JP2018188314A - Solidification restraining phosphate fertilizer and method of producing the same - Google Patents

Solidification restraining phosphate fertilizer and method of producing the same Download PDF

Info

Publication number
JP2018188314A
JP2018188314A JP2017089354A JP2017089354A JP2018188314A JP 2018188314 A JP2018188314 A JP 2018188314A JP 2017089354 A JP2017089354 A JP 2017089354A JP 2017089354 A JP2017089354 A JP 2017089354A JP 2018188314 A JP2018188314 A JP 2018188314A
Authority
JP
Japan
Prior art keywords
water
fertilizer
soluble
mass
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017089354A
Other languages
Japanese (ja)
Other versions
JP6903479B2 (en
Inventor
剛基 國西
Tsuyoki Kunishi
剛基 國西
利仁 小野寺
Toshihito Onodera
利仁 小野寺
信孝 美濃和
Nobutaka Minowa
信孝 美濃和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Chemical Industry Co Ltd
Original Assignee
Onoda Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Chemical Industry Co Ltd filed Critical Onoda Chemical Industry Co Ltd
Priority to JP2017089354A priority Critical patent/JP6903479B2/en
Publication of JP2018188314A publication Critical patent/JP2018188314A/en
Application granted granted Critical
Publication of JP6903479B2 publication Critical patent/JP6903479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fertilizers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a phosphate fertilizer exerting a solidification restraining function in BB fertilizers.SOLUTION: A solidification restraining phosphate fertilizer of this invention includes: water-soluble phosphate, water-soluble magnesium oxide, water-soluble calcium oxide, and water-soluble sodium oxide; and further includes 6.0 mass% or more of a solidification restraining component expressed by a chemical formula: (5-13)Mg(HPO)+Ca(HPO)+(1-3)NaHPO. The fertilizer preferably includes 8.0-21.0 mass% of water-soluble phosphate amount, 2.0-6.5 mass% of water-soluble magnesium oxide, 1.0-3.2 mass% of water-soluble calcium oxide, and 0.4-1.3 mass% of water-soluble sodium oxide; and further includes 6.0-50.0 mass% of the solidification restraining component.SELECTED DRAWING: Figure 2

Description

本発明は、吸湿性が高く、バルクブレンド肥料において固結抑制機能を発揮するリン酸肥料に関する。   The present invention relates to a phosphate fertilizer having high hygroscopicity and exhibiting a caking suppression function in a bulk blend fertilizer.

バルクブレンド肥料(以下BB肥料)は、リン安、硫安、塩安、尿素、重過リン酸石灰、塩化カリ、硫酸カリなどの粒状肥料原料を、所望の成分になるように、2種類以上配合した固形配合肥料であり、粒状配合肥料とも云われている。   Bulk blend fertilizer (hereinafter referred to as BB fertilizer) is composed of two or more types of granular fertilizer raw materials such as phosphorous, ammonium sulfate, ammonium sulfate, urea, heavy superphosphate lime, potassium chloride, and potassium sulfate so as to become desired components. It is a solid compound fertilizer and is also called a granular compound fertilizer.

BB肥料について、従来から肥料の固結が問題になっている。肥料の固結は肥料粒子が塊状に固まることであり、従来から品質劣化の問題として提起されてきたが、機械による施肥が発達した現在においては、固結性に対する許容域が狭まり、軽い程度の固結でも施肥作業に支障をきたすため、従来に増して肥料の流動性が求められており、肥料の固結防止の要請が高まっている。   About BB fertilizer, solidification of the fertilizer has been a problem conventionally. Fertilizer consolidation is a solidification of fertilizer particles, and has been raised as a problem of quality degradation.However, with the development of fertilization by machine, the allowable range for solidification has become narrower and lighter. Since the fertilization work is hindered even in consolidation, the fluidity of fertilizer is required more than before, and the demand for prevention of consolidation of fertilizer is increasing.

肥料の固結防止手段として、肥料粒子を被覆することや、固結防止剤を添加することが従来から知られている。肥料粒子の被覆については、透湿度が特定範囲の膜を用いるもの(特許文献1)、糖類で被覆するもの(特許文献2)、樹脂で被覆するもの(特許文献3)、鉱産物粉末とポリオール化合物で被覆処理するもの(特許文献4)、鉱産物粉末とリン酸液等で被覆処理するもの(特許文献5)などが知られている。しかし、肥料粒子を被覆するのは製造に手間がかかり、製造コストが嵩む問題がある。また、固結防止効果も限定的である。   As means for preventing solidification of fertilizers, it has been conventionally known to coat fertilizer particles and to add an anti-caking agent. As for the coating of fertilizer particles, one using a membrane with a moisture permeability in a specific range (Patent Document 1), one coated with sugar (Patent Document 2), one coated with a resin (Patent Document 3), mineral powder and polyol Those that are coated with a compound (Patent Document 4), those that are coated with a mineral powder and a phosphoric acid solution (Patent Document 5), and the like are known. However, the coating of fertilizer particles is troublesome in production and increases the production cost. Moreover, the caking prevention effect is also limited.

固結防止剤の使用については、ゲル状シリカを用いるもの(特許文献6、7)が知られており、また固結防止剤として、無機系のシリカゲルのほかに、滑石粉末、クレー、シリカヒュームや、有機系の界面活性剤が尿素、硝安、化成肥料に対してよく使われている。   Regarding the use of anti-caking agents, those using gel silica (Patent Documents 6 and 7) are known. In addition to inorganic silica gel, anti-caking agents include talc powder, clay, and silica fume. Organic surfactants are often used for urea, ammonium nitrate, and chemical fertilizers.

しかし、BB肥料に使用できる固結防止剤は、法令(肥料取締法)によって種類が制限されており、シリカゲル、滑石粉末、クレー、珪石粉末、珪藻土、シリカヒューム、パーライト、および潤滑油に限られており、その添加量は、シリカゲルは6%以下、その他の粉末は3%以下、潤滑油は滑石粉末、クレー、珪藻土またはパーライトと併用されたものであって、0.3%以下に制限されている。そのため、固結防止剤による固結防止効果は十分ではない。さらに、粉末固結防止剤添加による肥料有効成分の低下、施肥時の粉塵飛散という問題が生じる場合がある。また、シリカゲルは高価であるため、この使用は肥料のコスト高になると云う問題もある。   However, anti-caking agents that can be used for BB fertilizers are restricted by law (fertilizer control law) and are limited to silica gel, talc powder, clay, silica powder, diatomaceous earth, silica fume, perlite, and lubricating oil. The amount added is 6% or less for silica gel, 3% or less for other powders, and the lubricating oil is used in combination with talc powder, clay, diatomaceous earth or pearlite, and is limited to 0.3% or less. ing. Therefore, the anti-caking effect by the anti-caking agent is not sufficient. Furthermore, the problem of the fall of the fertilizer active component by powder anti-caking additive addition and the dust scattering at the time of fertilization may arise. In addition, since silica gel is expensive, there is a problem that the use of it increases the cost of fertilizer.

特開2015−10029号公報JP 2015-10029 A 特開2013−163625号公報JP2013-163625A 特開2006−327841号公報JP 2006-327841 A 特開2006−265061号公報JP 2006-265061 A 特開2002−316888号公報JP 2002-316888 A 特開2000−95587号公報JP 2000-95587 A 特開平10−167864号公報JP 10-167864 A

本発明は、従来の上記課題を解決したものであり、バルクブレンド肥料において優れた固結抑制機能を発揮し、それ自体がリン酸肥料であって肥料効果が低下することのないリン酸肥料を提供する。   The present invention solves the above-mentioned conventional problems, and exhibits an excellent caking suppression function in a bulk blend fertilizer, and is a phosphate fertilizer that itself is a phosphate fertilizer and the fertilizer effect does not decrease. provide.

