JP2018182876A - モータ制御システム、モータ制御装置、及び安全機能設定方法 - Google Patents

モータ制御システム、モータ制御装置、及び安全機能設定方法 Download PDF

Info

Publication number
JP2018182876A
JP2018182876A JP2017078232A JP2017078232A JP2018182876A JP 2018182876 A JP2018182876 A JP 2018182876A JP 2017078232 A JP2017078232 A JP 2017078232A JP 2017078232 A JP2017078232 A JP 2017078232A JP 2018182876 A JP2018182876 A JP 2018182876A
Authority
JP
Japan
Prior art keywords
safety
motor
motor control
safety function
function unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017078232A
Other languages
English (en)
Other versions
JP6369590B1 (ja
Inventor
勇 松村
Isamu Matsumura
勇 松村
純也 久松
Junya Hisamatsu
純也 久松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2017078232A priority Critical patent/JP6369590B1/ja
Priority to CN201710919770.XA priority patent/CN108695824B/zh
Priority to US15/787,966 priority patent/US10298166B2/en
Priority to EP17197425.6A priority patent/EP3388906B1/en
Application granted granted Critical
Publication of JP6369590B1 publication Critical patent/JP6369590B1/ja
Publication of JP2018182876A publication Critical patent/JP2018182876A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4062Monitoring servoloop, e.g. overload of servomotor, loss of feedback or reference
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4063Monitoring general control system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B9/00Safety arrangements
    • G05B9/02Safety arrangements electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/14Plc safety
    • G05B2219/14116Safe, emergency shutdown, esd of system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24015Monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34465Safety, control of correct operation, abnormal states
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42318Using two, more, redundant measurements or scales to detect bad function
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Stopping Of Electric Motors (AREA)

Abstract

【課題】モータ制御システムにおける安全機能の汎用性を向上する。【解決手段】モータ2と、モータ2の駆動状態量に基づいてモータ2の駆動電力を給電制御するモータ制御装置13と、モータ2を減速又は停止すべき所定の条件を満たした際に安全要求信号をモータ制御装置13に入力するセーフティコントローラ12と、を備えるモータ制御システム1であって、モータ制御装置13は、安全要求信号が入力された際に、複数種類から選択された動作監視パターンと駆動状態量との関係状態を監視する複数の安全機能部を同時に機能可能に備えている。【選択図】図1

