JP2018195571A - Electrolyte solution, secondary battery, secondary battery system, and power generation system - Google Patents

Electrolyte solution, secondary battery, secondary battery system, and power generation system Download PDF

Info

Publication number
JP2018195571A
JP2018195571A JP2018073928A JP2018073928A JP2018195571A JP 2018195571 A JP2018195571 A JP 2018195571A JP 2018073928 A JP2018073928 A JP 2018073928A JP 2018073928 A JP2018073928 A JP 2018073928A JP 2018195571 A JP2018195571 A JP 2018195571A
Authority
JP
Japan
Prior art keywords
electrolyte
positive electrode
negative electrode
secondary battery
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018073928A
Other languages
Japanese (ja)
Inventor
明博 織田
Akihiro Oda
明博 織田
酒井 政則
Masanori Sakai
政則 酒井
北川 雅規
Masaki Kitagawa
雅規 北川
修一郎 足立
Shuichiro Adachi
修一郎 足立
祐一 利光
Yuichi Toshimitsu
祐一 利光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of JP2018195571A publication Critical patent/JP2018195571A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

To provide: an electrolyte solution which is superior in output characteristic when used for a secondary battery; a secondary battery superior in output characteristic, which uses the electrolyte solution; and a secondary battery system and a power generation system, each including the secondary battery.SOLUTION: An electrolyte solution comprises: at least one of halogen molecules and halogen ions; and a compound which can form a complex in combination with the at least one of halogen molecules and halogen ions. In the electrolyte solution, at least part of the compound dissolves in a liquid medium, and the liquid medium includes water. The halogen molecule is at least one selected from a group consisting of a chlorine molecule, a bromine molecule and an iodine molecule. The halogen ion is at least one selected from a group consisting of a chlorine ion, a bromine ion and an iodine ion.SELECTED DRAWING: Figure 1

Description

本発明は、電解液、二次電池、二次電池システム及び発電システムに関する。   The present invention relates to an electrolytic solution, a secondary battery, a secondary battery system, and a power generation system.

二次電池の一種であるフロー電池は、MWh級の大規模蓄電が可能であり、かつ、コストパフォーマンスに優れていると言われており、再生可能エネルギー分野、スマートシティー分野等での適用が期待されている。   A flow battery, which is a type of secondary battery, is capable of large-scale power storage of MWh class and is said to have excellent cost performance, and is expected to be applied in the renewable energy field, smart city field, etc. Has been.

これまで、フロー電池としては、バナジウムイオン系フロー電池(V系フロー電池)の研究が多くなされており(例えば、特許文献1参照)、既に実証プラントでの適用が試みられている。しかし、V系フロー電池は、レアメタルであるバナジウムを使用するため、コストの面で課題が大きい。   Until now, many researches have been made on vanadium ion-based flow batteries (V-based flow batteries) as flow batteries (see, for example, Patent Document 1), and application to demonstration plants has already been attempted. However, since a V-type flow battery uses vanadium which is a rare metal, there are significant problems in terms of cost.

このような背景から、コスト、エネルギー密度、及び温度稼動域の点で有利な新しいフロー電池が幾つか提案されている。
例えば、ヨウ素イオンを正極活物質とし、亜鉛イオン及び亜鉛金属を負極活物質としたZn/I系フロー電池が提案されている(例えば、特許文献2参照)。また、正極活物質にヨウ素、塩素、臭素等のハロゲン化合物、負極活物質に亜鉛を用いた二次電池が提案されている(例えば、特許文献3参照)。
これらの正極活物質及び負極活物質は、レアメタルであるバナジウムよりも安価であるため、フロー電池等の二次電池に用いた場合に低コスト化を図ることができる。
Against this background, several new flow batteries that are advantageous in terms of cost, energy density, and temperature operating range have been proposed.
For example, a Zn / I-based flow battery using iodine ions as a positive electrode active material and zinc ions and zinc metal as a negative electrode active material has been proposed (see, for example, Patent Document 2). In addition, a secondary battery using a halogen compound such as iodine, chlorine, or bromine as a positive electrode active material and zinc as a negative electrode active material has been proposed (see, for example, Patent Document 3).
Since these positive electrode active materials and negative electrode active materials are less expensive than vanadium, which is a rare metal, costs can be reduced when used for secondary batteries such as flow batteries.

また、亜鉛を活物質とする負極と、ヨウ素及びヨウ素と錯体付加物を形成する能力のあるポリマーとの錯体付加物並びにその中に炭素材料を分散せしめた組成物を活物質とする正極の間にセパレータを有する亜鉛/ヨウ素二次電池が提案されている(例えば、特許文献4参照)。   In addition, between a negative electrode containing zinc as an active material, a complex adduct of iodine and a polymer capable of forming a complex adduct with iodine, and a positive electrode using a composition in which a carbon material is dispersed therein as an active material. A zinc / iodine secondary battery having a separator is proposed (for example, see Patent Document 4).

特開2011−233372号公報JP 2011-233372 A 米国特許出願公開第2015/0147673号明細書US Patent Application Publication No. 2015/0147673 米国特許第4109065号公報U.S. Pat.No. 4,910,065 特開昭63−205067号公報JP 63-205067 A

しかしながら、特許文献2に記載のフロー電池及び特許文献3に記載の二次電池では、正極電解液中のヨウ化物イオン(I)の酸化反応に伴い、電極表面へヨウ素皮膜が析出し、このヨウ素皮膜が厚膜化することで高抵抗化し酸化電流が低下して二次電池の出力が低下するおそれがある。 However, in the flow battery described in Patent Document 2 and the secondary battery described in Patent Document 3, an iodine film is deposited on the electrode surface along with the oxidation reaction of iodide ion (I ) in the positive electrode electrolyte solution. When the iodine film is thickened, the resistance is increased and the oxidation current is reduced, which may reduce the output of the secondary battery.

また、特許文献4のZn/ヨウ素二次電池では、ヨウ素と錯体付加物を形成する能力のあるポリマーを有機溶媒に溶解させた後、この中に炭素材料を分散させ、プレス機により有機溶媒を含む微粉化樹脂炭素複合体を加圧プレスして正極を形成している。そのため、このZn/ヨウ素二次電池では、前述のポリマーが正極に固定された固体状態で使用されている。特許文献4のZn/ヨウ素二次電池では、電解液中のヨウ化物イオンは酸化反応によって電極表面にてヨウ素(I)となり、正極に固定されたポリマーと錯体を形成するが、形成された錯体は電気伝導性が低く、出力特性が低下するおそれがある。 In the Zn / iodine secondary battery of Patent Document 4, after dissolving a polymer capable of forming a complex adduct with iodine in an organic solvent, the carbon material is dispersed therein, and the organic solvent is removed by a press machine. The finely divided resin carbon composite that is included is pressed under pressure to form a positive electrode. Therefore, in this Zn / iodine secondary battery, the aforementioned polymer is used in a solid state fixed to the positive electrode. In the Zn / iodine secondary battery of Patent Document 4, the iodide ion in the electrolytic solution is converted to iodine (I 2 ) on the electrode surface by an oxidation reaction, and forms a complex with the polymer fixed to the positive electrode. The complex has low electrical conductivity, and the output characteristics may be deteriorated.

本発明の一形態は、二次電池に使用した際に出力特性に優れる電解液を提供することを目的とする。
また、本発明の一形態は、出力特性に優れる二次電池、並びにこの二次電池を備える二次電池システム及び発電システムを提供することを目的とする。
An object of one embodiment of the present invention is to provide an electrolytic solution having excellent output characteristics when used in a secondary battery.
Another object of one embodiment of the present invention is to provide a secondary battery excellent in output characteristics, and a secondary battery system and a power generation system including the secondary battery.

上記課題を解決するための具体的な手段には、以下の実施態様が含まれる。   Specific means for solving the above problems include the following embodiments.

<1> ハロゲン分子及びハロゲンイオンの少なくとも一方と、前記ハロゲン分子及び前記ハロゲンイオンの少なくとも一方と錯体を形成可能な化合物と、を含む電解液。
<2> 液状媒体を更に含み、前記化合物の少なくとも一部が前記液状媒体に溶解している<1>に記載の電解液。
<3> 前記液状媒体が水を含む<2>に記載の電解液。
<4> 前記ハロゲン分子は、塩素分子、臭素分子及びヨウ素分子からなる群より選択される少なくとも一つであり、前記ハロゲンイオンは、塩素イオン、臭素イオン及びヨウ素イオンからなる群より選択される少なくとも一つである<1>〜<3>のいずれか1つに記載の電解液。
<5> 前記ハロゲン分子はヨウ素であり、前記ハロゲンイオンはヨウ素イオンである<1>〜<4>のいずれか1つに記載の電解液。
<6> 前記化合物は、ポリマー化合物である<1>〜<5>のいずれか1つに記載の電解液。
<7> 前記ポリマー化合物の数平均分子量は、200〜100万である<6>に記載の電解液。
<8> 前記ポリマー化合物の数平均分子量は、5000〜50万である<6>に記載の電解液。
<9> 前記ポリマー化合物は、ナイロン−6、ポリテトラヒドロフラン、ポリビニルアルコール、ポリアクリロニトリル、ポリビニルピリジン、ポリビニルピロリドン、ポリメチル(メタ)アクリレート、ポリテトラメチレンエーテルグリコール、ポリアクリルアミド、ポリプロピレングリコール、ポリエチレングリコール、ポリエチレンオキシド、ポリアセチレン、ポリ(フェニレンビニレン)、ポリピロール、ポリアニリン、ポリ(フェニレンスルフィド)、ポリチオフェン、キトサン、アミロース、デンプン、アミロペクチン、セルロース、グリコーゲン、デキストリン及びシクロデキストリンからなる群より選択される少なくとも一つを含む<6>〜<8>のいずれか1つに記載の電解液。
<10> 前記ポリマー化合物は、ポリビニルピロリドン、ポリビニルピリジン、アミロース、デンプン、アミロペクチン、グリコーゲン、デキストリン及びシクロデキストリンからなる群より選択される少なくとも一つを含む<6>〜<8>のいずれか1つに記載の電解液。
<11> 前記ポリマー化合物は、ポリビニルピロリドンを含む<6>〜<8>のいずれか1つに記載の電解液。
<12> 正極と、負極と、<1>〜<11>のいずれか1つに記載の電解液と、を備える二次電池。
<1> An electrolytic solution comprising at least one of a halogen molecule and a halogen ion, and a compound capable of forming a complex with at least one of the halogen molecule and the halogen ion.
<2> The electrolytic solution according to <1>, further comprising a liquid medium, wherein at least a part of the compound is dissolved in the liquid medium.
<3> The electrolytic solution according to <2>, wherein the liquid medium includes water.
<4> The halogen molecule is at least one selected from the group consisting of chlorine molecules, bromine molecules and iodine molecules, and the halogen ions are at least selected from the group consisting of chlorine ions, bromine ions and iodine ions. The electrolytic solution according to any one of <1> to <3>, which is one.
<5> The electrolytic solution according to any one of <1> to <4>, wherein the halogen molecule is iodine, and the halogen ion is iodine ion.
<6> The electrolytic solution according to any one of <1> to <5>, wherein the compound is a polymer compound.
<7> The electrolyte solution according to <6>, wherein the polymer compound has a number average molecular weight of 200 to 1,000,000.
<8> The electrolyte solution according to <6>, wherein the polymer compound has a number average molecular weight of 5,000 to 500,000.
<9> The polymer compound is nylon-6, polytetrahydrofuran, polyvinyl alcohol, polyacrylonitrile, polyvinyl pyridine, polyvinyl pyrrolidone, polymethyl (meth) acrylate, polytetramethylene ether glycol, polyacrylamide, polypropylene glycol, polyethylene glycol, polyethylene oxide. And at least one selected from the group consisting of polyacetylene, poly (phenylene vinylene), polypyrrole, polyaniline, poly (phenylene sulfide), polythiophene, chitosan, amylose, starch, amylopectin, cellulose, glycogen, dextrin and cyclodextrin < Electrolyte as described in any one of 6>-<8>.
<10> The polymer compound includes at least one selected from the group consisting of polyvinylpyrrolidone, polyvinylpyridine, amylose, starch, amylopectin, glycogen, dextrin, and cyclodextrin, and any one of <6> to <8> Electrolyte as described in.
<11> The electrolytic solution according to any one of <6> to <8>, wherein the polymer compound includes polyvinylpyrrolidone.
A secondary battery provided with a <12> positive electrode, a negative electrode, and the electrolyte solution as described in any one of <1>-<11>.

<13> 前記電解液は正極活物質として前記ハロゲン分子及び前記ハロゲンイオンの少なくとも一方を含む正極電解液であり、負極活物質を含む負極電解液を更に備える<12>に記載の二次電池。
<14> 前記負極活物質は、亜鉛及び亜鉛イオンの少なくとも一方を含む<13>に記載の二次電池。
<15> 前記正極電解液を貯留する正極電解液貯留部と、前記負極電解液を貯留する負極電解液貯留部と、前記正極と前記正極電解液貯留部との間で前記正極電解液を循環させ、前記負極と前記負極電解液貯留部との間で前記負極電解液を循環させる送液部と、を更に備えるフロー電池である、<13>又は<14>に記載の二次電池。
<13> The secondary battery according to <12>, wherein the electrolytic solution is a positive electrode electrolytic solution containing at least one of the halogen molecules and the halogen ions as a positive electrode active material, and further includes a negative electrode electrolytic solution containing a negative electrode active material.
<14> The secondary battery according to <13>, wherein the negative electrode active material includes at least one of zinc and zinc ions.
<15> A cathode electrolyte reservoir that stores the cathode electrolyte, a anode electrolyte reservoir that stores the anode electrolyte, and the cathode electrolyte circulated between the cathode and the cathode electrolyte reservoir. The secondary battery according to <13> or <14>, wherein the secondary battery further includes a liquid feeding unit that circulates the negative electrode electrolyte between the negative electrode and the negative electrode electrolyte reservoir.

<16> <12>〜<15>のいずれか1つに記載の二次電池と、前記二次電池の充放電を制御する制御部と、を備える二次電池システム。 <16> A secondary battery system comprising: the secondary battery according to any one of <12> to <15>, and a control unit that controls charging and discharging of the secondary battery.

<17> 発電装置と、<16>の二次電池システムと、を備える発電システム。
<18> 前記発電装置は、再生可能エネルギーを用いて発電する、<17>に記載の発電システム。
<17> A power generation system comprising a power generation device and the secondary battery system according to <16>.
<18> The power generation system according to <17>, wherein the power generation device generates power using renewable energy.

本発明の一形態は、二次電池に使用した際に出力特性に優れる電解液を提供することができる。
また、本発明の一形態は、出力特性に優れる二次電池、並びにこの二次電池を備える二次電池システム及び発電システムを提供することができる。
One embodiment of the present invention can provide an electrolytic solution having excellent output characteristics when used in a secondary battery.
One embodiment of the present invention can provide a secondary battery with excellent output characteristics, and a secondary battery system and a power generation system including the secondary battery.

フロー電池システムの一例を示す構成図である。It is a block diagram which shows an example of a flow battery system. 実施例1の電解液を用いたサイクリックボルタモグラムである。2 is a cyclic voltammogram using the electrolytic solution of Example 1. FIG. 実施例1の電解液を用いた対流ボルタモグラムである。2 is a convective voltammogram using the electrolytic solution of Example 1. 実施例1の電解液を用いた対流ボルタモグラムを基にして作成したLevichプロットである。3 is a Leich plot created based on a convective voltammogram using the electrolyte solution of Example 1. FIG. 比較例1の電解液を用いたサイクリックボルタモグラムである。3 is a cyclic voltammogram using the electrolytic solution of Comparative Example 1. 比較例1の電解液を用いた対流ボルタモグラムである。2 is a convective voltammogram using the electrolytic solution of Comparative Example 1.

以下、本発明の実施形態について説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。   Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and the present invention is not limited thereto.

