JP2009018311A - Microfluid chip - Google Patents

Microfluid chip Download PDF

Info

Publication number
JP2009018311A
JP2009018311A JP2008279544A JP2008279544A JP2009018311A JP 2009018311 A JP2009018311 A JP 2009018311A JP 2008279544 A JP2008279544 A JP 2008279544A JP 2008279544 A JP2008279544 A JP 2008279544A JP 2009018311 A JP2009018311 A JP 2009018311A
Authority
JP
Japan
Prior art keywords
liquid
flow
liquids
liquid supply
microfluidic chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008279544A
Other languages
Japanese (ja)
Inventor
Zen Ito
禅 伊東
Kiju Endo
喜重 遠藤
Akira Koide
晃 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2008279544A priority Critical patent/JP2009018311A/en
Publication of JP2009018311A publication Critical patent/JP2009018311A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microfluid chip which can treat a liquid of a lrage flow rate at a high speed and does not enlarge the size of an apparatus. <P>SOLUTION: The microfluid chip 1, in which liquids to be supplied respectively from a plurality of liquid supply ports are introduced into a microflow passage, the mixing/reaction of liquids are performed in the microflow passage 16 and the treated liquid is discharged from a liquid discharge port 17, is provided with: liquid supply parts 11, 13 for supplying two liquids so that two liquids are divided respectively into a plurality of flows and the divided flows of two liquids are arrayed alternately; and a flow flattening part 15 which is arranged on the downstream side of the liquid supply parts 11, 13 and has such a flow passage shape that the dimension of the flow flattening part in the arrayed direction of two liquids arrayed alternately is made smaller gradually as it goes downstream, the dimension thereof in the direction that the arrayed direction of two liquids and the flow direction of two liquids are made to cross each other is made larger gradually as it goes downstream and the cross-sectional area thereof becomes equal or slightly larger in the flow direction of two liquids. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複数の液体供給口からそれぞれ供給される液体を微小流路に導き、微小流路において液体の混合や反応(化学反応)を行なわせ、液体排出口から処理済みの液体を得るマイクロ流体チップに関する。   The present invention is directed to a micro that obtains a processed liquid from a liquid discharge port by guiding the liquid supplied from a plurality of liquid supply ports to a micro flow channel, causing the liquid to be mixed and reacted (chemical reaction) in the micro flow channel. The present invention relates to a fluid chip.

マイクロ流体チップとは、幅及び深さが数μmから数百μmの微小流路に複数の液体を供給し、液体を構成するの分子や粒子の自発的挙動に基づいて液体の混合や反応を微小流路内で行なう装置である。   A microfluidic chip supplies a plurality of liquids to a microchannel with a width and depth of several μm to several hundred μm, and mixes and reacts liquids based on the spontaneous behavior of the molecules and particles that make up the liquid. It is an apparatus that performs in a micro flow path.

即ち、マイクロ流体チップが持つ微小流路では液体のレイノルズ数は数百以下となり、従来の反応装置のような乱流支配ではなく、層流支配の世界となる。この層流支配下での液体同士の混合・反応は各液体の接触界面における分子拡散によるものが主となり、その速度を規定する物は液体の拡散方向厚さ(異種の液体が均一濃度になるまで拡散すべき距離=拡散距離)である。   That is, the Reynolds number of the liquid is several hundreds or less in the micro flow path possessed by the microfluidic chip, and it becomes a world of laminar flow control, not turbulent flow control as in the conventional reaction apparatus. The mixing and reaction of liquids under the control of laminar flow is mainly due to molecular diffusion at the contact interface of each liquid, and the thing that defines the speed is the thickness of the liquid in the diffusion direction (different liquids have a uniform concentration) Is the distance to be diffused = diffusion distance).

従来のマイクロ流体チップは液体の分析を目的とした物が多く、数μl/minから数十μl/minの流量をもつ液体を数百μm以下の幅の狭い(=拡散距離が短い)微小流路内で混合・反応を行なうようになっている。   Many conventional microfluidic chips are intended for analyzing liquids, and a liquid having a flow rate of several μl / min to several tens of μl / min is a narrow flow (= short diffusion distance) of a few hundred μm or less. It is designed to mix and react in the road.

具体的には下記特許文献1に開示されているように、複数の液体をそれぞれ多数の層状の流れに分割し、それらを交互に配することで、液体の総体積に占める各液体の接触面積の割合を増加させたラミネートフローを形成し、高効率の液体混合を可能としたものや、下記特許文献2に開示されているように、液体を薄膜状の流れに整形し、それを流れ方向に対して垂直に積層し、その積層した流れを断続的に絞る事で発生する攪拌流で液体を混合するものなどが知られている。   Specifically, as disclosed in the following Patent Document 1, a plurality of liquids are divided into a large number of laminar flows, and these are alternately arranged, so that the contact area of each liquid occupying the total volume of the liquid Forming a laminate flow with an increased proportion of the liquid, enabling highly efficient liquid mixing, and as disclosed in Patent Document 2 below, the liquid is shaped into a thin film flow, and the flow direction For example, there is known a method in which liquids are mixed in a stirring flow generated by stacking perpendicularly to each other and intermittently narrowing the stacked flow.