Description

開示の実施形態は、モータ制御システム、モータ制御装置、及び安全機能設定方法に関する。
特許文献1には、安全規格で規定された多様な動作監視パターンと、検出したモータの駆動状態量とを比較して、駆動状態量が動作監視パターンを超過した場合にモータへの給電を遮断する手法が記載されている。
特開2011−229359号公報
しかしながら上記従来技術では、動作パターンが固定的に設定されるだけであったため、駆動する産業機械の構成や動作環境に応じて動作パターンを変更できる自由度が要望されていた。
本発明はこのような問題点に鑑みてなされたものであり、モータ制御システムにおける安全機能の汎用性を向上できるモータ制御システム、モータ制御装置、及び安全機能設定方法を提供することを目的とする。
上記課題を解決するため、本発明の一の観点によれば、モータと、前記モータの駆動状態量に基づいて前記モータの駆動電力を給電制御するモータ制御装置と、を備えるモータ制御システムであって、前記モータ制御装置は、外部からの安全要求信号が入力された際に、複数種類から選択された動作監視パターンと前記駆動状態量との関係状態を監視する複数の安全機能部を同時に機能可能に備えているモータ制御システムが適用される。
また、本発明の別の観点によれば、モータの駆動電力を給電制御するモータ制御装置であって、前記モータを減速又は停止すべきとする安全要求信号が入力された際に、複数種類から選択された動作監視パターンと前記モータの駆動状態量との関係状態を監視する複数の安全機能部を同時に機能可能に備えているモータ制御装置が適用される。
また、本発明の別の観点によれば、モータの駆動電力を給電制御するとともに、前記モータを減速又は停止すべきとする安全要求信号が入力された際に、動作監視パターンと前記モータの駆動状態量との関係状態を監視する複数の安全機能部を同時に機能可能に備えたモータ制御装置の安全機能設定方法であって、各安全機能部の監視対象となる動作監視パターンをそれぞれ複数種類から選択して設定することと、一方の安全機能部の監視結果を、他方の安全機能部の安全要求信号として入力するよう設定することと、を実行する安全機能設定方法が適用される。
本発明によれば、モータ制御システムにおける安全機能の汎用性を向上できる。
実施形態に係るモータ制御システムの概略構成を表す機能ブロック図である。 通常運転時におけるモータ制御システム中の信号の流れを説明する図である。 アクティブ減速モード実行時におけるモータ制御システム中の信号の流れを説明する図である。 STO状態時におけるモータ制御システム中の信号の流れを説明する図である。 SBBの動作パターンのタイムチャートを表す図である。 SPM−Dの動作パターンのタイムチャートを表す図である。 SLSの動作パターンのタイムチャートを表す図である。 安全機能部ごとの選択設定を行うための設定画面の一例を表す図である。 複数の安全機能部を備えた安全制御処理部のソフトウェアブロック構成を表す図である。 2つの安全機能部を直列に機能させるよう設定した場合の設定画面の表示例を表す図である。 2つの安全機能部を直列に機能させるよう設定した場合の安全制御処理部のソフトウェアブロック構成を表す図である。 2つの安全機能部を直列に機能させるよう設定した場合の動作パターンのタイムチャートの一例を表す図である。
以下、実施の形態について図面を参照しつつ説明する。
<モータ制御システムの概略構成>
図1は、本発明の一実施形態であるモータ制御システムの概略構成を表す機能ブロック図である。
図1において、モータ制御システム1は、モータ2と、エンコーダ3と、モータ制御装置13と、セーフティモジュール14と、上位制御装置11と、エンジニアリングツール22と、セーフティコントローラ12と、通信制御部15とを有している。
なお、この図1においては、上記各構成部間の接続および各構成部間で授受する信号の流れを矢印で示しており、それぞれの内部構成については後に詳述する。また以降の各図中において破線で示している信号線は、図示するその状況では信号を送受していないものの、他の状況次第で該当する構成部間での信号の送受が可能であることを示す。以下、上記の各構成部について概略的に説明する。
モータ2は、例えば産業機械やロボット等を構成する駆動機械4に機械的に連結されてそれを駆動する3相交流モータなどである。
エンコーダ3は、例えば上記モータ2に機械的に連結されて当該モータ2の駆動位置などの駆動状態量を検出するよう機能する。
モータ制御装置13は、基本的に後述の上位制御装置11から入力される上位制御指令と、上記エンコーダ3が検出したモータ2の駆動状態量とに基づいて、上記モータ2に対する駆動制御を行うよう機能する。
セーフティモジュール14は、上記モータ制御装置13に対して付加的に接続する機能拡張器である。このセーフティモジュール14は、後述のセーフティコントローラ12や通信制御部15から安全要求信号が入力された後の所定の条件を満たした場合に、モータ制御装置13に対して給電遮断信号を出力しモータ2を強制的に減速・停止させるよう機能する。
上位制御装置11は、モータ2に所望の駆動動作を行わせるための上位制御指令をモータ制御装置13に出力し、モータ制御装置13による給電制御を介してモータ2の駆動を制御するよう機能する。なお、上位制御指令は、位置指令、速度指令、又はトルク指令などの形態で出力される。
エンジニアリングツール22は、操作部22aや表示部22bを備えたインターフェース機器である。当該モータ制御システム1の操作者は、必要に応じてこのエンジニアリングツール22を上記モータ制御装置13に接続することで、当該モータ制御装置13や上記セーフティモジュール14の内部における制御機能や安全機能に関する各種の設定やパラメータ値などの表示、更新を行うことができる。
セーフティコントローラ12は、駆動機械4自体やその周囲環境に設けた各種のセンサ16からモータ2を減速・停止させるべき所定状態の発生を検出した際に、対応する安全要求信号をこの例では上記セーフティーモジュール14へ出力するよう機能する。なおこの例に限られず、センサ16の検出内容によっては、上位制御装置11に対しても同じ安全要求信号を併せて出力してもよい(特に図示せず)。
通信制御部15は、当該モータ制御システム1の外部からネットワークNWを介して各種の安全対策上の指令が入力された際に、対応する安全要求信号をこの例では上記セーフティーモジュール14へ出力するよう機能する。なおこの通信制御部15の場合でも、安全要求信号の内容によっては上位制御装置11に対しても同じ安全要求信号を併せて出力してもよい(特に図示せず)。
本実施形態の例では、上記の安全要求信号がいずれも2値信号(ON/OFF)で送受されるものであり、それらの生成元である各種センサ16の設置場所や検出内容、又はネットワークNWから入力された指令の内容によっては安全対策上の重要度が異なる場合がある。つまり安全要求信号の内容(入力元)次第で、通常運転への復帰が容易となるようにモータ2を所定の速度以下に減速するだけでよいといった軽度の場合や、復帰容易性を犠牲にしてまで確実かつ早急にモータ2を減速停止させる必要があるような重度の場合などを区別できる。
