JP2004182549A - Granular fertilizer and method of manufacturing the same - Google Patents

Granular fertilizer and method of manufacturing the same Download PDF

Info

Publication number
JP2004182549A
JP2004182549A JP2002353163A JP2002353163A JP2004182549A JP 2004182549 A JP2004182549 A JP 2004182549A JP 2002353163 A JP2002353163 A JP 2002353163A JP 2002353163 A JP2002353163 A JP 2002353163A JP 2004182549 A JP2004182549 A JP 2004182549A
Authority
JP
Japan
Prior art keywords
fertilizer
starch
binder
granular fertilizer
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002353163A
Other languages
Japanese (ja)
Other versions
JP3816870B2 (en
Inventor
Minoru Hattori
実 服部
Takaharu Maekawa
敬治 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denko Co Ltd
Original Assignee
Nippon Denko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denko Co Ltd filed Critical Nippon Denko Co Ltd
Priority to JP2002353163A priority Critical patent/JP3816870B2/en
Publication of JP2004182549A publication Critical patent/JP2004182549A/en
Application granted granted Critical
Publication of JP3816870B2 publication Critical patent/JP3816870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Glanulating (AREA)
  • Fertilizers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new granular fertilizer free from the malodor due to a binder and exhibiting sufficient strength even with relatively small binder addition and a method of manufacturing the same, and to provide a means for turning a processed slag phosphate fertilizer having remarkably improved characteristic of silicic acid absorption by adding an elution accelerating agent, particularly phosphate or the like, into a granular fertilizer having improved water collapsibility along with strength. <P>SOLUTION: The granular fertilizer is formed by adding 0.2 to 5% by mass of α-starch (expressed in terms of starch) as a granulation binder. The granular fertilizer is preferably one of a slag silicate fertilizer, a mixed phosphate fertilizer, the processed slag phosphate fertilizer, a compound fertilizer and a potassium silicate fertilizer. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は粒状肥料及びその製造方法に関する。ここに肥料とは、植物の栄養に供すること又は植物の栽培に資するため土壌に化学的変化をもたらすことを目的として土地に施される物質をいい、典型的には肥料取締法第3条に定める普通肥料であって、全国肥料品質保全協議会から発行されている肥料公定規格集に掲載されている各種の肥料をいう。本発明は、これら肥料のうち粒状化肥料およびその製造方法に関する。本発明は、特に、鉱さいけい酸質肥料、混合りん酸肥料、加工鉱さいりん酸肥料、化成肥料及びけい酸加里肥料に適用される。なお、粒状肥料とは、その微粉にバインダーを混じ、造粒機で粒径が1〜6mmに造粒したものをいう。
【0002】
【従来の技術】
肥料分野では、粒状品が一般に散布時に風の影響を受けにくいため、発塵がなく環境保全上好ましく、機械散布に適しており、更に水中や水分の高い土壌中で崩壊粉状化する特性を有しており、砂状品に比べ更に細かく粉砕した原料を使用しているので肥料効果が大きくなる等の理由により、肥料形態が旧来の砂状から粒状化へ急速に移行している。この粒状品の製造に当たっては、原料の粉末にバインダーと呼ばれる粒状化促進剤を加え、皿型造粒機などを用いて造粒し、得られた造粒生ペレットをロータリー乾燥法等で乾燥する工程が採られる。従来の造粒方法ではバインダーとしてリグニンスルホン酸塩、廃糖蜜液等が用いられている。一般にその添加率は、原料である肥料粉末に対してバインダーの固形物量換算で3〜8%程度となっている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来の造粒方法に用いられるバインダーは、たとえば、加工鉱さいりん酸肥料を造粒するために用いると、加工鉱さいりん酸肥料が多吸水性のため、バインダーの含浸性が高く、造粒のために非常に多量のバインダーを必要として不経済である。しかも、相当多量を使用してもなお、粒状肥料の輸送取扱に必要とされる十分な強度、たとえば20N/粒以上の強度が得られない。
【0004】
その原因は、第一には、溶出促進剤として加えたりん酸と鉱さいとの反応により、鉱さい中にけい酸分を溶出しやすい軟物質が生成するため、造粒された粒子がその軟物質のところから破壊することにある。第二には、鉱さいと溶出促進剤との反応によって鉱さい全体がポーラスになり、バインダーの含浸性が原料鉱さいに比べ約2倍になり、バインダーとしての働きが阻害されることにあると考えられる。
【0005】
しかもこのような多量のバインダーを加工鉱さいりん酸肥料の造粒のために用いると、水中および土壌中での崩壊性が低下し、植物栄養上とともに土壌改質面で不十分となる。ここに、粒状肥料試験法における水中崩壊性試験法及び土壌中崩壊性試験法は、肥料登録等の手引き−付立入検査概要−(平成13年3月1日 肥料協会新聞部 編集発行)第128頁記載の崩壊性試験法によった。すなわち、水中崩壊性試験は、2mm以上の粒状肥料50粒が水中において一夜静置後に80%以上崩壊すること、または、水中崩壊性試験に用いたものと同様の粒状肥料を含水率60%の土壌中に1週間埋め込み80%以上崩壊することを条件として試験を行うものである。
【0006】
さらに、これらのバインダーは一般に悪臭がきつく、製造工場の周囲の民家から苦情が寄せられることが多く、これに代わる無臭バインダーが求められている。また、バインダーを多量に使用すると、肥料成分が薄められるという弊害を伴う。
【0007】
本発明はこれらの問題を解決することを目的とし、バインダーによる悪臭の発生がなく、比較的少ない添加率でも十分な強度を有する新たな粒状肥料及びその製造方法を提案するものである。特に溶出促進剤としてりん酸等を添加してけい酸の吸収性を著しく改善した加工鉱さいりん酸肥料については、強度とともに水中崩壊性を改良した粒状肥料とする手段を提案するものである。
【0008】
【課題を解決するための手段】
本発明の粒状肥料は、アルファ化したでんぷんを造粒バインダーとして質量比で0.2〜5%添加してなるものである。上記発明において、粒状肥料は、鉱さいけい酸質肥料、混合りん酸肥料、加工鉱さいりん酸肥料、化成肥料、けい酸加里肥料のいずれかであることが好ましい。
【0009】
上記の粒状肥料は、粉砕された粒状肥料原料にバインダーとして乾燥したアルファ化でんぷんを質量比で0.2〜5%(でんぷん分換算、以下同様)添加し、水とともに混合した後に、造粒及び乾燥を行うことによって製造できる。また、粉砕された粒状肥料原料にバインダーとして未アルファ化でんぷんを質量比で0.2〜5%添加し、水とともに混合した後に、加熱して該未アルファ化でんぷんをアルファ化し、しかる後造粒及び乾燥を行うことによっても製造できる。さらに、粉砕された粒状肥料原料にバインダーとしてアルファ化でんぷんの水溶液をアルファ化でんぷん分として質量比で0.2〜5%添加し、しかる後造粒及び乾燥を行うことによっても製造できる。
【0010】
【発明の実施の形態】
本発明の粒状肥料の造粒バインダーとしてアルファ化でんぷんを利用する。一般にでんぷんは植物体から分離された状態のいわゆる生でんぷんがあるが、本発明ではこれをアルファ化した状態として粒状肥料の造粒バインダーとして用いる。
【0011】
本発明者は、加工鉱さいりん酸肥料に対し粒状化の糊材、接着剤として知られている各種バインダーを用いて造粒試験を試み、造粒の容易さ、粒の強度、乾燥品の水中崩壊性、その他品質を調査した。表1はその調査結果である。表1から造粒バインダーとしてアルファ化でんぷんを用いたときに、一般には造粒が困難な粉末肥料に使用して、高強度な造粒物を得られること、及び、得られた粒状肥料の水中崩壊性が良好であることが分かる。
【0012】
【表1】