本発明は、以下の構成によって上記課題を解決した、固結抑制リン酸肥料である。
〔1〕水溶性リン酸、水溶性酸化マグネシウム、水溶性酸化カルシウム、および水溶性酸化ナトリウムを含有し、さらにリン酸一苦土、リン酸一石灰、およびリン酸二水素ナトリウムからなる固結抑制成分を6.0質量%以上含有することを特徴とする固結抑制リン酸肥料。
〔2〕固結抑制成分が、(5〜13)Mg(HPO)+Ca(HPO)+(1〜3)NaHPOの式によって表される請求項1に記載する固結抑制リン酸肥料。
〔3〕水溶性リン酸量8.0〜21.0質量%、水溶性酸化マグネシウム2.0〜6.5質量%、水溶性酸化カルシム1.0〜3.2質量%、および水溶性酸化ナトリウム0.4〜1.3質量%を含有し、さらに、(5〜13)Mg(HPO)+Ca(HPO)+(1〜3)NaHPOの式によって表される固結抑制成分を6.0〜50.0質量%含有する請求項1または請求項2に記載する固結抑制リン酸肥料。
〔4〕(5〜13)Mg(HPO)+Ca(HPO)+(1〜3)NaHPOの式によって表される固結抑制成分が、相対湿度40%の平衡水分が10%以上であって、相対湿度50%の平衡水分が15%以上である吸湿性を有する請求項1〜請求項3の何れかに記載する固結抑制リン酸肥料。
〔5〕リン酸原料としてリン鉱石、リン酸液、焼成リン肥を用い、その他の原料として苦土原料および硫酸を用い、これらの原料粉体を、生成後のリン酸肥料中で、
水溶性リン酸量8.0〜21.0質量%、水溶性酸化マグネシウム2.0〜6.5質量%、水溶性酸化カルシム1.0〜3.2質量%、および水溶性酸化ナトリウム0.4〜1.3質量%であって、(5〜13)Mg(HPO)+Ca(HPO)+(1〜3)NaHPOの式によって表される固結抑制成分が6.0〜50.0質量%になる配合にし、
まず、リン鉱石とリン酸液および硫酸をスラリー状態で加熱することにより反応させ、このスラリーと焼成リン肥および苦土原料を転動造粒機中にて造粒させながら反応させることによって固結抑制リン酸肥料を製造する方法。
The present invention is an anti-caking phosphate fertilizer that solves the above-described problems by the following configuration.
[1] Consolidation suppression comprising water-soluble phosphoric acid, water-soluble magnesium oxide, water-soluble calcium oxide, and water-soluble sodium oxide, and further comprising monobasic phosphate, monolime phosphate, and sodium dihydrogen phosphate An anti-caking phosphate fertilizer characterized by containing 6.0% by mass or more of components.
[2] The consolidation inhibitory component is represented by the formula of (5-13) Mg (H 2 PO 4 ) 2 + Ca (H 2 PO 4 ) 2 + (1-3) NaH 2 PO 4 The caking inhibitor phosphate fertilizer to describe.
[3] Water-soluble phosphoric acid amount 8.0 to 21.0% by mass, water-soluble magnesium oxide 2.0 to 6.5% by mass, water-soluble calcium oxide 1.0 to 3.2% by mass, and water-soluble oxidation It contains 0.4 to 1.3% by weight of sodium and is further represented by the formula of (5-13) Mg (H 2 PO 4 ) 2 + Ca (H 2 PO 4 ) 2 + (1-3) NaH 2 PO 4 The caking suppression phosphate fertilizer according to claim 1 or 2 containing 6.0 to 50.0 mass% of the caking suppression component represented.
[4] (5-13) Mg (H 2 PO 4 ) 2 + Ca (H 2 PO 4 ) 2 + (1-3) NaH 2 PO 4 represents a caking inhibitor component having a relative humidity of 40%. The caking suppression phosphate fertilizer according to any one of claims 1 to 3, which has a hygroscopicity in which the equilibrium moisture is 10% or more and the equilibrium moisture at a relative humidity of 50% is 15% or more.
[5] Phosphate ore, phosphoric acid solution, and calcined phosphorous fertilizer are used as the phosphoric acid raw material, and the raw material powder and sulfuric acid are used as the other raw materials.
Water-soluble phosphoric acid amount 8.0 to 21.0% by mass, water-soluble magnesium oxide 2.0 to 6.5% by mass, water-soluble calcium oxide 1.0 to 3.2% by mass, and water-soluble sodium oxide 0.0%. Consolidation represented by the formula of 4 to 1.3% by mass, (5-13) Mg (H 2 PO 4 ) 2 + Ca (H 2 PO 4 ) 2 + (1-3) NaH 2 PO 4 The inhibitory component is formulated to be 6.0 to 50.0% by mass,
First, the phosphorus ore, phosphoric acid solution and sulfuric acid are reacted by heating in a slurry state, and the slurry is calcined by reacting the calcined phosphorus fertilizer and the raw material of the clay with granulation in a rolling granulator. A method for producing a suppressed phosphate fertilizer.

本発明のリン酸肥料は、水溶性リン酸、水溶性酸化マグネシウム、水溶性酸化カルシウム、および水溶性酸化ナトリウムを含有し、さらにリン酸一苦土、リン酸一石灰、およびリン酸二水素ナトリウムからなる固結抑制成分を6.0質量%以上含有し、この固結抑制成分は(5〜13)Mg(HPO)+Ca(HPO)+(1〜3)NaHPOの式によって表され、相対湿度40%の平衡水分が10%以上であって相対湿度50%の平衡水分が15%以上である高い吸湿性を有するので、周囲の環境下の水分を吸収して効果的に固結を抑制し防止することができる。 The phosphate fertilizer of the present invention contains water-soluble phosphoric acid, water-soluble magnesium oxide, water-soluble calcium oxide, and water-soluble sodium oxide, and further, phosphoric acid monoclay, phosphoric acid monolime, and sodium dihydrogen phosphate. The caking inhibitor component is 6.0% by mass or more, and the caking inhibitor component is (5-13) Mg (H 2 PO 4 ) 2 + Ca (H 2 PO 4 ) 2 + (1-3) NaH. 2 It is expressed by the formula of PO 4 and has a high hygroscopicity in which the equilibrium moisture at 40% relative humidity is 10% or more and the equilibrium moisture at 50% relative humidity is 15% or more. It can absorb and effectively suppress and prevent consolidation.

また、本発明のリン酸肥料に含まれる固結抑制成分は、リン酸一苦土、リン酸一石灰、およびリン酸二水素ナトリウムからなるリン酸肥料であり、従来のようなシリカゲルや非肥料成分の被膜を有するものではないので、肥料効果を低下させることが無い。   Further, the caking inhibitory component contained in the phosphate fertilizer of the present invention is a phosphate fertilizer composed of phosphate monoclay, phosphate monolime, and sodium dihydrogen phosphate, such as conventional silica gel and non-fertilizer. Since it does not have a component film, the fertilizer effect is not reduced.

さらに、本発明のリン酸肥料は、水酸化マグネシウム、水酸化カルシウム、水酸化ナトリウム、および焼成リン肥などのリン酸肥料原料を所定の割合になるように配合して反応させて製造することができ、シリカゲルなどの固結防止剤の添加や被膜形成を行う必要が無いので、低コストで容易に製造することができる。   Furthermore, the phosphate fertilizer of the present invention can be manufactured by blending and reacting phosphate fertilizer raw materials such as magnesium hydroxide, calcium hydroxide, sodium hydroxide, and calcined phosphorus fertilizer at a predetermined ratio. In addition, since it is not necessary to add an anti-caking agent such as silica gel or to form a film, it can be easily produced at low cost.

本発明のリン酸肥料は、優れた吸湿性を有するので、BB肥料に配合すると、肥料の固結を効果的に抑制することがきる。また、それ自体がリン酸肥料であるので、BB肥料に配合しても肥料成分量が低下しない。さらに、シリカゲルなどの固結防止剤の添加や被膜形成を行う必要が無いので、低コストで容易に製造することができる。   Since the phosphate fertilizer of the present invention has excellent hygroscopicity, when it is blended with the BB fertilizer, the solidification of the fertilizer can be effectively suppressed. Moreover, since it is a phosphate fertilizer itself, even if it mix | blends with BB fertilizer, the amount of fertilizer components does not fall. Furthermore, since it is not necessary to add an anti-caking agent such as silica gel or to form a film, it can be easily produced at low cost.