これに対応して、本実施形態におけるセーフティモジュール14とモータ制御装置13は、このように安全要求信号の入力元に対応して異なる安全制御(つまりモータ2の減速・停止制御)を行う。なお本実施形態の例では、安全要求信号が入力された際の安全制御は、モータ制御装置13自体が生成した内部減速指令に従ってモータ2の減速・停止制御を行ういわゆるアクティブ減速モードで実行する場合で説明するものとし、他に上位制御装置11からの上位制御指令に従ってモータ2の減速・停止制御を行ういわゆる上位制御装置減速モードで実行する場合については説明を省略する。なおこのモード選択は、上記図1に示したエンジニアリングツール22を用いたユーザ操作により予め設定できる。
<モータ制御システムの詳細構成と安全制御について>
図2〜図4は、モータ制御システム1中の信号の流れを説明する図であり、図2は通常運転時に対応し、図3はアクティブ減速モード(後述)の実行時に対応し、図4はSTO状態(後述)時に対応している。なお、図2〜図4中において、モータ制御装置13が内部に備えるHWBB32とインバータ33はハードウェア回路で構成されているが、それ以外でモータ制御装置13とセーフティモジュール14の内部に示す機能部分は、それぞれに備えられたCPUが実行するソフトウェアブロックとして示している。また、図示する例では、センサ16が5つ設けられており、セーフティコントローラ12は各センサ16それぞれの検出結果に対応する5種類の安全要求信号を個別に出力可能となっている。また、通信制御部15は、ネットワークNWを介して5種類の安全要求信号を個別に入出力可能となっている。
図2〜図4において、上述したように、モータ制御装置13はその内部にソフトウェアブロックとしてのモータ制御処理部31と、ハードウェア回路で構成するHWBB(Hard Wire Base Brock)32及びインバータ33を備えている。また、セーフティモジュール14は、その内部にソフトウェアブロックとしての安全制御処理部34を備えている。
モータ制御処理部31は、上記エンコーダ3で検出されるモータ2の駆動状態量をフィードバック信号として参照しつつ、所定の駆動制御指令(例えば、上位制御装置11からの上位制御指令)に従ってモータ2への給電制御(PWM信号による後述のインバータ33のスイッチング制御)を行うよう機能する。
HWBB32(給電遮断部)は、上記モータ制御処理部31からインバータ33へ出力されるPWM信号の導通と遮断を切り換える半導体スイッチング素子を備えており、HWBB起動信号(給電遮断信号)が入力された際にはPWM信号の出力を遮断することでインバータ33におけるモータ2への給電を遮断するよう機能する。なお、このHWBB32が、各請求項記載の給電遮断部に相当し、HWBB起動信号が給電遮断信号に相当する。
インバータ33は、特に図示しない商用電源からの供給電力を、上記モータ制御処理部31から入力されたPWM信号に基づいてモータ2への駆動電力に電力変換するよう機能する。
安全制御処理部34は、上記エンコーダ3で検出されるモータ2の駆動状態量が後述する動作監視パターンを越えた場合に、HWBB起動信号を出力して上記HWBB32を起動(PWM信号を遮断)させるよう機能する。動作監視パターンは安全規格で規定された複数種類の時系列変化パターン(後述の図9〜図11参照)であり、後述する設定操作によって任意に選択されたものが安全制御処理部34に適用される(詳細については後述する)。
まず駆動機械4の通常運転時には、図2に示すように、上位制御装置11がモータ2に対して所定の駆動を行わせるよう生成した上位制御指令をモータ制御装置13に出力し、当該モータ制御装置13は入力された上位制御指令をそのまま内部のモータ制御処理部31に入力する。そして、モータ制御処理部31が、エンコーダ3で検出された駆動状態量をフィードバック信号として参照しつつ上位制御指令に従ったPWM信号を出力する。そしてこの通常運転時には安全制御処理部34からHWBB起動信号が出力されておらず、モータ制御処理部31から出力されたPWM信号はHWBB32を介してそのままインバータ33に入力され、対応する駆動電力がモータ2に給電される。これにより、モータ制御システム1全体は、上位制御装置11の上位制御指令に従ったモータ2の駆動を安定的に行うことができる。なおこの通常運転時には、5つのセンサ16のいずれからも検出信号は出力されず、それらに対応する5つの安全要求信号のいずれもセーフティコントローラ12から出力されない。また同様に、通信制御部15にはネットワークNWから何ら安全対策上の指令が入力されず、5つの安全要求信号のいずれも出力されない。
そしてこのような駆動機械4の通常運転中において、例えばいずれか1つのセンサ16から異常を示す検出信号が出力された場合には、図3に示すように、セーフティコントローラ12がそのセンサ16に対応する安全要求信号をセーフティモジュール14に出力する。そしてこのように安全要求信号が入力されたセーフティモジュール14を介して、モータ制御装置13は、この例では上述したアクティブ減速モードの実行によりモータ2を減速・停止させる。
この図3に示すアクティブ減速モードでは、安全規格の基準を満たせる動作制御パターンに従った内部減速指令をモータ制御装置13の内部で生成し、これをモータ制御処理部31に減速制御指令として入力する。つまり、上位制御装置11に代えて、モータ制御装置13自体が自律的にモータ2の減速制御又は停止制御を行う。このアクティブ減速モードを実行する場合には、上位制御装置11へ安全要求信号を入力するシステム構成が必要なく、またモータ制御処理部31が上位制御装置11に対してアクティブ状態信号を出力することでそれを受けた上位制御装置11は上位制御指令の出力を停止する。
一方、セーフティモジュール14が備える安全制御処理部34は、上述したようにセーフティコントローラ12から安全要求信号が入力された後、モータ2の駆動状態量が後述する動作監視パターンを越えた場合に、HWBB起動信号を出力して上記HWBB32を起動(PWM信号を遮断)させる。また後に詳述するように、適用する動作監視パターンの種類によっては、セーフティコントローラ12から安全要求信号が入力された後の所定のタイミングで、当該動作監視パターンが独自にHWBB起動信号を出力して上記HWBB32を起動させる場合もある。
以上のようにしてHWBB32が起動した場合には、図4に示すように、モータ制御装置13内においてモータ制御処理部31からのPWM信号がHWBB32によって遮断され、インバータ33がモータ2への駆動電力の給電を停止するSTO(Safety Torque Off)状態となる。このSTO状態では、駆動機械4の運転を再開させるための復帰容易性が低いものの、確実かつ早急にモータ2を減速停止させることができるため最も安全かつ確実な安全制御となる。
<本実施形態の特徴>
以上のように、駆動機械4を駆動するモータ制御システム1においては、安全規格で規定された多様な動作パターン(対応する組み合わせの動作制御パターンと動作監視パターンを併せた総称、以下同様)に準拠するようモータ2の減速動作や停止動作を制御する必要がある。そのためにこれまでは、上述した多様な動作パターンのうち適用したものに対応する動作監視パターンと、検出したモータ2の駆動状態量とを比較して、駆動状態量が動作監視パターンを超過した場合にはモータ2への給電を遮断する安全制御処理部34が設けられていた。