Figure 2004182549
【0013】
アルファ化でんぷんは、各種でんぷんを利用して得られる。加工した化工でんぷん、たとえば市販されているエステル化でんぷん、エーテル化でんぷん等も利用できる。でんぷんは種々のソースから得られるが、分子量やアミロース及びアミロペクチン等の構成比率が異なるため、特性はかなり異なる。そのため肥料のバインダーとして用いたときのときの効果もかなり異なる。たとえば、タピオカでんぷんは、鉱さいけい酸質肥料、加工鉱さいりん酸肥料に用いたとき、比較的少ない添加量で造粒することができ、かつ粒状肥料の水中崩壊性も優れたものになるという特徴がある。一方、種子から取出された地上でんぷん、例えばコーンスターチや小麦でんぷんは、化成肥料やけい酸加里肥料に用いたとき十分な強度が得られるという特徴がある。上記のような関係は実験的に得られる。これによって得られるでんぷんと肥料との相性を利用して、添加するでんぷんの種類を決めることができる。
【0014】
でんぷんの添加量は0.2〜5%とするのがよい。0.2%未満では得られる粒状肥料の強度が不十分であり、一方5%を超えて添加すると硬くなり過ぎて水中崩壊性を害する。なお、粒状肥料へのでんぷんの添加量は、粒状肥料原料の質量を1としたときの粒状化肥料原料に対する添加率(%、質量比)であり、添加されたでんぷん量を図1に示すフローシートにしたがって分析することによって決定できる。また、でんぷん中のアルファ化度(糊化度)は図2に示すフローシートにしたがって分析することによって決定できる。したがって、本発明におけるでんぷんの添加量は、市販のでんぷんのうち水分や不純物分を除いたでんぷん分によりいわゆる外割で計算されたものである。
【0015】
本発明では、アルファ化でんぷんが粒状肥料のバインダーとして使用されていればよく、造粒過程におけるでんぷんのアルファ化の時期や方法は特に問わない。たとえば、粉砕された粒状肥料原料に乾燥したアルファ化でんぷんを添加し、これを水とともに混合した後に、造粒及び乾燥を行うことによって目的を達することができる。
【0016】
また、粉砕された粒状肥料原料に未アルファ化でんぷんを添加した後、水とともに混合した後に、あるいは未アルファでんぷんを水にといて粉砕された粒状肥料原料に添加、混合した後に、未アルファ化でんぷんをアルファ化し、しかる後造粒及び乾燥を行うこともできる。このアルファ化は、上記粒状肥料原料と未アルファ化でんぷんと水との混合物を水分が蒸発して逸散しないように、たとえば密封容器に入れて糊化温度以上、たとえば90℃程度で加温・保持することによって行い得る。そのほか、粉砕された粒状肥料原料にアルファ化でんぷんの水溶液を添加し、しかる後造粒及び乾燥を行うこともできる。
【0017】
造粒及び乾燥は、通常の粒状肥料の製造工程で採用されるものにしたがえばよい。すなわち、たとえば皿型造粒機で水をスプレーしながら1〜6mmの大きさに造粒すればよい。後の実施例で示すように、造粒原料にでんぷん(アルファ化でんぷん)等を混じ、造粒時にさらにでんぷんを含む水溶液を添加することもできる。また、このでんぷん液には、低温度でアルファ化を促進するために適量の苛性ソーダを混ずることができる。造粒された生の粒状肥料は、たとえば、連続式の乾燥機で100℃程度の温度で乾燥される。
【0018】
上記のように本発明では、アルファ化したでんぷんを粒状肥料のバインダーとするが、その機能を害しない限り、他の種類のバインダーの使用を妨げるものではない。たとえば、適当な量の粘土、ベントナイト等の無機バインダーあるいは廃糖密等を併用することもできる。
【0019】
【実施例】
以下、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
【0020】
【実施例1】
造粒に適した粒度に粉砕した加工鉱さいりん酸肥料粉末に、バインダーとしてタピオカでんぷんアルファ粉末を1.5%添加し、更に水を13.5%加えて混合した後、皿型造粒機に移して水をスプレーしながら1〜6mmの大きさに造粒した。この造粒に使用した水は加工鉱さいりん酸肥料粉末に対して6%であつた。この造粒物を100℃の箱型乾燥器で乾燥した。この製品の強度は平均で22N/粒であり、水中崩壊率は100%であった。
【0021】
なお、製品の強度測定方法は以下のとおりである。試験用試料を3.35〜4.Ommの標準篩を重ねてふるって、3.35mmの篩上に残った粒を試験試料とする。最大秤量50Nであるばね式の台ばかりの皿部に、試料を1個づつ乗せて、平らな切り口を持つ約10mm径の丸棒を押し付けて、粒が壊れるときの荷重を読みとり、10個を測定してその平均値をその製品の強度とした。一方、水中崩壊性の測定は次のようにして行った。試験用試料を2mmと4mmの標準篩を重ねて篩って、2mm篩上を試験試料とした。得られた試験試料の50粒を目開き2mmの金網の上に並べてバットの中に置き、試料が十分に水に浸るまで静かに水を注いだ。1夜静置の後、篩上に残りかつピンセットでつかめた物を未崩壊物とし、残量を崩壊物として崩壊率(%、50粒中の崩壊した粒の数の割合)を求めた。なお、上記強度及び水中崩壊試験の方法は、以下の実施例及び比較例において共通である。
【0022】
【実施例2】
造粒に適した粒度に粉砕した加工鉱さいりん酸肥料粉末に、バインダーとしてタピオカでんぷんアルファ粉末を2.0%添加し、更に水を13.0%加えて混合した後に皿型造粒機に移し、水をスプレーしながら1〜6mmの大きさに造粒した。この造粒物を100℃の箱型乾燥器で乾燥した。製品の強度は平均41N/粒、水中崩壊性は100%であった。
【0023】
【実施例3】
造粒に適した粒度に粉砕した加工鉱さいりん酸肥料粉末に、バインダーとして未アルファ化タピオカでんぷん(ベータでんぷんともいわれる)の粉末を2.0%添加し、更に水を13.0%加えて混合した後、ポリプロピレン袋に密封して、100℃の加熱室に1時間保持した。得られた混合物を皿型造粒機に移し、水をスプレーしながら1〜6mmの大きさに造粒し100℃で乾燥したのち製品の強度及び水中崩壊性を測定した。強度は平均で26N/粒であり、水中崩壊率は100%であった。
【0024】
【実施例4】
尿素12.4部、燐酸アンモニウム61.1部、りん酸アンモニウム5.7部、過りん酸石灰11.4部、塩化カリウム9.4部からなる化成肥料原料に、バインダーとしてタピオカでんぷんアルファの5%水溶液を4%(固形分換算0.20%)添加して混合した後、皿型造粒機に移し、タピオカでんぷんアルファの2%水溶液をスプレーしながら1〜6mmの大きさに造粒した。スプレーした水溶液量は化成肥料の原料に対して2%(固形分換算0.04%)であった。得られた造粒物を100℃で乾燥した。製品の強度は平均で30N/粒であり、水中崩壊率は100%であった。
【0025】
【実施例5】
小麦でんぷん5%、苛性ソーダ1%の濃度の水溶液を作製した。実施例4と同様の化成肥料の原料に上記水溶液を4%添加して混合した後、皿型造粒機に移し、小麦でんぷん2%、苛性ソーダ1%の濃度の水溶液をスプレーしながら皿型造粒機で1〜6mmの大きさに造粒した。スプレーした水溶液量は化成肥料の原料に対して2%であった。得られた造粒物を100℃で乾燥した。得られた製品の強度は平均で28N/粒であり、水中崩壊率は100%であった。なお、苛性ソーダを添加したので室温でアルファ化させることができた。
【0026】
【実施例6】
造粒に適した粒度に粉砕したけい酸加里肥料粉末に、タピオカでんぷんアルファの5%水溶液を20%(固形分換算1.0%)添加して混合した後、皿型造粒機に移しタピオカでんぷんアルファの2%水溶液をけい酸加里肥料粉末に対してスプレーしながら1〜6mmの大きさに造粒した。スプレーに用いた溶液のけい酸加里肥料に対する添加量は質量比で15%(固形分換算0.3%)であった。得られた造粒物を100℃の箱型乾燥器で乾燥した。製品の強度は平均で17N/粒であり、水中崩壊性は100%であった。
【0027】
【実施例7】
小麦でんぷん8%、苛性ソーダ1%濃度となる割合で水に溶解して作製したバインダー溶液Aと小麦でんぷん1%、苛性ソーダ1%濃度となる割合で水に溶解して作製したバインダー溶液Bを調製した。造粒に適した粒度に粉砕したけい酸加里肥料粉末に、バインダー溶液Aを20%(固形分換算1.6%)添加して混合した後、皿型造粒機でバインダー溶液Bをスプレーしながら1〜6mmの大きさに造粒した。スプレーした溶液Bの添加量はけい酸加里肥料粉末に対して10%(固形分換算0.1%)であった。100℃の箱型乾燥器で乾燥し製品とした。得られた製品の強度は平均で15N/粒であり、水中崩壊性は100%であった。
【0028】
【実施例8】
造粒に適した粒度に粉砕した鉱さいけい酸質肥料粉末に、バインダーとしてタピオカでんぷんアルファ粉末を1.5%添加し、更に水を11.5%加えて混合した後、皿型造粒機に移し、水をスプレーしながら1〜6mmの大きさに造粒した。鉱さいけい酸質肥料粉末に対するスプレー水量は2%であった。得られた造粒物を100℃で乾燥した。得られた製品の強度は平均で34N/粒であり、水中崩壊性は100%であった。
【0029】
【実施例9】
混合りん酸肥料の原料(鉱さいけい酸質肥料65部、熔性りん肥20部、鉄鉱石15部)を造粒に適した粒度に粉砕した粉末にバインダーとしてタピオカでんぷんのアルファ化粉末を1.5%添加し、更に水11%を加えて混合した後皿型造粒機に移し、水をスプレーしながら1〜6mmの大きさに造粒した。スプレーした水の鉱さいけい酸質肥料粉末に対する添加量は2%であった。得られた造粒物を100℃で乾燥した。製品の強度は平均で31N/粒であり、水中崩壊率は100%であった。
【0030】
【実施例10】
造粒に適した粒度に粉砕した加工鉱さいりん酸肥料粉末に、バインダーとしてタピオカでんぷんアルファ粉末を2%添加し、更に水を13%加えて混合した後、皿型造粒機に移し、溶液比重1.1の糖蜜廃液(固形分濃度約19%)をスプレーしながら1〜6mmの大きさに造粒した。スプレーした糖蜜廃液の添加量は加工鉱さいりん酸肥料粉末に対して9.9%(固形分換算1.9%)であった。得られた造粒物を100℃で乾燥して製品とした。製品の強度は平均で21N/粒であり、水中崩壊率は100%であった。
【0031】
【比較例1】
造粒に適した粒度に粉砕した加工鉱さいりん酸肥料粉末に、比重1.18のリグニンスルホン酸塩及び比重1.18の糖蜜廃液の1:1混合水溶液(固形分濃度約32%)を10%(固形分換算3.2%)加えて混合した後、皿型造粒機に移し、上記混合水溶液をスプレーしながら1〜6mmの大きさに造粒した。スプレーした混合水溶液の加工鉱さいりん酸肥料粉末に対する添加量は17.4%(固形分換算5.6%)であった。
得られた造粒物を100℃で乾燥して製品とした。製品の強度は平均で5N/粒であり、水中崩壊率は37%であった。
【0032】
【発明の効果】
本発明により、強度が十分に大きく、かつ粒状肥料試験法における崩壊性を満足する粒状肥料を無臭のバイダーを比較的少量添加することにより製造することができた。本発明では特に、多吸水性の肥料や溶出促進剤(りん酸等)を添加してけい酸の吸収性を著しく改善した加工鉱さいりん酸肥料の粒状肥料を製造することできた。
【図面の簡単な説明】
【図1】粒状肥料中に添加されたでんぷん量の分析手順を示すフローシートである。