試料1〜7のX線回折チャート。The X-ray diffraction chart of samples 1-7. 試料No.11〜16の相対湿度に対する平衡水分を示すグラフ。The graph which shows the equilibrium water | moisture content with respect to the relative humidity of sample No.11-16.

以下、本発明を実施例と共に具体的に説明する。なお、%は質量%である。
肥料の固結は、肥料粒子表面に水分(遊離水)が存在することにより起こる。この水分は、製造時の乾燥が不十分な場合や、梅雨や夏季のような高温多湿の条件で製造した場合に高くなりやすい。肥料粒子表面に遊離水が存在すると、肥料成分を溶解した飽和溶液となり、粒子間に液架橋を形成し、その後に温度や湿度の変化により水分が蒸発して再結晶が起こると、液架橋が固架橋に変化して肥料粒子が接着して固結する。単肥や化成肥料は主にこのようなメカニズムによって肥料粒子の固結が発生するが、BB肥料の場合は、上記メカニズムに加えて原料間の化学反応による反応生成物も固結を引き起こすので、単一の肥料に比べて問題はより深刻である。
Hereinafter, the present invention will be specifically described together with examples. In addition,% is the mass%.
Fertilizer consolidation is caused by the presence of moisture (free water) on the fertilizer particle surface. This moisture tends to be high when drying at the time of manufacture is insufficient or when it is manufactured under conditions of high temperature and high humidity such as rainy season or summer. When free water is present on the fertilizer particle surface, it becomes a saturated solution in which the fertilizer components are dissolved, and liquid bridges are formed between the particles.After that, when water is evaporated due to changes in temperature and humidity, recrystallization occurs. The fertilizer particles are bonded and solidified by changing to solid crosslinking. In simple fertilizers and chemical fertilizers, solidification of fertilizer particles occurs mainly due to such a mechanism, but in the case of BB fertilizers, in addition to the above mechanism, reaction products due to chemical reactions between raw materials also cause consolidation. The problem is more serious than a single fertilizer.

従来から、ある種のリン酸肥料はBB肥料に配合すると固結を抑制する作用があることが経験的に知られていた。この作用は、乾燥剤のシリカゲルと同じように、リン酸肥料は水分吸着力が大きく、肥料袋中の湿度を低下させることから、固結が抑制されると考えられていた。しかし、リン酸肥料中のどの成分がそのような作用を有するのかは必ずしも明確ではなかった。   Conventionally, it has been empirically known that certain types of phosphate fertilizers have an action of suppressing caking when blended with BB fertilizers. This action, like silica gel as a desiccant, was considered to suppress caking because phosphoric acid fertilizer has a high moisture adsorption capacity and lowers the humidity in the fertilizer bag. However, it has not always been clear which component in phosphate fertilizer has such an effect.

本発明は、リン酸肥料の固結抑制作用について検討を進め、リン酸一苦土、リン酸一石灰、およびリン酸二水素ナトリウムの組合せが優れた固結抑制作用を有することを見出し、これらの3成分を含む固結抑制成分を含有させたリン酸肥料を提供する。
具体的には、本発明のリン酸肥料は、水溶性リン酸、水溶性酸化マグネシウム、水溶性酸化カルシウム、および水溶性酸化ナトリウムを含有し、さらにリン酸一苦土、リン酸一石灰、およびリン酸二水素ナトリウムからなる固結抑制成分を6.0質量%以上含有することを特徴とする固結抑制リン酸肥料である。
上記固結抑制成分は、(5〜13)Mg(HPO)+Ca(HPO)+(1〜3)NaHPOの式によって表される高吸湿性を有するリン酸成分である。
The present invention has proceeded with studies on the caking inhibitory action of phosphate fertilizer, and found that the combination of phosphate monoclay, monocalcium phosphate, and sodium dihydrogen phosphate has an excellent caking inhibitory action. A phosphate fertilizer containing an anti-caking component containing these three components is provided.
Specifically, the phosphate fertilizer of the present invention contains water-soluble phosphoric acid, water-soluble magnesium oxide, water-soluble calcium oxide, and water-soluble sodium oxide, and further phosphoric acid monoclay, phosphoric acid monolime, and It is a caking suppression phosphoric acid fertilizer characterized by containing 6.0 mass% or more of the caking suppression component which consists of sodium dihydrogen phosphate.
The above-mentioned consolidation inhibitory component is phosphorus having high hygroscopicity represented by the formula of (5-13) Mg (H 2 PO 4 ) 2 + Ca (H 2 PO 4 ) 2 + (1-3) NaH 2 PO 4. It is an acid component.

本発明のリン酸肥料は、好ましくは、表1に示すように、水溶性リン酸量8.0〜21.0質量%、水溶性酸化マグネシウム2.0〜6.5質量%、水溶性酸化カルシム1.0〜3.2質量%、および水溶性酸化ナトリウム0.4〜1.3質量%を含有する。   As shown in Table 1, the phosphate fertilizer of the present invention preferably has a water-soluble phosphoric acid content of 8.0 to 21.0% by mass, water-soluble magnesium oxide of 2.0 to 6.5% by mass, and water-soluble oxidation. It contains 1.0 to 3.2% by weight of calsim and 0.4 to 1.3% by weight of water-soluble sodium oxide.

本発明のリン酸肥料は、好ましくは、表5に示すように、(5〜13)Mg(HPO)+Ca(HPO)+(1〜3)NaHPOの式によって表される固結抑制成分を6.0〜50.0質量%含有する。上記式によって表される固結抑制成分は、図2に示すように、例えば、相対湿度40%の平衡水分が10%以上であって相対湿度50%の平衡水分が15%以上である高い吸湿性を有する。この高い吸湿性によって肥料の固結を効果的に抑制する。 As shown in Table 5, the phosphate fertilizer of the present invention is preferably (5-13) Mg (H 2 PO 4 ) 2 + Ca (H 2 PO 4 ) 2 + (1-3) NaH 2 PO 4 It contains 6.0 to 50.0% by mass of a caking inhibitory component represented by the formula. As shown in FIG. 2, the anti-caking component represented by the above formula is, for example, a high moisture absorption having an equilibrium moisture of 40% relative humidity of 10% or more and an equilibrium moisture of 50% relative humidity of 15% or more. Have sex. This high hygroscopicity effectively suppresses fertilizer consolidation.

〔製造方法〕
本発明のリン酸肥料は、原料としてリン酸原料の他に、苦土原料、および焼成リン肥等のナトリウムを含む原料を用い、リン酸一苦土〔Mg(HPO)〕、リン酸一石灰〔Ca(HPO)〕、およびリン酸二水素ナトリウム〔NaHPO〕からなる固結抑制成分を含有するように配合して製造することができる。
〔Production method〕
The phosphate fertilizer of the present invention uses a raw material containing sodium, such as a bitter earth raw material and a calcined phosphorous fertilizer, in addition to the phosphoric acid raw material as a raw material, and phosphoric acid one bitumen [Mg (H 2 PO 4 ) 2 ], it can be prepared by blending to contain caking suppressing component consisting of monocalcium phosphate of lime [Ca (H 2 PO 4) 2], and sodium dihydrogen phosphate [NaH 2 PO 4].

具体的には、例えば、リン酸原料としてリン鉱石、リン酸液、焼成リン肥を用い、その他の原料として苦土原料および硫酸を用い、これらの原料粉体を、生成後のリン酸肥料中で、水溶性リン酸量8.0〜21.0質量%、水溶性酸化マグネシウム2.0〜6.5質量%、水溶性酸化カルシム1.0〜3.2質量%、および水溶性酸化ナトリウム0.4〜1.3質量%であって、(5〜13)Mg(HPO)+Ca(HPO)+(1〜3)NaHPOの式によって表される固結抑制成分が6.0〜50.0質量%になる配合にし、
まず、リン鉱石とリン酸液および硫酸をスラリー状態で加熱することにより反応させ、このスラリーと焼成リン肥および苦土原料を転動造粒機中にて造粒させながら反応させることによって固結抑制リン酸肥料を製造することができる。
Specifically, for example, phosphate ore, phosphoric acid solution, and calcined phosphorus fertilizer are used as the phosphoric acid raw material, and the raw material powder and sulfuric acid are used as the other raw materials. Water-soluble phosphoric acid amount 8.0 to 21.0% by weight, water-soluble magnesium oxide 2.0 to 6.5% by weight, water-soluble calcium oxide 1.0 to 3.2% by weight, and water-soluble sodium oxide 0.4 to 1.3% by mass, represented by the formula of (5-13) Mg (H 2 PO 4 ) 2 + Ca (H 2 PO 4 ) 2 + (1-3) NaH 2 PO 4 The composition is such that the caking inhibitor component is 6.0 to 50.0% by mass,
First, the phosphorus ore, phosphoric acid solution and sulfuric acid are reacted by heating in a slurry state, and the slurry is calcined by reacting the calcined phosphorus fertilizer and the raw material of the clay with granulation in a rolling granulator. A suppressed phosphate fertilizer can be produced.