しかしながら、これまでの安全制御処理部34には動作パターンが固定的に設定されるだけであったため、駆動する駆動機械4の構成や動作環境に応じてユーザが任意の動作パターンに変更できる自由度が要望されていた。
これに対し本実施形態では、セーフティモジュール14(モータ制御装置13の一部)内の安全制御処理部34が、外部からの安全要求信号が入力された際に、複数種類から選択された動作監視パターンと駆動状態量との関係状態を監視する複数の安全機能部を同時に機能可能に備えている。これにより、安全機能部は適用する動作監視パターンを任意に選択する自由度が得られることになり、その結果、モータ制御システム1における安全機能の汎用性が向上する。また複数の安全機能部が同時に機能可能であることで、任意に選択した複数の動作監視パターンを組み合わせた多様な動作パターンでモータ2および駆動機械4の動作制御を監視することが可能となり、さらにモータ制御システム1における安全機能の汎用性が向上する。以下、この構成について順次説明する。
<動作パターンについて>
まず、本実施形態の各構成部が適用可能な動作パターンについて、いくつか例示しつつ説明する。なお。国際規格IEC61800−5−2では多数の動作パターンが提示されているが、以下においては安全ベースブロック機能(以下SSB(STO)という)、安全制限速度監視機能(以下SLSという)、及び遅延付き安全位置監視機能(以下SPM−D(SS2)という)の3つの種類の動作パターン(各名称は本実施形態における通称)について説明する。また、以下の説明では、モータ2の駆動状態量が動作監視パターンを超過した際には無条件でHWBB起動信号を出力するものとして説明する。
まず、図5は上位制御装置11による制御中に実行するSBBの動作パターンのタイムチャートを表示している。この図5において、負論理の安全要求信号が低レベルの“OFF”状態に切り替わった際には、安全制御処理部34が直ちにHWBB起動信号を出力してHWBB32がPWM信号を遮断し、インバータ33がモータ2への駆動電力の給電を停止する。この結果、モータ速度が急速に低下して、完全停止する。
図6は、アクティブ減速モードで実行するSPM−Dの動作パターンのタイムチャートを示している。この図6において、負論理の安全要求信号が低レベルの“OFF”状態に切り替わった際には、モータ制御装置13が直ちにアクティブ減速モードに切り替わり、対応する動作制御パターンに従ってモータ制御処理部31に対しモータ2を所定の減速率で減速、停止させる。
そして、このアクティブ減速モードにおいて、上述したようにモータ制御装置13が動作制御パターンに従って減速制御指令を出力しても、モータ速度がこの減速制御指令に対して追従しない場合がある。この要因は、例えばモータ2またはエンコーダ3の異常や故障、もしくは減速制御指令とは関係なくモータ2が駆動機械4側から受ける反力や外乱などの作用が考えられる。これに対して、本実施形態では、セーフティモジュール14に安全要求信号が入力された際に、安全制御処理部34が予めユーザによりパラメータ設定された動作監視パターンと、エンコーダ3が検出した駆動状態量に基づく実際のモータ速度とを比較して監視する。そして、特に図示していないが、モータ速度が動作監視パターンの監視速度を超過した関係状態となった際には、モータ制御処理部31による減速制御中であっても、安全を優先して安全制御処理部34が直ちにHWBB起動信号を出力し、モータ2への電力供給を遮断して強制的に停止させる(つまりSTO状態となる)。
そして、安全要求信号が“OFF”状態に切り替わってから減速終了タイミングt2に到達して監視速度が0になった後には、安全制御処理部34は動作監視パターンに従って実際のモータ停止位置(エンコーダ3が検出した駆動状態量)が相対的に所定の監視移動量p1を超過したか否かを監視する。そして図示するように、実際のモータ位置が動作監視パターンにおける監視移動量p1を超過した関係状態となった際には、安全制御処理部34が直ちにHWBB起動信号を出力し、モータ2への電力供給を遮断して強制的に停止させる(STO状態)。
図7は、アクティブ減速モードで実行するSLSの動作パターンのタイムチャートを示している。この図7において、負論理の安全要求信号が低レベルの“OFF”状態に切り替わった際には、動作制御パターンが規定時間t3までにモータ2を制限速度s3まで減速させるよう減速制御指令を出力する。
また、セーフティモジュール14の安全制御処理部34は、動作監視パターンに従って初期段階で最大速度s1に設定された監視速度で実際のモータ速度を監視し、その後に減速開始タイミングt1で減速を開始した監視速度で実際のモータ速度を監視し、監視速度は減速終了タイミングt2で減速を終了する。その後に、安全制御処理部34は実際のモータ速度が比較的低い監視速度s2を超過したか否かを監視する。
<安全機能部について>
以上に例示したような動作制御パターンと動作監視パターンの組み合わせからなる動作パターンが安全規格で多数規定されており、そのうちの動作監視パターンに対しては対応する駆動状態量が超過しているかどうかをセーフティモジュール14の安全制御処理部34が監視している。そして本実施形態においては、上述したように、安全制御処理部34は内部に複数の安全機能部を備えており、それらの安全機能部ごとに比較監視する対象の動作監視パターンを選択して個別に駆動状態量との比較監視が可能となっている。
図8は、安全機能部ごとの選択設定を行うための設定画面の一例を示している。図9の設定画面は、例えば上記エンジニアリングツール22を用いて設定する場合の表示部22bにおける表示例を示している。この図9において、安全機能部Aから安全機能部Jまでの10個の安全機能部の設定ウィンドウが表示されており(図中では安全機能部C〜Iの図示が省略されている)、操作部22aを介した操作入力によって任意に選択した安全機能部を個別に設定可能となっている。
いずれの安全機能部A〜Jも用意されている設定項目が全く同じであり、それぞれ大別して安全要求信号入力元選択、動作監視パターン選択、及び監視結果信号出力先選択の3つの設定項目が用意されている。安全要求信号入力元選択の設定項目では、当該安全機能部の実行開始基準となる安全要求信号の入力元が選択可能となっている。図示する例では、何ら安全要求信号を入力させない場合の「0(:None)」と、セーフティコントローラ12からの5つの安全要求信号のいずれかを選択する場合の「1〜5(:Safe Input 1〜5)」と、通信制御部15からの5つの安全要求信号のいずれかを選択する場合の「6〜10(:Virtual Input 1〜5)」と、いずれかの安全機能部A〜Jで駆動状態量が監視動作パターンを超過した際の超過状態発生時トリガ(以下の記載及び図中において適宜”Fault”もしくは”Fault Out”という)を安全要求信号として選択する場合の「11〜20(:Safety Function A〜J fault)」のいずれか1つが選択可能となっている。
