JP2018179073A - Shock absorber for vehicle - Google Patents

Shock absorber for vehicle Download PDF

Info

Publication number
JP2018179073A
JP2018179073A JP2017076407A JP2017076407A JP2018179073A JP 2018179073 A JP2018179073 A JP 2018179073A JP 2017076407 A JP2017076407 A JP 2017076407A JP 2017076407 A JP2017076407 A JP 2017076407A JP 2018179073 A JP2018179073 A JP 2018179073A
Authority
JP
Japan
Prior art keywords
inner cylinder
outer cylinder
vehicle
connecting portion
shock absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017076407A
Other languages
Japanese (ja)
Other versions
JP6789874B2 (en
Inventor
理一 永尾
Riichi Nagao
理一 永尾
浩一 山香
Koichi Yamaka
浩一 山香
喜裕 山口
Yoshihiro Yamaguchi
喜裕 山口
友樹 菊池
Yuki Kikuchi
友樹 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2017076407A priority Critical patent/JP6789874B2/en
Publication of JP2018179073A publication Critical patent/JP2018179073A/en
Application granted granted Critical
Publication of JP6789874B2 publication Critical patent/JP6789874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Damping Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the generation stress of a shock absorber for a vehicle, and to improve static strength and fatigue strength.SOLUTION: This shock absorber for a vehicle comprises: a rod; an inner cylinder part; an outer cylinder part for accommodating the inner cylinder part; a connecting part for connecting the inner cylinder part and the outer cylinder part; and a fixing part for fixing the shock absorber for the vehicle to a wheel support member. A virtual line passing a center point having a circular shape in a cross section of the inner cylinder part out of a virtual line which is parallel with a linear progressing direction of the vehicle is designated as a first virtual line, and the connecting part has first and second connecting parts which are formed at two portions of the inner cylinder part overlapped on the first virtual line, and third and fourth connecting parts which are formed at a portion of the inner cylinder part which is not overlapped on the first virtual line. The fourth connecting part is arranged at a side approximate to the fixing part rather than the third connecting part, a length of the first connecting part in a peripheral direction and a length of the second connecting part in the peripheral direction are longer than a length of the third connecting part in the peripheral direction, and the length of the third connecting part in the peripheral direction is longer than a length of the fourth connecting part in the peripheral direction.SELECTED DRAWING: Figure 2

Description

本発明は、自動車に用いられるショックアブゾーバに係る。   The present invention relates to a shock absorber used in a car.

自動車のサスペンションに用いられるショックアブゾーバは、減衰弁を備えたピストンが内筒に、軸方向に沿って自在に摺動できるように収納される。内筒の外周側には、リザーバ室を形成する外筒が配置され、内筒と外筒の先端部と底端部はそれぞれロッドガイドと底部バルブによって結合されている。また、ピストンはロッドガイドを貫通するロッドの底端側に固定されており、ロッドの先端が車体側とホイール側のいずれか一方側に結合され、外筒がブラケット等を介して他方側に結合される。また、ショックアブゾーバとして、車体自重と走行時のタイヤからの路面負荷や車体の慣性による傾きに対する車体姿勢の支持と振動減衰を行い、乗員の乗り心地向上に用いる複筒式のストラット型ショックアブゾーバが用いられる。   A shock absorber used for a suspension of a car is housed so that a piston provided with a damping valve can freely slide along the axial direction in an inner cylinder. An outer cylinder forming a reservoir chamber is disposed on the outer peripheral side of the inner cylinder, and the tip end and the bottom end of the inner cylinder and the outer cylinder are respectively coupled by a rod guide and a bottom valve. Also, the piston is fixed to the bottom end side of the rod passing through the rod guide, the tip of the rod is connected to either the vehicle body side or the wheel side, and the outer cylinder is connected to the other side via a bracket etc. Be done. Also, as a shock absorber, a double cylinder type strut-type shock absorber is used to improve the riding comfort of the occupant by supporting the vehicle posture and vibration damping with respect to the vehicle's own weight and the road load from the tire during traveling and the inclination due to inertia of the vehicle. A sorber is used.

ショックアブゾーバがストラット型サスペンションに用いられる場合、主にロッドの先端部が車体に結合される。外筒の底端側の外周面に結合されブラケットを介してナックル等のホイール支持部材に結合される。ブラケットは車体外方向に延伸された二面幅の板部でホイール支持部材を挟み込むように結合される。これにより、ストラット型ショックアブゾーバは車体自重を支持する。走行時は慣性等による車体姿勢変化時に生じる車体前後方向に平行な荷重と車体内外方向に平行な荷重の合力(横力)、及びホイール支持部材を介してホイールから入力される車体前後方向に平行な荷重と車体内外方向に平行な荷重の合力(横力)を支持する。   When a shock absorber is used for a strut type suspension, the tip of the rod is mainly coupled to the vehicle body. It is coupled to the outer peripheral surface on the bottom end side of the outer cylinder and coupled to a wheel support member such as a knuckle via a bracket. The bracket is coupled so as to sandwich the wheel support member by a flat plate portion extended in the outward direction of the vehicle body. Thus, the strut type shock absorber supports the vehicle's own weight. When traveling, the resultant force (lateral force) of a load parallel to the longitudinal direction of the vehicle and a load parallel to the longitudinal direction of the vehicle generated when the attitude of the vehicle changes due to inertia etc., and parallel to the longitudinal direction of the vehicle input from the wheel via the wheel support member Support the combined force (lateral force) of the load and the load parallel to the in-vehicle direction.

特開平11−182610号公報Unexamined-Japanese-Patent No. 11-182610 gazette

従来の複筒式ストラット型ショックアブゾーバは、外筒と内筒が先端と底部の両端でロッドガイドと底部バルブを介して互いに結合された構造となっている。そのため、複筒式ストラット型ショックアブゾーバには、走行中の加減速やコーナリングによる車体姿勢の変化と、路面状態に起因したホイール接地状態や姿勢の変化により外筒には大きな負荷となる横力が入力される。複筒式ストラット型ショックアブゾーバはブラケット結合部近辺の充分な静的強度と疲労強度を確保するために、外筒の拡径や肉厚化による応力低減が必要であるが、近年、自動車には環境影響を鑑みた燃費改善のために軽量化が求められており、強度と軽量化の両立が必要である。   The conventional double cylinder type strut type shock absorber has a structure in which an outer cylinder and an inner cylinder are connected to each other at both ends of a tip and a bottom through a rod guide and a bottom valve. Therefore, in the double-tube type strut type shock absorber, the lateral force that causes a large load on the outer cylinder due to changes in the vehicle posture due to acceleration or deceleration or cornering while traveling, and changes in the wheel grounding condition or posture due to road surface conditions. Is input. In order to secure sufficient static strength and fatigue strength near the bracket joint, double-tube type strut-type shock absorbers require stress reduction by diameter expansion and thickening of the outer cylinder, but in recent years In order to improve fuel efficiency in consideration of environmental impact, weight reduction is required, and it is necessary to have both strength and weight reduction.