本開示において「〜」を用いて示された数値範囲には、「〜」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において電解液中の各成分の含有率は、電解液中に各成分に該当する物質が複数種存在する場合、特に断らない限り、電解液中に存在する当該複数種の物質の合計の含有率を意味する。
また、本開示において、「含有率」とは、特に記載がなければ、各電解液の全量を100質量%としたときの、各成分の質量%を表す。
また、本開示に記載された具体的かつ詳細な内容の一部又は全てを利用せずとも本発明を実施可能であることは、当業者には明らかである。また、本発明の側面をあいまいにすることを避けるべく、公知の点については詳細な説明又は図示を省略する場合もある。
本開示において、「ハロゲンイオン」は、充放電反応による酸化還元反応により可逆的に生じるハロゲン元素を含むイオンを指す。例えば、充放電による酸化還元反応により、ハロゲンイオンからハロゲン分子が可逆的に生成され、かつ、ハロゲンイオンから別のハロゲンイオンが可逆的に生成される。
本開示において、「ハロゲン分子及びハロゲンイオンの少なくとも一方と錯体を形成可能な化合物」は、電解液中の少なくとも1つのハロゲン分子と錯体を形成可能な化合物、電解液中の少なくとも1つのハロゲンイオンと錯体を形成可能な化合物等を指す。
In the present disclosure, the numerical ranges indicated using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
In the numerical ranges described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical description. . Further, in the numerical ranges described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
In the present disclosure, the content of each component in the electrolytic solution is the total of the plurality of types of substances present in the electrolytic solution unless there is a specific indication when there are multiple types of substances corresponding to the respective components in the electrolytic solution. Mean content.
Further, in the present disclosure, “content ratio” represents mass% of each component when the total amount of each electrolytic solution is 100 mass% unless otherwise specified.
Moreover, it will be apparent to those skilled in the art that the present invention can be practiced without utilizing some or all of the specific details described in the present disclosure. In addition, in order to avoid obscuring aspects of the present invention, detailed descriptions or illustrations of known points may be omitted.
In the present disclosure, “halogen ion” refers to an ion containing a halogen element that is reversibly generated by a redox reaction by a charge / discharge reaction. For example, a halogen molecule is reversibly generated from a halogen ion and another halogen ion is reversibly generated from a halogen ion by an oxidation-reduction reaction by charging and discharging.
In the present disclosure, “a compound capable of forming a complex with at least one of a halogen molecule and a halogen ion” refers to a compound capable of forming a complex with at least one halogen molecule in an electrolytic solution, and at least one halogen ion in the electrolytic solution. It refers to a compound that can form a complex.

[電解液]
本発明の一実施形態の電解液は、ハロゲン分子及びハロゲンイオンの少なくとも一方と、前記ハロゲン分子及び前記ハロゲンイオンの少なくとも一方と錯体を形成可能な化合物と、を含む。
[Electrolyte]
An electrolytic solution according to an embodiment of the present invention includes at least one of a halogen molecule and a halogen ion, and a compound capable of forming a complex with at least one of the halogen molecule and the halogen ion.

通常、二次電池の充電反応により、電解液に含まれるヨウ化物イオン(I)等のハロゲン化物イオンが酸化反応して電極表面へヨウ素皮膜等の皮膜が析出し、この皮膜が厚膜化することで高抵抗化し酸化電流が低下して二次電池の出力が低下するおそれがある。一方、本開示の電解液では、ハロゲン分子及びハロゲンイオンの少なくとも一方と錯体を形成可能な化合物を含んでいるため、この電解液を二次電池に用いることにより、電解液中にてハロゲン分子、ハロゲンイオン等と、前述の錯体を形成可能な化合物と、が錯体を形成する。そして、二次電池において、ハロゲン分子、ハロゲンイオン等が錯体の状態を維持したまま酸化還元反応する、あるいは、前述の錯体を形成可能な化合物が電極表面に析出するヨウ素皮膜等の皮膜を剥離し、かつ剥離されたハロゲン分子と錯体を形成するため、電極表面へのヨウ素皮膜等の皮膜の析出が抑制されると推測される。したがって、皮膜の薄膜化が可能となり、皮膜が抵抗となることに起因する酸化電流の低下が抑制され、前述の錯体を形成可能な化合物を用いない場合と比較して酸化電流を向上させることができる。以上により、本開示の電解液を用いた二次電池は、出力特性に優れる傾向にある。 Usually, due to the charging reaction of the secondary battery, halide ions such as iodide ion (I ) contained in the electrolyte undergo an oxidation reaction, and a film such as an iodine film is deposited on the electrode surface. As a result, the resistance is increased and the oxidation current is reduced, and the output of the secondary battery may be reduced. On the other hand, since the electrolytic solution of the present disclosure contains a compound capable of forming a complex with at least one of halogen molecules and halogen ions, by using this electrolytic solution for a secondary battery, halogen molecules, A halogen ion or the like and a compound capable of forming the above complex form a complex. Then, in the secondary battery, halogen molecules, halogen ions, etc. undergo oxidation-reduction reaction while maintaining the complex state, or the film such as iodine film on which the compound capable of forming the complex is deposited on the electrode surface is peeled off. In addition, since it forms a complex with the detached halogen molecule, it is presumed that deposition of a film such as an iodine film on the electrode surface is suppressed. Therefore, it is possible to reduce the thickness of the film, suppress the decrease in the oxidation current due to the resistance of the film, and improve the oxidation current as compared with the case where the compound capable of forming the complex is not used. it can. As described above, the secondary battery using the electrolytic solution of the present disclosure tends to be excellent in output characteristics.

(ハロゲン分子及びハロゲンイオン)
ハロゲン分子としては、ヨウ素分子、臭素分子、塩素分子等が挙げられ、ハロゲンイオンとしては、ヨウ素イオン、臭素イオン、塩素イオン等が挙げられる。具体的には、ハロゲンイオンとしては、ヨウ化物イオン(I)、臭化物イオン(Br)、塩化物イオン(Cl)、三ヨウ化物イオン(I )、五ヨウ化物イオン(I )等のポリヨウ化物イオンなどが挙げられる。
(Halogen molecule and halogen ion)
Examples of halogen molecules include iodine molecules, bromine molecules, and chlorine molecules. Examples of halogen ions include iodine ions, bromine ions, and chlorine ions. Specifically, examples of the halogen ion include iodide ion (I ), bromide ion (Br ), chloride ion (Cl ), triiodide ion (I 3 ), pentaiodide ion (I 5 - ) Polyiodide ions and the like.

電解液としては、ハロゲンイオンを与えるハロゲン化合物及びハロゲン分子から選択される少なくとも一つが液状媒体に溶解又は分散されたものであることが好ましい。   The electrolytic solution is preferably one in which at least one selected from halogen compounds that give halogen ions and halogen molecules is dissolved or dispersed in a liquid medium.

ハロゲン分子としてはヨウ素分子が好ましく、ハロゲンイオンとしてはヨウ素イオンが好ましく、ハロゲン化合物としてはヨウ素化合物が好ましい。   The halogen molecule is preferably an iodine molecule, the halogen ion is preferably an iodine ion, and the halogen compound is preferably an iodine compound.

また、電解液は、ハロゲン化合物としてヨウ素化合物を含んでいてもよく、ヨウ素化合物としては、CuI、ZnI、NaI、KI、HI、LiI、NHI、BaI、CaI、MgI、SrI、CI、AgI、NI、テトラアルキルアンモニウムヨージド、ピリジニウムヨージド、ピロリジニウムヨージド、スルフォニウムヨージド等が挙げられる。 Further, the electrolyte may contain an iodine compound as a halogen compound, the iodine compound, CuI, ZnI 2, NaI, KI, HI, LiI, NH 4 I, BaI 2, CaI 2, MgI 2, SrI 2 , CI 4 , AgI, NI 3 , tetraalkylammonium iodide, pyridinium iodide, pyrrolidinium iodide, sulfonium iodide and the like.

ヨウ素イオンは、電解液中に溶解していることが好ましく、液状媒体として水を用いる場合、ヨウ素化合物としては、NaI、KI及びNHIの少なくともいずれかであることが好ましい。NaI、KI及びNHIは水への溶解度が高いため、NaI、KI及びNHIの少なくともいずれかを用いることで、二次電池のエネルギー密度をより向上させることが可能である。 Iodine ions are preferably dissolved in the electrolytic solution. When water is used as the liquid medium, the iodine compound is preferably at least one of NaI, KI, and NH 4 I. Since NaI, KI, and NH 4 I have high solubility in water, the energy density of the secondary battery can be further improved by using at least one of NaI, KI, and NH 4 I.

なお、例えば、CuIは電解液中でCuをIの対イオンとして生じさせる。Cu/Cu2+酸化還元系の標準酸化還元電位はI/I及びI/I 系の標準酸化還元電位よりも低い。このため、ヨウ素化合物としてCuIを用いる場合には、Cu/Cu2+系と、I/I及びI/I 系との混成電位となって、I/I及びI/I 系の正極電位の低下が顕在化しない条件とすることが好ましい。 For example, CuI generates Cu + as a counter ion of I − in the electrolytic solution. The standard redox potential of the Cu + / Cu 2+ redox system is lower than the standard redox potential of the I / I 2 and I / I 3 systems. For this reason, when CuI is used as the iodine compound, it becomes a hybrid potential between the Cu + / Cu 2+ system and the I / I 2 and I / I 3 systems, and the I / I 2 and I / I 3 - is preferably the system decrease in positive electrode potential is a condition that does not become apparent.

電解液において、ハロゲン化合物及びハロゲン分子の合計の含有率は、1質量%〜80質量%であることが好ましく、3質量%〜70質量%であることがより好ましく、5質量%〜50質量%であることが更に好ましい。ハロゲン化合物及びハロゲン分子の合計の含有率を1質量%以上とすることで、高容量で実用に適した二次電池が得られる傾向にある。また、ハロゲン化合物及びハロゲン分子の合計の含有率を80質量%以下とすることで、液状媒体中での溶解性又は分散性が良好なものとなる傾向にある。なお、ハロゲン化合物及びハロゲン分子の含有率とは、電解液中におけるハロゲン化合物由来のイオン及びハロゲン分子の合計の含有率を表す。例えば、ハロゲン化合物がヨウ素化合物であり、かつハロゲン分子がヨウ素分子である場合、ヨウ素化合物及びヨウ素分子の含有率とは、電解液中におけるヨウ素化合物由来のイオン(例えば、I、I 、I 及びこれらの対イオン)とヨウ素分子(I)との合計の含有率を表す。 In the electrolytic solution, the total content of the halogen compound and the halogen molecule is preferably 1% by mass to 80% by mass, more preferably 3% by mass to 70% by mass, and 5% by mass to 50% by mass. More preferably. By setting the total content of the halogen compound and the halogen molecule to 1% by mass or more, a secondary battery suitable for practical use with a high capacity tends to be obtained. Moreover, it exists in the tendency for the solubility or dispersibility in a liquid medium to become favorable because the total content rate of a halogen compound and a halogen molecule shall be 80 mass% or less. In addition, the content rate of a halogen compound and a halogen molecule represents the total content rate of the ion derived from a halogen compound and a halogen molecule in electrolyte solution. For example, when the halogen compound is an iodine compound and the halogen molecule is an iodine molecule, the iodine compound and the content of the iodine molecule are the ions derived from the iodine compound (for example, I , I 3 , I 5 and their counter ions) and the total content of iodine molecules (I 2 ).

また、電解液中におけるヨウ素イオン及びヨウ素分子(I、I 、I 及びIの合計)の含有率は、1質量%〜80質量%であることが好ましく、3質量%〜70質量%であることがより好ましく、5質量%〜50質量%であることが更に好ましい。 In addition, the content of iodine ions and iodine molecules (total of I , I 3 , I 5 and I 2 ) in the electrolyte is preferably 1% by mass to 80% by mass, and 3% by mass to More preferably, it is 70 mass%, and it is still more preferable that it is 5 mass%-50 mass%.

電解液において、ヨウ素イオン及びヨウ素分子は、I、I 、及びIのいずれかの状態で存在することが好ましい。また、IはIと反応してI を形成するため、電解液におけるIとIとの比率は予め調整されていることが好ましい。 In the electrolytic solution, iodine ions and iodine molecules are preferably present in any state of I , I 3 , and I 2 . Also, I 2 is I - a reaction to I 3 - to form a, I 2 and I in the electrolytic solution - the ratio of A may preferably be adjusted in advance.

また、電解液は、ハロゲン分子及びハロゲンイオン以外の酸化還元物質を含んでいてもよい。ハロゲン分子及びハロゲンイオン以外の酸化還元物質としては、I/I及びI/I 系との混成電位を形成してI/I及びI/I 系の正極電位の低下が顕在化しないものが好ましい。 Further, the electrolytic solution may contain a redox substance other than halogen molecules and halogen ions. The redox substance other than halogen molecule and a halogen ion, I - / I 2 and I - / I 3 - system to form a mixed potential of the I - / I 2 and I - / I 3 - system of positive electrode potential Those in which the decrease in the thickness does not manifest are preferable.

ハロゲン分子及びハロゲンイオン以外の酸化還元物質としては、クロム、バナジウム、亜鉛、キノン化合物、コバルト酸リチウム、マンガン酸ナトリウム、ニッケル酸リチウム、コバルト−ニッケル−マンガン酸リチウム、リン酸鉄リチウム等が挙げられる。   Examples of redox substances other than halogen molecules and halogen ions include chromium, vanadium, zinc, quinone compounds, lithium cobaltate, sodium manganate, lithium nickelate, cobalt-nickel-lithium manganate, and lithium iron phosphate. .

電解液としては、正極活物質としてハロゲン分子、ハロゲンイオン等を含む正極電解液であってもよく、更に必要に応じて正極活物質としてハロゲン分子及びハロゲンイオン以外の前述の酸化還元物質を含む正極電解液であってもよい。また、電解液としては、正極活物質とともに負極活物質を含んでいてもよい。好ましい負極活物質としては、後述する負極電解液に含まれる負極活物質が挙げられる。   The electrolyte solution may be a positive electrode electrolyte solution containing halogen molecules, halogen ions, etc. as a positive electrode active material, and further, if necessary, a positive electrode containing the aforementioned redox materials other than halogen molecules and halogen ions as a positive electrode active material. It may be an electrolytic solution. Moreover, as electrolyte solution, the negative electrode active material may be included with the positive electrode active material. As a preferable negative electrode active material, the negative electrode active material contained in the negative electrode electrolyte solution mentioned later is mentioned.

(錯体形成化合物)
電解液は、ハロゲン分子及びハロゲンイオンの少なくとも一方(以下「ハロゲン等」とも称する)と錯体を形成可能な化合物(以下「錯体形成化合物」とも称する)を含む。錯体形成化合物としては、電解液中に含まれるハロゲン等と錯体を形成可能な化合物であれば限定されない。錯体形成化合物は、電池反応速度の点から、少なくとも一部が液状媒体に溶解していることが好ましく、全てが液状媒体に溶解していることがより好ましい。
電解液がハロゲン等と錯体を形成可能な化合物を含むことで、ハロゲンイオンの酸化還元反応により生じるハロゲン分子の析出が抑制される傾向にある。
(Complex-forming compound)
The electrolytic solution contains a compound (hereinafter also referred to as “complex-forming compound”) capable of forming a complex with at least one of halogen molecules and halogen ions (hereinafter also referred to as “halogen etc.”). The complex-forming compound is not limited as long as it is a compound capable of forming a complex with halogen or the like contained in the electrolytic solution. It is preferable that at least a part of the complex-forming compound is dissolved in the liquid medium from the viewpoint of the battery reaction rate, and it is more preferable that all of the complex-forming compound is dissolved in the liquid medium.
When the electrolytic solution contains a compound capable of forming a complex with halogen or the like, the precipitation of halogen molecules caused by the oxidation-reduction reaction of halogen ions tends to be suppressed.

また、錯体形成化合物は官能基が付与されていてもよい。例えば、後述するポリマー化合物に水溶性官能基が付与されていることにより、ポリマー化合物が液体媒体に溶解しやすくなる傾向にある。   Further, the complex-forming compound may be provided with a functional group. For example, when a water-soluble functional group is added to the polymer compound described later, the polymer compound tends to be easily dissolved in the liquid medium.