動作監視パターン選択の設定項目では、当該安全機能部が参照する動作監視パターンの種類が選択可能となっている。図示する例では、何ら動作監視パターンを参照しない場合の「0(:None)」と、安全ベースブロック機能SBBの動作監視パターン(安全要求信号の入力時にすぐにSTOとなるパターン)を選択する場合の「1(:STO)」と、安全制限速度監視機能SLSの動作監視パターンを選択する場合の「2(:SLS)」と、遅延付き安全位置監視機能SPM−Dの動作監視パターンを選択する場合の「3(:SS2)」等(他図示省略)のいずれか1つが選択可能となっている。また動作監視パターン選択の設定項目では、上記選択した動作監視パターンの経時変化形状を定義するためのパターンパラメータ(図中の「t1」、「t2」など)も併せて設定可能となっている。なお、モータ駆動装置においては、この設定項目で選択された動作監視パターンに対応する種類の動作制御パターンが当該安全機能部の機能時に同期して適用され機能するようになる。これにより、同じ種類の動作制御パターンと動作監視パターンが同時に実行される。
監視結果信号出力先選択の設定項目では、その時点での当該安全機能部の比較監視結果(Faultしたか否か)を示す監視結果信号の出力先が選択可能となっている。図示する例では、何ら監視結果信号を出力しない場合の「0(:None)」と、監視結果信号をそのままHWBB起動信号として出力するよう選択する場合の「1(:HWBB)」と、セーフティコントローラ12の5つの出力先のいずれかを選択する場合の「2〜6(:Safe Output 1〜5)」と、通信制御部15の5つの出力先のいずれかを選択する場合の「7〜11(:Virtual Output 1〜5)」のいずれか1つが選択可能となっている。なお、監視結果信号の内容が超過状態、つまり超過状態発生時トリガ”Faul Out”である場合の出力については、上記出力先の選択設定に関係なく別途標準で用意されている(後述の図9参照)。
以上のように設定可能な複数の安全機能部を備えた安全制御処理部34のソフトウェアブロック構成を図9で模式的に示す。この図9において、安全制御処理部34は、10個の安全機能部A〜Jを並列に備えており、それぞれが個別に駆動状態量を参照可能となっている。また、各安全機能部は、上記安全要求信号入力元選択の設定項目で選択されたいずれか1つの入力元(図中では「None」、「SI」、「VI」、「SF A〜J FO」と略記)から安全要求信号が入力可能に接続される(「0:None」を選択した場合には非接続)。また、各安全機能部は、上記監視結果信号出力先選択の設定項目で選択されたいずれか1つの出力先(図中では「None」、「HWBB」、「SO」、「VO」と略記)に監視結果信号が出力可能に接続される(「0:None」を選択した場合には非接続、「1:HWBB」を選択した場合にはHWBBに接続)。なお、上述したように、監視結果信号の内容が超過状態、つまり超過状態発生時トリガ”Fault Out”である場合の出力(図中の「FO」)については、出力先の選択設定に関係なく別途標準で用意されている。
そして各安全機能部は、その内部に選択された動作監視パターンと、比較監視部41を備えている。ここで、安全機能部が処理する動作監視パターンは、その内部にHWBB起動タイミングとモータ速度・位置変化チャートの2つの工程要素の少なくともいずれか一方が含まれている。HWBB起動タイミングの工程要素は、外部から安全要求信号が入力された後の所定のタイミングで、HWBB起動信号を上記HWBB32へ直接出力するよう機能する。また、モータ速度・位置変化チャートの工程要素は、外部から安全要求信号が入力された際に、所定の工程で変化又は一定に維持するモータ2の速度の変化値、もしくは所定のタイミングから一定に維持されるモータ2の相対位置の変化値等を、比較監視部41へ出力するよう機能する。上記比較監視部41がモータ2の駆動状態量と比較するのは、このモータ速度・位置変化チャートが出力する変化値である。
動作監視パターンが適用するパターンの種類によって、上記2つの工程要素のうちのいずれか一方または両方が当該動作監視パターンに含まれる。図示するように2つの工程要素の両方が含まれる場合には、それぞれ外部からの安全要求信号が同時に入力され、それぞれの工程を並行させつつ個別に処理可能となっている。なお、特に図示しないが、モータ制御装置13が処理する動作制御パターンには、上記モータ速度・位置変化チャートの工程要素のみが含まれており、HWBB起動タイミングの工程要素が含まれることはない。つまり、上記アクティブ減速モードでは、動作制御パターン中のモータ速度・位置変化チャートが出力する変化値が、そのまま減速制御指令として生成される。
これにより、実際のモータ2の駆動状態量が動作監視パターン(詳しくはモータ速度・位置変化チャートが出力する変化値)を超過して安全規格から外れるような動作状態が発生した際には、比較監視部41が監視結果信号として超過状態発生時トリガ”Fault Out”を出力する。そしてこの出力先としてHWBB32が選択されている場合には、HWBB起動信号が出力されてモータ2への給電を遮断し、確実かつ早急にモータ2を減速・停止させることができる。なお本実施形態の例では、これら複数の安全機能部A〜Jが全てセーフティモジュール14に備えられた1つのCPUで処理されるソフトウェア処理部であり、複数の安全機能部が同時に機能する場合にはCPUによる時分割処理(例えば1スキャンタイム内で全ての有効な安全機能部の処理を所定順に実行する)などによって実現されることになる。
<安全機能部の設定例>
上記構成の安全制御処理部34における安全機能部の設定例とその実行例を以下に説明する。図10は、上記図8に対応して安全機能部Aと安全機能部Bを直列に機能させるよう設定した場合の設定画面の表示例を示している。なお、図中では、図示の煩雑を避けるために適宜箇所の図示を省略している。
この図10において、安全機能部Aにおいては、安全要求信号入力元選択でセーフティコントローラ12の1つ目のセンサ16を入力元として選択し、動作監視パターン選択で安全制限速度監視機能SLSの動作監視パターンを選択し、監視結果信号出力先選択でセーフティコントローラ12の5つ目の出力先を選択している。また安全機能部Bにおいては、安全要求信号入力元選択で安全機能部Aの“Fault”(超過状態発生時トリガ”Fault Out”)を入力元として選択し、動作監視パターン選択で遅延付き安全位置監視機能SS2の動作監視パターンを選択し、監視結果信号出力先選択でHWBB32を出力先として選択している。このような設定例の場合には、上記図9に対応する図11に示すように各安全機能部のソフトウェアブロックが接続される。なおこの場合、安全機能部A,Bで選択された動作監視パターンはSLS,SS2であるため、それぞれのHWBB起動タイミングの工程要素は機能しない(図中の破線部参照)。また、他の安全機能部においては、安全要求信号の入力元も監視結果信号の出力先も何ら接続されず、全く機能しないものとなる。