以下、本発明の実施例を比較例と共に示す。
〔試料No.A〜Hの調製〕
本発明のリン酸肥料について、リン酸原料としてリン鉱石、リン酸液、および焼成リン肥を用い、その他の成分として苦土原料および硫酸を用い、表1に示す肥料成分を有する試料A〜Eを調製した。具体的な製造方法としては、まず、リン鉱石とリン酸液および硫酸をスラリー状態で加熱することにより反応させ、このスラリーと焼成リン肥および苦土原料を転動造粒機中にて造粒させながら反応させて粒状肥料とした。苦土原料は橄欖岩、ニッケルスラグ、マグネシア、水酸化マグネシウム等である。比較試料Fについては、上記試料A〜Eと同様な製造方法にて、苦土原料を原料として用いずに製造した。比較試料Gについては、フェロニッケルスラグを硫酸とリン酸の混酸で分解し、そのスラリーに苦土原料と重過石を添加、造粒することで製造した。比較試料Hについては、リン鉱石にリン酸液および硫酸を混和することで製造した。
一般的な肥料と同様に、肥料粒子の粒度は1mm以上〜4mm未満とした。ク溶性リン酸(C−P)、水溶性リン酸(W−P)等の肥料成分は、肥料分析法に基づき分析した。また、水溶性カルシウム(W−CaO)と水溶性ナトリウム(W−NaO)は、水溶性リン酸の供試液を用いて、原子吸光光度法により分析した。
Examples of the present invention are shown below together with comparative examples.
[Preparation of sample Nos. A to H]
About the phosphate fertilizer of this invention, the sample AE which has a fertilizer component shown in Table 1 using a phosphorous ore, a phosphoric acid liquid, and a baking phosphorous fertilizer as a phosphoric acid raw material, and using a bitter earth raw material and a sulfuric acid as another component. Was prepared. As a specific production method, first, the phosphate ore, phosphoric acid solution and sulfuric acid are reacted by heating in a slurry state, and the slurry, the calcined phosphorus fertilizer and the bitter earth material are granulated in a tumbling granulator. It was made to react, making it a granular fertilizer. The raw materials for the clay are nepheline, nickel slag, magnesia, magnesium hydroxide and the like. About the comparative sample F, it manufactured with the manufacturing method similar to the said samples A-E, without using a bitter clay raw material as a raw material. Comparative sample G was produced by decomposing ferronickel slag with a mixed acid of sulfuric acid and phosphoric acid, adding a bitter earth material and bitumen to the slurry, and granulating it. The comparative sample H was manufactured by mixing a phosphoric acid solution and sulfuric acid into a phosphate rock.
Similar to general fertilizers, the fertilizer particles had a particle size of 1 mm to less than 4 mm. Fertilizer components such as water-soluble phosphoric acid (C—P 2 O 5 ) and water-soluble phosphoric acid (W—P 2 O 5 ) were analyzed based on a fertilizer analysis method. Water-soluble calcium (W—CaO) and water-soluble sodium (W—Na 2 O) were analyzed by atomic absorption spectrophotometry using a test solution of water-soluble phosphoric acid.

Figure 2018188314
Figure 2018188314

〔堆積試験〕
調製したリン酸肥料(No.A〜H)について、BB肥料に対する固結抑制効果を把握するために堆積試験を行った。この堆積試験は、BB肥料の成分を、硫安、リン酸二安(DAP)、および塩化カリとし、これら各肥料成分の粒状原料を各225g混合して、あらかじめ30℃、75%RHの条件で重量増が3.5gになるまで吸湿させた。この吸湿原料に、乾燥させた表1のリン酸肥料(No.A〜H)を75g混合し、ポリエチレン製袋(200×150×0.15mm)に封入した(試料No.1〜8)。また、比較試料9として、シリカゲルの粉末(粒径250〜1000μm)7.5gを固結抑制剤として用いた。さらに対照として、試料No.A〜Hおよびシリカゲル粉末を混合しない水準を設けた。
[Deposition test]
The prepared phosphate fertilizer (No. A to H) was subjected to a deposition test in order to grasp the caking suppression effect on the BB fertilizer. In this sedimentation test, the components of BB fertilizer are ammonium sulfate, dibasic phosphate (DAP), and potassium chloride, and 225 g of each of these fertilizer components is mixed in advance at 30 ° C. and 75% RH. Moisture absorption was performed until the weight gain was 3.5 g. 75 g of the dried phosphate fertilizer (No. A to H) in Table 1 was mixed with this moisture-absorbing raw material, and sealed in a polyethylene bag (200 × 150 × 0.15 mm) (Sample Nos. 1 to 8). Moreover, as a comparative sample 9, 7.5 g of silica gel powder (particle size: 250 to 1000 μm) was used as a caking inhibitor. Furthermore, as a control, a level at which sample Nos. A to H and silica gel powder were not mixed was provided.

これらの肥料袋を1水準について1袋用意し、4段積みにして60kgの加重を掛け(200g/cm)、常温常湿の室内にて30日間静置した。堆積試験終了後、袋を解袋し、固結が生じた肥料については、固結部分を手でより分けて重量割合を測定した。また、固結部分については山中式土壌硬度計にて5ヵ所の硬度を測定し、その平均値を固結強度とした。BB肥料の成分配合量と、使用したリン酸肥料の種類(No.A〜H)と配合量、固結割合および固結強度を表2に示す。 One bag of these fertilizer bags was prepared for one level, stacked in four layers, applied with a weight of 60 kg (200 g / cm 2 ), and allowed to stand for 30 days in a room temperature and humidity room. After completion of the deposition test, the bags were unpacked, and for the fertilizer in which consolidation occurred, the consolidated portion was divided by hand and the weight ratio was measured. Moreover, about the consolidation part, the hardness of five places was measured with the Yamanaka type soil hardness meter, and the average value was made into the consolidation strength. Table 2 shows the component blending amount of BB fertilizer, the type (No. A to H) of phosphoric acid fertilizer used, the blending amount, the consolidation ratio, and the consolidation strength.

表2に示すように、本発明のリン酸肥料(No.A〜E)を配合した試料No.1〜5は、固結割合が76%未満、固結強度が2.1kg/cm未満であり、対照試験に比べて固結割合が低く、また固結強度は大幅に小さく、しかも固結強度はシリカゲルを用いた試料No.9よりも格段に小さく、優れた固結抑制効果が確認された。 As shown in Table 2, Sample Nos. 1 to 5 containing the phosphate fertilizer (No. A to E) of the present invention have a consolidation ratio of less than 76% and a consolidation strength of less than 2.1 kg / cm 2. Compared to the control test, the caking ratio is lower, the caking strength is significantly smaller, and the caking strength is much smaller than that of sample No. 9 using silica gel, confirming the excellent caking suppression effect. It was done.