錯体形成化合物としては、モノマー化合物であってもよく、ポリマー化合物であってもよい。ポリマー化合物を錯体形成化合物として用いた場合、ハロゲン等と錯体を形成することにより、前述の電解液を正極電解液として用い、かつセパレータとしてポリオレフィン多孔質膜等の孔を有する膜を用いたときであっても、セパレータを介したハロゲン等の負極電解液への移動が抑制されるため、二次電池の充放電反応を繰り返した際の容量維持率の低下が抑制されてサイクル特性に優れる傾向にある。そのため、ポリマー化合物を錯体形成化合物として用いた場合、フロー電池等の二次電池において、通常使用されるナフィオン(デュポン社)等のカチオン交換膜、セレミオン(旭硝子社)等のアニオン交換膜などの高コストのセパレータの替わりに、安価なポリオレフィン多孔質膜等の孔を有する膜を使用してもサイクル特性の低下が抑制される傾向にある。したがって、フロー電池等の二次電池において、リチウムイオン電池等で使用されているポリオレフィン多孔質膜等をセパレータとして使用することができ、低コスト化が可能となる。また、カチオン交換膜、アニオン交換膜等のイオン交換膜に比べて、ポリオレフィン多孔質膜等の孔を有する膜の方が電解液中でのイオン伝導性が高いため、二次電池の高出力化を図ることができる傾向にある。
ポリオレフィン多孔質膜としては、ポリエチレン多孔質膜、ポリプロピレン多孔質膜、これらの多層膜等が挙げられる。
The complex-forming compound may be a monomer compound or a polymer compound. When a polymer compound is used as a complex-forming compound, by forming a complex with a halogen or the like, the above-described electrolytic solution is used as a positive electrode electrolytic solution, and a membrane having pores such as a polyolefin porous membrane is used as a separator. Even if it exists, since the movement to the negative electrode electrolyte such as halogen via the separator is suppressed, the decrease in capacity retention rate when the charge / discharge reaction of the secondary battery is repeated is suppressed, and the cycle characteristics tend to be excellent. is there. Therefore, when a polymer compound is used as a complex-forming compound, in a secondary battery such as a flow battery, a high cation exchange membrane such as Nafion (DuPont) or an anion exchange membrane such as Selemion (Asahi Glass Co.) is used. Even if a membrane having pores such as an inexpensive polyolefin porous membrane is used instead of a cost separator, the deterioration of cycle characteristics tends to be suppressed. Therefore, in a secondary battery such as a flow battery, a polyolefin porous membrane or the like used in a lithium ion battery or the like can be used as a separator, and the cost can be reduced. In addition, compared to ion exchange membranes such as cation exchange membranes and anion exchange membranes, membranes with pores, such as polyolefin porous membranes, have higher ion conductivity in the electrolyte solution, which increases the output of secondary batteries. It tends to be able to plan.
Examples of the polyolefin porous film include a polyethylene porous film, a polypropylene porous film, and a multilayer film thereof.

ポリマー化合物の数平均分子量は200〜100万であることが好ましく、5000〜50万であることがより好ましい。ポリマー化合物の数平均分子量は、ゲル浸透クロマトグラフィー、静的光散乱法、質量分析法等により測定できる。数平均分子量が200以上であることにより、前述の電解液を正極電解液として用い、かつセパレータとしてポリオレフィン多孔質膜等の孔を有する膜を用いたときであっても、セパレータを介した錯体の負極電解液への移動が好適に抑制される傾向にある。数平均分子量が100万以下であることにより、電解液の増粘を抑制できる傾向にある。電解液の増粘を抑制することにより、二次電池の反応速度の低下を抑制し、大きな電流密度にて二次電池を使用しやすくなる傾向にある。   The number average molecular weight of the polymer compound is preferably 200 to 1,000,000, more preferably 5,000 to 500,000. The number average molecular weight of the polymer compound can be measured by gel permeation chromatography, static light scattering method, mass spectrometry method or the like. When the number average molecular weight is 200 or more, even when the above electrolyte is used as a positive electrode electrolyte and a membrane having a pore such as a polyolefin porous membrane is used as a separator, There exists a tendency for the movement to a negative electrode electrolyte solution to be suppressed suitably. When the number average molecular weight is 1,000,000 or less, thickening of the electrolytic solution tends to be suppressed. By suppressing the thickening of the electrolytic solution, a decrease in the reaction rate of the secondary battery is suppressed, and the secondary battery tends to be easily used at a large current density.

ポリマー化合物としては、ナイロン−6、ポリテトラヒドロフラン、ポリビニルアルコール、ポリアクリロニトリル、ポリビニルピリジン(好ましくは、ポリ−4−ビニルピリジン)、ポリビニルピロリドン、ポリメチル(メタ)アクリレート、ポリテトラメチレンエーテルグリコール、ポリアクリルアミド、ポリプロピレングリコール、ポリエチレングリコール、ポリエチレンオキシド、ポリアセチレン、ポリ(フェニレンビニレン)、ポリピロール、ポリアニリン、ポリ(フェニレンスルフィド)、ポリチオフェン、キトサン、アミロース、デンプン、アミロペクチン、セルロース、グリコーゲン、デキストリン、シクロデキストリン等が挙げられ、中でもポリビニルピロリドン、ポリビニルピリジン、アミロース、デンプン、アミロペクチン、グリコーゲン、デキストリン及びシクロデキストリンが好ましく、ポリビニルピロリドン及びポリビニルピリジンがより好ましく、ポリビニルピロリドンが更に好ましい。これらのポリマー化合物としては、1種を単独で用いてもよく、2種以上を併用してもよい。   Examples of the polymer compound include nylon-6, polytetrahydrofuran, polyvinyl alcohol, polyacrylonitrile, polyvinyl pyridine (preferably poly-4-vinyl pyridine), polyvinyl pyrrolidone, polymethyl (meth) acrylate, polytetramethylene ether glycol, polyacrylamide, Polypropylene glycol, polyethylene glycol, polyethylene oxide, polyacetylene, poly (phenylene vinylene), polypyrrole, polyaniline, poly (phenylene sulfide), polythiophene, chitosan, amylose, starch, amylopectin, cellulose, glycogen, dextrin, cyclodextrin, etc. Among them, polyvinylpyrrolidone, polyvinylpyridine, amylose, starch, amylope Chin, glycogen, dextrin and cyclodextrin are preferable, polyvinyl pyrrolidone and polyvinyl pyridine are more preferred, and polyvinylpyrrolidone are more preferred. As these polymer compounds, 1 type may be used independently and 2 or more types may be used together.

特にポリビニルピロリドン及びポリビニルピリジンは、ヨウ素分子及びヨウ化物イオンと安定な錯体を形成しやすく、二次電池におけるサイクル特性に特に優れる傾向にある。また、デンプン、アミロース、アミロペクチン、グリコーゲン、デキストリン等は水等の液体媒体中で螺旋構造をとり、ヨウ素分子はこの螺旋構造に取り込まれて安定な錯体を形成しやすい傾向にある。   In particular, polyvinylpyrrolidone and polyvinylpyridine tend to form stable complexes with iodine molecules and iodide ions, and tend to have particularly excellent cycle characteristics in secondary batteries. In addition, starch, amylose, amylopectin, glycogen, dextrin and the like have a spiral structure in a liquid medium such as water, and iodine molecules tend to be incorporated into the spiral structure to form a stable complex.

また、シクロデキストリンとしては、β―シクロデキストリン、γ−シクロデキストリンを用いることが好ましい。α−シクロデキストリンに比べて、環サイズの大きいβ―シクロデキストリン及びγ−シクロデキストリンの方が、ヨウ素分子を取り込みやすく、錯体を形成しやすい傾向にある。   As the cyclodextrin, β-cyclodextrin and γ-cyclodextrin are preferably used. Compared with α-cyclodextrin, β-cyclodextrin and γ-cyclodextrin having a larger ring size tend to take in iodine molecules and form complexes more easily.

ハロゲン化合物がヨウ素化合物であり、かつハロゲン分子がヨウ素分子である場合、二次電池におけるサイクル特性の観点から、ポリマー化合物としてはポリビニルピロリドンが好ましい。ポリビニルピロリドンは、I、I、I 及びI の全てと錯体形成が可能である(非特許文献:“The interaction between polyvinylpyrrolidone and I2 as probed by Raman spectroscopy”, J. Molecular Structure, 479 (1999)93-98)。 When the halogen compound is an iodine compound and the halogen molecule is an iodine molecule, polyvinyl pyrrolidone is preferable as the polymer compound from the viewpoint of cycle characteristics in the secondary battery. Polyvinylpyrrolidone can form a complex with all of I , I 2 , I 3 and I 5 (Non-patent literature: “The interaction between polyvinylpyrrolidone and I 2 as probed by Raman spectroscopy”, J. Molecular Structure. , 479 (1999) 93-98).

電解液において、錯体形成化合物の含有率、好ましくはポリマー化合物の含有率は、0.01質量%〜50質量%であることが好ましく、0.1質量%〜30質量%であることがより好ましく、1質量%〜20質量%であることが更に好ましい。錯体形成化合物の含有率を0.01質量%以上とすることでハロゲン分子の析出を抑制できる傾向にある。また、錯体形成化合物の含有率を50質量%以下とすることで電解液の極度な増粘を避けることができる傾向にある。   In the electrolytic solution, the content of the complex-forming compound, preferably the content of the polymer compound is preferably 0.01% by mass to 50% by mass, and more preferably 0.1% by mass to 30% by mass. More preferably, it is 1 mass%-20 mass%. By setting the content of the complex-forming compound to 0.01% by mass or more, precipitation of halogen molecules tends to be suppressed. Moreover, it exists in the tendency which can avoid the extreme thickening of electrolyte solution by making the content rate of a complex formation compound into 50 mass% or less.

また、電解液は、ハロゲン分子及びハロゲンイオンと錯体を形成しない化合物を含んでいてもよい。例えば、上記のポリマー化合物のモノマー成分が挙げられる。   The electrolytic solution may contain a compound that does not form a complex with a halogen molecule and a halogen ion. For example, the monomer component of said polymer compound is mentioned.

(液状媒体)
電解液は、ハロゲンイオンを与えるハロゲン化合物及びハロゲン分子から選択される少なくとも1種が液状媒体に溶解又は分散されたものであることが好ましい。液状媒体とは、室温(25℃)において液体の状態の媒体をいう。液状媒体としては、ハロゲンイオン、ハロゲン分子等を分散又は溶解可能な媒体であれば特に限定されない。
(Liquid medium)
The electrolytic solution is preferably one in which at least one selected from halogen compounds that give halogen ions and halogen molecules is dissolved or dispersed in a liquid medium. A liquid medium means a medium in a liquid state at room temperature (25 ° C.). The liquid medium is not particularly limited as long as it is a medium that can disperse or dissolve halogen ions, halogen molecules, and the like.

液状媒体としては、アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチルイソプロピルケトン、メチル−n−ブチルケトン、メチルイソブチルケトン、メチル−n−ペンチルケトン、メチル−n−ヘキシルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、トリメチルノナノン、シクロヘキサノン、シクロペンタノン、メチルシクロヘキサノン、2,4−ペンタンジオン、アセトニルアセトン等のケトン系溶剤;ジエチルエーテル、メチルエチルエーテル、メチル−n−プロピルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールメチル−n−プロピルエーテル、ジエチレングリコールメチル−n−ブチルエーテル、ジエチレングリコールジ−n−プロピルエーテル、ジエチレングリコールジ−n−ブチルエーテル、ジエチレングリコールメチル−n−ヘキシルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、トリエチレングリコールメチル−n−ブチルエーテル、トリエチレングリコールジ−n−ブチルエーテル、トリエチレングリコールメチル−n−ヘキシルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールメチルエチルエーテル、テトラエチレングリコールメチル−n−ブチルエーテル、テトラエチレングリコールジ−n−ブチルエーテル、テトラエチレングリコールメチル−n−ヘキシルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ−n−プロピルエーテル、プロピレングリコールジ−n−ブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールメチルエチルエーテル、ジプロピレングリコールメチル−n−ブチルエーテル、ジプロピレングリコールジ−n−プロピルエーテル、ジプロピレングリコールジ−n−ブチルエーテル、ジプロピレングリコールメチル−n−ヘキシルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールメチルエチルエーテル、トリプロピレングリコールメチル−n−ブチルエーテル、トリプロピレングリコールジ−n−ブチルエーテル、トリプロピレングリコールメチル−n−ヘキシルエーテル、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラプロピレングリコールメチルエチルエーテル、テトラプロピレングリコールメチル−n−ブチルエーテル、テトラプロピレングリコールジ−n−ブチルエーテル、テトラプロピレングリコールメチル−n−ヘキシルエーテル等のエーテル系溶剤;プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート等のカーボネート系溶剤;酢酸メチル、酢酸エチル、酢酸n−プロピル、酢酸イソプロピル、酢酸n−ブチル、酢酸イソブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸2−(2−ブトキシエトキシ)エチル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸ジエチレングリコールメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジプロピレングリコールメチルエーテル、酢酸ジプロピレングリコールエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリエチレングリコール、プロピオン酸エチル、プロピオン酸n−ブチル、プロピオン酸イソアミル、シュウ酸ジエチル、シュウ酸ジ−n−ブチル、乳酸メチル、乳酸エチル、乳酸n−ブチル、乳酸n−アミル、エチレングリコールメチルエーテルプロピオネート、エチレングリコールエチルエーテルプロピオネート、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、γ−ブチロラクトン、γ−バレロラクトン等のエステル系溶剤;アセトニトリル、N−メチルピロリジノン、N−エチルピロリジノン、N−プロピルピロリジノン、N−ブチルピロリジノン、N−ヘキシルピロリジノン、N−シクロヘキシルピロリジノン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性溶剤;メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、sec−ブタノール、t−ブタノール、n−ペンタノール、イソペンタノール、2−メチルブタノール、sec−ペンタノール、t−ペンタノール、3−メトキシブタノール、n−ヘキサノール、2−メチルペンタノール、sec−ヘキサノール、2−エチルブタノール、sec−ヘプタノール、n−オクタノール、2−エチルヘキサノール、sec−オクタノール、n−ノニルアルコール、n−デカノール、sec−ウンデシルアルコール、トリメチルノニルアルコール、sec−テトラデシルアルコール、sec−ヘプタデシルアルコール、シクロヘキサノール、メチルシクロヘキサノール、ベンジルアルコール、エチレングリコール、1,2−プロピレングリコール、1,3−ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のアルコール系溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ−n−ブチルエーテル、ジエチレングリコールモノ−n−ヘキシルエーテル、トリエチレングリコールモノエチルエーテル、テトラエチレングリコールモノ−n−ブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールモノエーテル系溶剤;α−テルピネン、ミルセン、アロオシメン、リモネン、ジペンテン、α−ピネン、β−ピネン、ターピネオール、カルボン、オシメン、フェランドレン等のテルペン系溶剤;水などが挙げられる。液状媒体は、1種を単独で用いてもよく、2種以上を併用してもよい。   Liquid media include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl isopropyl ketone, methyl-n-butyl ketone, methyl isobutyl ketone, methyl-n-pentyl ketone, methyl-n-hexyl ketone, diethyl ketone, dipropyl ketone , Ketone solvents such as diisobutyl ketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone; diethyl ether, methyl ethyl ether, methyl-n-propyl ether, diisopropyl ether, Tetrahydrofuran, methyltetrahydrofuran, dioxane, dimethyldioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol di n-propyl ether, ethylene glycol di-n-butyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol methyl n-propyl ether, diethylene glycol methyl n-butyl ether, diethylene glycol di-n-propyl ether, diethylene glycol di -N-butyl ether, diethylene glycol methyl-n-hexyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol methyl ethyl ether, triethylene glycol methyl n-butyl ether, triethylene glycol di-n-butyl ether, triethylene glycol Ethylene glycol Ru-n-hexyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetraethylene glycol methyl ethyl ether, tetraethylene glycol methyl n-butyl ether, tetraethylene glycol di-n-butyl ether, tetraethylene glycol methyl n- Hexyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol di-n-propyl ether, propylene glycol di-n-butyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, dipropylene glycol methyl ethyl ether, dipropylene glycol Methyl-n-butyl ether, dipropylene glycol Cold di-n-propyl ether, dipropylene glycol di-n-butyl ether, dipropylene glycol methyl-n-hexyl ether, tripropylene glycol dimethyl ether, tripropylene glycol diethyl ether, tripropylene glycol methyl ethyl ether, tripropylene glycol methyl-n -Butyl ether, tripropylene glycol di-n-butyl ether, tripropylene glycol methyl-n-hexyl ether, tetrapropylene glycol dimethyl ether, tetrapropylene glycol diethyl ether, tetrapropylene glycol methyl ethyl ether, tetrapropylene glycol methyl-n-butyl ether, tetra Propylene glycol di-n-butyl ether, tetrapropylene Ether solvents such as ethylene glycol methyl-n-hexyl ether; carbonate solvents such as propylene carbonate, ethylene carbonate, diethyl carbonate; methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, Sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, 2- (2-butoxyethoxy) ethyl acetate, benzyl acetate, acetic acid Cyclohexyl, methyl cyclohexyl acetate, nonyl acetate, methyl acetoacetate, ethyl acetoacetate, diethylene glycol methyl ether acetate, diethylene glycol monoethyl ether acetate, dipropylene glycol methyl ether acetate Dipropylene glycol ethyl ether, glycol diacetate, methoxytriethylene glycol acetate, ethyl propionate, n-butyl propionate, isoamyl propionate, diethyl oxalate, di-n-butyl oxalate, methyl lactate, ethyl lactate, lactic acid n-butyl, n-amyl lactate, ethylene glycol methyl ether propionate, ethylene glycol ethyl ether propionate, ethylene glycol methyl ether acetate, ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, propylene Ester solvents such as glycol propyl ether acetate, γ-butyrolactone, γ-valerolactone; acetonitrile, N-methyl Aprotic polarities such as rupyrrolidinone, N-ethylpyrrolidinone, N-propylpyrrolidinone, N-butylpyrrolidinone, N-hexylpyrrolidinone, N-cyclohexylpyrrolidinone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide Solvent: methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, n-pentanol, isopentanol, 2-methylbutanol, sec-pentanol, t-pentanol , 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, n-octanol, 2-ethylhexanol, sec-oct Tanol, n-nonyl alcohol, n-decanol, sec-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec-heptadecyl alcohol, cyclohexanol, methylcyclohexanol, benzyl alcohol, ethylene glycol, 1,2- Alcohol solvents such as propylene glycol, 1,3-butylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monophenyl ether, diethylene glycol monomethyl ether, Diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether Diethylene glycol mono-n-hexyl ether, triethylene glycol monoethyl ether, tetraethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, etc. And terpene solvents such as α-terpinene, myrcene, alloocimene, limonene, dipentene, α-pinene, β-pinene, terpineol, carvone, oximene, and ferrandrene; water and the like. A liquid medium may be used individually by 1 type, and may use 2 or more types together.