特開2003−1077号公報JP 2003-1077 A

特開2002−346355号公報JP 2002-346355 A

上記従来技術は、数十μl/min程度の少量の液体を分析することを前提としてマイクロ流体チップを設計してあり、数十ml/min程度の流量で液体の混合・反応を行なうべく高速で液体を流すと、流路が微小過ぎて内部の圧力損失が過大となって所望の流量を流すことは不可能で、処理量の増大化は期待できない。また、微小流路を高速で液体が通過すると、拡散が不十分となり、期待した混合・反応も得られない。   The above prior art has designed a microfluidic chip on the assumption that a small amount of liquid of about several tens of μl / min is analyzed, and at high speed to perform liquid mixing and reaction at a flow rate of about several tens of ml / min. When the liquid is flowed, the flow path is too small, the internal pressure loss becomes excessive, and it is impossible to flow a desired flow rate, and an increase in the processing amount cannot be expected. Further, when the liquid passes through the microchannel at high speed, the diffusion becomes insufficient, and the expected mixing and reaction cannot be obtained.

処理量を増やし、確実な混合・反応を得るためには、ナンバリングアップと呼ばれる複数のマイクロ流体チップを用いた並列処理を行う必要があり、装置全体が大型化する。   In order to increase the amount of processing and to obtain reliable mixing and reaction, it is necessary to perform parallel processing using a plurality of microfluidic chips called numbering up, which increases the size of the entire apparatus.

それゆえ本発明の目的は、大流量の液体を高速に処理することができ、しかも装置が大型化しないマイクロ流体チップを提供することにある。   Therefore, an object of the present invention is to provide a microfluidic chip that can process a large flow rate of liquid at high speed and does not increase the size of the apparatus.

上記目的を達成する本発明のマイクロ流体チップの特徴とするところは、板状のマイクロチップ本体と、このマイクロチップ本体の一方の表面を覆う蓋部材とマイクロチップ本体の裏面を覆うアダプタ部材とを有し、複数の液体供給口からそれぞれ供給される液体を微小流路に導き、微小流路において液体を混合・反応させ、液体排出口から処理済みの液体を得るマイクロ流体チップにおいて、少なくとも2種類の液体をそれぞれ分割して複数の流れとしたものを交互に水平に配列するように供給する液体供給部と、この液体供給部の下流に位置し、液体供給部において交互に配列された液体の配列方向での寸法が下流に向かうに従い小さくなる流路形状の流れ扁平化部と、各液体の混合もしくは反応が終了するまでの滞留時間を確保する長さの流路の処理部とを前記マイクロチップ本体の表面側に設け、このマイクロチップ本体の裏面側に各液体のバッファ層を設け、バッファ層は前記液体供給部に液体を供給するために設けられていることにある。   A feature of the microfluidic chip of the present invention that achieves the above object is that a plate-like microchip body, a lid member that covers one surface of the microchip body, and an adapter member that covers the back surface of the microchip body are provided. A microfluidic chip having at least two types of liquids, each of which is supplied from a plurality of liquid supply ports to a microchannel, and mixed and reacted in the microchannel to obtain a processed liquid from the liquid outlet A liquid supply unit that supplies a plurality of liquids divided into a plurality of flows, and a liquid supply unit that is positioned downstream of the liquid supply unit and arranged alternately in the liquid supply unit. A flow flattening section that has a channel shape that decreases in size in the direction of the array, and a length that ensures the residence time until the mixing or reaction of each liquid is completed. A processing section of the flow path is provided on the front surface side of the microchip body, a buffer layer for each liquid is provided on the back surface side of the microchip body, and the buffer layer is provided for supplying the liquid to the liquid supply section. There is in being.

そしてこの特徴において、前記流れ扁平化部は、前記液体供給部において交互に配列された液体の配列方向での寸法が下流に向かうに従い小さくなり、配列方向と流れの方向に交差する方向での寸法が下流に向かうにしたがい大きくなって断面積が流れの方向にほぼ同等か僅かに大きくなる流路形状であることが望ましい。また、前記液体供給部と前記流れ扁平化部と前記処理部は、溝をそれぞれ有していることが望ましい。   In this feature, the flow flattening portion has a dimension in the direction in which the liquids arranged alternately in the liquid supply unit are reduced in the downstream direction, and is a dimension in a direction intersecting the arrangement direction and the flow direction. It is desirable that the channel shape be such that the cross-sectional area becomes substantially equal to or slightly larger in the flow direction as the diameter increases toward the downstream. The liquid supply unit, the flow flattening unit, and the processing unit preferably have grooves.

該液体供給部において交互に配列された液体の配列方向での寸法を下流に向かうに従い小さくすると、交互に配列された液体の配列方向での各液体の幅は狭くなり(拡散距離は短縮され)、拡散が良好に進むと考えられがちであるが、該配列方向と流れの方向に交差する方向での寸法を流れの方向に維持していると流路断面積は流れの方向に小さくなって行く。そうすると、圧力損失は大きくなり大流量を流せない。   When the dimensions in the arrangement direction of the alternately arranged liquids in the liquid supply unit are reduced toward the downstream, the width of each liquid in the arrangement direction of the alternately arranged liquids becomes narrower (the diffusion distance is shortened). However, if the dimensions in the direction intersecting the direction of flow and the direction of flow are maintained in the direction of flow, the cross-sectional area of the flow path becomes smaller in the direction of flow. go. If it does so, pressure loss will become large and will not be able to flow a big flow.

そこで、該配列方向と流れの方向に交差する方向での寸法を流れの方向に大きくし流路断面積が流れの方向にほぼ同等か僅かに大きくなるようにすることで、圧力損失の増大化を阻止し、大流量の液体を流すことができるようにした。   Therefore, by increasing the dimension in the direction intersecting the direction of flow and the flow direction in the flow direction so that the cross-sectional area of the flow path is approximately equal to or slightly larger than the flow direction, the pressure loss is increased. And a large flow rate of liquid was allowed to flow.

