路24の内周面を親水性表面と疎水性表面とのうちのどちらにするかにより、第二の合流路24内に形成される三相の流れの形態が制御され得る。   When the water phase and the oil phase flow in the second combined channel 24, depending on whether the inner peripheral surface of the second combined channel 24 is a hydrophilic surface or a hydrophobic surface. The form of the three-phase flow formed in the second combined channel 24 can be controlled.

第二の合流路24の内周面が親水性表面であると共に、第一の流体試料1として気体が用いられ、第二の流体試料2として油性の液体が用いられ、さらに、第三の流体試料3として水性の液体が用いられる場合には、第一の合流路14に於いて気体と油性液体とが合流して当該流路内に気相−油相流が形成され、第二の合流路24内に流れている気相−油相流へと水性液体(水相)が更に流されることにより、図2に示すように、第二の合流路24の内周面上(即ち、親水性表面上)に水性液体(水相;符号3)の液膜が形成され、当該液膜中または当該液膜上に油性液体(油相;符号2)が液滴状やスラグ状に流れ、気体(気相;符号1)が流路中心部分を流れる三相の流れが形成される。   The inner peripheral surface of the second combined channel 24 is a hydrophilic surface, gas is used as the first fluid sample 1, oily liquid is used as the second fluid sample 2, and the third fluid When an aqueous liquid is used as the sample 3, the gas and the oily liquid merge in the first combined flow path 14 to form a gas phase-oil phase flow in the flow path, and the second combined flow. When the aqueous liquid (aqueous phase) is further flowed into the gas phase-oil phase flow flowing in the passage 24, as shown in FIG. A liquid film of an aqueous liquid (aqueous phase; reference numeral 3) is formed on the surface of the liquid, and the oily liquid (oil phase; reference numeral 2) flows in the liquid film or on the liquid film in the form of droplets or slag, A three-phase flow is formed in which the gas (gas phase; reference numeral 1) flows through the central portion of the flow path.

上記の場合に、また、第二の合流路24の内周面上(即ち、親水性表面上)に水性液体(水相)の液膜が形成され、当該液膜上(即ち、液膜の流路中心側の表面上;言い換えると、液膜と流路中心部分を流れる相との間)に油性液体(油相)が連続体として(言い換えると、連続する管状に)流れ、気体(気相)が流路中心部分を流れる形態、すなわち、中心の気相と当該気相の周囲を取り囲む連続する管状の油相及び水相の二層のパイプフローとからなる形態もあり得る。   In the above case, a liquid film of an aqueous liquid (aqueous phase) is formed on the inner peripheral surface of the second combined channel 24 (that is, on the hydrophilic surface), and the liquid film (that is, the liquid film) On the surface on the channel center side; in other words, between the liquid film and the phase flowing in the center of the channel, the oily liquid (oil phase) flows as a continuum (in other words, in a continuous tube), and gas (gas (Phase) may flow in the central portion of the flow path, that is, a form composed of a two-layer pipe flow of a central gas phase and a continuous tubular oil phase and an aqueous phase surrounding the gas phase.

なお、ガラスは親水性であるため、後段合流部20の基板21がガラス(或いは、ガラスなどの親水性の材料)によって形成された場合には、特段の処理が施されることなく、第二の合流路24の内周面は親水性表面として取り扱われ得る。   In addition, since glass is hydrophilic, when the substrate 21 of the post-merging portion 20 is formed of glass (or a hydrophilic material such as glass), the second treatment is not performed. The inner peripheral surface of the joint channel 24 can be treated as a hydrophilic surface.

第二の合流路24の内周面が疎水性表面であると共に、第一の流体試料1として気体が用いられ、第二の流体試料2として水性の液体が用いられ、さらに、第三の流体試料3として油性の液体が用いられる場合には、第一の合流路14に於いて気体と水性液体とが合流して当該流路内に気相−水相流が形成され、第二の合流路24内に流れている気相−水相流へと油性液体(油相)が更に流されることにより、図3に示すように、第二の合流路24の内周面上(即ち、疎水性表面上)に油性液体(油相;符号3)の液膜が形成され、当該液膜中または当該液膜上に水性液体(水相;符号2)が液滴状やスラグ状に流れ、気体(気相;符号1)が流路中心部分を流れる三相の流れが形成される。   The inner peripheral surface of the second combined channel 24 is a hydrophobic surface, a gas is used as the first fluid sample 1, an aqueous liquid is used as the second fluid sample 2, and a third fluid is used. When an oily liquid is used as the sample 3, the gas and the aqueous liquid are merged in the first combined flow path 14 to form a gas-water phase flow in the flow path, and the second combined flow When the oily liquid (oil phase) is further flowed into the gas phase-water phase flow flowing in the passage 24, as shown in FIG. A liquid film of an oily liquid (oil phase; code 3) is formed on the surface of the liquid, and an aqueous liquid (water phase; code 2) flows in droplets or slugs in or on the liquid film, A three-phase flow is formed in which the gas (gas phase; reference numeral 1) flows through the central portion of the flow path.

上記の場合に、また、第二の合流路24の内周面上(即ち、疎水性表面上)に油性液体(油相)の液膜が形成され、当該液膜上(即ち、液膜の流路中心側の表面上;言い換えると、液膜と流路中心部分を流れる相との間)に水性液体(水相)が連続体として(言い換えると、連続する管状に)流れ、気体(気相)が流路中心部分を流れる形態、すなわち、中心部分の気相と当該気相の周囲を取り囲む連続する管状の水相及び油相の二層のパイプフローとからなる形態もあり得る。   In the above case, a liquid film of an oily liquid (oil phase) is formed on the inner peripheral surface of the second combined channel 24 (that is, on the hydrophobic surface), and the liquid film (that is, the liquid film) An aqueous liquid (aqueous phase) flows as a continuum (in other words, into a continuous tube) on the surface on the channel center side; in other words, between the liquid film and the phase flowing in the center of the channel. (Phase) may flow in the central part of the flow path, that is, a form consisting of a two-phase pipe flow of a gas phase in the central part and a continuous tubular water phase and oil phase surrounding the gas phase.

第二の合流路24の内周面を疎水化させる方法は、特定の手法に限定されるものではないものの、具体的には例えばオクタデシルトリエトキシシラン等のシラン化剤やフッ素系コーティング剤が用いられて疎水化する手法が用いられ得る。   Although the method of hydrophobizing the inner peripheral surface of the second combined channel 24 is not limited to a specific method, specifically, for example, a silanizing agent such as octadecyltriethoxysilane or a fluorine-based coating agent is used. And the method of hydrophobizing can be used.

なお、第一の合流路14へと供給される第一の流体試料1と第二の流体試料2とのうちのどちらが流路中心部分を流れる相になるのかは、二つの流体試料1,2の主に粘性によって決定され、二つの流体試料1,2のうちの粘性が低い方の流体試料が流路中心部分を流れる相になる。   Note that which of the first fluid sample 1 and the second fluid sample 2 supplied to the first combined channel 14 becomes a phase flowing through the center portion of the channel is determined by the two fluid samples 1 and 2. The fluid sample having the lower viscosity of the two fluid samples 1 and 2 becomes a phase flowing through the central portion of the flow path.