【図2】粒状肥料中に添加されたでんぷんのうちアルファ化したものの割合を決定する分析方法のフローシートである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a granular fertilizer and a method for producing the same. Here, fertilizer is a substance that is applied to land for the purpose of providing nutrients for plants or bringing about chemical changes in the soil in order to contribute to the cultivation of plants, and is typically specified in Article 3 of the Fertilizer Control Law. It is a standard fertilizer specified and refers to various fertilizers listed in the Official Fertilizer Standards Collection issued by the National Fertilizer Quality Conservation Council. The present invention relates to a granulated fertilizer among these fertilizers and a method for producing the fertilizer. The invention applies in particular to mineral silicate fertilizers, mixed phosphate fertilizers, processed ore phosphate fertilizers, chemical fertilizers and silicic acid fertilizers. In addition, a granular fertilizer means what mixed the binder with the fine powder, and granulated by a granulator to particle diameter 1-6 mm.
[0002]
[Prior art]
In the field of fertilizers, granular products are generally less susceptible to the effects of wind when sprayed, so they are dust-free and are preferred for environmental protection, are suitable for mechanical spraying, and have the property of disintegrating into powder in water or soil with high moisture. The fertilizer form is rapidly shifting from the old sandy state to the granular state due to the effect of the fertilizer being increased because the raw material is more finely ground than the sandy product. In the production of this granular product, a granulation accelerator called a binder is added to the raw material powder, granulated using a dish-type granulator or the like, and the obtained granulated raw pellets are dried by a rotary drying method or the like. Steps are taken. In the conventional granulation method, lignin sulfonate, molasses liquid and the like are used as a binder. Generally, the addition ratio is about 3 to 8% in terms of the solid content of the binder with respect to the fertilizer powder as the raw material.
[0003]
[Problems to be solved by the invention]
However, the binder used in the above-mentioned conventional granulation method is, for example, when used for granulating processed ore sulphate fertilizer, because the processed ore sulphate fertilizer has high water absorption, the impregnating property of the binder is high, and It is uneconomical to use very large amounts of binder for the granules. Moreover, even if a considerably large amount is used, a sufficient strength required for transportation and handling of the granular fertilizer, for example, a strength of 20 N / particle or more cannot be obtained.
[0004]
First, the reaction between the phosphoric acid added as an elution accelerator and the mineral slag produces a soft material that easily dissolves silicic acid in the slag, and the granulated particles are converted to the soft material. It is to destroy from the place. Secondly, it is considered that the reaction between the ore slag and the dissolution promoter makes the entire siege porous, and the impregnating property of the binder is about twice as large as that of the raw ore slag, thereby inhibiting the function as a binder. .
[0005]
Moreover, when such a large amount of binder is used for granulation of processed ore sulphate fertilizer, the disintegration in water and soil is reduced, and the soil reforming becomes insufficient as well as plant nutrition. Here, the underwater disintegration test method and the soil disintegration test method in the granular fertilizer test method are described in Guide to Fertilizer Registration, etc.-Overview of On-site Inspection-(March 1, 2001, edited by the Fertilizer Association Newspaper Division) No. 128 The disintegration test method described on page was used. That is, the underwater disintegration test shows that 50 granules of 2 mm or more granular fertilizer disintegrates 80% or more after standing in water overnight, or the same granular fertilizer as used in the underwater disintegration test with a water content of 60%. The test is carried out on condition that it is buried in the soil for one week and disintegrated by 80% or more.
[0006]
Further, these binders generally have a bad odor, and complaints are often received from private houses around a manufacturing plant, and an alternative odorless binder is required. Further, when a large amount of the binder is used, there is an adverse effect that the fertilizer component is diluted.
[0007]
The present invention aims to solve these problems, and proposes a new granular fertilizer which does not generate a bad odor due to a binder and has sufficient strength even with a relatively small addition ratio, and a method for producing the same. In particular, for a processed ore sulphate fertilizer in which phosphoric acid or the like is added as an elution accelerator to remarkably improve the absorption of silicic acid, a means for producing a granular fertilizer having improved strength and disintegration in water is proposed.
[0008]
[Means for Solving the Problems]
The granular fertilizer of the present invention is obtained by adding 0.2 to 5% by mass of pregelatinized starch as a granulating binder. In the above invention, the granular fertilizer is preferably any of a mineral silicate fertilizer, a mixed phosphate fertilizer, a processed mineral phosphate fertilizer, a chemical fertilizer, and a silicic acid fertilizer.
[0009]