該液体供給部において交互に配列された液体の配列方向での寸法を下流に向かうに従い小さくすると、交互に配列された液体の配列方向での各液体の幅は狭くなることに加えて、該配列方向と流れの方向に交差する方向での寸法を流れの方向に大きくすると、流れの方向における単位長当りの隣接する液体同士の接触面積は拡がる。   In addition to reducing the width of each liquid in the arrangement direction of the alternately arranged liquids when the dimension in the arrangement direction of the alternately arranged liquids in the liquid supply unit is reduced as it goes downstream, When the dimension in the direction intersecting the direction of flow and the direction of flow is increased in the direction of flow, the contact area between adjacent liquids per unit length in the direction of flow is expanded.

続く処理部で流れに交差する方向での該流れ扁平化部との接続部における断面積をそのまま液体排出口まで維持させるようにすると、処理部でも流れの方向における単位長当りの隣接する液体同士の拡大された接触面積は維持できるので、該液体供給部から供給された各液体の混合もしくは反応が終了するまでの滞留時間は短縮でき、処理部における流路の長さが短くなることから装置を小型化することができる。   If the cross-sectional area at the connection portion with the flow flattening portion in the direction intersecting the flow in the subsequent processing portion is maintained as it is to the liquid discharge port, the adjacent liquid per unit length in the flow direction also in the processing portion Therefore, the residence time until the mixing or reaction of each liquid supplied from the liquid supply unit is completed can be shortened, and the length of the flow path in the processing unit is shortened. Can be miniaturized.

それによって、液体を高速に流すことが可能となり、また1個のマイクロ流体チップで処理できる流量が向上するので、並列処理数を低減でき、装置の大型化を避けることができる。   As a result, the liquid can be flowed at a high speed, and the flow rate that can be processed by one microfluidic chip is improved, so that the number of parallel processes can be reduced and the enlargement of the apparatus can be avoided.

以下、図に示す実施形態について説明する。   Hereinafter, embodiments shown in the drawings will be described.

以下、本発明マイクロ流体チップの一実施形態として2種類の液体を混合するマイクロ流体チップを図示し説明するが、本発明はこれらの実施例により何ら限定されるものではない。
図1は、マイクロ流体チップ1の全体を示す概略的分解斜視図である。
Hereinafter, as an embodiment of the microfluidic chip of the present invention, a microfluidic chip that mixes two kinds of liquids will be illustrated and described, but the present invention is not limited to these examples.
FIG. 1 is a schematic exploded perspective view showing the entire microfluidic chip 1.

マイクロ流体チップ1は、混合や反応などの処理をする液体の種類に応じて金属,ガラス,シリコン,樹脂などの数mm厚の板材により形成したマイクロ流体チップ本体10と、マイクロ流体チップ本体10の一主面側に配置されマイクロ流体チップ本体10における流路の天井部分を構成する蓋部材30と、この蓋部材30とは反対側になるマイクロ流体チップ本体10の他の主面側に配置されポンプなどの送液機構とチップをつなぐアダプタ部材50、及びこれら3部材間に配設したシール部材70,90(図3参照)からなり、ねじ締結により液体が漏れないようにしている。   The microfluidic chip 1 includes a microfluidic chip body 10 formed of a plate material having a thickness of several millimeters such as metal, glass, silicon, and resin according to the type of liquid to be processed such as mixing and reaction, and the microfluidic chip body 10. A lid member 30 disposed on one main surface side and constituting a ceiling portion of the flow path in the microfluidic chip body 10, and disposed on the other main surface side of the microfluidic chip body 10 on the opposite side of the lid member 30. It comprises an adapter member 50 that connects a liquid feeding mechanism such as a pump and a chip, and seal members 70 and 90 (see FIG. 3) disposed between these three members, and prevents the liquid from leaking by screw fastening.

シール部材としては粘着性パッキング材やメタルパッキング材などを使用してもよいが、レーザー接合や接着剤など他の方法を用いてマイクロ流体チップ本体10の表裏に蓋部材30やアダプタ部材50を直接固定しても良い。なお、図1において、マイクロ流体チップ本体10,蓋部材30,アダプタ部材50に描いてある楕円はねじ孔である。また、アダプタ部材50とシール部材90にはそれぞれ供給する原液や排出する処理液の通路となる開孔を設けてあるが、詳細な図示は省略する。   As the sealing member, an adhesive packing material, a metal packing material, or the like may be used. However, the lid member 30 and the adapter member 50 are directly attached to the front and back of the microfluidic chip body 10 using other methods such as laser bonding or adhesive. It may be fixed. In FIG. 1, the ellipses drawn on the microfluidic chip body 10, the lid member 30, and the adapter member 50 are screw holes. Further, although the adapter member 50 and the seal member 90 are provided with openings serving as passages for the raw solution to be supplied and the processing liquid to be discharged, detailed illustration is omitted.

図2はマイクロ流体チップ本体10の一主面側の正面図であり、第一液供給部11,第一液誘導流路部12,第二液供給部13,ラミネートフロー形成部14,流れ扁平化部15,処理部16,液体排出部17を備えている。   FIG. 2 is a front view of one main surface side of the microfluidic chip body 10, and includes a first liquid supply unit 11, a first liquid induction channel unit 12, a second liquid supply unit 13, a laminate flow forming unit 14, and a flow flatness. The control unit 15, the processing unit 16, and the liquid discharge unit 17 are provided.