また、強度的にネックとなるブラケット結合部近辺では、車体前後方向が車体内外側方向に対して高い強度が必要となる。これは、前記した複筒式ストラット型ショックアブゾーバに車体やホイールから横力に対して、車体内外方向の分力については、ブラケット結合部近辺では車体外方向に延伸されたブラケットの二面幅板部が横力を負担し,車体内外方向のブラケット結合部近辺では応力が小さくなるからである。従って、ブラケット結合部近辺では、車体前後方向が車体内外側方向に対して高い静的強度と疲労強度が必要となる。加えて、ブラケット結合部近辺の車体内外方向でも必要となる静的強度と疲労強度に差があり、ブラケットの二面幅板部に近い車体外方向は車体内方向に対して必要となる静的強度と疲労強度が低くなる。従来の複筒式ストラット型ショックアブゾーバの外筒は円形であったため、最も高い静的強度と疲労強度を必要とする車体前後方向のブラケット結合部近辺において、充分な強度を確保できる径や肉厚を設ける必要ある。   Further, in the vicinity of the bracket connecting portion, which is a neck in terms of strength, high strength is required for the longitudinal direction of the vehicle with respect to the outer side of the vehicle. This is the lateral force from the vehicle body and wheels in the double-tube type strut-type shock absorber described above, and the component force in the inward and outward direction of the vehicle body is the width across flats of the bracket extended in the outward direction of the vehicle body near the bracket joint. This is because the plate portion bears the lateral force, and the stress becomes small in the vicinity of the bracket joint portion in the inward and outward direction of the vehicle body. Therefore, in the vicinity of the bracket joint portion, high static strength and fatigue strength are required with respect to the vehicle body front-rear direction with respect to the inside and outside direction of the vehicle body. In addition, there is a difference between the static strength and the fatigue strength that is also required in the vehicle inward and outward directions near the bracket joint, and the static outside is required for the vehicle inward direction near the double width plate portion of the bracket. Strength and fatigue strength decrease. Since the outer cylinder of the conventional double cylinder type strut type shock absorber is circular, the diameter and the thickness that can ensure sufficient strength in the vicinity of the bracket joint in the longitudinal direction of the vehicle requiring the highest static strength and fatigue strength. It is necessary to provide a thickness.

さらに、前述した従来の複筒式ストラット型ショックアブゾーバは、製造時における内筒と外筒組み立て時のセンタリングを先端と底端部のロッドガイドと底部バルブで行っていた。内筒と外筒のセンタリング精度はピストンやロッドが減衰機能を発揮するために直動した際の摺動抵抗に影響する。   Furthermore, in the conventional double-tube type strut-type shock absorber described above, centering at the time of manufacturing of the inner cylinder and outer cylinder was performed by the rod guide at the tip and bottom end and the bottom valve. The centering accuracy of the inner cylinder and the outer cylinder affects the sliding resistance when the piston or rod linearly moves in order to exhibit the damping function.

加えて、前述した従来の複筒式ストラット型ショックアブゾーバの場合、内筒と外筒をロッドガイドと底部バルブの間に挟み込んで外筒先端部をかしめ固定する構造としていた。内筒と外筒を確実に一体に連結するためにかしめ力を高めて内筒に大きな圧縮軸力を付与する必要があった。組付作業性の改良が望まれている。   In addition, in the case of the conventional double cylinder type strut type shock absorber described above, the inner cylinder and the outer cylinder are sandwiched between the rod guide and the bottom valve, and the outer cylinder tip portion is crimped and fixed. In order to connect the inner cylinder and the outer cylinder together securely, it is necessary to increase the caulking force to apply a large compression axial force to the inner cylinder. Improvement of assembly workability is desired.

本発明の課題は、車両用ショックアブゾーバの発生応力を低減させ,静的強度と疲労強度を向上させることである。また別の課題として、組付作業性を向上させることである。   An object of the present invention is to reduce the generation stress of a vehicle shock absorber and to improve static strength and fatigue strength. Another problem is to improve assembling workability.

本発明に係る車両用ショックアブソーバは、ロッドと、前記ロッドを収納する内筒部と、前記内筒部を収納する外筒部と、前記内筒部の外周の一部と前記外筒部の内周の一部を接続する連結部と、当該車両用ショックアブソーバをホイール支持部材に固定させる固定部と、を備え、車両の直進方向に平行な仮想線のうち前記内筒部の断面円形の中心点を通る仮想線を第1仮想線と定義し、前記連結部は、前記第1仮想線と重なる前記内筒部の2つの部分にそれぞれ形成される第1連結部及び第2連結部と、前記第1仮想線と重ならない前記内筒部の部分に形成される第3連結部及び第4連結部と、を有し、前記第4連結部は、前記第3連結部よりも、前記固定部に近い側に設けられ、前記第1連結部の周方向の長さと前記第2連結部の周方向の長さは、前記第3連結部の周方向の長さよりも長く、前記第3連結部の周方向の長さは、前記第4連結部の周方向の長さよりも長い。   The shock absorber for a vehicle according to the present invention comprises a rod, an inner cylindrical portion for housing the rod, an outer cylindrical portion for housing the inner cylindrical portion, a part of the outer periphery of the inner cylindrical portion and the outer cylindrical portion. A connecting portion for connecting a part of the inner periphery, and a fixing portion for fixing the vehicle shock absorber to the wheel support member, wherein the virtual cylinder parallel to the straight direction of the vehicle has a circular cross section of the inner cylinder portion A virtual line passing through a central point is defined as a first virtual line, and the connecting portion is formed of a first connecting portion and a second connecting portion respectively formed in two portions of the inner cylindrical portion overlapping with the first virtual line. And a third connecting portion and a fourth connecting portion formed in the portion of the inner cylindrical portion not overlapping the first imaginary line, wherein the fourth connecting portion is the same as the third connecting portion. It is provided on the side near the fixed part, and the circumferential length of the first connecting part and the circumferential direction of the second connecting part Length, the third longer than the circumferential length of the connecting portion, the circumferential direction length of the third connecting portion is longer than the circumferential length of the fourth connecting portion.

本発明によると、外筒の大径化や肉厚増加を招くことなく外筒とブラケット結合部近辺の車体前後内外方向それぞれに対して充分な静的強度及び疲労強度の確保と軽量化を両立でき、且つ、内筒と外筒のセンタリング精度の向上と組付作業性の向上を図れる複筒式ストラット型ショックアブゾーバを提供できる。   According to the present invention, it is possible to achieve both of securing sufficient static strength and fatigue strength and weight reduction in each of the front and rear, inside and outside directions of the outer cylinder and the bracket joint without causing an increase in diameter and thickness of the outer cylinder. Thus, it is possible to provide a double-tube type strut-type shock absorber which can improve the centering accuracy of the inner and outer cylinders and the assembling workability.

本実施形態に係る複筒式ストラット型ショックアブゾーバである縦断面図である。It is a longitudinal cross-sectional view which is a double cylinder type strut type shock absorber concerning this embodiment. 図1の断面AA´の矢印方向からみた断面図である。It is sectional drawing seen from the arrow direction of cross-sectional AA 'of FIG. 他の実施形態に係る複筒式ストラット型ショックアブゾーバである縦断面図である。It is a longitudinal cross-sectional view which is a double cylinder type strut type shock absorber concerning other embodiments.

以下、図面を参照して本発明の実施形態を、複筒式ストラット型ショックアブゾーバを用いて説明する。   Hereinafter, embodiments of the present invention will be described using a double-tube type strut-type shock absorber with reference to the drawings.

まず、実施形態1を図1、図2を用いて説明する。 First, the first embodiment will be described with reference to FIGS. 1 and 2.

図1は、本実施形態に係る複筒式ストラット型ショックアブゾーバである縦断面図である。図2は、図1の断面AA´の矢印方向からみた断面図である。このストラット1は、ピストン9を摺動自在に収容する内筒3の外周側に中心線71を中心としてこの内筒3と同心に外筒4が配置される。内筒3と外筒4の間にリザーバ室22が形成されている。   FIG. 1 is a longitudinal sectional view which is a double cylinder type strut type shock absorber according to the present embodiment. FIG. 2 is a cross-sectional view of the cross section AA ′ of FIG. 1 as viewed in the arrow direction. In the strut 1, the outer cylinder 4 is disposed concentrically with the inner cylinder 3 around the center line 71 on the outer peripheral side of the inner cylinder 3 in which the piston 9 is slidably accommodated. A reservoir chamber 22 is formed between the inner cylinder 3 and the outer cylinder 4.

内筒3と外筒4は、連結部30で一体に形成される。この内筒3と外筒4のY軸方向の先端部には、シール6とロッドガイド7が設けられる。外筒4の先端側は、軸長が内筒3の軸長よりも長く、且つ、外筒4の内径が他部に対して大きく形成される。この部分に外筒4にシール6とロッドガイド7が収納され、一体化された外筒先端版4aでシール6とロッドガイド7をかしめ固定して封止される。   The inner cylinder 3 and the outer cylinder 4 are integrally formed by the connecting portion 30. A seal 6 and a rod guide 7 are provided at the tip of the inner cylinder 3 and the outer cylinder 4 in the Y-axis direction. The axial length of the tip end side of the outer cylinder 4 is longer than the axial length of the inner cylinder 3, and the inner diameter of the outer cylinder 4 is formed larger than the other portions. The seal 6 and the rod guide 7 are accommodated in the outer cylinder 4 in this portion, and the seal 6 and the rod guide 7 are crimped and sealed by the integrated outer cylinder tip plate 4a.