液状媒体としては、水が好ましい。液状媒体として水を用いることで電解液を低粘度化でき、二次電池を高出力化できる傾向にある。   As the liquid medium, water is preferable. By using water as the liquid medium, the electrolyte solution tends to have a low viscosity, and the secondary battery tends to have a high output.

また、電解液は、水以外にハロゲン分子に対する良溶媒を含むことが好ましく、電解液がヨウ素化合物、ヨウ素分子等を含む場合、水以外にヨウ素分子に対する良溶媒を含むことが好ましい。電解液(好ましくは正極電解液)がハロゲン分子に対する良溶媒を含むことにより、充電反応の際に正極に形成される皮膜が薄膜化され、皮膜による充放電反応の阻害が抑えられる傾向にある。ハロゲン分子に対する良溶媒、好ましくは、ヨウ素分子に対する良溶媒としては、ジメチルホルムアミド、ジエチルホルムアミド、アセトアミド、ジメチルアセトアミド、N−メチルピロリドン、N−エチルピロリドン等のアミド、アセトン、メチルエチルケトン等のケトン、酢酸メチル、酢酸エチル、ニコチン酸メチル等のエステル、ジメチルスルホキシド等のスルホキシド、エタノール、エチレングリコール等のアルコール、ジエチルエーテル等のエーテル、ニコチンアミド、シアノピリジン等のピリジン誘導体などが挙げられる。ハロゲン分子に対する良溶媒としては、1種を単独で用いてもよく、2種以上を併用してもよい。
電解液中におけるハロゲン分子に対する良溶媒は、例えば、ガスクロマトグラフィーにより、ハロゲン分子に対する良溶媒に対応する保持時間と、モニターイオンの分子量を測定することで同定可能である。
Moreover, it is preferable that electrolyte solution contains the good solvent with respect to a halogen molecule other than water, and when electrolyte solution contains an iodine compound, an iodine molecule, etc., it is preferable to contain the good solvent with respect to an iodine molecule other than water. When the electrolytic solution (preferably positive electrode electrolytic solution) contains a good solvent for halogen molecules, the film formed on the positive electrode during the charge reaction is thinned, and the inhibition of the charge / discharge reaction by the film tends to be suppressed. Good solvents for halogen molecules, preferably good solvents for iodine molecules, amides such as dimethylformamide, diethylformamide, acetamide, dimethylacetamide, N-methylpyrrolidone, N-ethylpyrrolidone, ketones such as acetone and methylethylketone, methyl acetate And esters such as ethyl acetate and methyl nicotinate; sulfoxides such as dimethyl sulfoxide; alcohols such as ethanol and ethylene glycol; ethers such as diethyl ether; pyridine derivatives such as nicotinamide and cyanopyridine. As a good solvent for halogen molecules, one kind may be used alone, or two or more kinds may be used in combination.
The good solvent for the halogen molecule in the electrolytic solution can be identified by measuring the retention time corresponding to the good solvent for the halogen molecule and the molecular weight of the monitor ion, for example, by gas chromatography.

電解液中におけるハロゲン分子に対する良溶媒の含有率は、0.1質量%〜80質量%であることが好ましく、1質量%〜50質量%であることがより好ましく、1質量%〜30質量%であることが更に好ましく、1質量%〜15質量%であることが特に好ましい。なお、電解液中におけるハロゲン分子に対する良溶媒の含有率は、例えば、ガスクロマトグラフィーを使用し、ハロゲン分子に対する良溶媒の濃度と、ハロゲン分子に対する良溶媒に対応する保持時間における検出量を検量線としてデータを作成し、検量線から算出することで定量可能である。   The content of the good solvent with respect to the halogen molecules in the electrolytic solution is preferably 0.1% by mass to 80% by mass, more preferably 1% by mass to 50% by mass, and 1% by mass to 30% by mass. It is more preferable that it is 1 mass%-15 mass%. The content of the good solvent with respect to the halogen molecules in the electrolyte is, for example, by using gas chromatography. Can be quantified by creating data and calculating from the calibration curve.

(支持電解質)
電解液は、更に支持電解質を含んでいてもよい。支持電解質は、電解液のイオン伝導率を高めるための助剤である。電解液が支持電解質を含むことで、電解液のイオン伝導率が高まり、二次電池の内部抵抗が低減する傾向にある。
(Supporting electrolyte)
The electrolytic solution may further contain a supporting electrolyte. The supporting electrolyte is an auxiliary agent for increasing the ionic conductivity of the electrolytic solution. When the electrolytic solution contains the supporting electrolyte, the ionic conductivity of the electrolytic solution increases, and the internal resistance of the secondary battery tends to decrease.

支持電解質としては、液状媒体中で解離してイオンを形成する化合物であれば特に限定されない。支持電解質としては、HCl、HNO、HSO、HClO、NaCl、NaSO、NaClO、KCl、KSO、KClO、NaOH、LiOH、KOH、アルキルアンモニウム塩、アルキルイミダゾリウム塩、アルキルピペリジニウム塩、アルキルピロリジニウム塩等が挙げられる。また、ハロゲン化合物は、活物質と支持電解質とを兼ねていてもよい。これらの支持電解質は、1種を単独で用いてもよく、2種以上を併用してもよい。 The supporting electrolyte is not particularly limited as long as it is a compound that dissociates in a liquid medium to form ions. Supporting electrolytes include HCl, HNO 3 , H 2 SO 4 , HClO 4 , NaCl, Na 2 SO 4 , NaClO 4 , KCl, K 2 SO 4 , KClO 4 , NaOH, LiOH, KOH, alkylammonium salt, alkylimidazo Examples thereof include a lithium salt, an alkyl piperidinium salt, and an alkyl pyrrolidinium salt. Moreover, the halogen compound may serve as both the active material and the supporting electrolyte. These supporting electrolytes may be used individually by 1 type, and may use 2 or more types together.

(pH緩衝剤)
電解液は、更にpH緩衝剤を含んでいてもよい。pH緩衝剤としては、酢酸緩衝液、リン酸緩衝液、クエン酸緩衝液、ホウ酸緩衝液、酒石酸緩衝液、トリス緩衝液等が挙げられる。
(PH buffer)
The electrolytic solution may further contain a pH buffer. Examples of the pH buffer include acetate buffer, phosphate buffer, citrate buffer, borate buffer, tartrate buffer, Tris buffer, and the like.

(消泡剤)
電解液は、更に消泡剤を含んでいてもよい。電解液が消泡剤を含むことで、電解液の泡立ちを抑制することができ、電解液の目詰まり及びフロー電池におけるセル内への泡の混入を抑制できる傾向にある。消泡剤の種類に特に制限はなく、ポリジメチルシロキサン等のシリコーンが挙げられる。
(Defoamer)
The electrolytic solution may further contain an antifoaming agent. When the electrolytic solution contains an antifoaming agent, foaming of the electrolytic solution can be suppressed, and clogging of the electrolytic solution and mixing of bubbles into the cells in the flow battery can be suppressed. There is no restriction | limiting in particular in the kind of antifoamer, Silicone, such as polydimethylsiloxane, is mentioned.

電解液において、消泡剤の含有率は特に制限されず、0.001質量%〜10質量%であることが好ましく、0.01質量%〜5質量%であることがより好ましい。消泡剤の含有率が0.001質量%以上であることにより、消泡の効果が十分に得られる傾向にあり、消泡剤の含有率が10質量%以下であることで、電解液の増粘及びそれに伴う電池特性の低下を抑制できる傾向にある。   In the electrolytic solution, the content of the antifoaming agent is not particularly limited, and is preferably 0.001% by mass to 10% by mass, and more preferably 0.01% by mass to 5% by mass. When the content of the antifoaming agent is 0.001% by mass or more, the antifoaming effect tends to be sufficiently obtained, and when the content of the antifoaming agent is 10% by mass or less, It tends to be able to suppress thickening and the accompanying deterioration in battery characteristics.

(導電材)
電解液は、更に導電材を含んでいてもよい。導電材としては、炭素材料、金属材料、有機導電性材料等が挙げられる。炭素材料及び金属材料は、粒子状であっても繊維状であってもよい。
炭素材料としては、活性炭(水蒸気賦活又はアルカリ賦活);アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック;天然黒鉛、人造黒鉛、膨張黒鉛等の黒鉛;カーボンナノチューブ、カーボンナノホーン、カーボンファイバー、ハードカーボン、ソフトカーボンなどが挙げられる。
金属材料としては、銅、銀、ニッケル、アルミニウム等の粒子又は繊維が挙げられる。
有機導電性材料としては、ポリフェニレン誘導体等が挙げられる。
(Conductive material)
The electrolytic solution may further contain a conductive material. Examples of the conductive material include carbon materials, metal materials, and organic conductive materials. The carbon material and the metal material may be particulate or fibrous.
Carbon materials include activated carbon (steam activated or alkali activated); carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; graphite such as natural graphite, artificial graphite, and expanded graphite; carbon Nanotubes, carbon nanohorns, carbon fibers, hard carbon, soft carbon and the like can be mentioned.
Examples of the metal material include particles or fibers such as copper, silver, nickel, and aluminum.
Examples of the organic conductive material include polyphenylene derivatives.

これらの導電材は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの中でも、導電材としては、炭素材料粒子が好ましく、活性炭粒子がより好ましい。電解液が導電材として活性炭粒子を含むことで、活性炭粒子の表面における電気二重層形成によるエネルギー貯蔵及び放出が可能となり、二次電池のエネルギー密度及び出力密度が向上する傾向にある。   These electrically conductive materials may be used individually by 1 type, and may use 2 or more types together. Among these, as the conductive material, carbon material particles are preferable, and activated carbon particles are more preferable. When the electrolytic solution contains activated carbon particles as a conductive material, energy storage and release by forming an electric double layer on the surface of the activated carbon particles is possible, and the energy density and output density of the secondary battery tend to be improved.

(電解液の調製方法)
電解液は、ヨウ素化合物、ヨウ素分子等と、錯体形成化合物と、必要に応じてその他の成分とを液状媒体に加えることにより調製することができる。電解液を調製する際には、必要に応じて加熱を行ってもよい。
(Method for preparing electrolyte)
The electrolytic solution can be prepared by adding an iodine compound, iodine molecule, etc., a complex-forming compound, and other components as required to the liquid medium. When preparing the electrolytic solution, heating may be performed as necessary.

[二次電池]
本開示の二次電池は、正極と、負極と、本開示の電解液と、を備える。二次電池は、正極活物質としてハロゲン分子及びハロゲンイオンの少なくとも一方を含む正極電解液を本開示の電解液として備え、更に負極活物質を含む負極電解液を備える構成であってもよい。あるいは、二次電池は、正極活物質としてハロゲン分子及びハロゲンイオンの少なくとも一方を含み、かつ負極活物質を含む負極電解液を本開示の電解液として備えていてもよい。
[Secondary battery]
The secondary battery according to the present disclosure includes a positive electrode, a negative electrode, and an electrolytic solution according to the present disclosure. The secondary battery may include a positive electrode electrolyte containing at least one of a halogen molecule and a halogen ion as a positive electrode active material as an electrolyte of the present disclosure, and further a negative electrode electrolyte containing a negative electrode active material. Alternatively, the secondary battery may include a negative electrode electrolyte solution containing at least one of a halogen molecule and a halogen ion as a positive electrode active material and including a negative electrode active material as the electrolyte solution of the present disclosure.

(正極及び負極)
正極及び負極としては、従来公知の二次電池に用いられる正極及び負極を用いてもよい。
(Positive electrode and negative electrode)
As a positive electrode and a negative electrode, you may use the positive electrode and negative electrode which are used for a conventionally well-known secondary battery.

正極及び負極としては、使用する電位範囲において電気化学的に安定な材質を用いることが好ましい。正極及び負極の形状としては、特に限定されず、メッシュ、多孔体、パンチングメタル、平板等が挙げられる。正極及び負極としては、カーボンフェルト、グラファイトフェルト、カーボンペーパー等の炭素電極;チタン、亜鉛、ステンレス鋼、アルミニウム、ニッケル、銅等の金属からなる金属板、金属メッシュ等の金属電極;などが挙げられる。   As the positive electrode and the negative electrode, it is preferable to use an electrochemically stable material in the potential range to be used. The shape of the positive electrode and the negative electrode is not particularly limited, and examples thereof include a mesh, a porous body, a punching metal, and a flat plate. Examples of the positive electrode and the negative electrode include carbon electrodes such as carbon felt, graphite felt, and carbon paper; metal plates made of metal such as titanium, zinc, stainless steel, aluminum, nickel, and copper; metal electrodes such as metal mesh; .

正極は、ヨウ化物イオン(I)に対する耐食性を有する電極が好ましい。ヨウ化物イオンに対する耐食性を有する電極としては、チタン等の金属から構成される電極、炭素電極などが挙げられ、コストの点から炭素電極が好ましい。 The positive electrode is preferably an electrode having corrosion resistance against iodide ions (I ). Examples of the electrode having corrosion resistance against iodide ions include an electrode made of a metal such as titanium, a carbon electrode, and the like, and a carbon electrode is preferable from the viewpoint of cost.

例えば、電解液が負極活物質として亜鉛イオンを含む場合、負極としては、亜鉛電極、亜鉛メッキした金属から構成される電極、炭素電極等が好ましい。   For example, when the electrolyte contains zinc ions as the negative electrode active material, the negative electrode is preferably a zinc electrode, an electrode composed of a galvanized metal, a carbon electrode, or the like.

正極及び負極の表面積を増やして電池の出力を高める点から、正極及び負極の少なくとも一方の形状を、比表面積の大きい多孔体、フェルト、ペーパー等にしてもよい。また、正極及び負極の少なくとも一方の表面にカーボンフェルト、グラファイトフェルト等を配置してもよく、正極及び負極の少なくとも一方は、電解液が透過可能な孔を有し、この孔を介して電子の授受が行われるものであってもよい。   From the viewpoint of increasing the output of the battery by increasing the surface area of the positive electrode and the negative electrode, the shape of at least one of the positive electrode and the negative electrode may be a porous body, felt, paper, or the like having a large specific surface area. In addition, carbon felt, graphite felt, or the like may be disposed on at least one surface of the positive electrode and the negative electrode, and at least one of the positive electrode and the negative electrode has a hole through which an electrolyte can permeate. Exchanges may be made.