マイクロ流体チップ本体10には、以下具体的に説明する液体供給部から液体排出口に至る各種形状の溝を設けてあり、マイクロ流体チップ本体10の表面に密着固定される蓋部材30はそれらの溝を密封する蓋の機能を果たす。   The microfluidic chip body 10 is provided with grooves of various shapes from the liquid supply unit to the liquid discharge port, which will be described in detail below. Serves as a lid to seal the groove.

第一液供給部11は、多数の第一液供給ノズル11aから構成される。各第一液供給ノズル11aはマイクロ流体チップ本体10の幅方向に一定の間隔をもって一列に並ぶようにマイクロ流体チップ本体10の裏面(アダプタ部材50側の主面)から表面(蓋部材30側の主面)にかけて設けてある開孔で構成される。   The first liquid supply unit 11 includes a large number of first liquid supply nozzles 11a. The first liquid supply nozzles 11a are arranged from the back surface (main surface on the adapter member 50 side) of the microfluidic chip body 10 to the front surface (the main surface on the adapter member 50 side) so as to be arranged in a line at a certain interval in the width direction of the microfluidic chip body 10. It is composed of openings provided over the main surface.

図3は図2に示したA−A切断線に沿ったマイクロ流体チップ本体10の横断面図であり、各第一液供給ノズル11aの下部(アダプタ部材50側の裏面)には供給液である第一液を一時的に溜めておくバッファ槽18を設けてある。バッファ槽18はマイクロ流体チップ本体10の裏面に設けた凹部とアダプタ部材50で形成している。   FIG. 3 is a cross-sectional view of the microfluidic chip body 10 taken along the line AA shown in FIG. 2, and the lower part of each first liquid supply nozzle 11a (the back surface on the adapter member 50 side) is supplied with the supply liquid. A buffer tank 18 for temporarily storing a first liquid is provided. The buffer tank 18 is formed by a recess provided on the back surface of the microfluidic chip body 10 and an adapter member 50.

アダプタ部材50のバッファ槽18に対応する位置に第一液供給ヘッド19を取り付けてあり、第一液供給ヘッド19から供給された第一液は、バッファ槽18を満たした後に液面の上昇に伴い全ての第一液吐出ノズル11aへと均一に供給される。この結果、全ての第一液吐出ノズル11aから第一液が吐出され、それらの液体は各ノズルから延びる第一液誘導流路部12を通り、ラミネートフロー形成部14へと移動する。   The first liquid supply head 19 is attached to the adapter member 50 at a position corresponding to the buffer tank 18, and the first liquid supplied from the first liquid supply head 19 increases the liquid level after filling the buffer tank 18. Accordingly, it is uniformly supplied to all the first liquid discharge nozzles 11a. As a result, the first liquid is discharged from all the first liquid discharge nozzles 11a, and these liquids move to the laminate flow forming section 14 through the first liquid guide passage section 12 extending from each nozzle.

第二液供給部13は、第一液吐出ノズル11aとノズル1個分ずつ位置がマイクロ流体チップ本体10の幅方向にずれた多数の第二液吐出ノズル13aから構成され、バッファ槽や第二液供給ヘッドなどを擁している点において、第一液供給部11と同様の構造を持つ。   The second liquid supply unit 13 includes a first liquid discharge nozzle 11a and a large number of second liquid discharge nozzles 13a whose positions are shifted in the width direction of the microfluidic chip body 10 by one nozzle. It has the same structure as the first liquid supply unit 11 in that it includes a liquid supply head.

第二液は、全ての第二液吐出ノズル13aから吐出され、ラミネートフロー形成部14へ供給される。   The second liquid is discharged from all the second liquid discharge nozzles 13 a and supplied to the laminate flow forming unit 14.

図4に拡大して示すように、第一液誘導流路部12では各第一液吐出ノズル11aの位置からマイクロ流体チップ本体10長手方向(第一液の流れの方向)に沿う多数の障壁12aの間に第一液誘導流路12bがあり、第一液は第一液誘導流路12bを流下する。   As shown in FIG. 4 in an enlarged manner, in the first liquid guiding channel section 12, a number of barriers along the longitudinal direction of the microfluidic chip body 10 (the direction of the first liquid flow) from the position of each first liquid discharge nozzle 11a. There is a first liquid induction channel 12b between 12a, and the first liquid flows down the first liquid induction channel 12b.

多数の第二液吐出ノズル13aは障壁12aにおける下流側端部に開孔しており、各第一液吐出ノズル11aと各第二液吐出ノズル13aから吐出された両液体は、両ノズル11a,13aの位置のずれにより、ラミネートフロー形成部14において、2種類の液体が交互に配されたラミネートフロー14Aを形成する。   A large number of second liquid discharge nozzles 13a are opened at the downstream end of the barrier 12a, and both liquids discharged from the first liquid discharge nozzles 11a and the second liquid discharge nozzles 13a are the two nozzles 11a, Due to the displacement of the position 13a, the laminate flow forming unit 14 forms a laminate flow 14A in which two kinds of liquids are alternately arranged.

ラミネートフローを形成する事で、2種類の液体の総体積に占める接触面積の割合は増加し、接触面で発生する分子拡散が活発になり、一定時間の分子拡散量が増加するためマイクロ流体チップにおける処理の高効率化が実現する。同一体積の場合、マイクロ流体チップの処理効率はラミネートフローの層の数に比例する。   By forming the laminate flow, the ratio of the contact area to the total volume of the two types of liquid increases, the molecular diffusion generated at the contact surface becomes active, and the amount of molecular diffusion for a certain time increases, so the microfluidic chip High efficiency of processing is realized. For the same volume, the processing efficiency of the microfluidic chip is proportional to the number of layers in the laminate flow.