Y軸方向の底端部には底端バルブ12と外筒底板5が設けられるが、先端側と同様に、外筒4の底端側は軸長が内筒3の軸長よりも長い。この部分に底端バルブ12と外筒底板5が収納され、底端バルブ12は外筒3の内径表面に溶接等で結合された外筒底板5で固定して封止されている。   Although the bottom end valve 12 and the outer cylinder bottom plate 5 are provided at the bottom end in the Y-axis direction, the axial length of the bottom end of the outer cylinder 4 is longer than the axial length of the inner cylinder 3 like the tip side. The bottom end valve 12 and the outer cylinder bottom plate 5 are accommodated in this portion, and the bottom end valve 12 is fixed and sealed by the outer cylinder bottom plate 5 joined to the inner diameter surface of the outer cylinder 3 by welding or the like.

ピストン9は、ロッド2のY軸方向の底端部に結合される。ロッド2の先端部は、ロッドガイド7とシール6を貫通して外筒4のY軸方向の先端部に延出し、図示しない防振ゴムを介して車体に結合されている。内筒3内には、オイル等の図示しない液体が充填されており、リザーバ室22には液体と共に所定量の図示しないガスが封入されている。   The piston 9 is coupled to the bottom end of the rod 2 in the Y-axis direction. The tip end portion of the rod 2 extends through the rod guide 7 and the seal 6 to the tip end portion of the outer cylinder 4 in the Y-axis direction, and is coupled to the vehicle body via anti-vibration rubber (not shown). The inner cylinder 3 is filled with a liquid (not shown) such as oil, and the reservoir chamber 22 is filled with a predetermined amount of gas (not shown) along with the liquid.

外筒4のY軸方向の底端側の外周面には、円弧状に曲げられた板状のブラケット8が巻回され、その状態においてその巻回部のY軸方向の先端部と底端部がと外筒4の外表面とY軸回りの周方向に溶接で結合されている。   An arc-shaped plate-like bracket 8 is wound around the outer peripheral surface on the bottom end side of the outer cylinder 4 in the Y-axis direction, and in that state, the tip and bottom end of the wound portion in the Y-axis direction The portion is joined by welding to the outer surface of the outer cylinder 4 and the circumferential direction around the Y axis.

ブラケット8のX軸方向両端のブラケット巻回部8aとブラケット巻回部8bは互いに二面幅状に離間してZ軸方向の車体外方向に向かってに延出し、図2で示すナックル等のホイール支持部材40に対して、ボルト結合8cでボルト締結され、車両に固定される。   The bracket winding portion 8a and the bracket winding portion 8b at both ends in the X axis direction of the bracket 8 are mutually separated in a two-plane width shape and extend toward the vehicle body outward direction of the Z axis direction. The wheel support member 40 is bolted with a bolt connection 8c and fixed to the vehicle.

ピストン9は、内筒3内に収納され、内筒3の内部を上部室20と下部室21に隔てられる。ピストン9には、一箇所以上のピストンオリフィス9aと、伸び側減衰弁11と、ピストンチェック弁10が設けられる。ロッド2が中心線71に沿って伸び方向(+Y軸方向)にストロークした時の減衰力は、液体が上部室20から下部室21に流入する時にピストンオリフィス9aと伸び側減衰弁11を通過することにより流通抵抗が負荷されて生み出される。   The piston 9 is housed in the inner cylinder 3, and the inside of the inner cylinder 3 is separated into the upper chamber 20 and the lower chamber 21. The piston 9 is provided with one or more piston orifices 9a, an expansion damping valve 11, and a piston check valve 10. When the rod 2 strokes in the extension direction (+ Y axis direction) along the center line 71, the damping force passes through the piston orifice 9a and the extension damping valve 11 when the liquid flows from the upper chamber 20 into the lower chamber 21. Distribution resistance is loaded and produced.

ロッド2が中心線71に沿って縮み方向(−Y軸方向)にストロークした時には、液体はピストンチェック弁10により、下部室21からピストンオリフィス9aを通って上部室20へ流入させられる。   When the rod 2 strokes along the center line 71 in the shrinking direction (-Y-axis direction), the liquid is caused to flow from the lower chamber 21 through the piston orifice 9a into the upper chamber 20 by the piston check valve 10.

底部バルブ12には、一箇所以上の底部バルブオリフィス12aと、底部バルブチェック弁13と、縮み側減衰弁14が設けられる。ロッド2が中心線71に沿って伸び方向(+Y軸方向)にストロークした時には、液体は底部バルブチェック弁13により、リザーバ室22から底部バルブオリフィス12aを通って下部室21への液体を流入させられる。   The bottom valve 12 is provided with one or more bottom valve orifices 12 a, a bottom valve check valve 13 and a compression side damping valve 14. When the rod 2 strokes in the extension direction (+ Y axis direction) along the center line 71, the liquid is made to flow from the reservoir chamber 22 through the bottom valve orifice 12a to the lower chamber 21 by the bottom valve check valve 13. Be

ロッド2が中心線71に沿って縮み方向(−Y軸方向)にストロークした時の減衰力は、液体が下部室21からリザーバ室22に流入する時に底部バルブオリフィス12aと縮み側減衰弁14を通過することにより流通抵抗が負荷されて生み出される。   The damping force when the rod 2 strokes along the center line 71 in the shrinking direction (-Y axis direction) is when the liquid flows from the lower chamber 21 into the reservoir chamber 22 and the bottom valve orifice 12a and the shrinking damping valve 14 The passage resistance is created by being loaded with flow resistance.

従って、ロッド2が中心線71に沿って伸び方向(+Y軸方向)にストロークする時には、ピストン9のピストンオリフィス9aと伸び側減衰弁11で減衰力を発生すると同時に、ロッド2の退出分の液体が底部バルブ12の底部バルブチェック弁13を通してリザーバ室22から下部室21内に補充され、逆にロッド3が中心線71に沿って縮み方向(−Y軸方向)にストロークするときには、上部室20と下部室21が導通すると同時に、下部室21からリザーバ室22に液体が流入して底部バルブ14の底部バルブオリフィス12aと縮み側減衰弁14で減衰力を発生する。   Therefore, when the rod 2 strokes in the extension direction (+ Y axis direction) along the center line 71, a damping force is generated by the piston orifice 9a of the piston 9 and the extension side damping valve 11, and at the same time Is refilled into the lower chamber 21 from the reservoir chamber 22 through the bottom valve check valve 13 of the bottom valve 12, and conversely, when the rod 3 travels in the contraction direction (-Y axis direction) along the center line 71, the upper chamber 20 As the lower chamber 21 conducts, liquid flows from the lower chamber 21 into the reservoir chamber 22 and a damping force is generated by the bottom valve orifice 12a of the bottom valve 14 and the contraction side damping valve 14.

図2に示される外筒4の内径面はY軸方向に沿って延出する4箇所の連結部30によって内筒3の外径面に一部を一体化されている。この4箇所の連結部30は図2に示した通りに配置される。まず、車両の直進方向となる車体前後方向に平行で内筒3の同心円上に配置した外筒4の中心点70を通る第1仮想線50を定義する。この第1仮想線50上に車体前方向の第1連結部30aと車体後方向の第2連結部30bを、第1連結部30aの周方向長さt30aと第1連結部30bの周方向長さt30bの中央と一致させるように設ける。なお、第1連結部30aと第2連結部30bは周方向長さt30aと周方向長さt30bの範囲で第1仮想線50上に位置していれば良い。   The inner diameter surface of the outer cylinder 4 shown in FIG. 2 is partially integrated with the outer diameter surface of the inner cylinder 3 by four connecting portions 30 extending along the Y-axis direction. The four connecting portions 30 are arranged as shown in FIG. First, a first virtual line 50 passing through the center point 70 of the outer cylinder 4 disposed on the concentric circle of the inner cylinder 3 in parallel with the longitudinal direction of the vehicle body in which the vehicle travels straight is defined. The first connecting portion 30a in the vehicle forward direction and the second connecting portion 30b in the vehicle backward direction on the first virtual line 50, the circumferential length t30a of the first connecting portion 30a and the circumferential length of the first connecting portion 30b It is provided to coincide with the center of t30b. The first connecting portion 30a and the second connecting portion 30b may be located on the first virtual line 50 in the range of the circumferential length t30a and the circumferential length t30b.