また、カーボンフェルト、カーボンペーパー等は、熱処理、エッチング処理等により、本開示の電解液、後述の負極電解液等の濡れ性を向上させてもよい。例えば、熱処理は300℃〜1000℃にて酸素を含む雰囲気中にて0.1時間〜100時間行うことが好ましい。   Carbon felt, carbon paper, and the like may improve wettability of the electrolytic solution of the present disclosure, the negative electrode electrolytic solution described later, and the like by heat treatment, etching treatment, and the like. For example, the heat treatment is preferably performed at 300 to 1000 ° C. in an atmosphere containing oxygen for 0.1 to 100 hours.

二次電池が、正極電解液として本開示の電解液を備え、更に負極電解液を備える場合、正極及び負極の配置は特に限定されない。   When the secondary battery includes the electrolytic solution of the present disclosure as the positive electrode electrolyte and further includes the negative electrode electrolyte, the arrangement of the positive electrode and the negative electrode is not particularly limited.

一方、二次電池が、正極活物質としてハロゲン分子及びハロゲンイオンの少なくとも一方を含み、かつ負極活物質を含む電解液を本開示の電解液として備える場合、正極側に正極活物質が集まり、かつ負極側に負極活物質が集まるように、正極及び負極を配置することが好ましい。   On the other hand, when the secondary battery includes at least one of a halogen molecule and a halogen ion as a positive electrode active material and includes an electrolyte solution containing the negative electrode active material as the electrolyte solution of the present disclosure, the positive electrode active material gathers on the positive electrode side, and It is preferable to dispose the positive electrode and the negative electrode so that the negative electrode active material gathers on the negative electrode side.

(参照電極)
二次電池は、正極の電位を計測するための正極用参照電極を備えていてもよく、負極の電位を測定するための負極用参照電極を備えていてもよい。なお、二次電池では、正極用参照電極及び負極用参照電極は必須の構成ではなく、必要に応じて正極用参照電極及び負極用参照電極を用い、二次電池における正極の電位及び負極の電位を測定してもよい。
(Reference electrode)
The secondary battery may include a positive electrode reference electrode for measuring the positive electrode potential, or may include a negative electrode reference electrode for measuring the negative electrode potential. In the secondary battery, the positive electrode reference electrode and the negative electrode reference electrode are not indispensable components. If necessary, the positive electrode reference electrode and the negative electrode reference electrode are used, and the positive electrode potential and the negative electrode potential in the secondary battery are used. May be measured.

正極用参照電極及び負極用参照電極は標準水素電極電位(standard hydrogen electrode potential)に対する電位に換算可能で、安定した電気化学電位を示せるものであればよい。電気化学電位基準となる参照電極は、電気化学の基本事項として教科書等に示されている(例えば、“Allen J.Bard and Larry R.Faulkner 、「ELECTROCHEMICAL METHODS」p.3、(1980)、John Wiley & Sons, Inc.”)。参照電極としては、Ag/AgCl参照電極、飽和カロメル電極(saturated calomel electrode)等が挙げられ、Ag/AgCl参照電極が好ましい。
参照電極としてAg/AgCl参照電極を用いる場合、例えば、RE−1CP飽和KCl銀塩化銀参照電極(BAS株式会社製)を用いてもよい。
また、正極用参照電極及び負極用参照電極としてAg/AgCl参照電極以外の参照電極を用い、測定した電位をAg/AgCl参照電極の電位に換算してもよい。
The positive electrode reference electrode and the negative electrode reference electrode may be any one that can be converted into a potential with respect to a standard hydrogen electrode potential and can exhibit a stable electrochemical potential. The reference electrode used as the electrochemical potential standard is indicated in textbooks and the like as the basics of electrochemistry (for example, “Allen J. Bard and Larry R. Faulkner,“ ELECTROCHEMICAL METHODS ”p. 3, (1980), John Wiley & Sons, Inc. "). Reference electrodes include Ag / AgCl reference electrodes, saturated calomel electrodes, and the like, with Ag / AgCl reference electrodes being preferred.
When an Ag / AgCl reference electrode is used as the reference electrode, for example, an RE-1CP saturated KCl silver-silver chloride reference electrode (manufactured by BAS Corporation) may be used.
Further, a reference electrode other than the Ag / AgCl reference electrode may be used as the positive electrode reference electrode and the negative electrode reference electrode, and the measured potential may be converted into the potential of the Ag / AgCl reference electrode.

(隔壁)
二次電池は、正極と負極との間にセパレータとして隔壁を更に備えていてもよく、正極活物質を含む正極電解液及び負極活物質を含む負極電解液が隔壁によって分けられていてもよい。隔壁としては、二次電池の使用条件に耐え得るもので、水分子、イオン等が透過し、かつ自己放電を抑制し得る膜であれば特に制限されず、イオン伝導性高分子膜、イオン伝導性固体電解質膜、ポリオレフィン多孔質膜、セルロース多孔質膜等が挙げられる。
(Partition wall)
The secondary battery may further include a partition as a separator between the positive electrode and the negative electrode, and the positive electrode electrolyte containing the positive electrode active material and the negative electrode electrolyte containing the negative electrode active material may be separated by the partition. The partition wall is not particularly limited as long as it can withstand the usage conditions of the secondary battery, and can transmit water molecules, ions, etc., and suppress self-discharge. Include a porous solid electrolyte membrane, a polyolefin porous membrane, and a cellulose porous membrane.

二次電池は、正極電解液として本開示の電解液を備え、かつ負極活物質を含む負極電解液を更に備えることが好ましい。正極電解液の好ましい構成については、前述の本開示の電解液と同様であるため、その説明を省略し、負極電解液の好ましい構成について以下に説明する。   The secondary battery preferably includes the electrolytic solution of the present disclosure as a positive electrode electrolytic solution, and further includes a negative electrode electrolytic solution containing a negative electrode active material. Since the preferable configuration of the positive electrode electrolyte is the same as the above-described electrolyte of the present disclosure, the description thereof will be omitted, and the preferable configuration of the negative electrode electrolyte will be described below.

(負極電解液)
二次電池は、負極活物質を含む負極電解液を更に備えていてもよい。負極活物質としては、反応系の標準酸化還元電位が正極の標準酸化還元電位よりも低い物質であればよい。例えば、正極活物質としてヨウ素イオン及びヨウ素分子のみを用いる場合、負極活物質は、反応系の標準酸化還元電位が正極の標準酸化還元電位である0.536Vよりも低い物質であればよい。負極活物質としては、亜鉛、クロム、チタン、バナジウム、鉄、スズ、鉛、ビオロゲン化合物、キノン化合物、Na等の硫黄化合物などが挙げられる。なお、負極活物質はこれらのイオンであってもよく、チタン酸リチウム、チタン酸ナトリウム、酸化チタン等のこれらの金属の化合物であってもよい。また、負極電解液は、負極活物質が液状媒体に溶解又は分散されているものであることが好ましい。
(Negative electrolyte)
The secondary battery may further include a negative electrode electrolyte containing a negative electrode active material. The negative electrode active material may be any material as long as the standard redox potential of the reaction system is lower than the standard redox potential of the positive electrode. For example, when only iodine ions and iodine molecules are used as the positive electrode active material, the negative electrode active material may be a material whose standard redox potential of the reaction system is lower than 0.536 V, which is the standard redox potential of the positive electrode. Examples of the negative electrode active material include zinc, chromium, titanium, vanadium, iron, tin, lead, viologen compounds, quinone compounds, and sulfur compounds such as Na 2 S 2 . The negative electrode active material may be these ions, or may be a compound of these metals such as lithium titanate, sodium titanate, and titanium oxide. The negative electrode electrolyte is preferably one in which the negative electrode active material is dissolved or dispersed in a liquid medium.

負極電解液は、負極活物質として亜鉛及び亜鉛イオンの少なくとも一方を含むことが好ましい。例えば、亜鉛を含む化合物の一種である塩化亜鉛は水に対する溶解度が30mol/Lと非常に高い点、亜鉛の溶解析出反応の標準酸化還元電位が−0.76Vと低い点並びに亜鉛及び亜鉛化合物は安価である点から、亜鉛及び亜鉛イオンは負極活物質として好適である。また、亜鉛を含む化合物としては、ヨウ化亜鉛、酢酸亜鉛、硝酸亜鉛、テレフタル酸亜鉛、硫酸亜鉛、塩化亜鉛、臭化亜鉛、酸化亜鉛、過酸化亜鉛、セレン化亜鉛、二燐酸亜鉛、アクリル酸亜鉛、水酸化炭酸亜鉛、ステアリン酸亜鉛、プロピオン酸亜鉛、フッ化亜鉛、クエン酸亜鉛等が挙げられる。   The negative electrode electrolyte preferably contains at least one of zinc and zinc ions as a negative electrode active material. For example, zinc chloride, which is a kind of a compound containing zinc, has a very high solubility in water of 30 mol / L, a standard redox potential of zinc dissolution and precipitation reaction is as low as −0.76 V, and zinc and zinc compounds are Zinc and zinc ions are suitable as the negative electrode active material because they are inexpensive. The compounds containing zinc include zinc iodide, zinc acetate, zinc nitrate, zinc terephthalate, zinc sulfate, zinc chloride, zinc bromide, zinc oxide, zinc peroxide, zinc selenide, zinc diphosphate, acrylic acid Examples thereof include zinc, zinc hydroxide carbonate, zinc stearate, zinc propionate, zinc fluoride, and zinc citrate.

負極電解液が亜鉛及び亜鉛イオンの少なくとも一方を含む場合、負極電解液は亜鉛イオン(Zn2+)と錯体を形成可能なキレート剤を含んでいてもよい。キレート剤としては、アセチルアセトン、クエン酸、エチレンジアミン、ビピリジン、エチレンジアミン四酢酸、フェナントロリン、ポルフィリン、クラウンエーテル等が挙げられる。 When the negative electrode electrolyte contains at least one of zinc and zinc ions, the negative electrode electrolyte may contain a chelating agent capable of forming a complex with zinc ions (Zn 2+ ). Examples of chelating agents include acetylacetone, citric acid, ethylenediamine, bipyridine, ethylenediaminetetraacetic acid, phenanthroline, porphyrin, and crown ether.

また、亜鉛と、亜鉛を含む化合物とを併用してもよく、その場合は負極上に電気的に接するように亜鉛を配置することが好ましい。   Moreover, you may use together zinc and the compound containing zinc, In that case, it is preferable to arrange | position zinc so that it may contact electrically on a negative electrode.

負極電解液が負極活物質として亜鉛、亜鉛イオン等を含む場合、負極における亜鉛デンドライトを抑制するため、Niプレート、Niメッシュ等(非特許文献:“Inhibition of Zn dendrite growth using NixZn(1-x)O anodic material during redox cycling test in Zn/Ni battery”, Solid State Ionics 295, 13-24 (2016))を用いてもよく、また、負極電解液はNi塩の添加剤、トリフルオロメタンスルホン酸亜鉛(Zinc trifluoromethylsulfonate)等を含んでいてもよい(非特許文献:“Dendrite-free nanocrystalline zinc electrodeposition from an ionic liquid containing nickel triflate for rechargeable Zn-based batteries”, Angew. Chem. Int. Ed. 55, 2889-2893 (2016))。   When the negative electrode electrolyte contains zinc, zinc ions, or the like as the negative electrode active material, in order to suppress zinc dendrite in the negative electrode, Ni plate, Ni mesh, etc. (non-patent document: “Inhibition of Zn dendrite growth using NixZn (1-x) Oanodic material during redox cycling test in Zn / Ni battery ”, Solid State Ionics 295, 13-24 (2016)), and the negative electrode electrolyte is Ni salt additive, zinc trifluoromethanesulfonate ( Zinc trifluoromethylsulfonate) etc. (Non-patent literature: “Dendrite-free nanocrystalline zinc electrodeposition from an ionic liquid containing nickel triflate for rechargeable Zn-based batteries”, Angew. Chem. Int. Ed. 55, 2889-2893 (2016)).

負極電解液に含まれ得るビオロゲン化合物としては、ビオロゲン骨格(ビピリジニウム骨格)を有し、負極活物質として機能するものであれば特に限定されない。例えば、ビオロゲン化合物としては、正極電解液側への拡散を抑制する点から、分子量が大きいことが好ましい。ビオロゲン化合物の具体例としては、下記一般式(I)で表される化合物が挙げられる。   The viologen compound that can be contained in the negative electrode electrolyte is not particularly limited as long as it has a viologen skeleton (bipyridinium skeleton) and functions as a negative electrode active material. For example, the viologen compound preferably has a large molecular weight from the viewpoint of suppressing diffusion toward the positive electrode electrolyte. Specific examples of the viologen compound include compounds represented by the following general formula (I).

一般式(1)中、R及びRはそれぞれ独立に、アルキル基、アリール基又はアラルキル基を示す。R及びRはそれぞれ独立に、炭素数1〜100のアルキル基、炭素数6〜100のアリール基、又は炭素数7〜100のアラルキル基であることが好ましく、炭素数1〜10のアルキル基であることがより好ましい。
一般式(1)中、Xはそれぞれ独立に、対イオンを示す。対イオンとしては、F、Cl、Br、I、BF 、ClO 、PF 、AsF 、CFSO 、(CFSO等が挙げられる。
In general formula (1), R 1 and R 2 each independently represents an alkyl group, an aryl group, or an aralkyl group. R 1 and R 2 are each independently preferably an alkyl group having 1 to 100 carbon atoms, an aryl group having 6 to 100 carbon atoms, or an aralkyl group having 7 to 100 carbon atoms, and an alkyl group having 1 to 10 carbon atoms. More preferably, it is a group.
In general formula (1), X < - > each independently represents a counter ion. Counter ions include F , Cl , Br , I , BF 4 , ClO 4 , PF 6 , AsF 6 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N − and the like. Can be mentioned.

及びRの少なくとも一方は、少なくとも一つ以上の電荷を有する置換基を有してもよい。これにより、二電子還元状態のビオロゲン化合物も電荷を保持し、負極電解液中に容易に溶解可能となる傾向にある。 At least one of R 1 and R 2 may have a substituent having at least one charge. As a result, the viologen compound in the two-electron reduced state also retains electric charge and tends to be easily dissolved in the negative electrode electrolyte.

ビオロゲン化合物は、正極電解液側への拡散を好適に抑制する点から、ビオロゲン骨格を主鎖又は側鎖に有するポリマーであってもよい。ビオロゲン骨格を主鎖に有するポリマーの具体例としては、下記一般式(2)〜(4)で表されるポリマーが挙げられる(例えば、“An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials.”, Nature, 527, 79 (2015); doi:10.1038/nature15746を参照)。このような場合、Rは電荷を有する置換基を有していてもよく、有していなくてもよい。
The viologen compound may be a polymer having a viologen skeleton in the main chain or side chain from the viewpoint of suitably suppressing diffusion toward the positive electrode electrolyte. Specific examples of the polymer having a viologen skeleton in the main chain include polymers represented by the following general formulas (2) to (4) (for example, “An aqueous, polymer-based redox-flow battery using non-corrosive , safe, and low-cost materials. ”, Nature, 527, 79 (2015); doi: 10.1038 / nature15746). In such a case, R 3 may or may not have a substituent having a charge.

一般式(2)〜(4)中、Rはアルキレン基を示し、Rは一般式(1)のRと同義であり、Rは水素原子又はメチル基を示し、Xは一般式(1)のXと同義である。Rで表されるアルキレン基の炭素数は、1〜10であることが好ましい。 In general formulas (2) to (4), R 1 represents an alkylene group, R 2 has the same meaning as R 1 in general formula (1), R 3 represents a hydrogen atom or a methyl group, and X represents general It is synonymous with X < - > of Formula (1). The alkylene group represented by R 1 preferably has 1 to 10 carbon atoms.