なお、第一液供給部11,第一液誘導流路部12,第二液供給部13およびラミネートフロー形成部14は、少なくとも2種類の液体をそれぞれ分割して複数の流れとしたものを交互に配列するように供給する液体供給部を構成している。   The first liquid supply unit 11, the first liquid guide channel unit 12, the second liquid supply unit 13, and the laminate flow forming unit 14 are alternately formed by dividing at least two types of liquids into a plurality of flows. The liquid supply unit is configured to supply the liquid so as to be arranged.

ラミネートフロー形成部14で形成されたラミネートフロー14Aは、次に流れ扁平化部15と移動する。   The laminate flow 14 </ b> A formed by the laminate flow forming unit 14 then moves with the flow flattening unit 15.

分子拡散による液体の混合において、混合完了までの時間に影響するのは接触界面に垂直な方向の液体の厚さ(=分子や粒子の拡散距離)であり、厚さの2乗に時間が比例する関係を持つ。例えば、10秒で1mm拡散する場合は、拡散距離を1/2の0.5mmに短縮すると、時間は1/4の2.5秒しかかからない。   In liquid mixing by molecular diffusion, the time to mixing is affected by the liquid thickness in the direction perpendicular to the contact interface (= diffusion distance of molecules and particles), and time is proportional to the square of the thickness. Have a relationship. For example, in the case of spreading 1 mm in 10 seconds, if the diffusion distance is reduced to 0.5 mm, which is 1/2, the time only takes 1/4 seconds, 2.5 seconds.

この関係に基づいて、流れ扁平化部15ではラミネートフロー14Aの接触界面に垂直な方向に流路幅を絞る。これにより拡散距離を短縮し、高速で液体の混合を行う事が可能となる。   Based on this relationship, the flow flattening section 15 narrows the flow path width in the direction perpendicular to the contact interface of the laminate flow 14A. As a result, the diffusion distance can be shortened and the liquid can be mixed at high speed.

また、絞る前と絞った後の流路幅の比が同じ値の場合、第一液吐出ノズル11aとノズル1個分ずつ位置がマイクロ流体チップ本体10の幅方向にずれた第二液吐出ノズル13aの交互配列数を多くし、ラミネートフローの層の数が多くなるほど、1層辺りの厚さは薄くなり、それによって混合完了までの時間は短くて済む。   In addition, when the ratio of the flow path width before and after squeezing is the same value, the position of the first liquid discharge nozzle 11a and one nozzle is shifted in the width direction of the microfluidic chip body 10 by the second liquid discharge nozzle. As the number of alternating arrangements of 13a is increased and the number of layers in the laminate flow is increased, the thickness per layer is reduced, thereby shortening the time until mixing is completed.

通常、流路の幅を絞ると流路断面積が減少し、それにより流路内での単位長当りの圧力損失は下流に向かうほど増大する。特にマイクロ流体チップに大流量で送液しようとすると、流路内の圧力損失は第一液供給ヘッド19などの上流側に配設してある図示していないポンプの性能限界を超過し、送液は不可能となる。   Usually, when the width of the flow path is reduced, the cross-sectional area of the flow path is reduced, whereby the pressure loss per unit length in the flow path increases toward the downstream. In particular, when trying to send liquid to the microfluidic chip at a large flow rate, the pressure loss in the flow path exceeds the performance limit of a pump (not shown) arranged on the upstream side of the first liquid supply head 19 and the like, and the liquid is sent. Liquid becomes impossible.

そこで本実施形態においては、従来は0.5mm程度の薄板で製作される事の多かったマイクロ流体チップ本体10に数mm厚の板材を用い、図2に示すように下流に向かうに従って流路幅Wを絞ると同時にそれに比例して図2に示したB−B切断線に沿った部分的縦断面図である図5に示すように流路の深さHを広げ、流路断面積を一定に保つ流れ扁平化部15を設けることで圧力損失が増大しない構造とした。流れ扁平化部15は、圧力損失増大阻止機能をもつ拡散距離短縮部と云える。   Therefore, in the present embodiment, a plate material having a thickness of several millimeters is used for the microfluidic chip body 10 that has been conventionally manufactured with a thin plate of about 0.5 mm, and the flow path width W is increased toward the downstream as shown in FIG. As shown in FIG. 5, which is a partial longitudinal sectional view taken along the line BB shown in FIG. 2, the flow path depth H is increased and the flow path sectional area is kept constant. By providing the flow flattening portion 15 to be maintained, the pressure loss is not increased. The flow flattening portion 15 can be said to be a diffusion distance shortening portion having a pressure loss increase preventing function.

この場合、流路の深さHを広げても、流路内の流れは層流を維持しているためにラミネートフロー14Aが乱れることはなく、分子拡散は乱されない。   In this case, even if the depth H of the flow path is increased, the laminar flow is maintained in the flow in the flow path, so that the laminate flow 14A is not disturbed, and the molecular diffusion is not disturbed.