また、上述のマイクロリアクターが触媒系の反応装置として用いられるようにしても良く、この場合に、第二の合流路24の内周面に触媒の層(言い換えると、被膜)が固定化されて設けられるようにしても良い。この場合には、触媒表面上(言い換えると、触媒層の内周面上)を液相が液膜状に流れ、触媒表面で起こる触媒反応によって生成される物質を、別の相における(言い換えると、別の相との)反応などに効率的に利用することが可能になる。   In addition, the above-described microreactor may be used as a catalytic reactor, and in this case, a catalyst layer (in other words, a coating) is immobilized on the inner peripheral surface of the second combined channel 24. It may be provided. In this case, the liquid phase flows in the form of a liquid film on the catalyst surface (in other words, on the inner peripheral surface of the catalyst layer), and the substance produced by the catalytic reaction occurring on the catalyst surface is transferred to another phase (in other words, It can be efficiently used for a reaction with another phase.

特に光触媒系の反応装置として上述のマイクロリアクターが用いられる場合には、第二の合流路24の内周面に光触媒の層が固定化されて設けられて第二の合流路24に対して紫外線等の光線が照射される。また、光触媒系の反応装置として用いられる場合、基板21(尚、基板21が基底部と天板部とから構成される場合にはこれら基底部と天板部とのうちの少なくとも一方)は、例えばガラスなどの光透過性を備える材質によって形成される。   In particular, when the above-described microreactor is used as a photocatalytic reaction device, a photocatalyst layer is fixedly provided on the inner peripheral surface of the second combined flow path 24, and ultraviolet light is applied to the second combined flow path 24. Etc. are irradiated. When used as a photocatalytic reactor, the substrate 21 (in the case where the substrate 21 is composed of a base and a top plate), at least one of the base and the top plate) For example, it is formed of a material having optical transparency such as glass.

《操作手順》
上述したマイクロリアクターの基本的な操作手順を以下に説明する。
"Operating procedure"
The basic operation procedure of the microreactor described above will be described below.

まず、前段合流部10を構成する基板11に形成された第一の供給路12の開口16に、マイクロチューブ34を介して、第一の流体供給手段31が接続される。図1に示す例では、第一の流体試料1が気体であり、第一の流体供給手段31としてマスフローコントローラーが用いられるようにしている。   First, the first fluid supply means 31 is connected through the microtube 34 to the opening 16 of the first supply path 12 formed in the substrate 11 that constitutes the upstream junction 10. In the example shown in FIG. 1, the first fluid sample 1 is a gas, and a mass flow controller is used as the first fluid supply means 31.

また、基板11に形成された第二の供給路13の開口17に、マイクロチューブ35を介して、第二の流体試料2が収容された第二の流体供給手段32が接続される。図1に示す例では、第二の流体試料2が液体であり、第二の流体供給手段32としてシリンジポンプが用いられるようにしている。   Further, the second fluid supply means 32 in which the second fluid sample 2 is accommodated is connected to the opening 17 of the second supply path 13 formed in the substrate 11 via the microtube 35. In the example shown in FIG. 1, the second fluid sample 2 is a liquid, and a syringe pump is used as the second fluid supply means 32.

さらに、後段合流部20を構成する基板21に形成された一対の第三の供給路23A,23B各々の開口27A,27Bそれぞれに、マイクロチューブ36A,36Bを介して、第三の流体試料3が収容された第三の流体供給手段33A,33Bが接続される。図1に示す例では、第三の流体試料3が液体であり、第三の流体供給手段33A,33Bとしてシリンジポンプが用いられるようにしている。   Further, the third fluid sample 3 is passed through the microtubes 36A and 36B to the openings 27A and 27B of the pair of third supply passages 23A and 23B formed in the substrate 21 constituting the post-merging portion 20, respectively. The accommodated third fluid supply means 33A and 33B are connected. In the example shown in FIG. 1, the third fluid sample 3 is a liquid, and a syringe pump is used as the third fluid supply means 33A, 33B.

第一乃至第三の流体供給手段31,32,並びに33A及び33Bのそれぞれに対して流体注入開始の操作が行われ、前段合流部10の第一の供給路12へと第一の流体試料1(図1に示す例では、気相)が注入されると共に、第二の供給路13へと第二の流体試料2(図1に示す例では、液相)が注入され、さらに、後段合流部20の一対の第三の供給路23A,23Bのそれぞれへと第三の流体試料3(図1に示す例では、液相)が注入される。   A fluid injection start operation is performed on each of the first to third fluid supply means 31 and 32, and 33A and 33B, and the first fluid sample 1 is supplied to the first supply path 12 of the upstream junction 10. (In the example shown in FIG. 1, the gas phase) is injected, and the second fluid sample 2 (in the example shown in FIG. 1, the liquid phase) is injected into the second supply path 13. The third fluid sample 3 (in the example shown in FIG. 1, the liquid phase) is injected into each of the pair of third supply paths 23 </ b> A and 23 </ b> B of the unit 20.

このとき、第二の合流路24の内周面上に形成される相(言い換えると、内周面へと接する相,内周面に接する液膜を構成する相)に対応する流体試料(下記※1を参照)が第三の流体供給手段33A,33Bに収容されて当該第三の流体供給手段33A,33Bによる流体注入開始の操作が最初に行われて第二の合流路24内が第三の流体試料3で満たされた後に、第一の流体供給手段31及び第二の流体供給手段32による流体注入開始の操作が行われるという手順が好ましい。
(※1)例えば、図2に示す例のように第二の合流路24の内周面が親水性表面である場合の水性液体や、図3に示す例のように第二の合流路24の内周面が疎水性表面である場合の油性液体が挙げられる。
At this time, a fluid sample (described below) corresponding to a phase formed on the inner peripheral surface of the second combined channel 24 (in other words, a phase in contact with the inner peripheral surface, a phase constituting a liquid film in contact with the inner peripheral surface). * 1) is accommodated in the third fluid supply means 33A, 33B, the fluid injection start operation by the third fluid supply means 33A, 33B is performed first, and the inside of the second combined flow path 24 is It is preferable that the first fluid supply means 31 and the second fluid supply means 32 be operated to start fluid injection after being filled with the third fluid sample 3.
(* 1) For example, an aqueous liquid in the case where the inner peripheral surface of the second combined channel 24 is a hydrophilic surface as in the example shown in FIG. 2, or the second combined channel 24 as in the example shown in FIG. An oily liquid in the case where the inner peripheral surface of the is a hydrophobic surface.

上記の手順が採用されることにより、第二の合流路24の内周面上に形成される相ではない相に対応する流体試料(「非膜相試料」と呼ぶ)が第二の合流路24へと最初に注入されて当該第二の合流路24内が非膜相試料で満たされた後に第二の合流路24の内周面上に形成される相に対応する流体試料(「膜相試料」と呼ぶ)が注入されたときに、非膜相試料が流路内周面上に残存して(言い換えると、付着して)膜相試料による膜相(液膜)の形成が阻害される状況を回避することが可能になり、延いては、第二の合流路24の内周面上に膜相(液膜)が適切に形成された上で非膜相試料が供給されることになり、第二の合流路24内に於いて三相の流れが一層確実に形成されるようになる。   By adopting the above procedure, a fluid sample (referred to as a “non-membrane phase sample”) corresponding to a phase that is not a phase formed on the inner peripheral surface of the second combined channel 24 is converted into the second combined channel. Fluid sample corresponding to the phase formed on the inner peripheral surface of the second combined channel 24 after the second combined channel 24 is filled with the non-membrane phase sample. When the "phase sample" is injected, the non-membrane phase sample remains on the inner peripheral surface of the flow path (in other words, adheres) and the formation of the membrane phase (liquid film) by the membrane phase sample is inhibited. In other words, a non-membrane phase sample is supplied after a membrane phase (liquid film) is appropriately formed on the inner peripheral surface of the second combined channel 24. As a result, a three-phase flow is more reliably formed in the second combined flow path 24.