The above granular fertilizer is obtained by adding 0.2 to 5% by mass of dried pregelatinized starch as a binder to the pulverized granular fertilizer raw material (in terms of starch, hereinafter the same), mixing with water, granulating and It can be produced by drying. Also, non-gelatinized starch as a binder is added to the ground granular fertilizer raw material at a mass ratio of 0.2 to 5%, mixed with water, and then heated to alpha-gelatinize the non-gelatinized starch, followed by granulation. And drying. Further, it can also be produced by adding an aqueous solution of pregelatinized starch as a binder to the pulverized granular fertilizer raw material in an amount of 0.2 to 5% by mass as pregelatinized starch, followed by granulation and drying.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The granulated fertilizer of the present invention utilizes pregelatinized starch as a granulating binder. Generally, starch is so-called raw starch separated from a plant, but in the present invention, it is used in a pregelatinized state as a granulating binder for granular fertilizer.
[0011]
The present inventor tried a granulation test on processed ore sulphate fertilizer using a granulating paste material and various binders known as adhesives, and found that the ease of granulation, the strength of the granules, Disintegration and other qualities were investigated. Table 1 shows the results of the survey. From Table 1, when using pregelatinized starch as a granulating binder, it is generally possible to obtain a high-strength granulated product by using the powdered fertilizer which is difficult to granulate, and to obtain the obtained granular fertilizer in water. It can be seen that the disintegration is good.
[0012]
[Table 1]
Figure 2004182549
[0013]
Pregelatinized starch is obtained using various types of starch. Processed modified starch, for example, commercially available esterified starch, etherified starch and the like can also be used. Starch can be obtained from various sources, but its properties are quite different due to differences in molecular weight and composition ratio of amylose and amylopectin. Therefore, the effect when used as a fertilizer binder is also quite different. For example, tapioca starch can be granulated with a relatively small amount of addition when used in mineral acidified fertilizers and processed ore phosphate fertilizers, and the characteristics of granular fertilizers are also excellent in disintegration in water. There is. On the other hand, ground starch extracted from seeds, for example, corn starch or wheat starch, is characterized in that sufficient strength can be obtained when used in chemical fertilizers and silicate fertilizers. The above relationship is obtained experimentally. The kind of starch to be added can be determined by utilizing the compatibility of starch and fertilizer obtained thereby.
[0014]
The amount of added starch is preferably 0.2 to 5%. If it is less than 0.2%, the strength of the obtained granular fertilizer is insufficient, while if it exceeds 5%, it becomes too hard and impairs disintegration in water. The amount of starch added to the granular fertilizer is an addition ratio (%, mass ratio) to the granulated fertilizer raw material when the mass of the granular fertilizer raw material is set to 1, and the amount of added starch is shown in the flow chart in FIG. It can be determined by analyzing according to the sheet. The degree of pregelatinization (degree of gelatinization) in starch can be determined by analysis according to the flow sheet shown in FIG. Therefore, the amount of starch to be added in the present invention is calculated by a so-called outer ratio based on a starch obtained by removing water and impurities from commercially available starch.
[0015]
In the present invention, pregelatinized starch only needs to be used as a binder for the granular fertilizer, and the timing and method of pregelatinization of the starch in the granulation process are not particularly limited. For example, the purpose can be achieved by adding dried pregelatinized starch to the pulverized granular fertilizer raw material, mixing this with water, and then performing granulation and drying.
[0016]
Also, after adding non-gelatinized starch to the crushed granular fertilizer raw material, after mixing with water, or after adding non-alpha starch to water and adding to the crushed granular fertilizer raw material and mixing, the non-gelatinized starch is added. Can be pregelatinized, followed by granulation and drying. This pregelatinization is carried out by heating the mixture of the granular fertilizer raw material, non-pregelatinized starch and water in a sealed container, for example, at a gelatinization temperature or higher, for example, at about 90 ° C. so that the water does not evaporate and escape. This can be done by holding. In addition, an aqueous solution of pregelatinized starch can be added to the pulverized granular fertilizer raw material, followed by granulation and drying.
[0017]