図6に示すように、流れ扁平化部15では流れの方向をX方向、幅方向(液体供給部11において交互に配列された液体の配列方向)をY方向、深さ方向(液体供給部11において交互に配列された液体の配列方向と流れの方向に交差する方向)をZ方向で表した場合、ラミネートフローの各1層は、厚さが下流に進むに連れて薄くなり(厚さw1⇒w2)、代わりに、深さ方向(Z方向)において長くなるように(深さh1⇒h2)扁平化され、流れ方向に交差する方向での断面積は上流のラミネートフロー形成部14側(断面積A1)と下流の処理部16側(断面積A2)でもほぼ同一(断面積A1≒A2)となるようにしているが、下流ほど断面積はやや広くなるようにする(断面積A2≧A1)と良い。   As shown in FIG. 6, in the flow flattening unit 15, the flow direction is the X direction, the width direction (the arrangement direction of the liquids alternately arranged in the liquid supply unit 11) is the Y direction, and the depth direction (the liquid supply unit 11). In the Z direction, the direction in which the liquids arranged alternately and the direction intersecting the flow direction are expressed in the Z direction, each layer of the laminate flow becomes thinner as the thickness progresses downstream (thickness w1). ⇒ w2), instead, it is flattened to be longer in the depth direction (Z direction) (depth h1 ⇒ h2), and the cross-sectional area in the direction intersecting the flow direction is the upstream laminating flow forming portion 14 side ( The cross-sectional area A1) and the downstream processing unit 16 side (cross-sectional area A2) are almost the same (cross-sectional area A1≈A2), but the cross-sectional area is made slightly wider toward the downstream (cross-sectional area A2 ≧). Good with A1).

処理部16との接続部20における断面形状をどうするかは、マイクロ流体チップ本体10の厚さや後述する処理部16の長さなどによって決めれば良い。   What to do with the cross-sectional shape of the connecting portion 20 with the processing portion 16 may be determined by the thickness of the microfluidic chip body 10 and the length of the processing portion 16 described later.

図2においては、流れ扁平化部15をマイクロ流体チップ本体10の正面から見て半円状としているが、形状に制限はなく、三角形でも構わない。また、半円状や三角形などの形状は微細ピッチの階段状の形に模擬してもよく、その形状に合せて、深さ方向においても緩やかな傾斜を階段状としてもよい。   In FIG. 2, the flow flattening portion 15 is semicircular when viewed from the front of the microfluidic chip body 10, but the shape is not limited and may be triangular. Further, the shape such as a semicircle or a triangle may be simulated as a step shape with a fine pitch, and a gentle slope may be formed in a step shape in the depth direction according to the shape.

流れ扁平化部15を通過した液体は、処理部16へ移動する。
処理部16は、流れに交差する方向での流れ扁平化部15との接続部20における断面積をそのまま液体排出部(液体排出口)17まで維持している。
The liquid that has passed through the flow flattening unit 15 moves to the processing unit 16.
The processing unit 16 maintains the cross-sectional area at the connection unit 20 with the flow flattening unit 15 in the direction crossing the flow as it is to the liquid discharge unit (liquid discharge port) 17.

これは、流路断面形状を同一にすることで加工が容易となり、また液体の混合状態を推定する計算も容易となるからである。ただし、マイクロ流体チップ本体10の厚みに余裕があれば流れ扁平化部15の流路深さHを深くし、ラミネートフロー14Aの界面面積/全体積の比を増やすことができ、より混合性能を上げることも可能である。   This is because processing can be facilitated by making the cross-sectional shapes of the channels the same, and calculation for estimating the mixed state of the liquid can be facilitated. However, if there is a margin in the thickness of the microfluidic chip body 10, the flow path depth H of the flow flattening portion 15 can be increased, and the ratio of the interface area / total volume of the laminate flow 14A can be increased. It is also possible to raise.

実施例では処理部16を円形の渦巻き状としたが、混合完了までに必要な滞留時間を計算により求め、そこから導かれる必要流路長をマイクロ流体チップ本体10上に確保できるならば、図7の方形の渦巻き状や図示していない六角形の渦巻き状、図8の蛇行状など他の形状でも良い。   In the embodiment, the processing unit 16 has a circular spiral shape. However, if the required residence time until the completion of mixing is obtained by calculation and the necessary flow path length derived therefrom can be secured on the microfluidic chip main body 10, FIG. Other shapes such as a rectangular spiral shape 7, a hexagonal spiral shape not shown, and a meandering shape in FIG. 8 may be used.

この処理部16を通過する間に液体の混合は完全に終了し、液体排出部17から装置外に均一に混合された処理液が排出される。アダプタ部材50の液体排出部17に対応する個所に図示していない処理液排出ヘッドを設けてあり、この処理液排出ヘッドを通して処理液を得る。   Mixing of the liquid is completely completed while passing through the processing unit 16, and the processing liquid uniformly mixed out of the apparatus is discharged from the liquid discharging unit 17. A treatment liquid discharge head (not shown) is provided at a location corresponding to the liquid discharge portion 17 of the adapter member 50, and a treatment liquid is obtained through this treatment liquid discharge head.

液体が層流である限り、本発明のマイクロ流体チップ1の混合性能は、ラミネートフロー14Aの層の数と流れ扁平化部15における前後の流路幅の比により決定される。よって、従来のマイクロ流体チップのような微細なノズルや溝は必ずしも必要ではなく、それぞれが数百μmから数mmのノズルや溝の組み合わせとしても性能を発揮できるため、加工性に優れる。   As long as the liquid is a laminar flow, the mixing performance of the microfluidic chip 1 of the present invention is determined by the ratio of the number of layers of the laminate flow 14A and the flow path width before and after the flow flattened portion 15. Therefore, fine nozzles and grooves as in the conventional microfluidic chip are not necessarily required, and each of them can exhibit performance as a combination of nozzles and grooves of several hundred μm to several mm, so that it is excellent in workability.