次に、第1仮想線50と重ならない第3連結部30cと第4連結部30dを、第4連結部30dは第3連結部30cに対してホイール支持部材40に近い側となるように設ける。本実施形態では、第3連結部30cと第4連結部30dは車体内外方向に平行で中心点70を通り、第1仮想線50と直交する第2仮想線51を定義し、その線上に設ける。第3連結部30cは周方向長さt30cの中央を第2仮想線51に一致させた車体内方向に設け、第4連結部30dは周方向長さt30dの中央を第2仮想線51に一致させた車体外方向に設ける。なお、第1連結部30aと第2連結部30bは第1仮想線50と重ならない範囲で、第2仮想線51上に位置していなくとも良いが、周方向長さt30cと周方向長さt30dの範囲で第2仮想線51上に位置している方が好ましい。   Next, the third connecting portion 30c and the fourth connecting portion 30d which do not overlap with the first virtual line 50 are provided so that the fourth connecting portion 30d is closer to the wheel support member 40 than the third connecting portion 30c. . In the present embodiment, the third connecting portion 30c and the fourth connecting portion 30d define a second virtual line 51 which is parallel to the vehicle interior and exterior direction and passes through the center point 70 and is orthogonal to the first virtual line 50 and is provided on that line . The third connecting portion 30c is provided in the in-vehicle direction in which the center of the circumferential length t30c coincides with the second imaginary line 51, and the fourth connecting portion 30d matches the center of the circumferential length t30d with the second virtual line 51. Installed on the outside of the vehicle. Although the first connecting portion 30a and the second connecting portion 30b may not be located on the second virtual line 51 without overlapping the first virtual line 50, the circumferential length t30c and the circumferential length It is preferable to be located on the second virtual line 51 in the range of t30d.

本実施形態の場合、連結部30はいずれも内筒3のY軸方向の先端部と底端部の両端に達するように連続して形成される。連結部30の内筒3のY軸方向に沿った延伸距離は先端部と底端部の両端に達するように連続して形成した方が好ましいが、本発明では、内筒3のY軸方向長さに対して、連結部30は長く形成することや短く形成することを排除しない。内筒3、外筒4を一体形成されるが、構成材料はアルミ合金材を適用している。なお、構成材料は鉄鋼材、アルミ合金材、マグネシウム合金材、チタン合金材、樹脂材、炭素系複合材、ガラス系複合材を用いても良い。ただし、環境温度の変化やストローク時の液体の発熱による熱変形に対して線膨張係数を同等とし、同等の変形量とするため、連結部30、内筒3、外筒4は同種材で構成した方が好ましい。なお、本発明では、連結部30、内筒3、外筒4を異種材で構成することを排除しない。具体的な製造方法としては、例えば、アルミ合金材料の引き抜き成形または押し出し成形によって、連結部30、内筒3、外筒4を一体化した断面形状の長尺品を連続的に造形し、その後所定長さに切断して内筒3と連結部30の先端と底端を所定長さ分だけ切除する。このように製造することにより、容易、且つ、効率良く製品製造でき、製造コストの削減が可能になる。引き抜き成形や押し出し成形によって製品強度も高められる。   In the case of this embodiment, the connecting portions 30 are continuously formed so as to reach both ends of the tip end portion and the bottom end portion of the inner cylinder 3 in the Y-axis direction. The extension distance along the Y-axis direction of the inner cylinder 3 of the connecting portion 30 is preferably formed continuously so as to reach both ends of the tip end and the bottom end, but in the present invention, the Y-axis direction of the inner cylinder 3 is With respect to the length, the connecting portion 30 is not excluded from being formed long or short. Although the inner cylinder 3 and the outer cylinder 4 are integrally formed, an aluminum alloy material is applied as a constituent material. A steel material, an aluminum alloy material, a magnesium alloy material, a titanium alloy material, a resin material, a carbon-based composite material, and a glass-based composite material may be used as the constituent material. However, in order to make the linear expansion coefficient equal to the thermal deformation due to the change of the environmental temperature or the heat generation of the liquid at the stroke, and to make the equivalent amount of deformation, the connecting portion 30, the inner cylinder 3 and the outer cylinder 4 are made of the same material. It is preferable to In the present invention, the connection portion 30, the inner cylinder 3, and the outer cylinder 4 may not be made of different materials. As a specific manufacturing method, for example, a long product having a cross-sectional shape in which the connecting portion 30, the inner cylinder 3, and the outer cylinder 4 are integrated is continuously shaped by pultrusion or extrusion of an aluminum alloy material, It is cut into a predetermined length, and the front end and the bottom end of the inner cylinder 3 and the connecting portion 30 are cut by a predetermined length. By manufacturing in this manner, the product can be manufactured easily and efficiently, and the manufacturing cost can be reduced. Product strength is also enhanced by pultrusion and extrusion.

また、図2に示したストラット1では、4箇所に設けた連結部30の周方向長さは、第1連結部30aの周方向長さt30aと第2連結部30bの周方向長さt30bが第3連結部30cの周方向長さt30cより長く、第3連結部30cの周方向長さt30cが第4連結部30dの周方向長さt30dより長く設けている。ストラット1には、車両走行中の加減速やコーナリングによる車体姿勢の変化や路面状態に起因したホイール接地状態や姿勢の変化により、ロッド2の先端部とホイール支持部材40には大きな横力が作用する。ホイール支持部材40に作用する横力はホイール支持部材40とブラケット8のボルト締結部を介して、ブラケット8に作用する。ロッド先端に作用する横力の分力はそれぞれ、車体前後方向(X軸方向)に平行な分力FtXと車体内外方向(Z軸方向)に平行な分力FtZとなる。ホイール支持部材40に作用する横力の分力は車体前後方向(X軸方向)に平行な分力FbXと車体内外方向(Z軸方向)に平行な分力FbZとなる。   Further, in the strut 1 shown in FIG. 2, the circumferential length of the connecting portion 30 provided at four locations is the circumferential length t30a of the first connecting portion 30a and the circumferential length t30b of the second connecting portion 30b. The circumferential length t30c of the third connecting portion 30c is longer than the circumferential length t30c of the third connecting portion 30c, and the circumferential length t30d of the fourth connecting portion 30d is longer. A large lateral force acts on the tip of the rod 2 and the wheel support member 40 on the strut 1 due to changes in the vehicle attitude due to acceleration and deceleration during cornering and vehicle cornering and changes in the wheel ground state and attitude due to road surface conditions. Do. The lateral force acting on the wheel support member 40 acts on the bracket 8 through the bolt support portion of the wheel support member 40 and the bracket 8. The component forces of the lateral force acting on the tip of the rod are the component force FtX parallel to the longitudinal direction of the vehicle (X-axis direction) and the component force FtZ parallel to the lateral direction (Z-axis direction) of the vehicle. The component force of the lateral force acting on the wheel support member 40 is a component force FbX parallel to the longitudinal direction of the vehicle (X-axis direction) and a component force FbZ parallel to the lateral direction (Z-axis direction) of the vehicle.

車両走行時にストラット1には、これら4つの分力が大きさと方向及び分力の組み合わせが時々刻々とランダムに変化して作用する。各分力の作用によりストラット1には曲げ変形が発生する。その曲げ変形により、図1に示したA−A’線近辺のブラケット結合部近辺では高い応力が発生して強度的にネックとなる。   When the vehicle travels, these four component forces act on the strut 1 at random and the combination of magnitude, direction, and component momentarily changes. Bending deformation occurs in the strut 1 due to the action of each component. Due to the bending deformation, high stress is generated in the vicinity of the bracket joint portion in the vicinity of the A-A ′ line shown in FIG.