この設定例による動作パターンのタイムチャートの一例を図12に示す。この図12において、通常運転時に安全要求信号が入力された場合には先に安全機能部Aだけが機能し、安全制限速度監視機能SLSの動作制御パターン及び動作監視パターンでモータ速度の制御と監視が行われる。そして図示する例では、安全要求信号の入力から規定時間t3経過後の監視速度s2をモータ速度が超過することで安全機能部Aが「Fault Out」する。つまり安全機能部Aが、監視結果信号が超過状態発生時トリガを出力してその機能が停止する。この際、上記設定例ではこの超過状態発生時トリガをセーフティコントローラ12の5つ目の出力先(SO 5)に出力するが、それとはまた別途用意されたFOから出力される超過状態発生時トリガが安全要求信号として安全機能部Bに入力される。
これにより、安全機能部Aから切り替わって安全機能部Bだけが機能し、安全位置監視機能SS2の動作制御パターン及び動作監視パターンでモータ2の速度と位置に対する制御と監視が行われる。そして図示する例では、モータ停止後の監視移動量p1をモータ相対位置が超過することで安全機能部Bが「Fault Out」し、その監視結果信号がHWBB32への起動信号として出力されることでモータ2への給電が遮断されたSTO状態(モータ停止)となる。以上の設定例で説明したように本実施形態では、所定の安全機能部Bの安全要求信号の入力元として他の安全機能部Aの監視結果を選択することで、安全機能部A→安全機能部Bの順で切り換えるシーケンス制御が可能となる。また図示しないが、さらに他の安全機能部C〜Jの安全要求信号の入力元に安全機能部Bの監視結果を選択することで、3連以上のシーケンス制御も可能となる。
<本実施形態による効果>
以上説明したように、本実施形態のモータ制御システム1は、モータ制御装置13が、安全要求信号が入力された際に、複数種類から選択された動作監視パターンと駆動状態量との関係状態を監視する複数の安全機能部を同時に機能可能に備えている。これにより、安全機能部は適用する動作監視パターンを任意に選択する自由度が得られることになり、その結果、モータ制御システム1における安全機能の汎用性が向上する。また複数の安全機能部が同時に機能可能であることで、任意に選択した複数の動作監視パターンを組み合わせた多様な動作パターンでモータ2および駆動機械4の動作制御を監視することが可能となり、さらにモータ制御システム1における安全機能の汎用性が向上する。
また、本実施形態では特に、安全機能部は、安全要求信号の入力元を選択可能である。これにより、安全要求信号の入力元の種類(セーフティコントローラ12か、通信制御部15か、他の安全機能部か)やその個体(1〜5等)を任意に選択可能となり、多様な安全検知対象に対応できることでさらにモータ制御システム1における安全機能の汎用性が向上する。
また、本実施形態では特に、安全機能部(上記設定例の安全機能部B)が、他の安全機能部(上記設定例の安全機能部A)を入力元として選択し、他の安全機能部(上記設定例の安全機能部A)の監視結果を安全要求信号として入力可能である。これにより、他の安全機能部で駆動状態量が動作監視パターンを超過した場合(つまり“Fault”となった場合)に、次に本安全機能部で異なる動作監視パターンでの比較監視を行うといった複数の動作監視パターンでのシーケンス監視が可能となり、さらにモータ制御システム1における安全機能の汎用性が向上する。
また、本実施形態では特に、安全機能部は、当該安全機能部の監視結果の出力先を選択可能である。これにより、モータ2への給電遮断以外にも監視結果の出力先の種類(HWBB32か、セーフティコントローラ12か、通信制御部15か)やその個体(1〜5等)を任意に選択可能となり、多様な報知態様に対応できることでさらにモータ制御システム1における安全機能の汎用性が向上する。
また、本実施形態では特に、モータ制御装置13は、安全機能部からHWBB起動信号が入力された際にモータ2への給電を遮断するHWBB32を備えている。これにより、安全機能部で駆動状態量が動作監視パターンを超過した場合(つまり“Fault”となった場合)などに対して、最も安全かつ確実なモータ2の減速・停止動作が可能となる。
また、本実施形態では特に、安全機能部は、安全要求信号の入力直後にHWBB32にHWBB起動信号を出力する動作監視パターン(SSB,STOの動作監視パターン)を選択可能である。これにより、安全要求信号が入力されただけで最も安全かつ確実にモータ2を減速・停止させることができる。なお、この場合にはモータ2の駆動状態量の入力は不要である。また、本実施形態で例示した以外で安全規格が規定した動作パターン(例えばSS1、SOS、SLA等)の動作監視パターンが同様に適用可能であることはもちろんである。
また、本実施形態では特に、安全機能部は、当該安全機能部の監視結果の出力先を選択可能であって、当該安全機能部の監視結果をHWBB起動信号とし、その出力先をHWBB32に選択可能である。これにより、安全機能部で駆動状態量が動作監視パターンを超過した場合(つまり“Fault”となった場合)に対して、最も安全かつ確実にモータ2を減速・停止させることができる。
また、本実施形態では特に、動作監視パターンは、安全要求信号の入力を開始契機とした時系列変化パターンである。これにより、各安全要求信号の入力タイミングにそれぞれ対応して各動作監視パターンを経時変化させることができ、特に複数の安全機能部で複数の動作監視パターンを組み合わせた場合に駆動状態量との機能的な比較監視が可能となる。
なお、特に図示しないが、複数の安全機能部のそれぞれで同じ安全要求信号の入力元を選択することで、それら安全機能部を並列かつ同時に機能させることも可能である。この場合には、それぞれ対応する動作制御パターンと動作監視パターンを並行させつつ個別に処理し、最後にそれらを合成した結果で減速制御指令の生成や比較監視の対象とすればよい。特に安全性を優先する場合には、その時点で最も低い動作制御パターンと動作監視パターンの変化値を減速制御指令や比較監視対象とすればよい。
なお、以上の説明において、「垂直」「平行」「平面」等の記載がある場合には、当該記載は厳密な意味ではない。すなわち、それら「垂直」「平行」「平面」とは、設計上、製造上の公差、誤差が許容され、「実質的に垂直」「実質的に平行」「実質的に平面」という意味である。
また、以上の説明において、外観上の寸法や大きさ、形状、位置等が「同時」「同一」「同じ」「等しい」「異なる」等の記載がある場合は、当該記載は厳密な意味ではない。すなわち、それら「同一」「等しい」「異なる」とは、設計上、製造上の公差、誤差が許容され、「実質的に同時」「実質的に同一」「実質的に同じ」「実質的に等しい」「実質的に異なる」という意味である。
また、以上既に述べた以外にも、上記実施形態や各変形例による手法を適宜組み合わせて利用しても良い。その他、一々例示はしないが、上記実施形態や各変形例は、その趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。
1 モータ制御システム
2 モータ
3 エンコーダ
4 駆動機械
11 上位制御装置
12 セーフティコントローラ
13 モータ制御装置
14 セーフティモジュール
15 通信制御部
16 センサ
22 エンジニアリングツール
31 モータ制御処理部
32 HWBB(給電遮断部)
33 インバータ
34 安全制御処理部
41 比較監視部
NW ネットワーク