本発明のリン酸肥料の成分であるMg(HPO)、Ca(HPO)、NaHPOは全て水溶性であり、肥料の水溶性成分のW−MgOがMg(HPO)に、W−CaOがCa(HPO)に、W−NaOがNaHPOによって供給される。また、本発明のリン酸肥料は、表1の試料A〜Eに示すように、W−MgOを2.44%以上、W−CaOを1.11%以上、W−NaOを0.41%以上含有しており、吸湿性能の高いMg(HPO)とCa(HPO)とNaHPOとの3成分を含有するので、高い吸湿性を有している。 Mg (H 2 PO 4 ) 2 , Ca (H 2 PO 4 ) 2 and NaH 2 PO 4 which are components of the phosphate fertilizer of the present invention are all water-soluble, and W-MgO which is a water-soluble component of the fertilizer is Mg. the (H 2 PO 4) 2, W-CaO within Ca (H 2 PO 4) 2 , W-Na 2 O is supplied by the NaH 2 PO 4. Further, phosphate fertilizer of the present invention, as shown in the sample A~E in Table 1, W-MgO 2.44% or more, the W-CaO 1.11% or more, the W-Na 2 O 0. Since it contains 41% or more and contains three components of Mg (H 2 PO 4 ) 2 , Ca (H 2 PO 4 ) 2 and NaH 2 PO 4 with high moisture absorption performance, it has high moisture absorption. Yes.

一方、表1の試料Fは、W−MgOが0.80%と低く、Mg(HPO)の含有量が少ない。試料Gは、W−NaOが0.12%と低く、NaHPOの含有量が少ない。試料Hは、W−MgOが0.79%、W−NaOが0.22%と低く、Mg(HPO)およびNaHPOの何れも少なく、吸湿性が低い。
これらのリン酸肥料(No.F、G、H)を配合した試料No.6、7、8は何れも対照試験より固結割合が多く、試料No.7、8は固結強度も大きく、固結抑制効果は認められない。
On the other hand, Sample F in Table 1 has a low W-MgO content of 0.80% and a low content of Mg (H 2 PO 4 ) 2 . Sample G, W-Na 2 O is as low as 0.12%, the content of NaH 2 PO 4 is small. Sample H is, W-MgO is 0.79%, W-Na 2 O is as low as 0.22%, Mg (H 2 PO 4) both less of 2 and NaH 2 PO 4, less hygroscopic.
Samples Nos. 6, 7, and 8 blended with these phosphate fertilizers (No. F, G, and H) all have a higher consolidation ratio than the control test, and sample Nos. 7 and 8 have a larger consolidation strength. No caking suppression effect is observed.

Figure 2018188314
Figure 2018188314

〔吸湿試験〕
BB肥料の堆積試験において、固結抑制効果を有する試料No.A〜Eはその高い水分吸収能力によって肥料袋中の相対湿度を低下させ、それにより固結を抑制したと考えられる。そこで、試料No.A〜Eに含まれるどの成分が吸湿能力を発揮したのかを明らかにするために、吸湿試験を行った。一般に成分固有の臨界湿度を越えると吸湿を開始し、吸湿が進むとその表面に遊離水を生じて濡れた状態になる。遊離水には吸湿した成分が溶解し、その成分の飽和溶液となる。すなわち、その吸湿液の成分は、吸湿に関与している成分であることから、吸湿液の成分を調べることにより、試料No.A〜Eに含まれる水分吸収能力の高い成分を特定することができる。
[Hygroscopic test]
In the BB fertilizer deposition test, it is considered that Samples Nos. A to E having a caking suppression effect lowered the relative humidity in the fertilizer bag due to its high water absorption ability, thereby suppressing caking. Therefore, in order to clarify which component contained in Sample Nos. A to E exhibited the moisture absorption capability, a moisture absorption test was performed. In general, when the critical humidity specific to the component is exceeded, moisture absorption starts, and when moisture absorption proceeds, free water is generated on the surface and the surface becomes wet. The component that has absorbed moisture is dissolved in the free water, and a saturated solution of the component is obtained. That is, since the component of the hygroscopic liquid is a component involved in moisture absorption, it is possible to identify a component having a high water absorption capability contained in the sample Nos. A to E by examining the components of the hygroscopic liquid. it can.

試料No.A、B、C、D、Eと、比較試料F、G、Hについて、各10.0gを粒状のまま秤量瓶に計り取り、蓋を開けた状態で25℃、90%RHの恒温恒湿槽中で20時間吸湿させた。次に、ガラス濾過器に網を設置して網上に吸湿した肥料粒子を置き、(1+1)エタノール100mlで洗浄した。この洗浄後の溶液を加熱濃縮してエタノールを揮散除去した後に、肥料分析法に従って溶液中に含まれるP、CaO、MgO、NaOを分析した。吸湿させていない肥料粒子についても同様な操作を行い、空試験とした。試験は各肥料について2回ずつ行い、その平均を分析値とした。この結果を表3に示す。なお、表中の吸湿液濃度は、空試験の値を補正した数値である。また、吸湿液の成分のモル比は、モル濃度が一番低いCaのモル濃度を基準としたモル比である。 For Sample Nos. A, B, C, D, E and Comparative Samples F, G, H, each 10.0 g was weighed into a weighing bottle in the form of granules, and at 25 ° C. and 90% RH with the lid open. Moisture was absorbed for 20 hours in a constant temperature and humidity chamber. Next, a net was placed on a glass filter and fertilizer particles that had absorbed moisture were placed on the net, and washed with 100 ml of (1 + 1) ethanol. The washed solution was concentrated by heating to volatilize and remove ethanol, and then analyzed for P 2 O 5 , CaO, MgO, and Na 2 O contained in the solution according to the fertilizer analysis method. The same operation was performed on fertilizer particles that had not been absorbed by moisture, and a blank test was performed. The test was performed twice for each fertilizer, and the average was taken as the analytical value. The results are shown in Table 3. The hygroscopic liquid concentration in the table is a numerical value obtained by correcting the blank test value. The molar ratio of the components of the hygroscopic liquid is a molar ratio based on the molar concentration of Ca having the lowest molar concentration.

表3に示すように、試料No.A、B、C、Dについて、吸湿液のモル比はほぼ等しく、Mg:Ca:Naモル比は、概ね5:1:1.2〜3である。試料No.Eについては、Ca:Naのモル比は試料No.A、B、C、Dとほぼ同じであるが、Mgのモル比は13.1であり格段に大きい。   As shown in Table 3, for sample Nos. A, B, C, and D, the molar ratio of the hygroscopic liquid is substantially equal, and the molar ratio of Mg: Ca: Na is approximately 5: 1: 1.2-3. For sample No. E, the molar ratio of Ca: Na is almost the same as that of samples No. A, B, C, and D, but the molar ratio of Mg is 13.1, which is much larger.

一方、Mgをほとんど含まない試料No.Fの吸湿液は組成が大きく異なり、Mg:Ca:Naのモル比は概ね1:1:2である。また、Naをほとんど含まない試料No.Gの吸湿液のMg:Ca:Naのモル比は5.6:1.0:0.1であり、MgとNaをほとんど含まない試料No.Hの吸湿液のMg:Ca:Naのモル比は0.6:1.0:0.1である。   On the other hand, the moisture absorption liquid of sample No. F containing almost no Mg has a greatly different composition, and the molar ratio of Mg: Ca: Na is approximately 1: 1: 2. Further, the molar ratio of Mg: Ca: Na in the moisture absorption liquid of sample No. G containing almost no Na is 5.6: 1.0: 0.1, and the sample No. H containing almost no Mg and Na. The molar ratio of Mg: Ca: Na in the hygroscopic liquid is 0.6: 1.0: 0.1.

ここで、固結抑制効果の高い試料No.A〜Eの(2Mg+2Ca+Na)/Pモル比はほぼ1であり、一方、比較試料No.F〜Hは固結抑制効果が殆ど無いことから、吸湿性の高い成分は、リン酸一苦土〔Mg(HPO)〕、リン酸一石灰〔Ca(HPO)〕、およびリン酸二水素ナトリウム〔NaHPO〕の3成分であると考えられる。これらのことから、試料No.A、B、C、D、Eについて、高い吸湿性能を有する成分は、その肥料中に含有される(5〜13)Mg(HPO)+Ca(HPO)+(1〜3)NaHPOによって表される成分であると考えられる。 Here, (2Mg + 2Ca + Na) / P molar ratio of sample Nos. A to E having a high caking suppression effect is almost 1, while comparative samples No. F to H have almost no caking suppression effect. The highly soluble component is composed of monobasic phosphate [Mg (H 2 PO 4 ) 2 ], monolime phosphate [Ca (H 2 PO 4 ) 2 ], and sodium dihydrogen phosphate [NaH 2 PO 4 ]. It is considered to be a three component. For these reasons, the sample No. A, B, C, D, for E, components having high hygroscopicity is contained in its fertilizer (5~13) Mg (H 2 PO 4) 2 + Ca (H 2 PO 4 ) 2 + (1-3) is considered to be a component represented by NaH 2 PO 4 .