特に、図2に示した第1仮想線50と第2仮想線51上に位置する外筒4の外径表面で高い応力σ30a、応力σ30b、応力σ30c、応力σ30dが発生する。ただし、車体内外方向(Z軸方向)に関しては、ブラケット8のブラケット巻回部8aとブラケット巻回部8bがZ軸方向の車体外方向に向かってに延出しており、ブラケット8は車体内外方向(Z軸方向)に対する断面2次モーメントが板厚方向となる車体前後方向(X軸方向)に対して大きい。   In particular, high stress σ 30 a, stress σ 30 b, stress σ 30 c, and stress σ 30 d are generated on the outer diameter surface of the outer cylinder 4 located on the first phantom line 50 and the second phantom line 51 shown in FIG. However, the bracket winding portion 8a and the bracket winding portion 8b of the bracket 8 extend in the outward direction of the vehicle body in the Z axis direction with respect to the vehicle body inner and outer direction (Z axis direction). The cross-sectional secondary moment with respect to the (Z-axis direction) is large with respect to the vehicle longitudinal direction (X-axis direction) which is the thickness direction.

そのため、ブラケット8は車体内外方向(Z軸方向)に対する剛性が高く、車体内外方向(Z軸方向)に作用する分力FtZと分力FbZを車体前後方向(X軸方向)に作用する分力FtXと分力FbXをと比較して多く負担する。結果、図2に示したブラケット結合部近辺の応力σ30cと応力σ30dは応力σ30aと応力σ30bに対して小さくなる。分力FbZの作用位置から応力σ30cの発生箇所の距離は応力σ30dとの距離に対して長く、応力σ30cには距離差分のモーメントが上乗せされるため、応力σ30cは応力σ30dに対して大きくなる。従って、応力σ30a、応力σ30b、応力σ30c、応力σ30dそれぞれに対してストラット1の強度を充分確保できるように、該当するそれぞれの連結部30の周方向長さt30a、t30b、t30c、t30dとする。   Therefore, the bracket 8 has high rigidity with respect to the in-vehicle direction (Z-axis direction), and the component force FtZ acting in the in-vehicle direction (Z-axis direction) and the component force acting in the vehicle longitudinal direction (X-axis direction) It bears a lot compared to FtX and the component force FbX. As a result, the stress σ 30 c and the stress σ 30 d in the vicinity of the bracket joint portion shown in FIG. 2 become smaller than the stress σ 30 a and the stress σ 30 b. The distance from the acting position of the component force FbZ to the generation position of the stress σ30c is longer than the distance to the stress σ30d, and the moment of the distance difference is added to the stress σ30c, so the stress σ30c becomes larger than the stress σ30d. Therefore, circumferential lengths t30a, t30b, t30c, and t30d of the corresponding connecting portions 30 are set so that the strength of the strut 1 can be sufficiently secured with respect to each of the stress σ30a, stress σ30b, stress σ30c, and stress σ30d.

周方向長さの関係は応力の大きさ関係からt30aとt30bはt30cより長く、t30cはt30dより長くする。t30aとt30bの周方向長さに関しては、t30cより大きい範囲で等しくても良く、異なっていても良い。   From the relationship of magnitude of stress, t30a and t30b are longer than t30c, and t30c is longer than t30d. The circumferential lengths of t30a and t30b may be equal to or different from each other in a range larger than t30c.

ストラット1は以上のような構成とするため、4箇所の連結部30を、充分な静的強度と疲労強度を確保できる必要最低限の周方向長さで構成するため、ストラット1を軽量化できる。また、連結部30により、外筒4と内筒3が一体化されるため、応力σ30a、応力σ30b、応力σ30c、応力σ30dは内筒3でも負担される。外筒4と内筒3が分離している状態に対して応力σ30a、応力σ30b、応力σ30c、応力σ30dを低減できるため、ストラット1は横力に対する静的強度と疲労強度を充分に確保できる。   Since the strut 1 is configured as described above, the four connecting portions 30 can be reduced in weight because the struts 1 can be configured with the minimum necessary circumferential length that can ensure sufficient static strength and fatigue strength. . Further, since the outer cylinder 4 and the inner cylinder 3 are integrated by the connecting portion 30, the stress σ30a, the stress σ30b, the stress σ30c, and the stress σ30d are also borne by the inner cylinder 3. The stress σ30a, the stress σ30b, the stress σ30c, and the stress σ30d can be reduced with respect to the state where the outer cylinder 4 and the inner cylinder 3 are separated, so that the strut 1 can sufficiently ensure static strength and fatigue strength against lateral force.

さらに、本実施形態では内筒3、外筒4、及び連結部30をアルミ材で一体形成している。低減した応力を用いて、鉄鋼材等に対しては引張強度が低下するものの、低密度なアルミ材で形成することにより、ストラット1の横力に対する静的強度と疲労強度を充分に確保しつつ、さらなるストラット1の軽量化ができる。   Furthermore, in the present embodiment, the inner cylinder 3, the outer cylinder 4, and the connecting portion 30 are integrally formed of an aluminum material. Although the tensile strength is lowered for steel materials etc. by using the reduced stress, by using a low density aluminum material, the static strength and the fatigue strength against the lateral force of the strut 1 are sufficiently secured. The weight of the strut 1 can be further reduced.

このストラット1は組付時においても、内筒3と外筒4のセンタリングの必要がなくなり、組付作業性が大幅に向上する。内筒3と外筒4は中心点70を中心とした同心円上に配置され、連結部30一体に結合されるため、内筒3と外筒4のY軸方向の両端部だけでセンタリングを行っていた従来に対して内筒3と外筒4の中心をより正確に一致させることができる。シール6、ロッドガイド7や外筒4の底部バルブ12の組付についても、シール6とロッドガイド7は外筒先端版4aのかしめ力で、底部バルブ12は外筒底版5と外筒4との溶接のみで内筒3と外筒4に固定されるだけで良い。シール6、ロッドガイド7、内筒3、外筒4、及び底部バルブ12を挟み込み、外筒底版5に押し当てて外筒先端版4aのかしめ力で圧縮軸力を負荷して組付ける必要がなくなるため、組付作業をより容易にすることができる。   The strut 1 eliminates the need for centering of the inner cylinder 3 and the outer cylinder 4 even at the time of assembly, and the assembly workability is greatly improved. The inner cylinder 3 and the outer cylinder 4 are disposed concentrically around the center point 70 and integrally coupled to the connecting portion 30. Therefore, centering is performed only at both ends of the inner cylinder 3 and the outer cylinder 4 in the Y axis direction. The centers of the inner cylinder 3 and the outer cylinder 4 can be made to coincide with each other more accurately than in the prior art. As for the assembly of the seal 6, the rod guide 7 and the bottom valve 12 of the outer cylinder 4, the seal 6 and the rod guide 7 are the caulking force of the outer cylinder tip plate 4a, and the bottom valve 12 is the outer cylinder bottom plate 5 and the outer cylinder 4 It suffices to be fixed to the inner cylinder 3 and the outer cylinder 4 only by welding. The seal 6, the rod guide 7, the inner cylinder 3, the outer cylinder 4 and the bottom valve 12 must be held together and pressed against the outer cylinder bottom plate 5 to apply compression axial force by caulking force of the outer cylinder tip plate 4a. As this is eliminated, assembly work can be made easier.