Granulation and drying may be performed according to those employed in a usual process of manufacturing a granular fertilizer. That is, for example, granulation may be performed to a size of 1 to 6 mm while spraying water with a dish granulator. As shown in the examples below, starch (pregelatinized starch) or the like may be mixed with the granulated raw material, and an aqueous solution containing starch may be added during granulation. The starch solution may be mixed with an appropriate amount of caustic soda to promote the pregelatinization at a low temperature. The granulated raw granular fertilizer is dried, for example, at a temperature of about 100 ° C. by a continuous dryer.
[0018]
As described above, in the present invention, pregelatinized starch is used as a binder for the granular fertilizer, but the use of other types of binders is not prevented as long as the function is not impaired. For example, an appropriate amount of an inorganic binder such as clay or bentonite or a waste sugar can be used in combination.
[0019]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the scope of the present invention is not limited to these Examples.
[0020]
Embodiment 1
1.5% of tapioca starch alpha powder is added as a binder to the processed ore phosphate fertilizer powder pulverized to a particle size suitable for granulation, and 13.5% of water is further added and mixed. It was transferred and granulated to a size of 1 to 6 mm while spraying water. The water used for this granulation was 6% based on the processed ore sulphate fertilizer powder. The granulated product was dried in a box-shaped dryer at 100 ° C. This product had an average strength of 22 N / particle and a water disintegration rate of 100%.
[0021]
The method for measuring the strength of the product is as follows. 3.35-4. An Omm standard sieve is stacked and sieved, and the particles remaining on the 3.35 mm sieve are used as test samples. Place one sample at a time on a plate with a spring-type platform that has a maximum weighing capacity of 50N, press a round bar of about 10 mm diameter with a flat cut, read the load when the grain breaks, and take 10 pieces. The measurement was taken and the average was taken as the strength of the product. On the other hand, the measurement of disintegration in water was performed as follows. The test sample was laid on a standard sieve of 2 mm and 4 mm and sieved. Fifty particles of the obtained test sample were arranged on a wire mesh having an aperture of 2 mm, placed in a vat, and gently poured water until the sample was sufficiently immersed in water. After standing overnight, the material remaining on the sieve and grasped with tweezers was regarded as an undisintegrated material, and the remaining amount was regarded as a disintegrated material, and the disintegration rate (%, the ratio of the number of disintegrated particles in 50 particles) was determined. The strength and the method of the underwater disintegration test are common to the following Examples and Comparative Examples.
[0022]
Embodiment 2
2.0% of tapioca starch alpha powder was added as a binder to the processed ore phosphate fertilizer powder pulverized to a particle size suitable for granulation, and 13.0% of water was further added and mixed, and then transferred to a dish granulator. And granulated to a size of 1 to 6 mm while spraying water. The granulated product was dried in a box-shaped dryer at 100 ° C. The average strength of the product was 41 N / particle, and the disintegration in water was 100%.
[0023]
Embodiment 3
2.0% of ungelatinized tapioca starch (also referred to as beta starch) powder is added as a binder to the processed ore phosphate fertilizer powder pulverized to a particle size suitable for granulation, and 13.0% of water is further added and mixed. After that, it was sealed in a polypropylene bag and kept in a heating chamber at 100 ° C. for 1 hour. The obtained mixture was transferred to a dish-type granulator, granulated to a size of 1 to 6 mm while spraying water, dried at 100 ° C., and the strength and disintegration in water of the product were measured. The strength was 26 N / particle on average, and the disintegration rate in water was 100%.
[0024]
Embodiment 4
A compound fertilizer raw material consisting of 12.4 parts of urea, 61.1 parts of ammonium phosphate, 5.7 parts of ammonium phosphate, 11.4 parts of lime superphosphate, and 9.4 parts of potassium chloride, and 5 tapioca starch alpha as a binder After adding and mixing 4% (0.20% in terms of solid content) of a 2% aqueous solution, the mixture was transferred to a dish granulator, and granulated to a size of 1 to 6 mm while spraying a 2% aqueous solution of tapioca starch alpha. . The sprayed aqueous solution amount was 2% (0.04% in terms of solid content) based on the raw material of the chemical fertilizer. The obtained granules were dried at 100 ° C. The strength of the product was 30 N / particle on average, and the disintegration rate in water was 100%.
[0025]
Embodiment 5
An aqueous solution having a concentration of 5% wheat starch and 1% caustic soda was prepared. 4% of the above aqueous solution was added to and mixed with the same raw material of the chemical fertilizer as in Example 4, and the mixture was transferred to a dish granulator and sprayed with an aqueous solution of 2% wheat starch and 1% caustic soda to form a dish. It was granulated to a size of 1 to 6 mm with a granulator. The sprayed aqueous solution amount was 2% based on the raw material of the chemical fertilizer. The obtained granules were dried at 100 ° C. The strength of the obtained product was 28 N / particle on average, and the disintegration rate in water was 100%. Since caustic soda was added, it could be pregelatinized at room temperature.