Figure 2018188314
Figure 2018188314

〔吸湿性の確認〕
本発明のリン酸肥料は、上記検討に基づき、リン酸一苦土〔Mg(HPO)〕、リン酸一石灰〔Ca(HPO)〕、およびリン酸二水素ナトリウム〔NaHPO〕の各成分を特定の割合で含有することによって、高い吸湿性によって優れた固結抑制機能を有すると考えられる。そこで、これら3種類の純物質を合成し、どの成分あるいは組み合わせが最も吸湿性に優れているのかを明らかにするための試験を行った。
[Confirmation of hygroscopicity]
Based on the above study, the phosphate fertilizer of the present invention is based on phosphoric acid monomite [Mg (H 2 PO 4 ) 2 ], phosphoric acid monolime [Ca (H 2 PO 4 ) 2 ], and sodium dihydrogen phosphate. By containing each component of [NaH 2 PO 4 ] at a specific ratio, it is considered that it has an excellent caking suppression function due to high hygroscopicity. Therefore, these three kinds of pure substances were synthesized, and a test was conducted to clarify which component or combination has the best hygroscopicity.

〔試料No. 11〜16の調製〕
試薬のMg(OH)、Ca(OH)、NaOH、焼成リン肥、HPOを表4に示す割合で配合した粉体原料に水を加えて全体をスラリーにし、常温で85%HPOを表4に示す割合で添加、撹拌して反応させた。反応後はウォーターバス上で濃縮し、その後110℃で乾燥して試料11〜16を調製した。
試料11〜16の分析結果を表4に示した。モル比はCaを基準にしたモル比である。また、X線回折の結果を図1に示す。試料No.11はMg(HPO)が同定され、ピークもシャープに現れている。試料12〜16については、Mg(HPO)、Ca(HPO)・HO、NaHPO・2HO、および縮合塩などの種々の物質が同定された。
[Preparation of Sample Nos. 11-16]
Water is added to the powder raw material in which the reagents Mg (OH) 2 , Ca (OH) 2 , NaOH, calcined phosphorous fertilizer, and H 3 PO 4 are blended in the proportions shown in Table 4 to make the whole slurry, and 85% at room temperature. H 3 PO 4 was added at the ratio shown in Table 4 and stirred to react. After the reaction, the sample was concentrated on a water bath and then dried at 110 ° C. to prepare Samples 11 to 16.
The analysis results of Samples 11 to 16 are shown in Table 4. The molar ratio is a molar ratio based on Ca. The results of X-ray diffraction are shown in FIG. In sample No. 11, Mg (H 2 PO 4 ) 2 was identified, and the peak appeared sharply. For Samples 12-16, various substances such as Mg (H 2 PO 4 ) 2 , Ca (H 2 PO 4 ) 2 .H 2 O, NaH 2 PO 4 .2H 2 O, and condensed salts were identified. .

試料No.11の成分はMg(HPO)単独であり、Ca(HPO)、NaHPOが加わった試料No.13、14では、試料No.11に比べて、Mg(HPO)のピークの強度が大幅に低下している。 The component of sample No. 11 is Mg (H 2 PO 4 ) 2 alone, and sample Nos. 13 and 14 to which Ca (H 2 PO 4 ) 2 and NaH 2 PO 4 are added are compared to sample No. 11 , Mg (H 2 PO 4 ) 2 peak intensity is greatly reduced.

〔吸湿試験〕
試料No.11〜16について吸湿試験を行い、平衡水分を測定して平衡水分曲線を求めた。測定試料2.0gを秤量瓶に精秤し、30℃、相対湿度30%(以下30%RHという)に設定した恒温恒湿槽に入れ、恒量に達するまで静置し(19日間)、重量を測定した。その後、30℃、40%RH、50%RH、60%RH、70%RH、80%RHについて、順次同じ操作を繰り返し(吸湿時間は10日〜30日間)、重量増から含水率(平衡水分)を計算して平衡水分曲線を作成した。この結果を図2に示す。また、比較として、試薬のMg(HPO)、肥料の固結抑制剤として用いられているシリカゲルの平衡水分曲線を示した。
[Hygroscopic test]
A moisture absorption test was performed on Samples Nos. 11 to 16, and the equilibrium moisture curve was determined by measuring the equilibrium moisture. 2.0 g of a measurement sample is precisely weighed in a weighing bottle, placed in a constant temperature and humidity chamber set at 30 ° C. and a relative humidity of 30% (hereinafter referred to as 30% RH), and left to reach a constant weight (19 days). Was measured. Thereafter, the same operation was repeated for 30 ° C., 40% RH, 50% RH, 60% RH, 70% RH, and 80% RH in order (moisture absorption time was 10 to 30 days). ) Was calculated to create an equilibrium moisture curve. The result is shown in FIG. For comparison, an equilibrium moisture curve of the reagent Mg (H 2 PO 4 ) 2 and silica gel used as a fertilizer caking inhibitor is shown.

図2に示すように、試料No.12〜15は、40%RH〜80%RHの全域にかけて、シリカゲルより平衡水分が高く、特に試料No.12、13はシリカゲルの1.5倍〜2倍の平衡水分を示し、きわめて高い吸湿能力を示した。一方、試料No.11は、60%RH〜80%RHの領域では平衡水分が急激に上昇してシリカゲルよりも高くなるが、30%RH〜50%RHの領域では平衡水分がシリカゲルよりも低い。この結果から、40%RH〜80%RHの全域にかけて高い吸湿性を有するには、試料No.12〜15のように、Mg(HPO)の他に、Ca(HPO)、NaHPOを含有するものが好ましい。また、試料No.16は、Mg(HPO)およびCa(HPO)を含有するが、試料No.12〜15よりもMgのモル比が少なく、30%RH〜70%RHの領域でシリカゲルよりも平衡水分が少なく吸湿性が低い。 As shown in FIG. 2, Samples Nos. 12 to 15 have a higher equilibrium moisture content than silica gel over the entire range of 40% RH to 80% RH, and Samples Nos. 12 and 13 are particularly 1.5 to 2 times that of silica gel. Showed an extremely high moisture absorption capacity. On the other hand, in sample No. 11, the equilibrium moisture rises rapidly in the region of 60% RH to 80% RH and is higher than that of silica gel, but the equilibrium moisture is lower than that of silica gel in the region of 30% RH to 50% RH. . From this result, in order to have high hygroscopicity over the entire region of 40% RH to 80% RH, as in Sample Nos. 12 to 15, in addition to Mg (H 2 PO 4 ) 2 , Ca (H 2 PO 4 ) 2 and those containing NaH 2 PO 4 are preferred. Sample No. 16 contains Mg (H 2 PO 4 ) 2 and Ca (H 2 PO 4 ) 2 , but has a lower molar ratio of Mg than sample Nos. 12 to 15 and 30% RH to 70%. In the% RH region, it has less equilibrium moisture content than silica gel, and its hygroscopicity is lower.

比較のために、試薬のMg(HPO)について平衡水分曲線を測定したところ、図2に示すように、60%RHまでは1%未満の平衡水分であり、吸湿性は極端に低い。ところが、合成した試料No.11はMg(HPO)でも、試薬のMg(HPO)に比べるとかなり高い吸湿性を有している。一方、前述のように、試料No.11よりも試料No.12,13はさらに高い吸湿性を有している。ここで、試料No. 13と試料No.11のX線回折チャートを比較すると、試料No. 13は、Mg(HPO)のピーク強度は試料No.11の約17分の1であり、結晶性が非常に低い。試料No. 13はMg(HPO)と共にCa(HPO)、およびNaHPOを含有することと、結晶性が非常に低いことも高い吸湿性を有する原因であるように推察される。 For comparison, the equilibrium moisture curve was measured for the reagent Mg (H 2 PO 4 ) 2. As shown in FIG. 2, the equilibrium moisture was less than 1% up to 60% RH, and the hygroscopicity was extremely low. Low. However, even when the synthesized sample No. 11 is Mg (H 2 PO 4 ) 2, it has a considerably higher hygroscopicity than the reagent Mg (H 2 PO 4 ) 2 . On the other hand, as described above, Sample Nos. 12 and 13 have higher hygroscopicity than Sample No. 11. Here, comparing the X-ray diffraction charts of sample No. 13 and sample No. 11, sample No. 13 has a peak intensity of Mg (H 2 PO 4 ) 2 of about 17 times that of sample No. 11. Yes, crystallinity is very low. Sample No. 13 contains Ca (H 2 PO 4 ) 2 and Mg (H 2 PO 4 ) 2 and NaH 2 PO 4 together with Mg (H 2 PO 4 ) 2 , and the fact that the crystallinity is very low is also a cause of high hygroscopicity It is guessed as follows.