さらに、ストラット1においては、内筒3の軸方向となるY軸方向長さの全域が連結部30を介して外筒4に一体化されて補強されるため、ピストン9のストローク時に発生するこじりが内筒3内のどの位置であっても内筒3の変形を確実に阻止できるようになる。結果、常時安定した減衰性能を得ることが可能になる。また、ロッド2やホイール支持部材40から作用する横力に対して外筒4の曲げ剛性を高め、ストラット1の傾きを低減することができるため、車体やホイールの支持剛性が高まり、車両の走行安定性も高まる。   Furthermore, in the strut 1, the entire length in the Y-axis direction in the axial direction of the inner cylinder 3 is integrated with the outer cylinder 4 via the connecting portion 30 and reinforced, so that the strain occurs at the stroke of the piston 9 In any position in the inner cylinder 3, the deformation of the inner cylinder 3 can be reliably prevented. As a result, it is possible to always obtain stable damping performance. Further, since the bending rigidity of the outer cylinder 4 can be enhanced with respect to the lateral force acting from the rod 2 and the wheel supporting member 40 and the inclination of the strut 1 can be reduced, the supporting rigidity of the vehicle body and the wheel is enhanced. Stability also increases.

加えて、ストラット1にあっては、内筒3と外筒4を連結部30によって一体化した構造であり、内筒3、外筒4、及び連結部30を熱電伝導率が鉄鋼材等に対して高いアルミ合金で形成したことから、ストラット1の減衰作動に伴って、内筒3内部の液体の内部摩擦で発生した熱を連結部30と外筒4の壁面を通して効率良く伝導し外部に放熱させることができ、安定した減衰性能を得ることができる。   In addition, the strut 1 has a structure in which the inner cylinder 3 and the outer cylinder 4 are integrated by the connecting portion 30, and the thermoelectric conductivity of the inner cylinder 3, the outer cylinder 4 and the connecting portion 30 is steel or the like. On the other hand, since it is formed of a high aluminum alloy, the heat generated by the internal friction of the liquid inside the inner cylinder 3 is efficiently conducted through the wall surface of the connecting portion 30 and the outer cylinder 4 along with the damping operation of the strut 1 to the outside It is possible to dissipate heat and obtain stable damping performance.

つづいて、本発明の実施形態2について図3を用いて説明する。なお、図1と図2に示した実施形態1と同一部分には同一符号を付し、実施形態1と重複する部分の説明は省略する。   Subsequently, a second embodiment of the present invention will be described with reference to FIG. The same parts as those of the first embodiment shown in FIGS. 1 and 2 are denoted by the same reference numerals, and the description of the parts overlapping with the first embodiment is omitted.

実施形態2のストラット100は、基本的な構造及び機能は実施形態1と同様であるが、内筒103と外筒104の軸方向(Y軸方向)先端部と底端部の形状が実施形態1と異なっている。   The basic structure and function of the strut 100 of the second embodiment is the same as that of the first embodiment, but the shapes of the axial direction (Y-axis direction) tip and bottom end of the inner cylinder 103 and the outer cylinder 104 are an embodiment. It is different from 1.

ストラット100では、内筒103と外筒104は先端部と底端部の両側がともに同じ軸長に設定されている。シール6とロッドガイド7は外筒キャップ105に収納されて、内筒103と外筒104に固定され、底部バルブ12は外筒底版5を外筒104の底端部の底面に溶接して固定される。外筒キャップ105は外筒104の先端部に外径表面に溶接やかしめ等で固定される。   In the strut 100, both the tip end and the bottom end of the inner cylinder 103 and the outer cylinder 104 have the same axial length. The seal 6 and the rod guide 7 are housed in the outer cylinder cap 105 and fixed to the inner cylinder 103 and the outer cylinder 104, and the bottom valve 12 welds the outer cylinder bottom plate 5 to the bottom surface of the bottom end of the outer cylinder 104 to fix it. Be done. The outer cylinder cap 105 is fixed to the tip of the outer cylinder 104 on the outer diameter surface by welding, crimping or the like.

ストラット100においても、連結部30はいずれも内筒103のY軸方向の先端部と底端部の両端に達するように連続して形成される。連結部30の内筒103のY軸方向に沿った延伸距離は先端部と底端部の両端に達するように連続して形成した方が好ましいが、本発明では、内筒103のY軸方向長さに対して、連結部30は長く形成することや短く形成することを排除しない。内筒103、外筒104を一体形成されるが、構成材料はアルミ合金材を適用している。なお、構成材料は鉄鋼材、アルミ合金材、マグネシウム合金材、チタン合金材、樹脂材、炭素系複合材、ガラス系複合材を用いても良い。ただし、環境温度の変化やストローク時の液体の発熱による熱変形に対して線膨張係数を同等とし、同等の変形量とするため、連結部30、内筒103、外筒1044は同種材で構成した方が好ましい。なお、本発明では、連結部30、内筒103、外筒104を異種材で構成することを排除しない。   Also in the strut 100, the connecting portions 30 are formed continuously so as to reach both ends of the inner cylinder 103 in the Y-axis direction and the bottom end. The extension distance along the Y-axis direction of the inner cylinder 103 of the connecting portion 30 is preferably formed continuously so as to reach both ends of the tip end and the bottom end, but in the present invention, the Y-axis direction of the inner cylinder 103 is With respect to the length, the connecting portion 30 is not excluded from being formed long or short. The inner cylinder 103 and the outer cylinder 104 are integrally formed, but an aluminum alloy material is applied as a constituent material. A steel material, an aluminum alloy material, a magnesium alloy material, a titanium alloy material, a resin material, a carbon-based composite material, and a glass-based composite material may be used as the constituent material. However, in order to make the linear expansion coefficient equal to the thermal deformation due to the change of the environmental temperature and the heat generation of the liquid at the stroke, and to make the deformation amount equal, the connecting part 30, the inner cylinder 103 and the outer cylinder 1044 are made of the same material. It is preferable to In the present invention, the connecting portion 30, the inner cylinder 103, and the outer cylinder 104 are not excluded from being made of different materials.

このストラット100は、基本的には実施形態と同様の作用効果を発揮するが、これに加えて内筒103と外筒104の軸長が同じに設定されていることから、実施形態1のものに比較してさらに製造が容易になるという利点がある。具体的な製造方法としては、例えば、アルミ合金材料の引き抜きまたは押し出しで形成する。ストラット1では、引き抜き成形または押し出し成形によって所定断面の長尺品を造形し、それを所定長さに切断した後に内筒3及び連結部30の先端部と底端部を部分的に切除する必要があった。ストラット100では、内筒3と連結部30の切除工程がなくなるため、より製造が容易になり、より低コストでの製造が可能となる。   Although this strut 100 basically exerts the same function and effect as the embodiment, in addition to this, since the axial lengths of the inner cylinder 103 and the outer cylinder 104 are set to be the same, those of the first embodiment It has the advantage of being easier to manufacture compared to. As a specific manufacturing method, for example, the aluminum alloy material is formed by drawing or extrusion. In the strut 1, it is necessary to form an elongated product of a predetermined cross section by pultrusion molding or extrusion molding, cut it into a predetermined length, and then partially cut the tip and bottom end of the inner cylinder 3 and the connecting portion 30. was there. In the strut 100, the process of removing the inner cylinder 3 and the connection portion 30 is eliminated, so that the manufacture becomes easier, and the manufacture at lower cost becomes possible.

本発明の実施形態は以上で説明したものに限るものではなく、例えば、連結部30は、溶接や接着で内筒3の外径面と外筒4の内径面に結合しても良い。また、内筒3の外径面と外筒4の内径面にキー溝を予め形成しておき、連結部30を嵌合固定しても良い。連結部30の設置個所も本発明の4箇所より多くても良く、少なくても良い。   The embodiment of the present invention is not limited to the one described above. For example, the connecting portion 30 may be coupled to the outer diameter surface of the inner cylinder 3 and the inner diameter surface of the outer cylinder 4 by welding or bonding. Alternatively, key grooves may be formed in advance on the outer diameter surface of the inner cylinder 3 and the inner diameter surface of the outer cylinder 4, and the connecting portion 30 may be fitted and fixed. The installation locations of the connecting portion 30 may be more or less than the four locations of the present invention.