そして、前段合流部10の第一の供給路12を通過した第一の流体試料1及び第二の供給路13を通過した第二の流体試料2が第一の合流路14へと供給されて合流した上で(図1に示す例では、気相−液相流を形成した上で)マイクロチューブ19を介して後段合流部20の開口26から前段合流路22へと流入する。   Then, the first fluid sample 1 that has passed through the first supply path 12 of the upstream junction 10 and the second fluid sample 2 that has passed through the second supply path 13 are supplied to the first merge path 14. After joining (in the example shown in FIG. 1, after forming a gas phase-liquid phase flow), it flows from the opening 26 of the rear joining portion 20 to the front joining passage 22 through the microtube 19.

前段合流路22を通過した第一の流体試料1及び第二の流体試料2(言い換えると、第一の流体試料1と第二の流体試料2とが合流した流体;図1に示す例では、気相−液相流)並びに一対の第三の供給路23A,23Bを通過した第三の流体試料3がこれら一対の第三の供給路23A,23Bのそれぞれから第二の合流路24へと供給される。   The first fluid sample 1 and the second fluid sample 2 (in other words, the fluid in which the first fluid sample 1 and the second fluid sample 2 are joined; Gas phase-liquid phase flow) and the third fluid sample 3 that has passed through the pair of third supply passages 23A, 23B from each of the pair of third supply passages 23A, 23B to the second combined passage 24. Supplied.

第一乃至第三の流体試料1−3が合流する第二の合流路24内に、これら第一乃至第三の流体試料1−3によって三相の流れが形成される。   A three-phase flow is formed by the first to third fluid samples 1-3 in the second joining channel 24 where the first to third fluid samples 1-3 join.

そして、第二の合流路24に於いて、流体試料による三相の流れが形成された状態で、例えば、液液抽出や気液抽出が行われたり、液液界面や気液界面での化学反応が行われたり、或いは紫外線等の光線が照射されて光触媒反応が行われたりする。   In the second combined flow path 24, for example, liquid-liquid extraction or gas-liquid extraction is performed in a state where a three-phase flow is formed by the fluid sample, or chemistry at the liquid-liquid interface or the gas-liquid interface is performed. The reaction is performed, or a photocatalytic reaction is performed by irradiation with light such as ultraviolet rays.

第二の合流路24に於いて所定の操作や反応が行われた後の流体試料は、開口28から排出され、マイクロチューブ38を通過して貯留容器39に収容されて回収される。   The fluid sample after a predetermined operation or reaction is performed in the second combined channel 24 is discharged from the opening 28, passes through the microtube 38, is stored in the storage container 39, and is collected.

《操作・反応の具体例1》
本発明に係るマイクロリアクターが用いられて行われる処理の具体例として、光触媒によるポリクロロビフェニル(PCB)等の脱塩素化について説明する。
<< Example 1 of operation and reaction >>
As a specific example of the treatment performed using the microreactor according to the present invention, dechlorination of polychlorobiphenyl (PCB) or the like by a photocatalyst will be described.

酸化チタンは、安価な光触媒であり、有機塩素化合物などの脱塩素化を行うことが可能である。しかしながら、脱塩素化に寄与する活性種の寿命が短く、光触媒効果によって発生する活性種を効率的に利用できていないために脱塩素化効率が低いという問題がある。   Titanium oxide is an inexpensive photocatalyst and can dechlorinate organochlorine compounds and the like. However, there is a problem that the active species contributing to dechlorination have a short lifetime, and the active species generated by the photocatalytic effect cannot be used efficiently, so that the dechlorination efficiency is low.

具体的には例えば、酸化チタン光触媒及びPCBが存在すると共に水を加えた系(言い換えると、液状PCB)を対象とした光触媒によるPCBの脱塩素化に関する従来の手法では、図4(A)に示すように、活性種のうちの一部はPCBの脱塩素化に寄与する一方で、活性種の消失のために反応することができないPCBが残るために脱塩素化率が低いという問題がある。   Specifically, for example, in the conventional method relating to dechlorination of PCB by a photocatalyst for a system in which titanium oxide photocatalyst and PCB are present and water is added (in other words, liquid PCB), FIG. As shown, while some of the active species contribute to the dechlorination of PCB, there is a problem that the dechlorination rate is low because PCB that cannot react due to disappearance of the active species remains. .

この問題への解決手段として本発明に係るマイクロリアクターが利用され得る。   As a solution to this problem, the microreactor according to the present invention can be used.

本具体例では、第二の合流路24の内周面に、光触媒の層として二酸化チタン(TiO2)が固定化されて設けられる(当該二酸化チタンによって図4(B)における酸化チタン相が構成される)。 In this specific example, titanium dioxide (TiO 2 ) is fixed and provided as a photocatalyst layer on the inner peripheral surface of the second combined channel 24 (the titanium dioxide phase in FIG. 4B constitutes the titanium dioxide). )

その上で、第一の流体試料1として空気が用いられ(当該空気によって気相が構成される)、第二の流体試料2としてPCBの有機塩素化合物を含有した絶縁油が用いられ(当該絶縁油によって油相が構成される)、さらに、第三の流体試料3として水が用いられる(当該水によって水相が構成される)。   In addition, air is used as the first fluid sample 1 (the gas phase is constituted by the air), and insulating oil containing an organic chlorine compound of PCB is used as the second fluid sample 2 (the insulating material). Further, water is used as the third fluid sample 3 (the water phase is constituted by the water).

そして、第二の合流路24に対して紫外線が照射される。なお、基板21は、ガラスが用いられて形成される。   Then, ultraviolet rays are irradiated to the second combined channel 24. The substrate 21 is formed using glass.

二酸化チタンは、紫外線の照射により、超親水性になる。このため、第一乃至第三の流体試料1−3を流すと、図4(B)に示すように、第三の流体試料3によって水相として光触媒層上に液膜流が形成され、当該水相の液膜中または液膜上(即ち、水相の流路中心側の表面上;言い換えると、水相と流路中心部分を流れる相との間)に第二の流体試料2が油相として液滴状やスラグ状に流れ、第一の流体試料1が気相として流路中心部分を流れる。なお、油相は数 μm 程度の厚さを有するものとして形成され得ると共に水相は数 μm 以下程度の厚さを有するものとして形成され得る。   Titanium dioxide becomes super hydrophilic when irradiated with ultraviolet rays. Therefore, when the first to third fluid samples 1-3 are flowed, a liquid film flow is formed on the photocatalyst layer as an aqueous phase by the third fluid sample 3, as shown in FIG. The second fluid sample 2 is oiled in the liquid film of the aqueous phase or on the liquid film (that is, on the surface of the aqueous phase on the channel central side; in other words, between the aqueous phase and the phase flowing through the central portion of the flow channel). The phase flows in the form of droplets or slugs, and the first fluid sample 1 flows in the center of the flow path as a gas phase. The oil phase can be formed with a thickness of about several μm, and the water phase can be formed with a thickness of about several μm or less.