これらの結果から、40%RH〜80%RHの全域にかけて高い吸湿性を有するには、Ca1モルに対して、Mgを2.0〜14.0モル、およびNaを1〜3.0モル含有するものが好ましく、Mg5.0〜14.0モル、およびNa1.0〜3.0モルの範囲がより好ましいことが確認された。このことから、(5〜13)Mg(HPO)+Ca(HPO)+(1〜3)NaHPOによって表される組成の成分を含有するリン酸肥料は、高い吸湿性能を有することが確かめられた。 From these results, in order to have a high hygroscopicity over the entire range of 40% RH to 80% RH, 2.0 to 14.0 mol of Mg and 1 to 3.0 mol of Na are contained with respect to 1 mol of Ca. It was confirmed that Mg 5.0 to 14.0 mol and Na 1.0 to 3.0 mol are more preferable. Therefore, (5~13) Mg (H 2 PO 4) 2 + Ca (H 2 PO 4) 2 + (1~3) phosphate fertilizer containing component composition represented by the NaH 2 PO 4 is It was confirmed to have high moisture absorption performance.

Figure 2018188314
Figure 2018188314

このように、本発明のリン酸肥料に含まれる高い吸湿性能を有する成分のMg、Na、Caのモル比は、Ca1モルに対して、Mg2.0〜14.0モル、およびNa1.0〜3.0モルの範囲が好ましく、Mg5.0〜14.0モル、およびNa1.0〜3.0モルの範囲がより好ましい。Ca1モルに対して、Mgが2.0モル未満であるとリン酸一苦土の含有量が少なくなるので吸湿性が低下し、Mgが14.0モルを超えると相対的にリン酸一石灰およびリン酸二水素ナトリウムの含有量が少なくなり、Naが1.0モル未満ではリン酸二水素ナトリウムの含有量が少なくなり、Naが3.0モルを超えると相対的にリン酸一苦土やリン酸一石灰の含有量が少なくなり、何れの場合も吸湿性が低下するので好ましくない。 Thus, the molar ratio of Mg, Na, and Ca, which is a component having high moisture absorption performance included in the phosphate fertilizer of the present invention, is Mg 2.0 to 14.0 mol and Na 1.0 to Ca 1 mol. The range of 3.0 mol is preferable, and the range of Mg 5.0 to 14.0 mol and Na 1.0 to 3.0 mol is more preferable. If the Mg content is less than 2.0 mol with respect to 1 mol of Ca, the hygroscopicity is reduced because the content of monobasic phosphate is reduced, and if the Mg content exceeds 14.0 mol, it is relatively monolithic phosphate. The content of sodium dihydrogen phosphate is reduced, the content of sodium dihydrogen phosphate is reduced when Na is less than 1.0 mol, and the content of sodium phosphate is relatively low when Na is more than 3.0 mol. In addition, the content of phosphorous monolime is reduced, and in any case, the hygroscopicity is lowered, which is not preferable.

さらに、この成分の(2Mg+2Ca+Na)/Pモル比については、1前後であることが好ましい。その理由は、(2Mg+2Ca+Na)/Pモル比が1前後であれば、高い吸湿性を有するMg(HPO)、Ca(HPO)、NaHPOの三成分の組み合わせとなるからである。 Furthermore, the (2Mg + 2Ca + Na) / P molar ratio of this component is preferably around 1. The reason is that if the (2Mg + 2Ca + Na) / P molar ratio is around 1, a combination of three components of Mg (H 2 PO 4 ) 2 , Ca (H 2 PO 4 ) 2 and NaH 2 PO 4 having high hygroscopicity. Because it becomes.

〔固形抑制成分の含有量〕
上記(5〜13)Mg(HPO)+Ca(HPO)+(1〜3)NaHPOの式で表される固形抑制成分の肥料中の含有量について、吸湿性能が高い試料No.13を例にして試料A~Hに含まれる固形抑制成分No.13の含有量を算出した。
試料13の水溶性成分量は、W−P(62.79%)、W−MgO(13.62%)、W−CaO(3.30%)、W−NaO(2.33%)である。試料A〜Hの水溶性成分量は表1に示すとおりであるので、制限要素となるW−MgOを基準として、試料A〜Hの試料13含有量を計算する。例えば、試料AのW−MgOは2.44%であるので、試料Aに含まれる試料13の含有量は、2.44/13.62×100=17.9%である。同様にして算出した試料A〜F,Hに含まれる試料13含有量を表5に示す。なお、試料No.GはW−MgOが多く、W−NaOが少ないため、W−NaOを基準として計算した。
[Content of solid suppression component]
About the content in the fertilizer of the solid suppression component represented by the formula (5-13) Mg (H 2 PO 4 ) 2 + Ca (H 2 PO 4 ) 2 + (1-3) NaH 2 PO 4 Using the sample No. 13 with high performance as an example, the content of the solid suppression component No. 13 contained in the samples A to H was calculated.
Water-soluble components of the sample 13, W-P 2 O 5 ( 62.79%), W-MgO (13.62%), W-CaO (3.30%), W-Na 2 O (2. 33%). Since the amounts of water-soluble components of Samples A to H are as shown in Table 1, the content of Sample 13 of Samples A to H is calculated based on W-MgO as a limiting factor. For example, since W-MgO of sample A is 2.44%, the content of sample 13 included in sample A is 2.44 / 13.62 × 100 = 17.9%. Table 5 shows the content of Sample 13 contained in Samples A to F and H calculated in the same manner. Incidentally, the sample No.G are often W-MgO, for W-Na 2 O is less, calculated based on the W-Na 2 O.

表5に示すように、本発明のリン酸肥料(試料No.A〜E)は、吸湿性が高い試料No.13を17%〜45%含有している。一方、比較試料F、G、Hに含まれる試料13の含量は5%台であり大幅に低い。このことから、本発明のリン酸肥料に含まれる固形抑制成分〔(5〜13)Mg(HPO)+Ca(HPO)+(1〜3)NaHPO〕の含有量は6.0〜50.0%が好ましいことがかわる。 As shown in Table 5, the phosphate fertilizer of the present invention (sample Nos. A to E) contains 17% to 45% of sample No. 13 having high hygroscopicity. On the other hand, the content of the sample 13 contained in the comparative samples F, G, and H is on the order of 5% and is significantly low. From this, the solid suppression component [(5-13) Mg (H 2 PO 4 ) 2 + Ca (H 2 PO 4 ) 2 + (1-3) NaH 2 PO 4 ] contained in the phosphate fertilizer of the present invention. The content is preferably 6.0 to 50.0%.