[0026]
Embodiment 6
A 5% aqueous solution of tapioca starch alpha is added to a silicate fertilizer powder pulverized to a particle size suitable for granulation and a 20% (solid content conversion: 1.0%) aqueous solution is added thereto, mixed, and then transferred to a dish-type granulator. A 2% aqueous solution of starch alpha was granulated to a size of 1 to 6 mm while spraying the potassium silicate fertilizer powder. The addition amount of the solution used for spraying to the silicic acid potassium fertilizer was 15% by mass (solid content conversion: 0.3%). The obtained granules were dried in a box-shaped dryer at 100 ° C. The product had an average strength of 17 N / particle and a water disintegration of 100%.
[0027]
Embodiment 7
A binder solution A prepared by dissolving in wheat water at a ratio of 8% wheat starch and 1% caustic soda and a binder solution B prepared by dissolving in a ratio of 1% wheat starch and 1% caustic soda in water were prepared. . After adding and mixing 20% (solid content conversion: 1.6%) of binder solution A to silicate potassium fertilizer powder pulverized to a particle size suitable for granulation, spray binder solution B with a dish-type granulator. While granulating to a size of 1 to 6 mm. The addition amount of the sprayed solution B was 10% (0.1% in terms of solid content) based on the silicate fertilizer powder. The product was dried in a box-shaped dryer at 100 ° C. to obtain a product. The resulting product had an average strength of 15 N / particle and a water disintegration of 100%.
[0028]
Embodiment 8
1.5% of tapioca starch alpha powder is added as a binder to the mineral acidified fertilizer powder pulverized to a particle size suitable for granulation, and 11.5% of water is further added and mixed. It was transferred and granulated to a size of 1 to 6 mm while spraying water. The amount of spray water for the mineral silicate fertilizer powder was 2%. The obtained granules were dried at 100 ° C. The resulting product had an average strength of 34 N / particle and a water disintegration of 100%.
[0029]
Embodiment 9
Raw material of the mixed phosphate fertilizer (65 parts of mineral acidified fertilizer, 20 parts of soluble phosphorus fertilizer, 15 parts of iron ore) was pulverized to a particle size suitable for granulation. After adding 5% and further adding 11% of water and mixing, the mixture was transferred to a dish-type granulator and granulated to a size of 1 to 6 mm while spraying water. The amount of sprayed water added to the mineral silicate fertilizer powder was 2%. The obtained granules were dried at 100 ° C. The product had an average strength of 31 N / particle and a water disintegration rate of 100%.
[0030]
Embodiment 10
2% of tapioca starch alpha powder was added as a binder to the processed ore phosphate fertilizer powder pulverized to a particle size suitable for granulation, and 13% of water was further added and mixed. Then, the mixture was transferred to a dish granulator, and the specific gravity of the solution was added. The molasses waste liquid of 1.1 (solid content concentration: about 19%) was sprayed and granulated to a size of 1 to 6 mm. The addition amount of the sprayed molasses waste liquid was 9.9% (1.9% in terms of solid content) based on the processed ore sulphate fertilizer powder. The obtained granules were dried at 100 ° C. to obtain a product. The product had an average strength of 21 N / particle and a water disintegration rate of 100%.
[0031]
[Comparative Example 1]
10: 1 mixed aqueous solution of ligninsulfonate having a specific gravity of 1.18 and molasses waste liquid having a specific gravity of 1.18 (solid content: about 32%) was added to 10 g of the processed ore phosphate fertilizer powder pulverized to a particle size suitable for granulation. % (3.2% in terms of solid content) and mixed, then transferred to a dish granulator, and granulated to a size of 1 to 6 mm while spraying the mixed aqueous solution. The amount of the sprayed mixed aqueous solution added to the processed ore phosphate fertilizer powder was 17.4% (5.6% in terms of solid content).
The obtained granules were dried at 100 ° C. to obtain a product. The product had an average strength of 5 N / particle and a water disintegration rate of 37%.
[0032]
【The invention's effect】
According to the present invention, a granular fertilizer having sufficiently high strength and satisfying the disintegration property in the granular fertilizer test method can be produced by adding a relatively small amount of an odorless binder. In the present invention, in particular, it was possible to produce a granular fertilizer of processed ore sulphate fertilizer in which the absorbency of silica was remarkably improved by adding a highly water-absorbing fertilizer or an elution accelerator (such as phosphoric acid).
[Brief description of the drawings]
FIG. 1 is a flow sheet showing a procedure for analyzing the amount of starch added to a granular fertilizer.
FIG. 2 is a flow sheet of an analytical method for determining the ratio of pregelatinized starch added to granular fertilizer.