活性種を発生する原料として水相(第三の流体試料3)が利用され、光触媒効果によって発生した活性種が消失する前に効率的に油相(第二の流体試料2)中のPCB等の有機塩素化合物と反応させることにより、有機塩素化合物の脱塩素化反応が効率的に進行する。   An aqueous phase (third fluid sample 3) is used as a raw material for generating active species, and PCBs in the oil phase (second fluid sample 2) can be efficiently consumed before the active species generated by the photocatalytic effect disappear. By reacting with the organic chlorine compound, the dechlorination reaction of the organic chlorine compound proceeds efficiently.

以上の具体例1では、本発明に係る反応方法として、第一の流体試料1と第二の流体試料2とを第一の合流路14へと供給し、第一の合流路14を通過させた第一の流体試料1及び第二の流体試料2と第三の流体試料3とを第二の合流路24へと供給し、第二の流体試料2と第三の流体試料3とを反応させるようにしている。   In the above specific example 1, as the reaction method according to the present invention, the first fluid sample 1 and the second fluid sample 2 are supplied to the first combined flow path 14 and allowed to pass through the first combined flow path 14. The first fluid sample 1, the second fluid sample 2, and the third fluid sample 3 are supplied to the second combined channel 24, and the second fluid sample 2 and the third fluid sample 3 are reacted. I try to let them.

《操作・反応の具体例2》
本発明に係るマイクロリアクターが用いられて行われる処理の他の具体例として、触媒反応と液液抽出との組み合わせについて説明する。
<< Example 2 of operation and reaction >>
As another specific example of the process performed using the microreactor according to the present invention, a combination of catalytic reaction and liquid-liquid extraction will be described.

触媒反応は、原料Aから目的物Bが生成された後、反応を止める操作をしないと、目的物Bが原料Aと更に反応して別の化合物C(言い換えると、副反応物C)へと変化してしまう場合がある(図5(A)参照)。   In the catalytic reaction, after the target B is produced from the raw material A, if the operation is not stopped, the target B further reacts with the raw material A to another compound C (in other words, a side reactant C). It may change (see FIG. 5A).

この問題への解決手段として本発明に係るマイクロリアクターが利用され得る。   As a solution to this problem, the microreactor according to the present invention can be used.

本具体例では、第二の合流路24の内周面に、触媒の層が固定化されて設けられる(当該触媒によって図5(B)における触媒相が構成される)。この場合の触媒としては、所定の原料Aから所望の目的物Bを生成するために適当なものが適宜選択される。   In this specific example, a catalyst layer is fixed and provided on the inner peripheral surface of the second combined channel 24 (the catalyst phase in FIG. 5B is configured by the catalyst). As a catalyst in this case, an appropriate catalyst is appropriately selected for producing a desired target B from a predetermined raw material A.

その上で、第一の流体試料1として気体が用いられ(当該気体によって気相が構成される)、第二の流体試料2として液体Xが用いられ(当該液体Xによって液相が構成される)、さらに、第三の流体試料3として液体Yが用いられる(当該液体Yによって液相が構成される)。この場合、液体X及び液体Yとしては、性状が異なって互いに混ざり合うことがない流体、言い換えると、相互に液液界面を形成する液体が選択される。   In addition, a gas is used as the first fluid sample 1 (a gas phase is formed by the gas), and a liquid X is used as the second fluid sample 2 (a liquid phase is formed by the liquid X). In addition, the liquid Y is used as the third fluid sample 3 (a liquid phase is constituted by the liquid Y). In this case, as the liquid X and the liquid Y, fluids that have different properties and do not mix with each other, in other words, liquids that form a liquid-liquid interface with each other are selected.

図5(B)に示す例では、第二の流体試料2として油系(油性液体)が用いられ(当該油系によって油相が構成される)、第三の流体試料3として水系(水性液体)が用いられる(当該水系によって水相が構成される)。   In the example shown in FIG. 5B, an oil system (oil-based liquid) is used as the second fluid sample 2 (an oil phase is constituted by the oil system), and an aqueous system (aqueous liquid) is used as the third fluid sample 3. ) Is used (the aqueous phase is constituted by the water system).

そして、第一乃至第三の流体試料1−3を流すと、図5(B)に示すように、第三の流体試料3によって水相として触媒相上に液膜流が形成され、当該水相の液膜中または液膜上(即ち、水相の流路中心側の表面上;言い換えると、水相と流路中心部分を流れる相との間)に第二の流体試料2が油相として液滴状やスラグ状に流れ、第一の流体試料1が気相として流路中心部分を流れる。なお、油相と水相とはどちらも、数〜数十 μm 程度の厚さを有するものとして形成され得る。   Then, when the first to third fluid samples 1-3 are caused to flow, a liquid film flow is formed on the catalyst phase as the water phase by the third fluid sample 3 as shown in FIG. The second fluid sample 2 is in the oil film in the liquid film of the phase or on the liquid film (that is, on the surface of the water phase on the channel center side; in other words, between the water phase and the phase flowing through the center of the channel). And the first fluid sample 1 flows in the central portion of the flow path as a gas phase. Both the oil phase and the water phase can be formed as having a thickness of about several to several tens of μm.

このとき、触媒反応によって原料Aから生成された目的物Bが液液抽出によって水相(第三の流体試料3)から油相(第二の流体試料2)へと抽出されて分離され(言い換えると、油相へと取り込まれ)、目的物Bが原料Aと反応してしまう(言い換えると、副反応物Cが生成されてしまう)ことが防止され、目的物Bのまま取り出すことが可能になる。   At this time, the target B produced from the raw material A by the catalytic reaction is extracted from the aqueous phase (third fluid sample 3) to the oil phase (second fluid sample 2) by liquid-liquid extraction and separated (in other words, in other words). And the target product B is prevented from reacting with the raw material A (in other words, the side reaction product C is generated), and the target product B can be taken out as it is. Become.

以上の具体例2では、本発明に係る抽出方法として、第一の流体試料1と第二の流体試料2とを第一の合流路14へと供給し、第一の合流路14を通過させた第一の流体試料1及び第二の流体試料2と第三の流体試料3とを第二の合流路24へと供給し、第二の流体試料2と第三の流体試料3との間で抽出操作を行わせるようにしている。   In the above specific example 2, as the extraction method according to the present invention, the first fluid sample 1 and the second fluid sample 2 are supplied to the first combined channel 14 and allowed to pass through the first combined channel 14. The first fluid sample 1 and the second fluid sample 2 and the third fluid sample 3 are supplied to the second combined channel 24, and the second fluid sample 2 and the third fluid sample 3 are The extraction operation is performed in

以上のように構成されたマイクロリアクターや抽出方法,反応方法によれば、比界面積の増大,流れを乱した撹拌効果の増大,及び拡散距離の短縮化が達成されて延いては例えば液液抽出プロセス,気液抽出プロセス,触媒反応プロセスを迅速に行うことができ、また、流体試料の選択・組み合わせによっては複数のプロセスを同時に行うことができる。このため、反応装置・反応手法としての有用性の向上が可能になる。   According to the microreactor, extraction method, and reaction method configured as described above, an increase in the specific interface area, an increase in the stirring effect that disturbs the flow, and a reduction in the diffusion distance are achieved. The extraction process, the gas-liquid extraction process, and the catalytic reaction process can be performed quickly, and a plurality of processes can be performed simultaneously depending on the selection and combination of fluid samples. For this reason, the usefulness as a reaction apparatus and reaction technique can be improved.