[構成例]
本実施形態では、例えば、ロッド2を収納する内筒3と、内筒3を収納し外筒4と、内筒3と外筒4との間を移動する液体を格納するリザーバ室22と、内筒3の外周の一部と外筒4の内周の一部を接続する連結部30と、を備え、車両の直進方向となる車体前後方向に平行な仮想線のうち内筒3の断面円形の中心点70を通る仮想線を第1仮想線50と定義し、連結部30は、第1仮想線50と重なる内筒3の2つの部分にそれぞれ形成される前方向の第1連結部30aと後方向の第2連結部30bを有し、連結部30は、さらに、車体内外方向に平行な仮想線のうち内筒3の断面円形の中心点70を通る第2仮想線51と重なり、内筒3の部分に形成される内方向の第3連結部30cと外方向の第4連結部30dを有し、第1連結部30aの周方向の長さt30aと第2連結部30bの周方向の長さt30bは、第3連結部30cの周方向の長さt30cよりも長く、第3連結部30cの周方向の長さt30cは、第4連結部30dの周方向の長さt30dよりも長いことを特徴のひとつとすることができる。
[Example of configuration]
In the present embodiment, for example, an inner cylinder 3 for storing the rod 2, an outer cylinder 4 for storing the inner cylinder 3, and a reservoir chamber 22 for storing a liquid moving between the inner cylinder 3 and the outer cylinder 4; A cross section of the inner cylinder 3 among virtual lines parallel to the longitudinal direction of the vehicle body in which the vehicle travels straight is provided with a connecting portion 30 connecting a part of the outer periphery of the inner cylinder 3 and a part of the inner periphery of the outer cylinder 4 An imaginary line passing through a circular center point 70 is defined as a first imaginary line 50, and the connecting portion 30 is a first connecting portion in the forward direction formed in two portions of the inner cylinder 3 overlapping the first imaginary line 50. 30a and a second connecting portion 30b in the rear direction, and the connecting portion 30 further overlaps with a second virtual line 51 passing through the center point 70 of the cross-sectional circular shape of the inner cylinder 3 among virtual lines parallel to the in-vehicle direction The third connecting portion 30c in the inward direction and the fourth connecting portion 30d in the outward direction formed in the portion of the inner cylinder 3; The circumferential length t30a of the second connecting portion 30b and the circumferential length t30b of the second connecting portion 30b are longer than the circumferential length t30c of the third connecting portion 30c, and the circumferential length t30c of the third connecting portion 30c. Can be longer than the circumferential length t30d of the fourth connecting portion 30d.

[実施例の効果]
本実施形態によれば、外筒4と内筒3を連結部30によって一体に結合するようにしたため、外筒4が連結部30を介して内筒3で支持され剛性が高まることとなり、その結果、外筒の大径化や肉厚増加を招くことなく外筒3の応力を低減させ、充分な静的強度と疲労強度を確保することが可能になる。内筒3の剛性向上により、ピストン9のストローク時に発生するこじりが内筒3内のどの位置であっても内筒3の変形を確実に阻止できるようになり、常時安定した減衰性能を得られる。外筒4の剛性向上により、ロッド2やホイール支持部材40から作用する横力に対してストラット1の傾きを低減することができるため、車体やホイールの支持剛性が高まり、車両の走行安定性も高まる。さらに各連結部30をロッド2やホイール支持部材40から作用する横力の各分力に対して、充分な静的強度と疲労強度を確保できる必要最低限の周方向長さで構成するため、ストラット1の軽量化できる。低減した外筒3の応力を用いて、鉄鋼材等に対しては引張強度が低下するものの、低密度なアルミ材で形成することにより、ストラット1の横力に対する強度を充分に確保しつつ、さらなるストラット1の軽量化ができる。熱電伝導率が高いアルミ合金で形成したことから、ストラット1の減衰作動に伴って、内筒3内部の液体の内部摩擦で発生した熱を連結部30と外筒4の壁面を通して効率良く伝導し外部に放熱させることができ、安定した減衰性能を得ることができる。内筒3と外筒4を連結部30を介して同心円上に結合するため、内筒3と外筒4を精度良くセンタリングすることが可能になる。内筒3と外筒4の軸方向(Y軸方向)先端部や底端部にシール6、ロッドガイド7、及び底部バルブ12を、内筒3と外筒4と共に挟み込み、外筒底版5に押し当てて外筒先端版4aのかしめ力で圧縮軸力を負荷して組付ける必要がなくなるため、組付作業をより容易にできる。
[Effect of the embodiment]
According to the present embodiment, since the outer cylinder 4 and the inner cylinder 3 are integrally coupled by the connecting portion 30, the outer cylinder 4 is supported by the inner cylinder 3 via the connecting portion 30, and the rigidity is enhanced. As a result, the stress of the outer cylinder 3 can be reduced without increasing the diameter and thickness of the outer cylinder, and sufficient static strength and fatigue strength can be secured. The improvement of the rigidity of the inner cylinder 3 makes it possible to reliably prevent the deformation of the inner cylinder 3 at any position within the inner cylinder 3 when the piston 9 strokes, and it is possible to always obtain stable damping performance. . Since the rigidity of the outer cylinder 4 can reduce the inclination of the strut 1 with respect to the lateral force acting from the rod 2 and the wheel support member 40, the support rigidity of the vehicle body and the wheel increases, and the running stability of the vehicle also Increase. Furthermore, in order to configure each connecting portion 30 with a minimum necessary circumferential length that can ensure sufficient static strength and fatigue strength with respect to each component of lateral force acting from the rod 2 and the wheel support member 40, The weight of the strut 1 can be reduced. Although the tensile strength of the steel material and the like is lowered by using the reduced stress of the outer cylinder 3, the strength of the strut 1 against the lateral force is sufficiently ensured by forming it with a low density aluminum material. The weight of the strut 1 can be further reduced. Since it is formed of an aluminum alloy having high thermoelectric conductivity, heat generated by the internal friction of the liquid inside the inner cylinder 3 is efficiently conducted through the wall surfaces of the connecting portion 30 and the outer cylinder 4 with the damping operation of the strut 1 The heat can be dissipated to the outside, and stable damping performance can be obtained. Since the inner cylinder 3 and the outer cylinder 4 are concentrically coupled via the connecting portion 30, the inner cylinder 3 and the outer cylinder 4 can be accurately centered. The seal 6, the rod guide 7, and the bottom valve 12 are held together with the inner cylinder 3 and the outer cylinder 4 at the axial direction (Y axis direction) tip and bottom end of the inner cylinder 3 and the outer cylinder 4 As it is not necessary to press and attach the compression axial force by the caulking force of the outer cylinder tip plate 4a, assembling work can be made easier.

[付記]
なお、本発明は前記した実施形態に限定されるものではなく、様々な変形例が含まれている。例えば、前記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
[Supplementary note]
The present invention is not limited to the above-described embodiment, and various modifications are included. For example, the above-described embodiments are described in detail to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Further, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is possible to add, delete, and replace other configurations for part of the configurations of the respective embodiments.

1…ストラット、2…ロッド、3…内筒、4…外筒、4a…外筒先端板、5…外筒底板、6…シール、7…ロッドガイド、8…ブラケット、8a…ブラケット巻回部、8b…ブラケット巻回部、8c…ボルト締結穴、9…ピストン、9a…ピストンオリフィス、10…ピストンチェック弁、11…伸び側減衰弁、12…底部バルブ、12a…底部バルブオリフィス、13…底部バルブチェック弁、14…縮み側減衰弁、20…上部室、21…下部室、22…リザーバ室、30…連結部、30a…第1連結部、30b…第2連結部、30c…第3連結部、30d…第4連結部、40…ホイール支持部材、50…第1仮想線、51…第2仮想線、70…中心点、71…中心線、100…ストラット、103…内筒、104…外筒、105…外筒キャップ Reference Signs List 1 strut 2 rod 3 inner cylinder 4 outer cylinder 4a outer cylinder tip plate 5 outer cylinder bottom plate 6 seal 7 rod guide 8 bracket 8 8 bracket winding portion , 8b: bracket winding portion, 8c: bolt fastening hole, 9: piston, 9a: piston orifice, 10: piston check valve, 11: extension side damping valve, 12: bottom valve, 12a: bottom valve orifice, 13: bottom Valve check valve 14 compression side damping valve 20 upper chamber 21 lower chamber 22 reservoir chamber 30 connecting portion 30a first connecting portion 30b second connecting portion 30c third connecting Part 30d: Fourth connecting part 40: Wheel supporting member 50: First virtual line 51: Second virtual line 70: Center point 71: Center line 100: Strut 103: Inner cylinder 104: 104 Outer cylinder, 105: Outer cylinder -Up