図2の実施例ではラミネートフロー14Aを横に配列した形としているが、マイクロ流体チップ本体10の厚さ方向に配列した形、即ち、図6の各軸方向について、YとZの軸方向をX軸を中心として90度回転させ、Y軸が図6のZ軸方向となるような縦の配列としても良い。   In the embodiment of FIG. 2, the laminate flow 14 </ b> A is arranged horizontally, but the shape arranged in the thickness direction of the microfluidic chip body 10, that is, the axial directions of Y and Z in each axial direction of FIG. 6. A vertical arrangement may be adopted in which the image is rotated 90 degrees around the X axis and the Y axis is in the Z axis direction of FIG.

上記実施例では2液を混合する例で説明したが、3液以上の液体を混合させたい場合には、液体供給部を多く設ければ良い。   In the above-described embodiment, an example in which two liquids are mixed has been described. However, when three or more liquids are to be mixed, a large number of liquid supply units may be provided.

マイクロ流体チップの概略分解斜視図図である。It is a schematic exploded perspective view of a microfluidic chip. 図1に示したマイクロ流体チップ本体の正面図である。It is a front view of the microfluidic chip main body shown in FIG. 図2のA−A切断線に沿ったマイクロ流体チップ本体の横断面図である。FIG. 3 is a cross-sectional view of the microfluidic chip body taken along the line AA in FIG. 2. 図1に示したマイクロ流体チップ本体におけるラミネートフロー形成部の部分的拡大図である。It is the elements on larger scale of the lamination flow formation part in the microfluidic chip main body shown in FIG. 図2のB−B切断線に沿ったマイクロ流体チップ本体の部分的縦断面図である。FIG. 3 is a partial longitudinal sectional view of the microfluidic chip body taken along the line BB in FIG. 2. 図1に示したマイクロ流体チップ本体における流れ扁平化部について説明するための図である。It is a figure for demonstrating the flow flat part in the microfluidic chip main body shown in FIG. 図1に示したマイクロ流体チップ本体における処理部の微小流路として適用される形状を模擬的に示す図である。It is a figure which shows the shape applied as a microchannel of the process part in the microfluidic chip main body shown in FIG. 図1に示したマイクロ流体チップ本体における処理部の微小流路として適用される他の形状を模擬的に示す図である。It is a figure which shows the other shape applied as a microchannel of the process part in the microfluidic chip main body shown in FIG. 1 in simulation.

符号の説明Explanation of symbols

1…マイクロ流体チップ
10…マイクロ流体チップ本体
11…第一液供給部
12…第一液誘導流路部
13…第二液供給部
14…ラミネートフロー形成部
15…流れ扁平化部
16…処理部
17…液体排出部
30…蓋部材
50…アダプタ部材
DESCRIPTION OF SYMBOLS 1 ... Microfluidic chip 10 ... Microfluidic chip main body 11 ... 1st liquid supply part 12 ... 1st liquid induction flow path part 13 ... 2nd liquid supply part 14 ... Laminate flow formation part 15 ... Flow flattening part 16 ... Processing part 17 ... Liquid discharge part 30 ... Lid member 50 ... Adapter member

Claims (3)

板状のマイクロチップ本体と、このマイクロチップ本体の一方の表面を覆う蓋部材とマイクロチップ本体の裏面を覆うアダプタ部材とを有し、複数の液体供給口からそれぞれ供給される液体を微小流路に導き、微小流路において液体を混合・反応させ、液体排出口から処理済みの液体を得るマイクロ流体チップにおいて、
少なくとも2種類の液体をそれぞれ分割して複数の流れとしたものを交互に水平に配列するように供給する液体供給部と、この液体供給部の下流に位置し、液体供給部において交互に配列された液体の配列方向での寸法が下流に向かうに従い小さくなる流路形状の流れ扁平化部と、各液体の混合もしくは反応が終了するまでの滞留時間を確保する長さの流路の処理部とを前記マイクロチップ本体の表面側に設け、このマイクロチップ本体の裏面側に各液体のバッファ層を設け、バッファ層は前記液体供給部に液体を供給するために設けられていることを特徴とするマイクロ流体チップ。
A plate-like microchip body, a lid member that covers one surface of the microchip body, and an adapter member that covers the back surface of the microchip body, and each of the liquids supplied from a plurality of liquid supply ports is a microchannel In a microfluidic chip that mixes and reacts with liquid in a microchannel and obtains a processed liquid from a liquid outlet,
A liquid supply unit that supplies a plurality of flows obtained by dividing each of at least two types of liquids alternately and horizontally, and is positioned downstream of the liquid supply unit and alternately arranged in the liquid supply unit A flow flattening portion having a flow path shape that decreases in size in the direction of arrangement of the liquid toward the downstream, and a flow path processing portion having a length that ensures a residence time until the mixing or reaction of each liquid is completed, and Is provided on the front surface side of the microchip body, a buffer layer for each liquid is provided on the back surface side of the microchip body, and the buffer layer is provided for supplying the liquid to the liquid supply section. Microfluidic chip.
前記流れ扁平化部は、前記液体供給部において交互に配列された液体の配列方向での寸法が下流に向かうに従い小さくなり、配列方向と流れの方向に交差する方向での寸法が下流に向かうにしたがい大きくなって断面積が流れの方向にほぼ同等か僅かに大きくなる流路形状であることを特徴とする請求項1に記載のマイクロ流体チップ。   The flow flattening portion becomes smaller in size in the arrangement direction of the liquids alternately arranged in the liquid supply unit, and the dimension in the direction intersecting the arrangement direction and the flow direction goes downstream. 2. The microfluidic chip according to claim 1, wherein the microfluidic chip has a flow path shape that increases in size and has a cross-sectional area substantially equal to or slightly larger in the flow direction. 前記液体供給部と前記流れ扁平化部と前記処理部は、溝をそれぞれ有していることを特徴とする請求項1に記載のマイクロ流体チップ。   The microfluidic chip according to claim 1, wherein the liquid supply unit, the flow flattening unit, and the processing unit each have a groove.
JP2008279544A 2008-10-30 2008-10-30 Microfluid chip Pending JP2009018311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008279544A JP2009018311A (en) 2008-10-30 2008-10-30 Microfluid chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008279544A JP2009018311A (en) 2008-10-30 2008-10-30 Microfluid chip