負極電解液がビオロゲン化合物を含む場合、ビオロゲン化合物は中性水溶液中で安定である傾向にあるため、中性のセパレータを用いることが好ましい。例えばカチオン交換膜であるナフィオンは−CF−SOHが超強酸性であるため、アルカリイオン、アルカリ土類イオン等によりプロトンを置換することが好ましい。例えば、1M水酸化カリウム水溶液又は水酸化ナトリウム水溶液中にナフィオンを浸し、室温〜100℃にて0.5時間〜100時間処理することで−SOK基、−SONa基等を持つナフィオンにすることにより、ほぼ中性のセパレータとすることができる。 When the negative electrode electrolyte contains a viologen compound, a neutral separator is preferably used because the viologen compound tends to be stable in a neutral aqueous solution. For example, in Nafion which is a cation exchange membrane, —CF 2 —SO 3 H is superacid, and therefore, it is preferable to replace protons with alkali ions, alkaline earth ions, or the like. For example, Nafion having a —SO 3 K group, a —SO 3 Na group, etc. is obtained by immersing Nafion in a 1M potassium hydroxide aqueous solution or a sodium hydroxide aqueous solution and treating at room temperature to 100 ° C. for 0.5 hour to 100 hours. By making it, it can be set as a substantially neutral separator.

負極電解液に含まれ得るキノン化合物としては、キノン骨格を有し、負極活物質として機能するものであれば特に限定されない。例えば、キノン化合物としては、正極電解液側への拡散を抑制する点から、分子量が大きいことが好ましい。キノン骨格としては、ベンゾキノン骨格、ナフトキノン骨格、アントラキノン骨格等が挙げられる。   The quinone compound that can be contained in the negative electrode electrolyte is not particularly limited as long as it has a quinone skeleton and functions as a negative electrode active material. For example, the quinone compound preferably has a large molecular weight from the viewpoint of suppressing diffusion toward the positive electrode electrolyte. Examples of the quinone skeleton include a benzoquinone skeleton, a naphthoquinone skeleton, and an anthraquinone skeleton.

キノン化合物は、正極電解液側への拡散を好適に抑制する点から、キノン骨格を主鎖又は側鎖に有するポリマーであってもよい。キノン化合物は、例えば、ベンゾキノン骨格、ナフトキノン骨格、アントラキノン骨格等を主鎖又は側鎖に有するポリマーであってもよい。キノン骨格を側鎖に有するポリマーは、キノン骨格を有しない構造単位を更に有していてもよい。   The quinone compound may be a polymer having a quinone skeleton in the main chain or side chain from the viewpoint of suitably suppressing diffusion toward the positive electrode electrolyte. The quinone compound may be, for example, a polymer having a benzoquinone skeleton, a naphthoquinone skeleton, an anthraquinone skeleton, or the like in the main chain or side chain. The polymer having a quinone skeleton in the side chain may further have a structural unit having no quinone skeleton.

負極電解液において、負極活物質の含有率は、1質量%〜80質量%であることが好ましく、3質量%〜70質量%であることがより好ましく、5質量%〜50質量%であることが更に好ましい。負極活物質の含有率を1質量%以上とすることで、高容量で実用に適した二次電池が得られる傾向にある。また、負極活物質の含有率を80質量%以下とすることで、液状媒体中での溶解性又は分散性が良好なものとなる傾向にある。   In the negative electrode electrolyte, the content of the negative electrode active material is preferably 1% by mass to 80% by mass, more preferably 3% by mass to 70% by mass, and 5% by mass to 50% by mass. Is more preferable. By setting the content of the negative electrode active material to 1% by mass or more, a secondary battery having a high capacity and suitable for practical use tends to be obtained. Moreover, it exists in the tendency for the solubility or dispersibility in a liquid medium to become favorable because the content rate of a negative electrode active material shall be 80 mass% or less.

負極電解液は、前述の正極電解液と同様、液状媒体、支持電解質、pH緩衝剤、消泡剤、導電材等のその他の成分を含有していてもよい。使用可能な液状媒体、支持電解質、pH緩衝剤、消泡剤及び導電材については、前述の本開示の電解液と同様であるため、その説明を省略する。   The negative electrode electrolyte solution may contain other components such as a liquid medium, a supporting electrolyte, a pH buffering agent, an antifoaming agent, and a conductive material, as in the above-described positive electrode electrolyte solution. Since the usable liquid medium, supporting electrolyte, pH buffering agent, antifoaming agent, and conductive material are the same as the above-described electrolytic solution of the present disclosure, the description thereof is omitted.

(負極電解液の調製方法)
負極電解液は、負極活物質と、必要に応じてその他の成分とを液状媒体に加えることにより調製することができる。負極電解液を調製する際には、必要に応じて加熱を行ってもよい。
(Method for preparing negative electrode electrolyte)
The negative electrode electrolyte can be prepared by adding a negative electrode active material and other components as necessary to a liquid medium. When preparing a negative electrode electrolyte, you may heat as needed.

本開示の二次電池は、フロー電池であってもよい。より具体的には、二次電池は、本開示の電解液である正極電解液を貯留する正極電解液貯留部と、負極電解液を貯留する負極電解液貯留部と、正極と正極電解液貯留部との間で正極電解液を循環させ、負極と負極電解液貯留部との間で負極電解液を循環させる送液部と、を更に備えるフロー電池であってもよい。
以下、フロー電池の各構成について説明する。
The secondary battery of the present disclosure may be a flow battery. More specifically, the secondary battery includes a positive electrode electrolyte reservoir that stores a positive electrode electrolyte that is an electrolyte of the present disclosure, a negative electrode electrolyte reservoir that stores a negative electrode electrolyte, and a positive electrode and a positive electrolyte reservoir. The flow battery may further include a liquid feeding part that circulates the positive electrode electrolyte between the negative electrode and the negative electrode electrolyte storage part, and circulates the negative electrode electrolyte between the negative electrode and the negative electrode electrolyte storage part.
Hereinafter, each configuration of the flow battery will be described.

(正極電解液貯留部及び負極電解液貯留部)
フロー電池は、正極電解液を貯留する正極電解液貯留部及び負極電解液を貯留する負極電解液貯留部を備える。正極電解液貯留部及び負極電解液貯留部としては、例えば、電解液貯留タンクが挙げられる。
(Cathode electrolyte reservoir and anode electrolyte reservoir)
The flow battery includes a positive electrode electrolyte storage part that stores a positive electrode electrolyte and a negative electrode electrolyte storage part that stores a negative electrode electrolyte. As a positive electrode electrolyte storage part and a negative electrode electrolyte storage part, an electrolyte storage tank is mentioned, for example.

(送液部)
フロー電池は、正極と正極電解液貯留部との間で正極電解液を循環させ、負極と負極電解液貯留部との間で負極電解液を循環させる送液部を備える。正極電解液貯留部に貯留された正極電解液が送液部を通じて正極が配置された正極室(正極電解液反応槽)に供給され、負極電解液貯留部に貯留された負極電解液が送液部を通じて負極が配置された負極室(負極電解液反応槽)に供給される。
(Liquid feeding part)
The flow battery includes a liquid feeding unit that circulates the positive electrode electrolyte between the positive electrode and the positive electrode electrolyte reservoir, and circulates the negative electrode electrolyte between the negative electrode and the negative electrode electrolyte reservoir. The positive electrode electrolyte stored in the positive electrode electrolyte storage part is supplied to the positive electrode chamber (positive electrode electrolyte reaction tank) in which the positive electrode is arranged through the liquid supply part, and the negative electrode electrolyte stored in the negative electrode electrolyte storage part is supplied. The negative electrode chamber (negative electrode electrolyte reaction tank) in which the negative electrode is disposed is supplied through the section.

フロー電池では、送液部は例えば、正極室と正極電解液貯留部との間で正極電解液を循環させ、かつ負極室と負極電解液貯留部との間で負極電解液を循環させる循環経路及び送液ポンプを備えていてもよい。   In the flow battery, for example, the liquid supply unit circulates the positive electrode electrolyte between the positive electrode chamber and the positive electrode electrolyte storage unit and circulates the negative electrode electrolyte between the negative electrode chamber and the negative electrode electrolyte storage unit. And a liquid feed pump.

液密性の点から循環経路の継ぎ手にガスケットを配置してもよい。ガスケットの素材としては特に制限はなく、PTFE(ポリテトラフルオロエチレン)、エチレンプロピレンゴム、Hypalon(登録商標)、塩化ビニル等が挙げられる。また循環経路の素材としても特に制限はなく、例えば、塩化ビニル、PFA(ペルフルオロアルコキシフッ素樹脂)、PTFE、ゴム、ガラス等が挙げられる。   A gasket may be disposed at the joint of the circulation path from the viewpoint of liquid tightness. There is no restriction | limiting in particular as a raw material of a gasket, PTFE (polytetrafluoroethylene), ethylene propylene rubber, Hyperon (trademark), vinyl chloride, etc. are mentioned. The material of the circulation path is not particularly limited, and examples thereof include vinyl chloride, PFA (perfluoroalkoxy fluororesin), PTFE, rubber, and glass.

正極室と正極電解液貯留部との間で循環させる正極電解液の量及び負極室と負極電解液貯留部との間で循環させる負極電解液の量は、それぞれ送液ポンプを用いて適宜調整すればよく、例えば、電池スケールに応じて適宜設定することができる。   The amount of the positive electrode electrolyte to be circulated between the positive electrode chamber and the positive electrode electrolyte reservoir and the amount of the negative electrode electrolyte to be circulated between the negative electrode chamber and the negative electrode electrolyte reservoir are appropriately adjusted using a liquid feed pump, respectively. What is necessary is just to set suitably according to a battery scale, for example.

(サンプリング部)
フロー電池は、正極電解液をサンプリングするサンプリング部を更に備えていてもよい。サンプリング部にて正極電解液をサンプリングすることで、ハロゲンイオン、ハロゲン分子、ハロゲン分子に対する良溶媒等の添加剤などの正極電解液に含有される成分の濃度の分析が可能となる。サンプリング部は、例えば、正極電解液貯留部、循環経路、正極電解液反応槽等に配置されていればよい。
(Sampling part)
The flow battery may further include a sampling unit that samples the positive electrode electrolyte. By sampling the positive electrode electrolyte in the sampling unit, it is possible to analyze the concentration of components contained in the positive electrode electrolyte such as halogen ions, halogen molecules, and additives such as good solvents for halogen molecules. The sampling part should just be arrange | positioned at a positive electrode electrolyte storage part, a circulation path, a positive electrode electrolyte reaction tank etc., for example.

(濃度調整部)
また、フロー電池は、サンプリング部によりサンプリングされた正極電解液を分析し、分析結果に基づいて、正極と正極電解液貯留部との間を循環する正極電解液に含有される成分の濃度を調整する濃度調整部を更に備えていてもよい。これにより、正極電解液に含有される成分の濃度が規定量、必要量等に比べて不足している場合、不足する成分が正極電解液に添加され、正極電解液に含有される成分の濃度を調整することができる。濃度調整部は、例えば、正極電解液貯留部、循環経路、正極電解液反応槽等に配置されていればよい。
(Density adjustment unit)
In addition, the flow battery analyzes the positive electrode electrolyte sampled by the sampling unit, and adjusts the concentration of the component contained in the positive electrode electrolyte circulating between the positive electrode and the positive electrode electrolyte storage unit based on the analysis result A density adjusting unit may be further provided. Thereby, when the concentration of the component contained in the positive electrode electrolyte is insufficient compared to the specified amount, the required amount, etc., the insufficient component is added to the positive electrode electrolyte, and the concentration of the component contained in the positive electrode electrolyte Can be adjusted. The concentration adjusting unit may be disposed in, for example, the positive electrode electrolyte storage unit, the circulation path, the positive electrode electrolyte reaction tank, and the like.

(濃度計測部)
フロー電池は、正極電解液中のハロゲンイオン及びハロゲン分子の濃度を計測する濃度計測部を有していてもよい。濃度計測部としては、例えば、正極電解液中のハロゲンイオン及びハロゲン分子の濃度に基づく電位を測定する電位計測部が挙げられる。電位計測部は、例えば、ハロゲンイオン及びハロゲン分子の濃度に基づく電位を計測するための集電電極と、電気化学電位の基準となる参照電極とを有し、参照電極基準の電気化学電位を計測する。電気化学電位に関するネルンストの式を用いることにより、計測された参照電極基準の電気化学電位からハロゲンイオン及びハロゲン分子の濃度を求めることができる。集電電極としては、白金電極、グラファイト電極等が挙げられ、参照電極としては、Ag/AgCl電極等が挙げられる。濃度計測部は、例えば、正極電解液貯留部、循環経路、正極電解液反応槽等に配置されていればよい。
(Concentration measurement unit)
The flow battery may have a concentration measuring unit that measures the concentration of halogen ions and halogen molecules in the positive electrode electrolyte. Examples of the concentration measuring unit include a potential measuring unit that measures a potential based on the concentrations of halogen ions and halogen molecules in the positive electrode electrolyte. The potential measuring unit has, for example, a current collecting electrode for measuring a potential based on the concentration of halogen ions and halogen molecules, and a reference electrode serving as a reference for the electrochemical potential, and measures the electrochemical potential of the reference electrode To do. By using the Nernst equation relating to the electrochemical potential, the concentrations of halogen ions and halogen molecules can be obtained from the measured electrochemical potential of the reference electrode standard. Examples of the collecting electrode include a platinum electrode and a graphite electrode, and examples of the reference electrode include an Ag / AgCl electrode. The concentration measurement unit may be disposed in, for example, the positive electrode electrolyte storage unit, the circulation path, the positive electrode electrolyte reaction tank, and the like.

また、フロー電池は、濃度計測部により計測された濃度、好ましくは、電位計測部により計測された電位に基づいて充電状態(SOC:State Of Charge)を推定する構成を備えていてもよい。例えば、酸化還元物質としてI、I 、及びIのみを考慮した場合、SOCが0%とは、基本的に正極電解液中にI 及びIが含まれず、Iのみとなっている状態を示す。また、SOCが100%とは、基本的に正極電解液中にIが含まれず、I 及びIのみとなっている状態を示す。 In addition, the flow battery may include a configuration for estimating a state of charge (SOC) based on the concentration measured by the concentration measuring unit, preferably the potential measured by the potential measuring unit. For example, when only I , I 3 , and I 2 are considered as redox substances, the SOC is 0%. Basically, I 3 and I 2 are not included in the positive electrode electrolyte, and only I is included. It shows the state. The SOC of 100% basically indicates a state in which I is not contained in the positive electrode electrolyte, and only I 3 and I 2 are present.

[二次電池システム]
本開示の二次電池システムは、前述の本開示の二次電池と、二次電池の充放電を制御する制御部と、を備える。本開示の二次電池システムは、二次電池がフロー電池であるフロー電池システムであってもよく、制御部は、フロー電池の充放電を制御するとともに必要に応じてサンプリング部、濃度調整部、濃度計測部等を制御する構成であってもよい。
[Secondary battery system]
The secondary battery system of the present disclosure includes the above-described secondary battery of the present disclosure and a control unit that controls charging / discharging of the secondary battery. The secondary battery system of the present disclosure may be a flow battery system in which the secondary battery is a flow battery, and the control unit controls charging / discharging of the flow battery and, if necessary, a sampling unit, a concentration adjustment unit, It may be configured to control the concentration measuring unit or the like.

(制御部)
二次電池システムは、二次電池の充放電を制御する制御部を備える。例えば、制御部は、二次電池システムにおける充電電圧、正極及び負極の充電電位等を制御する構成であってもよい。
なお、充電電圧は負極と正極との間の電位差を示すものであり、充電電位は基準となる一定の電位を持つ基準電極(参照電極)に対する電位差を示すものである。
(Control part)
The secondary battery system includes a control unit that controls charging and discharging of the secondary battery. For example, the control unit may be configured to control the charging voltage in the secondary battery system, the charging potential of the positive electrode and the negative electrode, and the like.
The charging voltage indicates a potential difference between the negative electrode and the positive electrode, and the charging potential indicates a potential difference with respect to a reference electrode (reference electrode) having a constant reference potential.

(フロー電池システムの構成例)
次に、本開示の二次電池システムの一種であるフロー電池システムの構成例について、図1を参照しながら説明する。フロー電池システムは図1の構成に限定されるものではない。また、図1における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。なお、フロー電池システム100における各構成については、前述した構成と同様であるため、その詳細な説明を省略する。
(Configuration example of flow battery system)
Next, a configuration example of a flow battery system which is a kind of the secondary battery system of the present disclosure will be described with reference to FIG. The flow battery system is not limited to the configuration shown in FIG. Further, the size of the members in FIG. 1 is conceptual, and the relative relationship between the sizes of the members is not limited to this. In addition, about each structure in the flow battery system 100, since it is the same as that of the structure mentioned above, the detailed description is abbreviate | omitted.