なお、上述の実施形態は本発明を実施する際の好適な形態の一例ではあるものの本発明の実施の形態が上述のものに限定されるものではなく、本発明の要旨を逸脱しない範囲において本発明は種々変形実施可能である。   Although the above-described embodiment is an example of a preferred embodiment for carrying out the present invention, the embodiment of the present invention is not limited to the above-described embodiment, and the present invention is not limited to the scope of the present invention. The invention can be variously modified.

例えば、上述の実施形態では基板11や基板21に各流路が形成されるようにしているが、基板に相当する構成部材を有することは本発明において必須の構成ではなく、各流路がそれぞれチューブによって構成されるようにしても良い。   For example, in the above-described embodiment, each flow path is formed on the substrate 11 or the substrate 21, but having a constituent member corresponding to the substrate is not an essential configuration in the present invention, and each flow path is respectively You may make it comprise with a tube.

また、上述の実施形態では第三の流体供給手段を一対のものとして(即ち、二つ)有するようにしているが、第三の流体供給手段は一つでも良い。また、この場合には、図6に示すように、第三の流体供給手段33からマイクロチューブ36を介して第三の流体試料3が注入される開口27から分岐して合流ポイント25へと至る第三の供給路23A,23Bが一対のものとして形成され、前段合流路22から供給される第一の流体試料1及び第二の流体試料2によって形成される二相の流れを両側から挟むように第三の流体試料3が流されるようにしても良い。   In the above-described embodiment, the third fluid supply means is provided as a pair (that is, two), but the number of the third fluid supply means may be one. In this case, as shown in FIG. 6, the third fluid sample 3 is branched from the opening 27 through which the third fluid sample 3 is injected through the microtube 36 to the merging point 25. The third supply paths 23A and 23B are formed as a pair so as to sandwich the two-phase flow formed by the first fluid sample 1 and the second fluid sample 2 supplied from the front-stage combined flow path 22 from both sides. Alternatively, the third fluid sample 3 may be caused to flow.

また、上述の実施形態では相流を構成するための仕切りを流路の中に設けるようにはしていないが、管状の仕切りによって流路の中が複数の層に区画されるようにしても良い。すなわち、流路の一部区間(Sa)の内部空間を中心部分と当該中心部分を取り囲む筒状の領域(43c)とに区画するための外側の仕切り(41)と当該外側の仕切り(41)の内部空間を中心部分(43a)と当該中心部分(43a)を取り囲む筒状の領域(43b)とに区画するための内側の仕切り(42)とを有し、当該内側の仕切り(42)の内部空間(43a)へと第一の流体試料(1)が供給され、外側の仕切り(41)と内側の仕切り(42)との間の空間(43b)へと第二の流体試料(2)が供給され、さらに、外側の仕切り(41)の周囲の空間(43c)へと第三の流体試料(3)が供給されるようにしても良い(尚、前記において、この態様の一例としての図7に示す例における符号を括弧内に記した)。   In the above-described embodiment, the partition for configuring the phase flow is not provided in the flow path, but the flow path may be partitioned into a plurality of layers by the tubular partition. good. That is, the outer partition (41) and the outer partition (41) for partitioning the internal space of the partial section (Sa) of the flow path into a central portion and a cylindrical region (43c) surrounding the central portion. An inner partition (42) for partitioning the inner space into a central portion (43a) and a cylindrical region (43b) surrounding the central portion (43a), and the inner partition (42) The first fluid sample (1) is supplied to the internal space (43a), and the second fluid sample (2) is supplied to the space (43b) between the outer partition (41) and the inner partition (42). And the third fluid sample (3) may be supplied to the space (43c) around the outer partition (41) (in the above, as an example of this mode, The reference numerals in the example shown in FIG. 7 are shown in parentheses).

具体的には例えば、図7に示すように、チューブ40の内部の一部区間Saに、外側区画チューブ41と内側区画チューブ42とが設けられる。この場合には、例えば、第一の流体供給手段31から第一の流体試料1がマイクロチューブを介して内側区画チューブ42の内部空間43aへと供給され、また、第二の流体供給手段32から第二の流体試料2がマイクロチューブを介して外側区画チューブ41と内側区画チューブ42との間の空間43bへと供給され、さらに、第三の流体供給手段33(尚、一つで良い)から第三の流体試料3がマイクロチューブを介してチューブ40と外側区画チューブ41との間の空間43cへと供給される。そして、第一乃至第三の流体試料1−3が、それぞれチューブの内部空間43aやチューブ同士の間の空間43b,43cを満たすように流れ、その後、外側区画チューブ41及び内側区画チューブ42が途切れた先の区間Sbにおいても、チューブ40内に於いて三相の流れを構成する。この場合は、中心相(即ち、第一の流体試料1)と当該中心相の周囲を取り囲む連続する二相のパイプフロー(即ち、第二の流体試料2及び第三の流体試料3)とからなる三相の流れが形成される。なお、図7に示す例では流路断面が円形であるようにしているが、流路断面の形状は円形に限られるものではなく、半楕円形や三角形や四角以上の多角形でも良い。   Specifically, for example, as shown in FIG. 7, an outer partition tube 41 and an inner partition tube 42 are provided in a partial section Sa inside the tube 40. In this case, for example, the first fluid sample 1 is supplied from the first fluid supply means 31 to the internal space 43a of the inner partition tube 42 via the microtube, and from the second fluid supply means 32. The second fluid sample 2 is supplied to the space 43b between the outer partition tube 41 and the inner partition tube 42 via the microtube, and further from the third fluid supply means 33 (which may be one). The third fluid sample 3 is supplied to the space 43c between the tube 40 and the outer partition tube 41 via the microtube. And the 1st thru | or 3rd fluid sample 1-3 flows so that the space 43b, 43c between the tubes inner space 43a and tubes, respectively, and the outer division tube 41 and the inner division tube 42 may interrupt after that. Also in the previous section Sb, a three-phase flow is formed in the tube 40. In this case, from the central phase (ie, the first fluid sample 1) and the continuous two-phase pipe flow surrounding the central phase (ie, the second fluid sample 2 and the third fluid sample 3). A three-phase flow is formed. In the example shown in FIG. 7, the cross section of the flow path is circular. However, the shape of the cross section of the flow path is not limited to a circular shape, and may be a semi-elliptical shape, a triangle, or a polygon having four or more squares.

本発明に係るマイクロリアクターによる三相の流れの形成状況を検証するための実施例を図8を用いて説明する。   An embodiment for verifying the formation of a three-phase flow by the microreactor according to the present invention will be described with reference to FIG.