Claims (10)

  1. モータと、
    前記モータの駆動状態量に基づいて前記モータの駆動電力を給電制御するモータ制御装置と、
    を備えるモータ制御システムであって、
    前記モータ制御装置は、
    外部からの安全要求信号が入力された際に、複数種類から選択された動作監視パターンと前記駆動状態量との関係状態を監視する複数の安全機能部を同時に機能可能に備えていることを特徴とするモータ制御システム。
  2. 前記安全機能部は、
    前記安全要求信号の入力元を選択可能であることを特徴とする請求項1記載のモータ制御システム。
  3. 前記安全機能部は、
    他の安全機能部を前記入力元として選択し、前記他の安全機能部の監視結果を前記安全要求信号として入力可能であることを特徴とする請求項2記載のモータ制御システム。
  4. 前記安全機能部は、
    当該安全機能部の監視結果の出力先を選択可能であることを特徴とする請求項1乃至3のいずれか1項に記載のモータ制御システム。
  5. 前記モータ制御装置は、
    前記安全機能部から給電遮断信号が入力された際に前記モータへの給電を遮断する給電遮断部を備えていることを特徴とする請求項1乃至4のいずれか1項に記載のモータ制御システム。
  6. 前記安全機能部は、
    前記安全要求信号の入力直後に前記給電遮断部に給電遮断信号を出力する動作監視パターンを選択可能であることを特徴とする請求項5記載のモータ制御システム。
  7. 前記安全機能部は、
    当該安全機能部の監視結果の出力先を選択可能であって、
    当該安全機能部の監視結果を前記給電遮断信号とし、その出力先を前記給電遮断部に選択可能であることを特徴とする請求項5記載のモータ制御システム。
  8. 前記動作監視パターンは、
    前記安全要求信号の入力を開始契機とした時系列変化パターンであることを特徴とする請求項1乃至7のいずれか1項に記載のモータ制御システム。
  9. モータの駆動電力を給電制御するモータ制御装置であって、
    前記モータを減速又は停止すべきとする安全要求信号が入力された際に、複数種類から選択された動作監視パターンと前記モータの駆動状態量との関係状態を監視する複数の安全機能部を同時に機能可能に備えていることを特徴とするモータ制御装置。
  10. モータの駆動電力を給電制御するとともに、前記モータを減速又は停止すべきとする安全要求信号が入力された際に、動作監視パターンと前記モータの駆動状態量との関係状態を監視する複数の安全機能部を同時に機能可能に備えたモータ制御装置の安全機能設定方法であって、
    各安全機能部の監視対象となる動作監視パターンをそれぞれ複数種類から選択して設定することと、
    一方の安全機能部の監視結果を、他方の安全機能部の安全要求信号として入力するよう設定することと、
    を実行することを特徴とする安全機能設定方法。