Claims (3)

ロッドと
前記ロッドを収納する内筒部と、
前記内筒部を収納する外筒部と、
前記内筒部の外周の一部と前記外筒部の内周の一部を接続する連結部と、
当該車両用ショックアブソーバをホイール支持部材に固定させる固定部と、を備え、
車両の直進方向に平行な仮想線のうち前記内筒部の断面円形の中心点を通る仮想線を第1仮想線と定義し、
前記連結部は、前記第1仮想線と重なる前記内筒部の2つの部分にそれぞれ形成される第1連結部及び第2連結部と、前記第1仮想線と重ならない前記内筒部の部分に形成される第3連結部及び第4連結部と、を有し、
前記第4連結部は、前記第3連結部よりも、前記固定部に近い側に設けられ、
前記第1連結部の周方向の長さと前記第2連結部の周方向の長さは、前記第3連結部の周方向の長さよりも長く、
前記第3連結部の周方向の長さは、前記第4連結部の周方向の長さよりも長い車両用ショックアブソーバ。
A rod and an inner cylindrical portion for housing the rod;
An outer cylinder portion for housing the inner cylinder portion;
A connecting portion for connecting a part of the outer periphery of the inner cylinder part and a part of the inner periphery of the outer cylinder part;
A fixing portion for fixing the vehicle shock absorber to the wheel support member;
A virtual line passing through the center point of the cross-sectional circular shape of the inner cylindrical portion among virtual lines parallel to the straight direction of the vehicle is defined as a first virtual line,
The connecting portion includes a first connecting portion and a second connecting portion respectively formed on two portions of the inner cylindrical portion overlapping the first virtual line, and a portion of the inner cylindrical portion not overlapping the first virtual line A third connecting portion and a fourth connecting portion formed in
The fourth connection portion is provided closer to the fixing portion than the third connection portion,
The circumferential length of the first connection portion and the circumferential length of the second connection portion are longer than the circumferential length of the third connection portion,
A shock absorber for a vehicle, wherein a circumferential length of the third connection portion is longer than a circumferential length of the fourth connection portion.
請求項1に記載の車両用ショックアブソーバであって、
前記第1連結部、前記第2記連結部、前記第3連結部及び前記第4連結部は、前記内筒部の軸方向に沿って前記内筒部の両端部まで連続して形成される車両用ショックアブソーバ。
The vehicle shock absorber according to claim 1,
The first connection portion, the second connection portion, the third connection portion, and the fourth connection portion are continuously formed along the axial direction of the inner cylinder portion to both end portions of the inner cylinder portion. Shock absorber for vehicles.
請求項1または2に記載の車両用ショックアブソーバであって、
前記内筒部、前記外筒部、前記第1連結部、前記第2連結部、前記第3連結部、前記第4連結部は、鉄鋼材またはアルミ合金材またはマグネシウム合金材またはチタン合金材または樹脂材または炭素系複合材またはガラス系複合材により一体形成された車両用ショックアブソーバ。
A vehicle shock absorber according to claim 1 or 2,
The inner cylinder portion, the outer cylinder portion, the first connection portion, the second connection portion, the third connection portion, and the fourth connection portion are made of a steel material, an aluminum alloy material, a magnesium alloy material, or a titanium alloy material A vehicle shock absorber integrally formed of a resin material, a carbon-based composite material, or a glass-based composite material.
JP2017076407A 2017-04-07 2017-04-07 Vehicle shock absorber Active JP6789874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017076407A JP6789874B2 (en) 2017-04-07 2017-04-07 Vehicle shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017076407A JP6789874B2 (en) 2017-04-07 2017-04-07 Vehicle shock absorber

Publications (2)

Publication Number Publication Date
JP2018179073A true JP2018179073A (en) 2018-11-15
JP6789874B2 JP6789874B2 (en) 2020-11-25

Family

ID=64282595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017076407A Active JP6789874B2 (en) 2017-04-07 2017-04-07 Vehicle shock absorber

Country Status (1)

Country Link
JP (1) JP6789874B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419423U (en) * 1977-07-11 1979-02-07
JPH04160239A (en) * 1990-10-23 1992-06-03 Atsugi Unisia Corp Reservoir tube for liquid pressure type shock absorber and its manufacture
DE4102002A1 (en) * 1991-01-24 1992-07-30 Bayerische Motoren Werke Ag Shock absorber with inner and outer tubes - is extruded as one piece with interconnecting webs
EP0653576A1 (en) * 1993-11-09 1995-05-17 Delphi France Automotive Systems Hydraulic damper
DE4424955C1 (en) * 1994-07-15 1995-12-14 Bayerische Motoren Werke Ag Oscillation damper for vehicles
JPH11182610A (en) * 1997-12-24 1999-07-06 Unisia Jecs Corp Multiple-cylinder type shock absorber for strut type suspension
JP2012026549A (en) * 2010-07-27 2012-02-09 Kyb Co Ltd Double-cylinder type shock absorber
JP2013199947A (en) * 2012-03-23 2013-10-03 Kyb Co Ltd Suspension device and method of machining outer tube of suspension device
JP2016061313A (en) * 2014-09-16 2016-04-25 Kyb株式会社 Damper

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419423U (en) * 1977-07-11 1979-02-07
JPH04160239A (en) * 1990-10-23 1992-06-03 Atsugi Unisia Corp Reservoir tube for liquid pressure type shock absorber and its manufacture
DE4102002A1 (en) * 1991-01-24 1992-07-30 Bayerische Motoren Werke Ag Shock absorber with inner and outer tubes - is extruded as one piece with interconnecting webs
EP0653576A1 (en) * 1993-11-09 1995-05-17 Delphi France Automotive Systems Hydraulic damper
DE4424955C1 (en) * 1994-07-15 1995-12-14 Bayerische Motoren Werke Ag Oscillation damper for vehicles
JPH11182610A (en) * 1997-12-24 1999-07-06 Unisia Jecs Corp Multiple-cylinder type shock absorber for strut type suspension
JP2012026549A (en) * 2010-07-27 2012-02-09 Kyb Co Ltd Double-cylinder type shock absorber
JP2013199947A (en) * 2012-03-23 2013-10-03 Kyb Co Ltd Suspension device and method of machining outer tube of suspension device
JP2016061313A (en) * 2014-09-16 2016-04-25 Kyb株式会社 Damper

Also Published As

Publication number Publication date
JP6789874B2 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
US20020060385A1 (en) Hydraulically damping rubber bearing
KR20130115333A (en) Damper tube reinforcement sleeve
JP5914103B2 (en) Hydraulic shock absorber
KR20160124816A (en) Holder for a suspension strut
KR101450755B1 (en) Mounting bracket for suspension of automotive
US20220088983A1 (en) Cylinder device
US11007835B2 (en) Spring assembly for a vehicle suspension
WO2020129290A1 (en) Toe correction bushing and rear suspension device
JPH1182590A (en) Hydraulic shock absorber
JP6789874B2 (en) Vehicle shock absorber
US10780755B2 (en) Oscillating arm of a motor-vehicle suspension
JP6994434B2 (en) Shock absorber
US11660923B2 (en) Suspension for vehicle
CN111845313B (en) Torsion-resistant pull rod and mounting structure thereof
JP4579844B2 (en) Front fork
JPH11182610A (en) Multiple-cylinder type shock absorber for strut type suspension
JP5149824B2 (en) Mass member mounting structure
JP2020100186A (en) Toe correct bush and rear suspension device
US11999207B2 (en) Air springs and methods for making the same
US11840121B2 (en) Suspension
JP5871380B2 (en) Shock absorber
KR200150435Y1 (en) Suspension strut for a vehicle
JP2020100185A (en) Toe correct bush
JP2018017312A (en) Shock absorber
JP2018009626A (en) Shock absorber

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201104

R150 Certificate of patent or registration of utility model

Ref document number: 6789874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250