本実施例では、第二の合流路24の内周面がオクタデシルトリエトキシシランによって疎水化された上で、各流体試料として以下のものが用いられ、また、各流体試料の注入速度が以下のように設定された。
第一の流体試料:窒素ガス (1 mL/分) 〜 気相を構成する
第二の流体試料:水溶液 (1 μL/分) 〜 水相を構成する
第三の流体試料:ブタノール (0.5 μL/分) 〜 油相を構成する
In this embodiment, the inner peripheral surface of the second combined channel 24 is hydrophobized with octadecyltriethoxysilane, and the following are used as each fluid sample, and the injection rate of each fluid sample is as follows: Was set to
First fluid sample: Nitrogen gas (1 mL / min) ˜ constituting the gas phase Second fluid sample: aqueous solution (1 μL / min) ˜ constituting the aqueous phase Third fluid sample: butanol (0.5 μL / min) ~ Consists of oil phase

各流路の流路断面は半楕円形に形成され、前段合流部10の第一の供給路12及び第二の供給路13並びに第一の合流路14は基板11の板面視において流路幅(即ち、流路断面の半楕円の長径に相当)0.100 mm 且つ流路深さ(即ち、流路断面の半楕円の短径に相当)0.040 mm に形成され、また、後段合流部20の前段合流路22及び第二の合流路24は基板21の板面視において流路幅0.300 mm 且つ流路深さ0.050 mm に形成されると共に第三の供給路23A,23Bは基板21の板面視において流路幅0.150 mm 且つ流路深さ0.025 mm に形成された。   The cross section of each flow path is formed in a semi-elliptical shape, and the first supply path 12, the second supply path 13, and the first merge path 14 of the front-stage merging portion 10 are flow paths in the plate surface view of the substrate 11. It is formed to have a width (that is, corresponding to the major axis of the semi-elliptical section of the channel) 0.100 mm and a channel depth (that is, corresponding to the minor axis of the semi-elliptical section of the channel) is 0.040 mm. The pre-stage merge channel 22 and the second merge channel 24 of the merge unit 20 are formed with a channel width of 0.300 mm and a channel depth of 0.050 mm in the plan view of the substrate 21, and the third supply channel 23A. , 23B are formed with a channel width of 0.150 mm and a channel depth of 0.025 mm in the plan view of the substrate 21.

本実施例では、基板11と基板21とはそれぞれ二枚のガラス板によって構成された。基板11については、基底部を構成するガラス板の板表面に各流路12−14が半楕円形の溝として形成され、また、各開口16−18が天板部を構成するガラス板に貫通孔として形成された。そして、天板部のガラス板の板表面と基底部のガラス板の板表面とが貼り合わされて接合されて基板11が製作された。   In this embodiment, the substrate 11 and the substrate 21 are each composed of two glass plates. As for the substrate 11, each flow path 12-14 is formed as a semi-elliptical groove on the surface of the glass plate constituting the base portion, and each opening 16-18 penetrates the glass plate constituting the top plate portion. Formed as a hole. And the board surface of the glass plate of a top-plate part and the board surface of the glass plate of a base part were bonded together, and the board | substrate 11 was manufactured.

基板21については、天板部を構成するガラス板の板表面に一対の第三の供給路23A,23Bが半楕円形の溝として形成されると共に基底部を構成するガラス板の板表面に他の流路が半楕円形の溝として形成された。また、各開口26−28は天板部を構成するガラス板に貫通孔として形成された。そして、天板部のガラス板の板表面と基底部のガラス板の板表面とが貼り合わされて接合されて基板21が製作された。   As for the substrate 21, a pair of third supply passages 23A and 23B are formed as semi-elliptical grooves on the surface of the glass plate constituting the top plate portion, and the other is provided on the surface of the glass plate constituting the base portion. Were formed as semi-elliptical grooves. Moreover, each opening 26-28 was formed as a through-hole in the glass plate which comprises a top-plate part. And the board | plate surface of the glass plate of a top-plate part and the plate | board surface of the glass plate of a base part were bonded together and joined, and the board | substrate 21 was manufactured.

本実施例では、水相が2,2’−ジヒドロキシアゾベンゼンのアルミニウム錯体水溶液とされ、ブタノールに抽出された。この錯体はブタノールに抽出されることで蛍光を発するようになる。   In this example, the aqueous phase was made into an aqueous aluminum complex solution of 2,2'-dihydroxyazobenzene and extracted into butanol. This complex emits fluorescence when extracted into butanol.

第一乃至第三の流体試料1−3が注入された上で第二の合流路24に於ける蛍光の状況が観察されて図8に示す結果が得られた。   After the first to third fluid samples 1-3 were injected, the state of fluorescence in the second combined channel 24 was observed, and the result shown in FIG. 8 was obtained.

図8に示す結果から、第二の合流路24の全面で蛍光が観察され、ブタノールは流路全体を流れており、第二の合流路24の内周面全体を覆うように液膜が形成されていることが確認された。   From the results shown in FIG. 8, fluorescence is observed on the entire surface of the second combined channel 24, butanol flows through the entire channel, and a liquid film is formed so as to cover the entire inner peripheral surface of the second combined channel 24. It has been confirmed.

以上の結果から、本発明に係るマイクロリアクターによれば、第一乃至第三の流体試料によって第二の合流路24に於いて三相の流れが形成されることが確認され、流路に於いて三相の流れを構成した上で意図した種々の抽出操作や触媒反応・化学反応を行うことが可能であることが確認された。   From the above results, according to the microreactor according to the present invention, it is confirmed that a three-phase flow is formed in the second combined flow path 24 by the first to third fluid samples. It was confirmed that it was possible to carry out various extraction operations and catalytic reactions / chemical reactions that were intended after composing a three-phase flow.

本発明に係るマイクロリアクターによる三相の流れの形成条件を検討するための実施例を説明する。   An embodiment for studying conditions for forming a three-phase flow by the microreactor according to the present invention will be described.

本実施例では、具体的には、中心相が断裂すること無く連続して流れる条件、すなわち、中心相が連続流として形成される条件を検討・確認することが企図された。   In the present embodiment, specifically, it was intended to examine and confirm conditions under which the central phase flows continuously without breaking, that is, conditions under which the central phase is formed as a continuous flow.

本実施例では、第二の合流路24の内周面がオクタデシルトリエトキシシランによって疎水化された上で、各流体試料として以下のものが用いられた。
第一の流体試料:窒素ガス 〜 気相を構成する
第二の流体試料:超純水 〜 水相を構成する
第三の流体試料:ブタノール 〜 油相を構成する
In the present example, the inner peripheral surface of the second combined channel 24 was hydrophobized with octadecyltriethoxysilane, and the following fluid samples were used.
First fluid sample: Nitrogen gas ~ constituting the gas phase Second fluid sample: ultrapure water ~ constituting the aqueous phase Third fluid sample: butanol ~ constituting the oil phase

各流路の流路断面は半楕円形に形成され、前段合流部10の第一の供給路12及び第二の供給路13並びに第一の合流路14は基板11の板面視において流路幅(即ち、流路断面の半楕円の長径に相当)0.100 mm 且つ流路深さ(即ち、流路断面の半楕円の短径に相当)0.040 mm に形成され、また、後段合流部20の前段合流路22及び第二の合流路24は基板21の板面視において流路幅0.300 mm 且つ流路深さ0.050 mm に形成されると共に第三の供給路23A,23Bは基板21の板面視において流路幅0.150 mm 且つ流路深さ0.025 mm に形成された。   The cross section of each flow path is formed in a semi-elliptical shape, and the first supply path 12, the second supply path 13, and the first merge path 14 of the front-stage merging portion 10 are flow paths in the plate surface view of the substrate 11. It is formed to have a width (that is, corresponding to the major axis of the semi-elliptical section of the channel) 0.100 mm and a channel depth (that is, corresponding to the minor axis of the semi-elliptical section of the channel) is 0.040 mm. The pre-stage merge channel 22 and the second merge channel 24 of the merge unit 20 are formed with a channel width of 0.300 mm and a channel depth of 0.050 mm in the plan view of the substrate 21, and the third supply channel 23A. , 23B are formed with a channel width of 0.150 mm and a channel depth of 0.025 mm in the plan view of the substrate 21.