JP2017078232A 2017-04-11 2017-04-11 モータ制御システム、モータ制御装置、及び安全機能設定方法 Active JP6369590B1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017078232A JP6369590B1 (ja) 2017-04-11 2017-04-11 モータ制御システム、モータ制御装置、及び安全機能設定方法
CN201710919770.XA CN108695824B (zh) 2017-04-11 2017-09-30 电机控制***、电机控制装置以及安全功能设定方法
US15/787,966 US10298166B2 (en) 2017-04-11 2017-10-19 Motor control system, motor controller, and method for setting safety function
EP17197425.6A EP3388906B1 (en) 2017-04-11 2017-10-20 Motor control system, motor controller, and method for setting safety function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017078232A JP6369590B1 (ja) 2017-04-11 2017-04-11 モータ制御システム、モータ制御装置、及び安全機能設定方法

Publications (2)

Publication Number Publication Date
JP6369590B1 JP6369590B1 (ja) 2018-08-08
JP2018182876A true JP2018182876A (ja) 2018-11-15

Family

ID=60164609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017078232A Active JP6369590B1 (ja) 2017-04-11 2017-04-11 モータ制御システム、モータ制御装置、及び安全機能設定方法

Country Status (4)

Country Link
US (1) US10298166B2 (ja)
EP (1) EP3388906B1 (ja)
JP (1) JP6369590B1 (ja)
CN (1) CN108695824B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019207837A1 (ja) * 2018-04-25 2019-10-31 株式会社日立産機システム 電力変換システム及び電力変換方法
JP2020137142A (ja) * 2019-02-12 2020-08-31 株式会社安川電機 モータ制御システム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7024678B2 (ja) * 2018-09-28 2022-02-24 オムロン株式会社 制御システム、サポート装置、サポートプログラム
JP7172397B2 (ja) * 2018-10-02 2022-11-16 オムロン株式会社 制御システム、サポート装置およびプログラム
JP7087952B2 (ja) * 2018-11-22 2022-06-21 オムロン株式会社 制御システム、サポート装置、サポートプログラム
JP7115351B2 (ja) * 2019-02-13 2022-08-09 オムロン株式会社 制御装置
KR20210145233A (ko) * 2019-04-02 2021-12-01 유니버셜 로보츠 에이/에스 로봇 시스템용 확장 가능한 안전 시스템
DE102020104230A1 (de) * 2020-02-18 2021-08-19 Beckhoff Automation Gmbh Sicherheitsmodul für eine gesicherte Antriebssteuerung eines Antriebssystems in einem Automatisierungssystem, Antriebssystem und Automatisierungssystem
US11518033B2 (en) * 2020-07-06 2022-12-06 Kollmorgen Corporation Method and apparatus for safely limiting the motion of a motor
CN112392093B (zh) * 2020-11-18 2022-02-25 柳州柳工挖掘机有限公司 挖掘机操作模式确认方法及***和控制方法及***
US20220342408A1 (en) * 2021-04-26 2022-10-27 Rockwell Automation Technologies, Inc. Using sensor data and operational data of an industrial process to identify problems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011229359A (ja) * 2010-03-30 2011-11-10 Yaskawa Electric Corp モータ駆動システム及びモータ制御装置
JP2013192414A (ja) * 2012-03-15 2013-09-26 Omron Corp 駆動制御装置
WO2016051552A1 (ja) * 2014-10-01 2016-04-07 株式会社日立産機システム 電力変換装置、電力変換方法および電力変換システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010103627A1 (ja) * 2009-03-11 2010-09-16 三菱電機株式会社 交流回転機の制御装置
JP2011122876A (ja) * 2009-12-09 2011-06-23 Toyota Central R&D Labs Inc 障害物検出装置
JP5367623B2 (ja) * 2010-03-15 2013-12-11 オムロン株式会社 サーボシステム、サーボモータ駆動装置、セーフティユニットおよびサーボシステムの制御方法
JP5970880B2 (ja) * 2012-03-15 2016-08-17 オムロン株式会社 動力源の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011229359A (ja) * 2010-03-30 2011-11-10 Yaskawa Electric Corp モータ駆動システム及びモータ制御装置
JP2013192414A (ja) * 2012-03-15 2013-09-26 Omron Corp 駆動制御装置
WO2016051552A1 (ja) * 2014-10-01 2016-04-07 株式会社日立産機システム 電力変換装置、電力変換方法および電力変換システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019207837A1 (ja) * 2018-04-25 2019-10-31 株式会社日立産機システム 電力変換システム及び電力変換方法
JP2019191928A (ja) * 2018-04-25 2019-10-31 株式会社日立産機システム 電力変換システム及び電力変換方法
JP7112240B2 (ja) 2018-04-25 2022-08-03 株式会社日立産機システム 電力変換システム及び電力変換方法
US11442415B2 (en) 2018-04-25 2022-09-13 Hitachi Industrial Equipment Systems Co., Ltd. Power conversion system and power conversion method
JP2020137142A (ja) * 2019-02-12 2020-08-31 株式会社安川電機 モータ制御システム
US11038443B2 (en) 2019-02-12 2021-06-15 Kabushiki Kaisha Yaskawa Denki Motor control system and motor control apparatus

Also Published As

Publication number Publication date
US20180294762A1 (en) 2018-10-11
EP3388906B1 (en) 2020-12-23
US10298166B2 (en) 2019-05-21
EP3388906A1 (en) 2018-10-17
CN108695824B (zh) 2020-01-31
CN108695824A (zh) 2018-10-23
JP6369590B1 (ja) 2018-08-08

Similar Documents

Publication Publication Date Title
JP6369590B1 (ja) モータ制御システム、モータ制御装置、及び安全機能設定方法
JP4817084B2 (ja) モータ駆動システム及びモータ制御装置
US8884571B2 (en) Motor control apparatus which limits torque command according to input current or power
JP5722400B2 (ja) 主軸を有する工作機械の制御装置
KR101799999B1 (ko) 로봇을 제어하기 위한 장치
WO2018155423A1 (ja) モータ制御装置およびモータ制御システム
JPWO2010044243A1 (ja) モータ制御装置
JP2017169336A (ja) モータ制御装置
JP2019144809A (ja) サーボ制御装置
US11038443B2 (en) Motor control system and motor control apparatus
WO2018155424A1 (ja) モータ制御装置
JP2018136708A (ja) モータ制御装置
JP6457778B2 (ja) 数値制御装置
WO2018155511A1 (ja) モータ制御装置
WO2022190536A1 (ja) モータ制御システム及びモータ制御装置
JP2018136696A (ja) モータ制御装置
JP2017177226A (ja) ロボット制御装置
JP2006304537A (ja) モータの電磁ブレーキ制御装置
JP2012221428A (ja) 異常時モータ減速停止制御機能を有する制御装置
KR100608263B1 (ko) 모듈전원제어장치
JP5659840B2 (ja) 機械設備の制御装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180625

R150 Certificate of patent or registration of utility model

Ref document number: 6369590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150