Figure 2018188314
Figure 2018188314

Claims (5)

水溶性リン酸、水溶性酸化マグネシウム、水溶性酸化カルシウム、および水溶性酸化ナトリウムを含有し、さらに、リン酸一苦土、リン酸一石灰、およびリン酸二水素ナトリウムからなる固結抑制成分を6.0質量%以上含有することを特徴とする固結抑制リン酸肥料。 Containing a water-soluble phosphoric acid, a water-soluble magnesium oxide, a water-soluble calcium oxide, and a water-soluble sodium oxide, and further comprising an anti-caking component comprising monobasic phosphate, monolime phosphate, and sodium dihydrogen phosphate. An anti-caking phosphate fertilizer characterized by containing 6.0% by mass or more. 固結抑制成分が、(5〜13)Mg(HPO)+Ca(HPO)+(1〜3)NaHPOの式によって表される請求項1に記載する固結抑制リン酸肥料。 Caking suppressing component is a solid according to claim 1 represented by the formula (5~13) Mg (H 2 PO 4) 2 + Ca (H 2 PO 4) 2 + (1~3) NaH 2 PO 4 Suppression phosphate fertilizer. 水溶性リン酸量8.0〜21.0質量%、水溶性酸化マグネシウム2.0〜6.5質量%、水溶性酸化カルシム1.0〜3.2質量%、および水溶性酸化ナトリウム0.4〜1.3質量%を含有し、さらに、(5〜13)Mg(HPO)+Ca(HPO)+(1〜3)NaHPOの式によって表される固結抑制成分を6.0〜50.0質量%含有する請求項1または請求項2に記載する固結抑制リン酸肥料。 Water-soluble phosphoric acid amount 8.0 to 21.0% by mass, water-soluble magnesium oxide 2.0 to 6.5% by mass, water-soluble calcium oxide 1.0 to 3.2% by mass, and water-soluble sodium oxide 0.0%. 4 to 1.3% by mass, and further represented by the formula of (5-13) Mg (H 2 PO 4 ) 2 + Ca (H 2 PO 4 ) 2 + (1-3) NaH 2 PO 4 The caking-inhibiting phosphate fertilizer according to claim 1 or 2, comprising 6.0 to 50.0% by mass of a caking-inhibiting component. (5〜13)Mg(HPO)+Ca(HPO)+(1〜3)NaHPOの式によって表される固結抑制成分が、相対湿度40%の平衡水分が10%以上であって、相対湿度50%の平衡水分が15%以上である吸湿性を有する請求項1〜請求項3の何れかに記載する固結抑制リン酸肥料。 (5-13) Mg (H 2 PO 4 ) 2 + Ca (H 2 PO 4 ) 2 + (1-3) NaH 2 PO 4 is a caking inhibitory component whose equilibrium humidity is 40% relative humidity. The caking suppression phosphate fertilizer according to any one of claims 1 to 3, having a hygroscopicity of 10% or more and an equilibrium water content of 50% relative humidity of 15% or more. リン酸原料としてリン鉱石、リン酸液、焼成リン肥を用い、その他の原料として苦土原料および硫酸を用い、これらの原料粉体を、生成後のリン酸肥料中で、
水溶性リン酸量8.0〜21.0質量%、水溶性酸化マグネシウム2.0〜6.5質量%、水溶性酸化カルシム1.0〜3.2質量%、および水溶性酸化ナトリウム0.4〜1.3質量%であって、(5〜13)Mg(HPO)+Ca(HPO)+(1〜3)NaHPOの式によって表される固結抑制成分が6.0〜50.0質量%になる配合にし、
まず、リン鉱石とリン酸液および硫酸をスラリー状態で加熱することにより反応させ、このスラリーと焼成リン肥および苦土原料を転動造粒機中にて造粒させながら反応させることによって固結抑制リン酸肥料を製造する方法。

Phosphate ore, phosphoric acid solution, and calcined phosphorus fertilizer are used as the phosphoric acid raw material, and the raw material powder and sulfuric acid are used as the other raw materials.
Water-soluble phosphoric acid amount 8.0 to 21.0% by mass, water-soluble magnesium oxide 2.0 to 6.5% by mass, water-soluble calcium oxide 1.0 to 3.2% by mass, and water-soluble sodium oxide 0.0%. Consolidation represented by the formula of 4 to 1.3% by mass, (5-13) Mg (H 2 PO 4 ) 2 + Ca (H 2 PO 4 ) 2 + (1-3) NaH 2 PO 4 The inhibitory component is formulated to be 6.0 to 50.0% by mass,
First, the phosphorus ore, phosphoric acid solution and sulfuric acid are reacted by heating in a slurry state, and the slurry is calcined by reacting the calcined phosphorus fertilizer and the raw material of the clay with granulation in a rolling granulator. A method for producing a suppressed phosphate fertilizer.

JP2017089354A 2017-04-28 2017-04-28 Consolidation-suppressing phosphate fertilizer and its manufacturing method Active JP6903479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017089354A JP6903479B2 (en) 2017-04-28 2017-04-28 Consolidation-suppressing phosphate fertilizer and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017089354A JP6903479B2 (en) 2017-04-28 2017-04-28 Consolidation-suppressing phosphate fertilizer and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018188314A true JP2018188314A (en) 2018-11-29
JP6903479B2 JP6903479B2 (en) 2021-07-14

Family

ID=64478017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017089354A Active JP6903479B2 (en) 2017-04-28 2017-04-28 Consolidation-suppressing phosphate fertilizer and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6903479B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216365A (en) * 1975-07-18 1977-02-07 Onoda Chem Ind Co Ltd Process for producing quick and slack effective phosphate fertilizers
JPS5860686A (en) * 1981-10-05 1983-04-11 村樫石灰工業株式会社 Manufacture of phosphatic fertilizer
JPS59213696A (en) * 1983-05-17 1984-12-03 住友化学工業株式会社 Solidification prevention for granular composite fertilizer
JPH0624885A (en) * 1992-05-30 1994-02-01 Kokura Gosei Kogyo Kk Consolidation preventive agent and granular fertilizer formed by using this agent
US5782951A (en) * 1997-02-20 1998-07-21 Western Industrial Clay Products, Inc. Particulate urea with finely divided inorganic material incorporated for hardness nonfriability and anti-caking

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216365A (en) * 1975-07-18 1977-02-07 Onoda Chem Ind Co Ltd Process for producing quick and slack effective phosphate fertilizers
JPS5860686A (en) * 1981-10-05 1983-04-11 村樫石灰工業株式会社 Manufacture of phosphatic fertilizer
JPS59213696A (en) * 1983-05-17 1984-12-03 住友化学工業株式会社 Solidification prevention for granular composite fertilizer
JPH0624885A (en) * 1992-05-30 1994-02-01 Kokura Gosei Kogyo Kk Consolidation preventive agent and granular fertilizer formed by using this agent
US5782951A (en) * 1997-02-20 1998-07-21 Western Industrial Clay Products, Inc. Particulate urea with finely divided inorganic material incorporated for hardness nonfriability and anti-caking

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
洗 幸夫, 「肥料加工学」固結防止, JPN6021008257, 3 September 2016 (2016-09-03), pages 1 - 10, ISSN: 0004461314 *

Also Published As

Publication number Publication date
JP6903479B2 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
AU2007251520C1 (en) Fertilizer granules and manufacturing process thereof
TW201506001A (en) Fertilizer compositions and methods thereof
US20050276740A1 (en) Process for stabilizing ammonium nitrate
US10106470B2 (en) Method for incorporating micronutrients in the outer shell of urea-based particles
CN104540797B (en) Ammonium nitrate (AN) and urea or the safe mixture of product containing AN and the product containing urea
US20080072641A1 (en) Dust control of solid granular materials
WO2010110805A1 (en) Dust control of solid granular materials
JP6903479B2 (en) Consolidation-suppressing phosphate fertilizer and its manufacturing method
RU2332392C2 (en) Fertiliser elements having coat
MXPA03008761A (en) Dry fertilizer compositions and method for making the same.
US3114625A (en) Preventing reversion by the addition of nitro-humic acid or alkali salts thereof
JP7370852B2 (en) Caking-inhibiting sulfate magnesium fertilizer and its manufacturing method
JPH0159239B2 (en)
JP2004182549A (en) Granular fertilizer and method of manufacturing the same
JPH0244791B2 (en)
DE102017104877A1 (en) Magnesium sulfate granules based on synthetic magnesium sulfate
JP2002012488A (en) Method for producing granulated fertilizer
CN1019482B (en) Npk complex fertilizer
JPH05310409A (en) Ammonium phosphate composition
JP6087638B2 (en) Water-soluble phosphate-containing fertilizer with suppressed dissolution of water-soluble cadmium
JP2001026489A (en) Granular fertilizer composition
JP2003200044A (en) Heavy metal adsorbent and cartridge for water purifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210623

R150 Certificate of patent or registration of utility model

Ref document number: 6903479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250