本実施例では、基板11と基板21とはそれぞれ二枚のガラス板によって構成された。基板11については、基底部を構成するガラス板の板表面に各流路12−14が半楕円形の溝として形成され、また、各開口16−18が天板部を構成するガラス板に貫通孔として形成された。そして、天板部のガラス板の板表面と基底部のガラス板の板表面とが貼り合わされて接合されて基板11が製作された。   In this embodiment, the substrate 11 and the substrate 21 are each composed of two glass plates. As for the substrate 11, each flow path 12-14 is formed as a semi-elliptical groove on the surface of the glass plate constituting the base portion, and each opening 16-18 penetrates the glass plate constituting the top plate portion. Formed as a hole. And the board surface of the glass plate of a top-plate part and the board surface of the glass plate of a base part were bonded together, and the board | substrate 11 was manufactured.

基板21については、天板部を構成するガラス板の板表面に一対の第三の供給路23A,23Bが半楕円形の溝として形成されると共に基底部を構成するガラス板の板表面に他の流路が半楕円形の溝として形成された。また、各開口26−28は天板部を構成するガラス板に貫通孔として形成された。そして、天板部のガラス板の板表面と基底部のガラス板の板表面とが貼り合わされて接合されて基板21が製作された。   As for the substrate 21, a pair of third supply passages 23A and 23B are formed as semi-elliptical grooves on the surface of the glass plate constituting the top plate portion, and the other is provided on the surface of the glass plate constituting the base portion. Were formed as semi-elliptical grooves. Moreover, each opening 26-28 was formed as a through-hole in the glass plate which comprises a top-plate part. And the board | plate surface of the glass plate of a top-plate part and the plate | board surface of the glass plate of a base part were bonded together and joined, and the board | substrate 21 was manufactured.

第二の流体試料(超純水)の流量及び第三の流体試料(ブタノール)の流量が固定される一方で第一の流体試料(窒素ガス)の流量が50 μL/分 ピッチで変化させられ、第一の流体試料(窒素ガス)によって中心相が連続流として形成される条件が検証された。   While the flow rate of the second fluid sample (ultra pure water) and the flow rate of the third fluid sample (butanol) are fixed, the flow rate of the first fluid sample (nitrogen gas) is changed at a pitch of 50 μL / min. The conditions under which the central phase was formed as a continuous flow by the first fluid sample (nitrogen gas) were verified.

第一の流体試料(窒素ガス)の流量が変化させられながら第二の合流路24内に於ける中心相を含む三相の流れの形成状況が観察され、中心相を含む三相の流れが形成されるために必要とされる第一の流体試料(窒素ガス)の流量として表1に示す結果が得られた。   While the flow rate of the first fluid sample (nitrogen gas) is changed, the formation state of the three-phase flow including the central phase in the second combined channel 24 is observed, and the three-phase flow including the central phase is observed. The results shown in Table 1 were obtained as the flow rate of the first fluid sample (nitrogen gas) required to be formed.

表1に示す結果は第二の流体試料(水相)の流量と第三の流体試料(油相)の流量との組み合わせに対して三相の流れを形成するために必要とされる第一の流体試料(気相)の流量であり、水相の流量及び油相の流量の増加に伴って必要とされる気相の流量も増加する傾向が確認された。   The results shown in Table 1 show that the first required to form a three-phase flow for the combination of the flow rate of the second fluid sample (water phase) and the flow rate of the third fluid sample (oil phase). It was confirmed that the flow rate of the gas phase was increased, and the required flow rate of the gas phase increased as the flow rate of the water phase and the flow rate of the oil phase increased.

表1に示す結果から、第二の流体試料の流量及び第三の流体試料の流量が適切に調整されると共に第二の流体試料の流量と第三の流体試料の流量との組み合わせに対して第一の流体試料の流量が適切に調整されることにより、第二の合流路24内に於いて三相の流れを形成することが可能であることが確認された。   From the results shown in Table 1, the flow rate of the second fluid sample and the flow rate of the third fluid sample are appropriately adjusted and the combination of the flow rate of the second fluid sample and the flow rate of the third fluid sample is determined. It was confirmed that a three-phase flow can be formed in the second combined channel 24 by appropriately adjusting the flow rate of the first fluid sample.

1 第一の流体試料
2 第二の流体試料
3 第三の流体試料
10 前段合流部
11 基板
12 第一の供給路
13 第二の供給路
14 第一の合流路
15 合流ポイント
16 開口
17 開口
18 開口
19 マイクロチューブ
20 後段合流部
21 基板
22 前段合流路
23A 第三の供給路
23B 第三の供給路
24 第二の合流路
25 合流ポイント
26 開口
27A 開口
27B 開口
28 開口
31 第一の流体供給手段
32 第二の流体供給手段
33A 第三の流体供給手段
33B 第三の流体供給手段
34 マイクロチューブ
35 マイクロチューブ
36A マイクロチューブ
36B マイクロチューブ
38 マイクロチューブ
39 貯留容器
DESCRIPTION OF SYMBOLS 1 1st fluid sample 2 2nd fluid sample 3 3rd fluid sample 10 Previous stage confluence | merging part 11 Board | substrate 12 1st supply path 13 2nd supply path 14 1st merge path 15 Merge point 16 Opening 17 Opening 18 Opening 19 Microtube 20 Subsequent joining portion 21 Substrate 22 Pre-joining passage 23A Third supply passage 23B Third supply passage 24 Second joining passage 25 Joining point 26 Opening 27A Opening 27B Opening 28 Opening 31 First fluid supply means 32 Second fluid supply means 33A Third fluid supply means 33B Third fluid supply means 34 Microtube 35 Microtube 36A Microtube 36B Microtube 38 Microtube 39 Storage container

Claims (7)