Claims (6)

アルファ化したでんぷんを造粒バインダーとして質量比で0.2〜5%(でんぷん分換算、以下同様)添加してなることを特徴とする粒状肥料。A granular fertilizer comprising pregelatinized starch added as a granulating binder in a mass ratio of 0.2 to 5% (in terms of starch, hereinafter the same). 粒状肥料は、鉱さいけい酸質肥料、混合りん酸肥料、加工鉱さいりん酸肥料のいずれかであることを特徴とする請求項1記載の粒状肥料。The granular fertilizer according to claim 1, wherein the granular fertilizer is any one of a mineral silicate fertilizer, a mixed phosphate fertilizer, and a processed mineral phosphate fertilizer. 粒状肥料は、化成肥料、けい酸加里肥料のいずれかであることを特徴とする請求項1記載の粒状肥料。The granular fertilizer according to claim 1, wherein the granular fertilizer is one of a chemical fertilizer and a silicate fertilizer. 粉砕された粒状肥料原料にバインダーとしてアルファ化でんぷんを質量比で0.2〜5%添加し、水とともに混合した後に、造粒及び乾燥を行うことを特徴とする粒状肥料の製造方法。A method for producing a granular fertilizer, comprising adding 0.2 to 5% by mass of pregelatinized starch as a binder to a pulverized granular fertilizer raw material, mixing with water, and then granulating and drying. 粉砕された粒状肥料原料にバインダーとして未アルファ化でんぷんを質量比で0.2〜5%添加し、水とともに混合した後に加熱して該未アルファ化でんぷんをアルファ化し、しかる後造粒及び乾燥を行うことを特徴とする粒状肥料の製造方法。Non-gelatinized starch as a binder is added to the ground granular fertilizer raw material as a binder in an amount of 0.2 to 5% by mass, mixed with water, and then heated to gelatinize the non-gelatinized starch, followed by granulation and drying. A method for producing a granular fertilizer. 粉砕された粒状肥料原料にバインダーとしてアルファ化でんぷんの水溶液をアルファ化でんぷんとして質量比で0.2〜5%添加し、しかる後造粒及び乾燥を行うことを特徴とする粒状肥料の製造方法。A method for producing a granular fertilizer, comprising adding an aqueous solution of pregelatinized starch as a binder to a pulverized granular fertilizer raw material at a mass ratio of 0.2 to 5% as a pregelatinized starch, followed by granulation and drying.
JP2002353163A 2002-12-05 2002-12-05 Granular fertilizer and method for producing the same Expired - Fee Related JP3816870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002353163A JP3816870B2 (en) 2002-12-05 2002-12-05 Granular fertilizer and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002353163A JP3816870B2 (en) 2002-12-05 2002-12-05 Granular fertilizer and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004182549A true JP2004182549A (en) 2004-07-02
JP3816870B2 JP3816870B2 (en) 2006-08-30