フロー電池システム100は、図1に示すように、正極11と、負極12と、正極用参照電極13と、負極用参照電極14と、隔壁15と、正極電解液16と、正極電解液貯留タンク18と、負極電解液17と、負極電解液貯留タンク19と、送液部として循環経路20、21並びに正極電解液送液ポンプ22及び負極電解液送液ポンプ23と、制御部(図示せず)と、を備える。なお、フロー電池システム100では、ハロゲンイオンとしてヨウ素イオンであるI、I 及びハロゲン分子としてヨウ素分子を正極電解液に含み、かつ、負極活物質として亜鉛イオンを含む構成について説明する。また、図1中のpは、錯体形成化合物であるポリマー化合物を指し、図1中では図示していないが、ポリマー化合物の少なくとも一部は、ヨウ素イオン及びヨウ素分子の少なくとも一部と錯体を形成している。 As shown in FIG. 1, the flow battery system 100 includes a positive electrode 11, a negative electrode 12, a positive electrode reference electrode 13, a negative electrode reference electrode 14, a partition wall 15, a positive electrode electrolyte 16, and a positive electrode electrolyte storage tank. 18, a negative electrode electrolyte 17, a negative electrode electrolyte storage tank 19, circulation paths 20 and 21 as a liquid supply part, a positive electrode electrolyte liquid feed pump 22 and a negative electrode electrolyte liquid feed pump 23, and a control unit (not shown). And). In the flow battery system 100, a configuration in which I and I 3 which are iodine ions as halogen ions and iodine molecules as halogen molecules in the positive electrode electrolyte and zinc ions as the negative electrode active material will be described. In addition, p in FIG. 1 indicates a polymer compound that is a complex-forming compound. Although not shown in FIG. 1, at least a part of the polymer compound forms a complex with at least a part of iodine ions and iodine molecules. doing.

図1に示すように、フロー電池システム100は、正極11と、負極12と、隔壁15と、を一つずつ備える単セルを複数備えるセルスタック30を備える。図1では、単セル数が5つであるセルスタック30を示している。なお、単セル数は特に限定されない。また、図1に示すフロー電池システム100では、セルスタック構成の正極11と負極12とに正極用参照電極13及び負極用参照電極14が配置されており、参照電極を用いた電位計測が可能となっている。フロー電池システム100の充放電は、図示を省略する制御部によって制御される。   As shown in FIG. 1, the flow battery system 100 includes a cell stack 30 including a plurality of single cells each including a positive electrode 11, a negative electrode 12, and a partition wall 15. FIG. 1 shows a cell stack 30 having five single cells. The number of single cells is not particularly limited. Moreover, in the flow battery system 100 shown in FIG. 1, the positive electrode reference electrode 13 and the negative electrode reference electrode 14 are arranged on the positive electrode 11 and the negative electrode 12 in the cell stack configuration, and potential measurement using the reference electrode is possible. It has become. Charging / discharging of the flow battery system 100 is controlled by a control unit (not shown).

フロー電池システム100は、送液部として、正極11が配置された正極電解液反応槽と正極電解液貯留タンク18との間で正極電解液16を循環させ、かつ負極12が配置された負極電解液反応槽と負極電解液貯留タンク19との間で負極電解液17を循環させる循環経路20、21並びに正極電解液送液ポンプ22及び負極電解液送液ポンプ23を備える。   The flow battery system 100 circulates the positive electrode electrolyte 16 between the positive electrode electrolyte reaction tank in which the positive electrode 11 is arranged and the positive electrode electrolyte storage tank 18 as a liquid feeding unit, and the negative electrode electrolysis in which the negative electrode 12 is arranged. Circulation paths 20 and 21 for circulating the negative electrode electrolyte 17 between the liquid reaction tank and the negative electrode electrolyte storage tank 19, a positive electrode electrolyte liquid feed pump 22, and a negative electrode electrolyte liquid feed pump 23 are provided.

更に、正極電解液貯留タンク18には、正極電解液16をサンプリングするサンプリング部24と、正極電解液16中のヨウ素イオン及びヨウ素分子の濃度に基づく電位を計測する電位計測部25とが配置されている。   Further, in the positive electrode electrolyte storage tank 18, a sampling unit 24 that samples the positive electrode electrolyte 16 and a potential measurement unit 25 that measures a potential based on the concentrations of iodine ions and iodine molecules in the positive electrode electrolyte 16 are arranged. ing.

[発電システム]
本開示の発電システムは、発電装置と、前述の本開示の二次電池システムと、を備える。本開示の発電システムは、二次電池システムと発電装置とを組み合わせることで、電力変動を平準化及び安定化したり、電力の需給を安定化したりすることができる。
[Power generation system]
A power generation system of the present disclosure includes a power generation device and the above-described secondary battery system of the present disclosure. The power generation system of the present disclosure can level and stabilize power fluctuations or stabilize power supply and demand by combining a secondary battery system and a power generation device.

発電システムは、発電装置を備える。発電装置としては、特に限定されず、再生可能エネルギーを用いて発電する発電装置、水力発電装置、火力発電装置、原子力発電装置等が挙げられ、中でも再生可能エネルギーを用いて発電する発電装置が好ましい。   The power generation system includes a power generation device. The power generation device is not particularly limited, and examples thereof include a power generation device that generates power using renewable energy, a hydroelectric power generation device, a thermal power generation device, and a nuclear power generation device. Among them, a power generation device that generates power using renewable energy is preferable. .

再生可能エネルギーを用いた発電装置は、気象条件等によって発電量が大きく変動するが、二次電池システムと組み合わせることで変動する発電電力を平準化して電力系統に平準化した電力を供給することができる。   The amount of power generated by power generators using renewable energy varies greatly depending on weather conditions, etc., but when combined with a secondary battery system, the generated power can be leveled and supplied to the power system. it can.

再生可能エネルギーとしては、風力、太陽光、波力、潮力、流水、潮汐、地熱等が挙げられるが、風力又は太陽光が好ましい。   Examples of the renewable energy include wind power, sunlight, wave power, tidal power, running water, tide, geothermal heat, etc., preferably wind power or sunlight.

風力、太陽光等の再生可能エネルギーを用いて発電した発電電力は、高電圧の電力系統に供給する場合がある。通常、風力発電及び太陽光発電は、風向、風力、天気等の気象によって影響を受けるため、発電電力は一定とならず、大きく変動する傾向にある。一定ではない発電電力を高電圧の電力系統にそのまま供給すると、電力系統の不安定化を助長するため好ましくない。本実施形態の発電システムは、例えば、二次電池システムの充放電波形を発電電力波形に重畳させることで、目標とする電力変動レベルまで発電電力波形を平準化させることができる。   In some cases, generated power generated using renewable energy such as wind power and sunlight is supplied to a high-voltage power system. In general, wind power generation and solar power generation are affected by weather such as wind direction, wind power, and weather, and thus generated power is not constant and tends to fluctuate greatly. If the generated power that is not constant is supplied to the high-voltage power system as it is, it is not preferable because it promotes instability of the power system. For example, the power generation system of the present embodiment can level the generated power waveform to the target power fluctuation level by superimposing the charge / discharge waveform of the secondary battery system on the generated power waveform.

以下、実施例を示して本発明について具体的に説明するが、本発明の技術的範囲はこれに限定されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, the technical scope of this invention is not limited to this.

[実施例1]
10mMのヨウ化ナトリウム(富士フイルム和光純薬株式会社製、正極活物質)、1Mの過塩素酸ナトリウム(富士フイルム和光純薬株式会社製、支持電解質)及び10質量%ポリビニルピロリドン「PVP K30」(富士フイルム和光純薬株式会社製、ポリマー化合物、数平均分子量:4万)を含む正極電解液100mLを、各成分を水に溶解させて調製した。この調製した正極電解液、作用極として「HR2−RD1−Pt8/Au5(金直径5mm電極)」、対極として白金コイル、及び参照極としてAg/AgCl(飽和KCl水溶液中)を用い、サイクリックボルタンメトリーを行った。電極装置はHR−301(北斗電工株式会社製)を用い、ポテンショスタットはHZ−5000(北斗電工株式会社製)を用いた。結果を図2に示す。酸化ピークと還元ピークの電位差(ピークセパレーションという)は10mV・s−1において97mVであった。I/I の酸化還元反応の反応電子数は2/3であり、そのときの可逆的酸化還元反応におけるピークセパレーションの理論値は85.5mVである。実験値(97mV)はこの理論値に近く、実施例1の電解液は可逆的な酸化還元反応に簡易的に分類できる。また、電極を200rpm(回転/分)〜3000rpmで回転させて対流ボルタンメトリーを測定(掃引速度:10mV・s−1)した。結果を図3に示す。図4は図3を基にしてLevichプロットを作成した図である。約0.6V vs.Ag/AgCl以上で電流値の減少は観察されるものの、Levichプロットの直線性は比較的良く、主に、電極の回転によって制御できるヨウ素イオンの拡散によって電流値が支配されることが示された。
[Example 1]
10 mM sodium iodide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., positive electrode active material), 1 M sodium perchlorate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., supporting electrolyte) and 10% by mass polyvinylpyrrolidone “PVP K30” ( 100 mL of a positive electrode electrolyte solution containing a polymer compound (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., number average molecular weight: 40,000) was prepared by dissolving each component in water. Using this prepared positive electrode electrolyte, “HR2-RD1-Pt8 / Au5 (gold diameter 5 mm electrode)” as the working electrode, platinum coil as the counter electrode, and Ag / AgCl (in saturated KCl aqueous solution) as the reference electrode, cyclic voltammetry Went. HR-301 (made by Hokuto Denko) was used for the electrode device, and HZ-5000 (made by Hokuto Denko) was used for the potentiostat. The results are shown in FIG. The potential difference (referred to as peak separation) between the oxidation peak and the reduction peak was 97 mV at 10 mV · s −1 . The number of reaction electrons in the redox reaction of I / I 3 is 2/3, and the theoretical value of peak separation in the reversible redox reaction at that time is 85.5 mV. The experimental value (97 mV) is close to this theoretical value, and the electrolyte solution of Example 1 can be easily classified as a reversible oxidation-reduction reaction. Moreover, the electrode was rotated at 200 rpm (rotations / minute) to 3000 rpm, and convective voltammetry was measured (sweep speed: 10 mV · s −1 ). The results are shown in FIG. FIG. 4 is a diagram in which a Levic plot is created based on FIG. About 0.6V vs. Although a decrease in the current value is observed at Ag / AgCl or higher, the linearity of the Levic plot is relatively good, indicating that the current value is mainly governed by the diffusion of iodine ions that can be controlled by the rotation of the electrode. .

1Mのヨウ化ナトリウム(富士フイルム和光純薬株式会社製)及び10質量%ポリビニルピロリドン「PVP K30」(富士フイルム和光純薬株式会社製、数平均分子量:4万)を含む正極電解液20mLを、各成分を水に溶解させて調製した。また、負極電解液には1M硫酸亜鉛(富士フイルム和光純薬株式会社製)水溶液20mLを用いた。   20 mL of a positive electrode electrolyte solution containing 1 M sodium iodide (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 10% by mass polyvinylpyrrolidone “PVP K30” (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., number average molecular weight: 40,000) Each component was prepared by dissolving in water. Moreover, 20 mL of 1M zinc sulfate (made by Fuji Film Wako Pure Chemical Industries, Ltd.) aqueous solution was used for the negative electrode electrolyte.

フロー電池用セルを作製し、フロー型二次電池として評価した。エチレンプロピレンゴム製ガスケット、正極及び負極としてカーボンフェルト(東洋紡株式会社製、XF30A、面積:5cm、厚さ:4.3mm)並びにセパレータとしてポリプロピレン多孔膜セルガード2400(アルドリッチ社製、平均孔径:26nm)を用いた。正極電解液及び負極電解液は約7mL・m−1にて循環させた。充放電試験装置はBiologic−BCS−815(Biologic社製)を用いた。電流値は0.1A(20 mA・cm−2)にて0V〜1.6Vにて充放電サイクル試験を100サイクル行った。100サイクル後の容量維持率は94%であった。 A cell for a flow battery was prepared and evaluated as a flow type secondary battery. Gasket made of ethylene propylene rubber, carbon felt as positive electrode and negative electrode (Toyobo Co., Ltd., XF30A, area: 5 cm 2 , thickness: 4.3 mm) and polypropylene porous membrane cell guard 2400 as separator (Aldrich, average pore size: 26 nm) Was used. The positive electrode electrolyte and the negative electrode electrolyte were circulated at about 7 mL · m −1 . Biological-BCS-815 (manufactured by Biological) was used as the charge / discharge test apparatus. The charge / discharge cycle test was conducted 100 cycles at a current value of 0.1 A (20 mA · cm −2 ) at 0 V to 1.6 V. The capacity retention rate after 100 cycles was 94%.

[実施例2]
正極電解液におけるポリビニルピロリドンの含有率を20質量%とした以外は実施例1と同様にして電池特性を評価した。100サイクル後の容量維持率は92%であった。
[Example 2]
The battery characteristics were evaluated in the same manner as in Example 1 except that the content of polyvinylpyrrolidone in the positive electrode electrolyte was 20% by mass. The capacity retention rate after 100 cycles was 92%.

[実施例3]
正極電解液におけるポリビニルピロリドンの含有率を5質量%とした以外は実施例1と同様にして電池特性を評価した。100サイクル後の容量維持率は95%であった。
[Example 3]
The battery characteristics were evaluated in the same manner as in Example 1 except that the content of polyvinylpyrrolidone in the positive electrode electrolyte was 5% by mass. The capacity retention rate after 100 cycles was 95%.

[実施例4]
数平均分子量が2万のポリビニルピロリドン「PVP K15」(富士フイルム和光純薬株式会社製)を正極電解液に用いた以外は実施例1と同様にして電池特性を評価した。100サイクル後の容量維持率は95%であった。
[Example 4]
The battery characteristics were evaluated in the same manner as in Example 1 except that polyvinylpyrrolidone “PVP K15” (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) having a number average molecular weight of 20,000 was used as the positive electrode electrolyte. The capacity retention rate after 100 cycles was 95%.

[実施例5]
数平均分子量が8万のポリビニルピロリドン「PVP K60」(富士フイルム和光純薬株式会社製)を正極電解液に用いた以外は実施例1と同様にして電池特性を評価した。100サイクル後の容量維持率は93%であった。
[Example 5]
The battery characteristics were evaluated in the same manner as in Example 1 except that polyvinylpyrrolidone “PVP K60” (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) having a number average molecular weight of 80,000 was used as the positive electrode electrolyte. The capacity retention rate after 100 cycles was 93%.

[実施例6]
ポリビニルピロリドンの替わりに同量のでんぷん(富士フイルム和光純薬株式会社製、溶性)を正極電解液に用い、60℃にてでんぷんを正極電解液に溶解させた以外は実施例1と同様にして電池特性を評価した。なお、正極電解液は室温まで冷却した後に使用した。100サイクル後の容量維持率は91%であった。
[Example 6]
The same amount of starch (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., soluble) was used instead of polyvinylpyrrolidone as the positive electrode electrolyte, and the starch was dissolved in the positive electrode electrolyte at 60 ° C. as in Example 1. Battery characteristics were evaluated. The positive electrode electrolyte was used after cooling to room temperature. The capacity retention rate after 100 cycles was 91%.

[実施例7]
セパレータとしてポリプロピレン多孔膜セルガードの替わりにナフィオン212(アルドリッチ社製)を用いた以外は実施例1と同様にして電池特性を評価した。100サイクル後の容量維持率は91%であった。
[Example 7]
The battery characteristics were evaluated in the same manner as in Example 1 except that Nafion 212 (manufactured by Aldrich) was used as the separator instead of the polypropylene porous membrane cell guard. The capacity retention rate after 100 cycles was 91%.

[実施例8]
消泡剤であるポリジメチルシロキサン0.5質量%を更に含む正極電解液を調製した以外は実施例1と同様にして電池特性を評価した。100サイクル後の容量維持率は95%であった。
[Example 8]
The battery characteristics were evaluated in the same manner as in Example 1 except that a positive electrode electrolyte containing 0.5% by mass of polydimethylsiloxane as an antifoaming agent was prepared. The capacity retention rate after 100 cycles was 95%.

[実施例9]
正極電解液に更にエタノールを5体積%となるように添加した以外は同様にして電池特性を評価した。100サイクル後の容量維持率は99%であった。
[Example 9]
Battery characteristics were evaluated in the same manner except that ethanol was further added to the positive electrode electrolyte so as to be 5% by volume. The capacity retention rate after 100 cycles was 99%.

[比較例1]
10mMのヨウ化ナトリウム(富士フイルム和光純薬株式会社製、正極活物質)及び1Mの過塩素酸ナトリウム(富士フイルム和光純薬株式会社製、支持電解質)を含む正極電解液100mLを、各成分を水に溶解させて調製した。この正極電解液を用いた以外は実施例1と同様にしてボルタンメトリーを行った。結果を図5及び図6に示す。図5において、ヨウ素イオンIの酸化が、ヨウ素分子I析出の反応過程を含み、更に、最終的な酸化生成物であるI の還元が、I →I+Iの反応に基づきIを経由することが原因となり、非対称なサイクリックボルタモグラムが観察されたと推測される。また図6において、500rpm及び1000rpmの電極回転数において、約0.6V〜0.8V vs.Ag/AgClの電位において、電流の急激な落ち込みが観察された。これは、ヨウ素分子の電極表面への析出により電流の低下が観察されたことを示しており、ヨウ素分子I析出が電極の回転によって引き起こされるヨウ素イオンIの電極表面への拡散を阻害したことを示す。また、図3の結果との比較により、電解液にポリビニルピロリドンが含まれることにより、ヨウ素分子I析出が抑制されて二次電池における出力特性が抑制されることが推測される。
比較例1にて調製した正極電解液を用いた以外は実施例1と同様にして電池特性を評価した。100サイクル後の容量維持率は11%であった。これは、ヨウ素化合物が負極側に拡散して自己放電したためである。
[Comparative Example 1]
100 mL of a positive electrode electrolyte solution containing 10 mM sodium iodide (Fuji Film Wako Pure Chemical Industries, Ltd., positive electrode active material) and 1 M sodium perchlorate (Fuji Film Wako Pure Chemical Industries, Ltd., supporting electrolyte) Prepared by dissolving in water. Voltammetry was performed in the same manner as in Example 1 except that this positive electrode electrolyte was used. The results are shown in FIGS. In FIG. 5, the oxidation of iodine ion I includes the reaction process of precipitation of iodine molecule I 2 , and the reduction of I 3 as the final oxidation product is the reaction of I 3 → I 2 + I . Therefore, it is presumed that an asymmetric cyclic voltammogram was observed due to passing through I 2 . Further, in FIG. 6, at an electrode rotation speed of 500 rpm and 1000 rpm, about 0.6 V to 0.8 V vs. A sudden drop in current was observed at the Ag / AgCl potential. This indicates that a decrease in current was observed due to precipitation of iodine molecules on the electrode surface, and iodine molecule I 2 precipitation inhibited diffusion of iodine ions I − to the electrode surface caused by rotation of the electrode. It shows that. Moreover, it is estimated by comparison with the result of FIG. 3 that when polyvinyl pyrrolidone is contained in the electrolytic solution, iodine molecule I 2 precipitation is suppressed and output characteristics in the secondary battery are suppressed.
The battery characteristics were evaluated in the same manner as in Example 1 except that the positive electrode electrolyte prepared in Comparative Example 1 was used. The capacity retention rate after 100 cycles was 11%. This is because the iodine compound diffused to the negative electrode side and self-discharged.

本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。   All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.

11 正極
12 負極
15 隔壁
13 正極用参照電極
14 負極用参照電極
16 正極電解液
17 負極電解液
18 正極電解液貯留タンク(正極電解液貯留部)
19 負極電解液貯留タンク(負極電解液貯留部)
20、21 循環経路(送液部)
22、23 送液ポンプ(送液部)
24 サンプリング部
25 電位計測部(濃度計測部)
30 セルスタック
100 フロー電池システム
DESCRIPTION OF SYMBOLS 11 Positive electrode 12 Negative electrode 15 Partition 13 Positive electrode reference electrode 14 Negative electrode reference electrode 16 Positive electrode electrolyte 17 Negative electrode electrolyte 18 Positive electrode electrolyte storage tank (positive electrode electrolyte storage part)
19 Anode electrolyte storage tank (Anode electrolyte storage part)
20, 21 Circulation route (liquid feeding part)
22, 23 Liquid feed pump (liquid feed part)
24 Sampling unit 25 Potential measurement unit (concentration measurement unit)
30 cell stack 100 flow battery system

Claims (18)

ハロゲン分子及びハロゲンイオンの少なくとも一方と、前記ハロゲン分子及び前記ハロゲンイオンの少なくとも一方と錯体を形成可能な化合物と、を含む電解液。   An electrolytic solution comprising at least one of a halogen molecule and a halogen ion, and a compound capable of forming a complex with at least one of the halogen molecule and the halogen ion. 液状媒体を更に含み、前記化合物の少なくとも一部が前記液状媒体に溶解している請求項1に記載の電解液。   The electrolytic solution according to claim 1, further comprising a liquid medium, wherein at least a part of the compound is dissolved in the liquid medium. 前記液状媒体が水を含む請求項2に記載の電解液。   The electrolytic solution according to claim 2, wherein the liquid medium contains water. 前記ハロゲン分子は、塩素分子、臭素分子及びヨウ素分子からなる群より選択される少なくとも一つであり、前記ハロゲンイオンは、塩素イオン、臭素イオン及びヨウ素イオンからなる群より選択される少なくとも一つである請求項1〜請求項3のいずれか1項に記載の電解液。   The halogen molecule is at least one selected from the group consisting of chlorine molecule, bromine molecule and iodine molecule, and the halogen ion is at least one selected from the group consisting of chlorine ion, bromine ion and iodine ion. The electrolyte solution according to any one of claims 1 to 3. 前記ハロゲン分子はヨウ素であり、前記ハロゲンイオンはヨウ素イオンである請求項1〜請求項4のいずれか1項に記載の電解液。   The electrolytic solution according to claim 1, wherein the halogen molecule is iodine, and the halogen ion is iodine ion. 前記化合物は、ポリマー化合物である請求項1〜請求項5のいずれか1項に記載の電解液。   The said compound is a polymer compound, The electrolyte solution of any one of Claims 1-5. 前記ポリマー化合物の数平均分子量は、200〜100万である請求項6に記載の電解液。   The electrolyte solution according to claim 6, wherein the polymer compound has a number average molecular weight of 200 to 1,000,000. 前記ポリマー化合物の数平均分子量は、5000〜50万である請求項6に記載の電解液。   The electrolyte solution according to claim 6, wherein the polymer compound has a number average molecular weight of 5,000 to 500,000. 前記ポリマー化合物は、ナイロン−6、ポリテトラヒドロフラン、ポリビニルアルコール、ポリアクリロニトリル、ポリビニルピリジン、ポリビニルピロリドン、ポリメチル(メタ)アクリレート、ポリテトラメチレンエーテルグリコール、ポリアクリルアミド、ポリプロピレングリコール、ポリエチレングリコール、ポリエチレンオキシド、ポリアセチレン、ポリ(フェニレンビニレン)、ポリピロール、ポリアニリン、ポリ(フェニレンスルフィド)、ポリチオフェン、キトサン、アミロース、デンプン、アミロペクチン、セルロース、グリコーゲン、デキストリン及びシクロデキストリンからなる群より選択される少なくとも一つを含む請求項6〜請求項8のいずれか1項に記載の電解液。   The polymer compound is nylon-6, polytetrahydrofuran, polyvinyl alcohol, polyacrylonitrile, polyvinyl pyridine, polyvinyl pyrrolidone, polymethyl (meth) acrylate, polytetramethylene ether glycol, polyacrylamide, polypropylene glycol, polyethylene glycol, polyethylene oxide, polyacetylene, 6. It contains at least one selected from the group consisting of poly (phenylene vinylene), polypyrrole, polyaniline, poly (phenylene sulfide), polythiophene, chitosan, amylose, starch, amylopectin, cellulose, glycogen, dextrin and cyclodextrin. The electrolyte solution according to claim 8. 前記ポリマー化合物は、ポリビニルピロリドン、ポリビニルピリジン、アミロース、デンプン、アミロペクチン、グリコーゲン、デキストリン及びシクロデキストリンからなる群より選択される少なくとも一つを含む請求項6〜請求項8のいずれか1項に記載の電解液。   9. The polymer compound according to claim 6, wherein the polymer compound includes at least one selected from the group consisting of polyvinylpyrrolidone, polyvinylpyridine, amylose, starch, amylopectin, glycogen, dextrin, and cyclodextrin. Electrolytic solution. 前記ポリマー化合物は、ポリビニルピロリドンを含む請求項6〜請求項8のいずれか1項に記載の電解液。   The electrolyte solution according to any one of claims 6 to 8, wherein the polymer compound contains polyvinylpyrrolidone. 正極と、
負極と、
請求項1〜請求項11のいずれか1項に記載の電解液と、を備える二次電池。
A positive electrode;
A negative electrode,
A secondary battery comprising: the electrolyte solution according to any one of claims 1 to 11.
前記電解液は正極活物質として前記ハロゲン分子及び前記ハロゲンイオンの少なくとも一方を含む正極電解液であり、
負極活物質を含む負極電解液を更に備える請求項12に記載の二次電池。
The electrolytic solution is a positive electrode electrolytic solution containing at least one of the halogen molecule and the halogen ion as a positive electrode active material,
The secondary battery according to claim 12, further comprising a negative electrode electrolyte containing a negative electrode active material.
前記負極活物質は、亜鉛及び亜鉛イオンの少なくとも一方を含む請求項13に記載の二次電池。   The secondary battery according to claim 13, wherein the negative electrode active material contains at least one of zinc and zinc ions. 前記正極電解液を貯留する正極電解液貯留部と、
前記負極電解液を貯留する負極電解液貯留部と、
前記正極と前記正極電解液貯留部との間で前記正極電解液を循環させ、前記負極と前記負極電解液貯留部との間で前記負極電解液を循環させる送液部と、
を更に備えるフロー電池である、請求項13又は請求項14に記載の二次電池。
A positive electrode electrolyte reservoir for storing the positive electrode electrolyte;
A negative electrode electrolyte reservoir for storing the negative electrode electrolyte;
A liquid feeding part for circulating the positive electrode electrolyte between the positive electrode and the positive electrode electrolyte reservoir, and circulating the negative electrode electrolyte between the negative electrode and the negative electrode electrolyte reservoir;
The secondary battery according to claim 13, which is a flow battery further comprising:
請求項12〜請求項15のいずれか1項に記載の二次電池と、
前記二次電池の充放電を制御する制御部と、
を備える二次電池システム。
The secondary battery according to any one of claims 12 to 15,
A control unit for controlling charge and discharge of the secondary battery;
A secondary battery system comprising:
発電装置と、
請求項16の二次電池システムと、を備える発電システム。
A power generator,
A power generation system comprising: the secondary battery system according to claim 16.
前記発電装置は、再生可能エネルギーを用いて発電する、請求項17に記載の発電システム。   The power generation system according to claim 17, wherein the power generation device generates power using renewable energy.
JP2018073928A 2017-05-18 2018-04-06 Electrolyte solution, secondary battery, secondary battery system, and power generation system Pending JP2018195571A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762508191P 2017-05-18 2017-05-18
US62/508,191 2017-05-18

Publications (1)

Publication Number Publication Date
JP2018195571A true JP2018195571A (en) 2018-12-06

Family

ID=64569091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018073928A Pending JP2018195571A (en) 2017-05-18 2018-04-06 Electrolyte solution, secondary battery, secondary battery system, and power generation system

Country Status (1)

Country Link
JP (1) JP2018195571A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113755687A (en) * 2021-07-20 2021-12-07 宁国市华丰耐磨材料有限公司 Quenching heat treatment process for grinding ball production
CN114342149A (en) * 2019-08-30 2022-04-12 京瓷株式会社 Secondary battery, secondary battery system, and control method
KR20220067124A (en) * 2020-11-17 2022-05-24 한국에너지기술연구원 Flow cell and power generation system comprising thereof
CN114709494A (en) * 2022-03-31 2022-07-05 青岛大学 Water system zinc-double-halogen battery based on multi-electron conversion reaction and electrolyte thereof
CN116666779A (en) * 2023-07-27 2023-08-29 广东工业大学 Electrolyte capable of self-adaptively regenerating, repairing and recycling metal, and preparation method and application thereof
WO2024039193A1 (en) * 2022-08-18 2024-02-22 서울과학기술대학교 산학협력단 Electrolyte composition for redox flow battery and redox flow battery comprising same
CN117613432A (en) * 2024-01-24 2024-02-27 中南大学 Containing acyl esters C having both keto and ester groups 5~8 Aqueous zinc ion battery composite electrolyte of alkane chain-like organic additive, and preparation method and application thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114342149A (en) * 2019-08-30 2022-04-12 京瓷株式会社 Secondary battery, secondary battery system, and control method
KR20220067124A (en) * 2020-11-17 2022-05-24 한국에너지기술연구원 Flow cell and power generation system comprising thereof
KR102489785B1 (en) * 2020-11-17 2023-01-18 한국에너지기술연구원 Flow cell and power generation system comprising thereof
CN113755687A (en) * 2021-07-20 2021-12-07 宁国市华丰耐磨材料有限公司 Quenching heat treatment process for grinding ball production
CN113755687B (en) * 2021-07-20 2024-02-02 宁国市华丰耐磨材料有限公司 Quenching heat treatment process for grinding ball production
CN114709494A (en) * 2022-03-31 2022-07-05 青岛大学 Water system zinc-double-halogen battery based on multi-electron conversion reaction and electrolyte thereof
WO2024039193A1 (en) * 2022-08-18 2024-02-22 서울과학기술대학교 산학협력단 Electrolyte composition for redox flow battery and redox flow battery comprising same
CN116666779A (en) * 2023-07-27 2023-08-29 广东工业大学 Electrolyte capable of self-adaptively regenerating, repairing and recycling metal, and preparation method and application thereof
CN117613432A (en) * 2024-01-24 2024-02-27 中南大学 Containing acyl esters C having both keto and ester groups 5~8 Aqueous zinc ion battery composite electrolyte of alkane chain-like organic additive, and preparation method and application thereof
CN117613432B (en) * 2024-01-24 2024-04-09 中南大学 Aqueous zinc ion battery composite electrolyte and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2018195571A (en) Electrolyte solution, secondary battery, secondary battery system, and power generation system
Park et al. Electrochemical properties of a non-aqueous redox battery with all-organic redox couples
JP2010086935A (en) Redox flow battery
CN106654332B (en) Organic phase electrolyte and application thereof in cathode of flow battery
KR20140071603A (en) Electrolyte solution including all organic redox couples and redox flow battery using the same
CN106549179B (en) A kind of organic system lithium quinone flow battery
JPWO2018020586A1 (en) Flow battery system and power generation system
Wang et al. A membrane-free, aqueous/nonaqueous hybrid redox flow battery
EP3482441B1 (en) Non-aqueous redox flow batteries
CN106549178B (en) A kind of organic flow battery
Zhao et al. Accelerating the dissolution kinetics of iodine with a cosolvent for a high-current zinc–iodine flow battery
JP2018186206A (en) Hybrid capacitor, hybrid capacitor system, and power generation system
Zhang Polysulfide-bromine flow batteries (PBBs) for medium-and large-scale energy storage
JP2018206639A (en) Battery, battery system and power generation system
US9954229B2 (en) Electrolyte for stable cycling of high-energy lithium sulfur redox flow batteries
JP2014096213A (en) Alkali metal-air secondary battery
JP2018206640A (en) Battery, battery system and power generation system
JPWO2018016594A1 (en) Secondary battery system, power generation system and secondary battery
WO2018016590A1 (en) Aqueous secondary battery, electrolyte solution, secondary battery system, and power generation system
US11881605B2 (en) Low-temperature aqueous redox flow battery
Patel Alkaline Redox Flow Batteries
JPWO2018016591A1 (en) Secondary battery, secondary battery system, positive electrode electrolyte and power generation system
Xiang Superior Ion-Selective Polyetherimide Porous Membrane for Sustainable Zinc/4-Ho-Tempo Flow Batteries
JPWO2018016593A1 (en) Secondary battery, secondary battery system, positive electrode electrolyte and power generation system
JP2019046545A (en) Secondary battery and power generation system