第一の流体試料と第二の流体試料とが供給される第一の合流路と、当該第一の合流路を通過した前記第一の流体試料及び前記第二の流体試料が供給されると共に第三の流体試料が供給される第二の合流路とを有することを特徴とするマイクロリアクター。   A first combined flow path to which the first fluid sample and the second fluid sample are supplied, and the first fluid sample and the second fluid sample that have passed through the first combined flow path are supplied. A microreactor having a second combined channel to which a third fluid sample is supplied. 前記第二の合流路の内周面が親水性表面であることを特徴とする請求項1記載のマイクロリアクター。   The microreactor according to claim 1, wherein an inner peripheral surface of the second combined channel is a hydrophilic surface. 前記第二の合流路の内周面が疎水性表面であることを特徴とする請求項1記載のマイクロリアクター。   The microreactor according to claim 1, wherein the inner peripheral surface of the second combined channel is a hydrophobic surface. 前記第二の合流路の内周面に触媒の層が固定化されることを特徴とする請求項1記載のマイクロリアクター。   The microreactor according to claim 1, wherein a catalyst layer is fixed to an inner peripheral surface of the second combined flow path. 流路の一部区間の内部空間を中心部分と当該中心部分を取り囲む筒状の領域とに区画するための外側の仕切りと当該外側の仕切りの内部空間を中心部分と当該中心部分を取り囲む筒状の領域とに区画するための内側の仕切りとを有し、当該内側の仕切りの内部空間へと第一の流体試料が供給され、前記外側の仕切りと前記内側の仕切りとの間の空間へと第二の流体試料が供給され、さらに、前記外側の仕切りの周囲の空間へと第三の流体試料が供給されることを特徴とするマイクロリアクター。   An outer partition for partitioning the internal space of a partial section of the flow path into a central part and a cylindrical region surrounding the central part, and a cylindrical shape surrounding the central part and the internal space of the outer partition A first fluid sample is supplied to the inner space of the inner partition, and to the space between the outer partition and the inner partition. A microreactor, wherein a second fluid sample is supplied, and further a third fluid sample is supplied to a space around the outer partition. 第一の流体試料と第二の流体試料とを第一の合流路へと供給し、前記第一の合流路を通過させた前記第一の流体試料及び前記第二の流体試料と第三の流体試料とを第二の合流路へと供給し、前記第二の流体試料と前記第三の流体試料との間で抽出操作を行わせることを特徴とする抽出方法。   The first fluid sample and the second fluid sample are supplied to the first combined flow path, and the first fluid sample, the second fluid sample, and the third flow path that are passed through the first combined flow path An extraction method, characterized in that a fluid sample is supplied to a second combined channel and an extraction operation is performed between the second fluid sample and the third fluid sample. 第一の流体試料と第二の流体試料とを第一の合流路へと供給し、前記第一の合流路を通過させた前記第一の流体試料及び前記第二の流体試料と第三の流体試料とを第二の合流路へと供給し、前記第二の流体試料と前記第三の流体試料とを反応させることを特徴とする反応方法。   The first fluid sample and the second fluid sample are supplied to the first combined flow path, and the first fluid sample, the second fluid sample, and the third flow path that are passed through the first combined flow path A reaction method, characterized in that a fluid sample is supplied to a second combined channel, and the second fluid sample and the third fluid sample are reacted.
JP2017105953A 2017-05-29 2017-05-29 Microreactor, as well as extraction and reaction methods Active JP6968578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017105953A JP6968578B2 (en) 2017-05-29 2017-05-29 Microreactor, as well as extraction and reaction methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017105953A JP6968578B2 (en) 2017-05-29 2017-05-29 Microreactor, as well as extraction and reaction methods

Publications (2)

Publication Number Publication Date
JP2018199113A true JP2018199113A (en) 2018-12-20
JP6968578B2 JP6968578B2 (en) 2021-11-17

Family

ID=64667700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017105953A Active JP6968578B2 (en) 2017-05-29 2017-05-29 Microreactor, as well as extraction and reaction methods

Country Status (1)

Country Link
JP (1) JP6968578B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020032346A (en) * 2018-08-29 2020-03-05 公立大学法人大阪 Extraction device and extraction method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005046651A (en) * 2003-05-30 2005-02-24 Fuji Photo Film Co Ltd Reaction method using microreactor
JP2006239640A (en) * 2005-03-07 2006-09-14 Ime Sogo Kenkyusho:Kk Microreactor for oxidative decomposition of hardly decomposable organic compound
JP2007090306A (en) * 2005-09-30 2007-04-12 Kri Inc Method for manufacturing microstructure and microreactor
JP2007105668A (en) * 2005-10-14 2007-04-26 Mitsubishi Chemicals Corp Gas-liquid reaction method and apparatus therefor
JP2008086993A (en) * 2006-09-08 2008-04-17 Tokyo Institute Of Technology Photocatalytic microreaction apparatus
JP2008290027A (en) * 2007-05-25 2008-12-04 Canon Inc Reaction apparatus and reaction method
JP2013060426A (en) * 2011-08-22 2013-04-04 National Institute Of Advanced Industrial Science & Technology High-temperature and high-pressure cross coupling method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005046651A (en) * 2003-05-30 2005-02-24 Fuji Photo Film Co Ltd Reaction method using microreactor
JP2006239640A (en) * 2005-03-07 2006-09-14 Ime Sogo Kenkyusho:Kk Microreactor for oxidative decomposition of hardly decomposable organic compound
JP2007090306A (en) * 2005-09-30 2007-04-12 Kri Inc Method for manufacturing microstructure and microreactor
JP2007105668A (en) * 2005-10-14 2007-04-26 Mitsubishi Chemicals Corp Gas-liquid reaction method and apparatus therefor
JP2008086993A (en) * 2006-09-08 2008-04-17 Tokyo Institute Of Technology Photocatalytic microreaction apparatus
JP2008290027A (en) * 2007-05-25 2008-12-04 Canon Inc Reaction apparatus and reaction method
JP2013060426A (en) * 2011-08-22 2013-04-04 National Institute Of Advanced Industrial Science & Technology High-temperature and high-pressure cross coupling method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020032346A (en) * 2018-08-29 2020-03-05 公立大学法人大阪 Extraction device and extraction method
JP7062287B2 (en) 2018-08-29 2022-05-06 公立大学法人大阪 Extractor and extraction method

Also Published As

Publication number Publication date
JP6968578B2 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
Yao et al. Review of the applications of microreactors
Mao et al. Milliseconds microfluidic chaotic bubble mixer
KR101793744B1 (en) Scale-up of flow-focusing microfluidic devices
JP5963410B2 (en) Flow path device and fluid mixing method
Shen et al. Numbering-up strategies of micro-chemical process: Uniformity of distribution of multiphase flow in parallel microchannels
JP2003001077A (en) Mixing method, mixing structure, micromixer and microchip provided with mixing structure
Li et al. A minimalist approach for generating picoliter to nanoliter droplets based on an asymmetrical beveled capillary and its application in digital PCR assay
JP2007216123A (en) Micro-channel chip
Femmer et al. Efficient gas–liquid contact using microfluidic membrane devices with staggered herringbone mixers
Tan et al. Surfactant‐free microdispersion process of gas in organic solvents in microfluidic devices
JP2006043617A (en) Microfluidic chip
JP2009082833A (en) Microdevice and fluid mixing method
Shen et al. Regulating Secondary Flow in Ultra‐Low Aspect Ratio Microchannels by Dimensional Confinement
JP6968578B2 (en) Microreactor, as well as extraction and reaction methods
JP2009018311A (en) Microfluid chip
JP2010188305A (en) Apparatus for mixing fluid and method for mixing fluid
JP2004358453A (en) Microchannel structure and method for chemical operation of liquid using the same
JP5956053B2 (en) Surface chemical processing equipment for fine patterning
JP2006051410A (en) Micro-reactor
WO2013151126A1 (en) Fluid control device and fluid mixer
JP2009119386A (en) Microfluid chip and liquid mixing method using it
CN115245847B (en) Micro-hybrid chip based on Tesla valve
JP4528585B2 (en) Two-phase flow stabilization chip
JP4356312B2 (en) Microchannel structure
JP2006051409A (en) Micro-reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200429

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211027

R150 Certificate of patent or registration of utility model

Ref document number: 6968578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150