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004230055A Division JP4367283B2 (en) 2004-08-06 2004-08-06 Microfluidic chip

Publications (1)

Publication Number Publication Date
JP2009018311A true JP2009018311A (en) 2009-01-29

Family

ID=40358409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008279544A Pending JP2009018311A (en) 2008-10-30 2008-10-30 Microfluid chip

Country Status (1)

Country Link
JP (1) JP2009018311A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012061452A (en) * 2010-09-17 2012-03-29 Nakamura Choko:Kk Flow passage device of microreactor and heating reactor with the same
US11185830B2 (en) 2017-09-06 2021-11-30 Waters Technologies Corporation Fluid mixer
CN114887564A (en) * 2022-07-12 2022-08-12 杭州沈氏节能科技股份有限公司 Micro-channel reactor
US11555805B2 (en) 2019-08-12 2023-01-17 Waters Technologies Corporation Mixer for chromatography system
US11821882B2 (en) 2020-09-22 2023-11-21 Waters Technologies Corporation Continuous flow mixer
US11898999B2 (en) 2020-07-07 2024-02-13 Waters Technologies Corporation Mixer for liquid chromatography

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002346355A (en) * 2001-05-28 2002-12-03 Fuji Electric Co Ltd Micro-mixer
JP2003001077A (en) * 2001-06-15 2003-01-07 Minolta Co Ltd Mixing method, mixing structure, micromixer and microchip provided with mixing structure
JP2003210957A (en) * 2002-01-18 2003-07-29 Fuji Photo Film Co Ltd Micromixer
JP2004148277A (en) * 2002-11-01 2004-05-27 Hitachi Ltd Chemical reaction apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002346355A (en) * 2001-05-28 2002-12-03 Fuji Electric Co Ltd Micro-mixer
JP2003001077A (en) * 2001-06-15 2003-01-07 Minolta Co Ltd Mixing method, mixing structure, micromixer and microchip provided with mixing structure
JP2003210957A (en) * 2002-01-18 2003-07-29 Fuji Photo Film Co Ltd Micromixer
JP2004148277A (en) * 2002-11-01 2004-05-27 Hitachi Ltd Chemical reaction apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012061452A (en) * 2010-09-17 2012-03-29 Nakamura Choko:Kk Flow passage device of microreactor and heating reactor with the same
US11185830B2 (en) 2017-09-06 2021-11-30 Waters Technologies Corporation Fluid mixer
US11555805B2 (en) 2019-08-12 2023-01-17 Waters Technologies Corporation Mixer for chromatography system
US11898999B2 (en) 2020-07-07 2024-02-13 Waters Technologies Corporation Mixer for liquid chromatography
US11821882B2 (en) 2020-09-22 2023-11-21 Waters Technologies Corporation Continuous flow mixer
CN114887564A (en) * 2022-07-12 2022-08-12 杭州沈氏节能科技股份有限公司 Micro-channel reactor
CN114887564B (en) * 2022-07-12 2022-12-13 杭州沈氏节能科技股份有限公司 Microchannel reactor

Similar Documents

Publication Publication Date Title
JP4367283B2 (en) Microfluidic chip
JP5604038B2 (en) Reaction apparatus and reaction plant
JP2020114585A (en) Process intensified microfluidic device
US6851846B2 (en) Mixing method, mixing structure, micromixer and microchip having the mixing structure
JP3694877B2 (en) Micro mixer
JP2009018311A (en) Microfluid chip
US7485266B2 (en) Micro fluid chip
US9073018B2 (en) Micro mixer
EP1908514B1 (en) Microreactor
JP3974531B2 (en) Microchannel mixing method and microchannel apparatus
US11872533B2 (en) Device and method for generating droplets
CN101178398A (en) Micro total analysis chip and micro total analysis system
US7374726B2 (en) Chemical reactor
JP5340443B2 (en) Operation method of multi-channel equipment
JP2004016870A (en) Micro-reactor and chemical reaction method using the same
US10232338B2 (en) Micro-channel reactor
JP2005118634A (en) Micro-mixing device
JP2006015272A (en) Static plate type mixing apparatus
US20120213686A1 (en) Microchannel structure, and methods for producing emulsion and solid spherical particles
US20110194995A1 (en) Microfluid device
JP2006102649A (en) Micro-fluid apparatus
JP2019002926A (en) Microfluidic device and method for feeding fluid
JP4298671B2 (en) Micro device
JP2022080026A (en) Dispenser in micro channel and micro channel device
JP2009095770A (en) Microreactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

A02 Decision of refusal

Effective date: 20121030

Free format text: JAPANESE INTERMEDIATE CODE: A02