Family

ID=32754518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002353163A Expired - Fee Related JP3816870B2 (en) 2002-12-05 2002-12-05 Granular fertilizer and method for producing the same

Country Status (1)

Country Link
JP (1) JP3816870B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102010269A (en) * 2010-11-02 2011-04-13 湖北富邦科技股份有限公司 Granulation modifier for high-tower compound fertilizer and application thereof
JP2015501332A (en) * 2011-04-06 2015-01-15 オーエムエス・インヴェストメンツ・インコーポレイティッド Multipurpose lignin-carbohydrate binding system
WO2018135612A1 (en) 2017-01-20 2018-07-26 株式会社カネカ Glutathione-containing granular fertilizer
US11306033B2 (en) 2016-12-17 2022-04-19 Dead Sea Works Ltd. Process for the production of potassium sulphate and magnesium sulphate from carnallite and sodium sulphate
WO2023044842A1 (en) * 2021-09-23 2023-03-30 湖北富邦科技股份有限公司 No-drying production method for silicate-containing sandy fertilizer
US12017198B2 (en) 2018-02-27 2024-06-25 Dead Sea Works Ltd. Potash dust granulation process

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102010269A (en) * 2010-11-02 2011-04-13 湖北富邦科技股份有限公司 Granulation modifier for high-tower compound fertilizer and application thereof
JP2015501332A (en) * 2011-04-06 2015-01-15 オーエムエス・インヴェストメンツ・インコーポレイティッド Multipurpose lignin-carbohydrate binding system
US11306033B2 (en) 2016-12-17 2022-04-19 Dead Sea Works Ltd. Process for the production of potassium sulphate and magnesium sulphate from carnallite and sodium sulphate
WO2018135612A1 (en) 2017-01-20 2018-07-26 株式会社カネカ Glutathione-containing granular fertilizer
US11091405B2 (en) 2017-01-20 2021-08-17 Kaneka Corporation Glutathione-containing granular fertilizer
US12017198B2 (en) 2018-02-27 2024-06-25 Dead Sea Works Ltd. Potash dust granulation process
WO2023044842A1 (en) * 2021-09-23 2023-03-30 湖北富邦科技股份有限公司 No-drying production method for silicate-containing sandy fertilizer

Also Published As

Publication number Publication date
JP3816870B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
US6936087B2 (en) Soil conditioning agglomerates containing calcium
AU2008312121B2 (en) Improvements in and relating to soil treatments
CN110198779B (en) Method for granulating polyhalite
US6325836B1 (en) Soil conditioning agglomerates containing calcium
WO1999055643A1 (en) Soil conditioning agglomerates containing calcium
US10988419B2 (en) Binders for the granulation of fertilizers
BR112020020079A2 (en) POLYHALITE AND POTASSA GRANULES
US20210395158A1 (en) Compacted polyhalite and a process for the production thereof
WO2017156610A1 (en) Method for producing organic or organic-mineral fertilizers in granule form, and fertilizers obtained by this method
EP0440676B1 (en) Sulfur-based chemical soil-corrective in the form of pellets for agricultural use
AU2012216532A1 (en) Improvements in and relating to soil treatments
JP2004182549A (en) Granular fertilizer and method of manufacturing the same
MXPA01003131A (en) Improved soil nutrient compositions and methods of using same.
JP2001158685A (en) Collapsible granular fertilizer and method for producing the same
CN104449747A (en) Silicon-magnesium powder and soil conditioner containing same as well as preparation technology and application of soil conditioner
CA3210748A1 (en) Binders for hydroscopic substrates
CN106278725B (en) Comprehensive soil conditioner and its preparation process and application containing boron mud
JP2006021968A (en) Granular fertilizer and its manufacturing method
WO2003018512A1 (en) Fertiliser
CN110294646B (en) Synergist for enhancing strength of fertilizer particles and application thereof
JPS60145982A (en) Granular silicious fertilizer
JP2002012488A (en) Method for producing granulated fertilizer
JP2007275848A (en) Composite material utilizing industrial waste liquid, solid-liquid separation method of industrial waste liquid and storage method of industrial waste liquid
JPS5874781A (en) Soil conditioner
JPH0428675B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050204

A131 Notification of reasons for refusal

Effective date: 20050308

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050509

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060606

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060608

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees