JP2018170357A - Thermally conductive sheet - Google Patents

Thermally conductive sheet Download PDF

Info

Publication number
JP2018170357A
JP2018170357A JP2017065535A JP2017065535A JP2018170357A JP 2018170357 A JP2018170357 A JP 2018170357A JP 2017065535 A JP2017065535 A JP 2017065535A JP 2017065535 A JP2017065535 A JP 2017065535A JP 2018170357 A JP2018170357 A JP 2018170357A
Authority
JP
Japan
Prior art keywords
heat
sheet
members
diffusion sheet
conductive sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017065535A
Other languages
Japanese (ja)
Other versions
JP6698046B2 (en
Inventor
真和 服部
Masakazu Hattori
真和 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Polymer Industries Co Ltd
Original Assignee
Fuji Polymer Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Polymer Industries Co Ltd filed Critical Fuji Polymer Industries Co Ltd
Priority to JP2017065535A priority Critical patent/JP6698046B2/en
Publication of JP2018170357A publication Critical patent/JP2018170357A/en
Application granted granted Critical
Publication of JP6698046B2 publication Critical patent/JP6698046B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermally conductive sheet having heat transfer characteristics that do not change significantly even if a spacing between heat members changes or the spacing is varied.SOLUTION: A thermally conductive sheet 1 arranged between heat members includes a thermal diffusion sheet 2 and adhesive material layers 3a, 3b to bring the thermal diffusion sheet 2 into surface contact with the heat members to be fixed. Even if a spacing between the heat members is varied, the length of the thermal diffusion sheet between the heat members is constant. The shape between the heat members of the thermal diffusion sheet is preferably a shape having a circular arc or bend. The thermal diffusion sheet 2 is preferably at least one selected from among a graphite sheet, a metal foil, and a thermally conductive silicone rubber sheet.SELECTED DRAWING: Figure 1

Description

本発明は、熱部材の間隔が変化し、又は間隔が変動しても伝熱特性が大きく変わらない熱伝導シートに関する。   The present invention relates to a heat conductive sheet in which the heat transfer characteristics do not change greatly even if the interval between the heat members changes or the interval fluctuates.

電子、電気部品の中には、使用中あるいは製造中に温度が大きく変化するものがあり、様々な厚み調整が行われている。特許文献1には、静電チャック層と温度調整用ベース層との間に絶縁性有機フィルムを配置して厚み調整することが提案されている。特許文献2には、半導体レーザーモジュールに放熱板を一体化して放熱させ、半導体レーザーモジュールと回路基板との厚みを調整することが提案されている。特許文献3には、金属板の表面に突起を形成して凹凸面とし、凹部に接着樹脂を充填することが提案されている。   Some electronic and electrical parts change greatly in temperature during use or during production, and various thickness adjustments are performed. Patent Document 1 proposes adjusting the thickness by disposing an insulating organic film between the electrostatic chuck layer and the temperature adjusting base layer. Patent Document 2 proposes that a heat sink is integrated with a semiconductor laser module to dissipate heat and adjust the thickness of the semiconductor laser module and the circuit board. Patent Document 3 proposes forming protrusions on the surface of a metal plate to form an uneven surface and filling the recess with an adhesive resin.

特開2011−159684号公報JP2011-159684A 特開2006−269572号公報JP 2006-269572 A 特開2005−093842号公報Japanese Patent Laid-Open No. 2005-093842

しかし、前記従来技術は、熱部材の間隔が変化し、又は間隔が変動したときに伝熱特性が大きく変化してしまう問題があり、さらなる改良が求められていた。   However, the prior art has a problem in that the heat transfer characteristics change greatly when the interval between the heat members changes or when the interval changes, and further improvement is required.

本発明は前記従来の問題を解決するため、熱部材の間隔が変化し、又は間隔が変動しても伝熱特性が大きく変わらない熱伝導シートを提供する。   In order to solve the above-described conventional problems, the present invention provides a heat conductive sheet in which the heat transfer characteristics do not change greatly even if the interval between the heat members changes or the interval changes.

本発明の熱伝導シートは、熱部材間に配置する熱伝導シートであって、前記熱伝導シートは、熱拡散シートと、前記熱拡散シートを前記熱部材に面接触させて固定するための粘着材層を含み、前記熱部材間の間隔が変動しても、前記熱部材間の熱拡散シートの長さは一定であることを特徴とする。   The heat conductive sheet of the present invention is a heat conductive sheet disposed between heat members, and the heat conductive sheet is an adhesive for fixing a heat diffusion sheet and the heat diffusion sheet in surface contact with the heat member. Even if the space | interval between the said thermal members is fluctuate | varied including a material layer, the length of the thermal diffusion sheet between the said thermal members is characterized by the above-mentioned.

本発明の熱伝導シートは、熱部材間に配置され、熱拡散シートと、前記熱拡散シートを前記熱部材に面接触させて固定するための粘着材層を含み、前記熱部材間の間隔が変動しても、前記熱部材間の熱拡散シートの長さは一定であることにより、熱部材の間隔が変化し、又は間隔が変動しても伝熱特性が大きく変わらない。   The heat conductive sheet of the present invention is disposed between the heat members, includes a heat diffusion sheet and an adhesive layer for fixing the heat diffusion sheet in surface contact with the heat member, and an interval between the heat members is Even if it fluctuates, since the length of the heat diffusion sheet between the heat members is constant, the interval between the heat members changes, or even if the interval fluctuates, the heat transfer characteristics do not change greatly.

図1は本発明の一実施態様における熱伝導シートの模式的断面図である。FIG. 1 is a schematic cross-sectional view of a heat conductive sheet in one embodiment of the present invention. 図2は本発明の別の実施態様における熱伝導シートの模式的断面図である。FIG. 2 is a schematic cross-sectional view of a heat conductive sheet in another embodiment of the present invention. 図3は本発明のさらに別の一実施態様における熱伝導シートの模式的断面図である。FIG. 3 is a schematic cross-sectional view of a heat conductive sheet in still another embodiment of the present invention. 図4A-Dは本発明のさらに別の一実施態様における熱伝導シートの模式的断面図である。4A to 4D are schematic cross-sectional views of a heat conductive sheet in still another embodiment of the present invention. 図5AーDは本発明のさらに別の一実施態様における熱伝導シートの模式的断面図である。5A to 5D are schematic cross-sectional views of a heat conductive sheet in still another embodiment of the present invention. 図6は本発明の一実施態様における熱伝導シートの熱抵抗を測定する模式的断面説明図である。FIG. 6 is a schematic cross-sectional explanatory view for measuring the thermal resistance of the heat conductive sheet in one embodiment of the present invention. 図7は移動熱量を説明するための模式的斜視図である。FIG. 7 is a schematic perspective view for explaining the amount of heat transferred.

本発明者は、熱部材の間隔が変化し、又は間隔が変動しても伝熱特性が大きく変わらない熱伝導シートを検討した。一般的にフーリエの法則から、厚み(L)が大きくなれば必然的に移動する熱量(Q)は小さくなる。これを図7で説明する。図7において、断面積A(m2)、の物体11の正面側が高温側(温度Th(K))であり、裏面が低温側(温度TC(K))であり、正面と裏面の距離L(m)としたとき、下記の式(数1)が成り立つ。 This inventor examined the heat conductive sheet from which a heat transfer characteristic does not change a lot even if the space | interval of a thermal member changes or a space | interval changes. Generally, from the Fourier law, the amount of heat (Q) that inevitably moves decreases as the thickness (L) increases. This will be described with reference to FIG. In FIG. 7, the front side of the object 11 having a cross-sectional area A (m 2 ) is the high temperature side (temperature Th (K)), the back surface is the low temperature side (temperature TC (K)), and the distance L between the front surface and the back surface is L. When (m) is assumed, the following equation (Equation 1) holds.

Figure 2018170357
Figure 2018170357

ここで、距離Lが大きくなった時に熱量Qを不変にするには、熱伝導率λ、面積Aを大きくする必要がある。しかし、実装後に面積Aを大きくすることは困難であることから、熱伝導率λを大きくすればよい。例えば、金属線などの磁性繊維状物を磁場で斜めに配向させ、高さ変化させる際、樹脂が膨張するのと併せて繊維も縦方向に膨張し、熱伝導に異方性を持たせことが考えられる。しかし、この方法では以下の問題がある。
(1)磁性繊維状物を斜めに配向させるには、技術的、量産的に難しい。
(2)実装後にシートが劣化(硬化)し、弾性が失われた場合、伸びが期待出来ない。
(3)配向具合が特性に大きく影響するため、品質保証としても難しい。
Here, in order to keep the amount of heat Q unchanged when the distance L increases, it is necessary to increase the thermal conductivity λ and the area A. However, since it is difficult to increase the area A after mounting, the thermal conductivity λ may be increased. For example, when a magnetic fiber such as a metal wire is oriented obliquely with a magnetic field and the height is changed, the fiber expands in the vertical direction in conjunction with the resin expansion, and the heat conduction becomes anisotropic. Can be considered. However, this method has the following problems.
(1) It is difficult technically and mass-produced to orient the magnetic fibrous material obliquely.
(2) If the sheet deteriorates (hardens) after mounting and loses elasticity, elongation cannot be expected.
(3) Since the degree of orientation greatly affects the characteristics, it is difficult to assure quality.

本発明は、以上の検討の中から着想され完成したものであり、熱部材間に配置され、熱拡散シートと、前記熱拡散シートを前記熱部材に面接触させて固定するための粘着材層を含み、前記熱部材間の間隔が変動しても、前記熱部材間の熱拡散シートの長さが一定となる熱伝導シートである。この熱伝導シートは、熱部材の間隔が変化し、又は間隔が変動しても熱部材間の熱拡散シートの長さは一定である。これにより、伝熱特性が大きく変わらない。熱部材間を圧縮したり、熱部材の振動が激しくても、この関係は変わらない。したがって、熱部材間を圧縮したり、熱部材の振動が激しい装置に好適に組み込むことができる。熱拡散シートの両主面に粘着材層を配置するのは、加熱部材と一体化するためである。   The present invention has been conceived and completed from the above studies, and is disposed between heat members, and a heat diffusion sheet and an adhesive layer for fixing the heat diffusion sheet in surface contact with the heat member Even if the space | interval between the said heat members fluctuates, the length of the heat diffusion sheet between the said heat members becomes constant, It is a heat conductive sheet. In this heat conductive sheet, the length of the heat diffusion sheet between the heat members is constant even if the distance between the heat members changes or the distance fluctuates. Thereby, a heat transfer characteristic does not change a lot. This relationship does not change even if the heat member is compressed or the vibration of the heat member is intense. Therefore, the space between the heat members can be suitably compressed, or the heat member can be suitably incorporated into an apparatus in which the vibration is severe. The reason why the adhesive layer is disposed on both main surfaces of the heat diffusion sheet is to integrate with the heating member.

熱拡散シートの形状は、接触面間にある熱拡散シートの距離が変わらない形状であれば、いかなる形状でもよく、好ましくは断面から見て円弧又は屈曲を有する形状である。より好ましくは、長円形状又はU字状である。また、直線部分に粘着材層が一体化されているのが好ましい。直線部分に粘着材層が一体化されていると、熱伝導面積を広く取れ、熱部材間に固定できる。前記熱拡散シートの肉厚は、0.05〜1mmが好ましい。また、粘着材層の厚さは0.01〜5mmが好ましい。直径は本発明品の実装される装置の形状、サイズに合わせて任意に選択できる。   The shape of the heat diffusion sheet may be any shape as long as the distance of the heat diffusion sheet between the contact surfaces does not change, and is preferably a shape having an arc or a bend as viewed from the cross section. More preferably, it is oval or U-shaped. Moreover, it is preferable that the adhesive layer is integrated with the straight portion. When the adhesive layer is integrated with the straight line portion, a large heat conduction area can be obtained and fixed between the heat members. The thickness of the thermal diffusion sheet is preferably 0.05 to 1 mm. The thickness of the adhesive layer is preferably 0.01 to 5 mm. The diameter can be arbitrarily selected according to the shape and size of the device on which the product of the present invention is mounted.

熱拡散シートは1本でもよいし、複数本配置してもよい。複数本並列に配置すると各熱拡散シートがつぶれる際には干渉しあい、強度は高くなる。   One heat diffusion sheet or a plurality of heat diffusion sheets may be arranged. If a plurality of heat diffusion sheets are arranged in parallel, they interfere with each other when the heat diffusion sheets are crushed, and the strength increases.

熱拡散シートは、グラファイトシート、金属箔及び熱伝導性シリコーンゴムシートから選ばれる少なくとも一つをシートとしたものが好ましい。前記金属箔は、例えばアルミニウム、銅及び金から選ばれる少なくとも一つである。これらは熱伝導率が高いからである。   The thermal diffusion sheet is preferably a sheet made of at least one selected from a graphite sheet, a metal foil, and a thermally conductive silicone rubber sheet. The metal foil is at least one selected from, for example, aluminum, copper, and gold. This is because they have high thermal conductivity.

熱拡散シートは、内層に補強樹脂層が配置されていてもよい。補強樹脂層は例えばポリイミド層であり、厚さは6〜100μmが好ましい。内層に補強樹脂層が配置されていると、熱拡散シートの補強になり、圧力をかけて長円状にしたときも潰れにくくなる。   In the thermal diffusion sheet, a reinforcing resin layer may be disposed on the inner layer. The reinforcing resin layer is, for example, a polyimide layer, and the thickness is preferably 6 to 100 μm. When the reinforcing resin layer is disposed in the inner layer, the heat diffusion sheet is reinforced, and it is difficult to be crushed when it is formed into an oval shape by applying pressure.

前記粘着材層は、熱伝導性粘着材層であるのが好ましい。粘着材層は熱伝導性フィラーを含んでいてもよい。熱伝導性粘着材層には好ましくは熱伝導性フィラーを含ませる。これにより、全体として熱伝導性を上げることができる。   The pressure-sensitive adhesive layer is preferably a heat conductive pressure-sensitive adhesive layer. The pressure-sensitive adhesive layer may contain a heat conductive filler. The heat conductive adhesive layer preferably contains a heat conductive filler. Thereby, thermal conductivity can be raised as a whole.

以下、図面を用いて説明する。図面中、同一符号は同一物を示す。図1は本発明の一実施態様における熱伝導シートの模式的断面図である。この熱伝導シート1は長円状の熱拡散シート2の両主面に粘着材層3a,3bが一体されている。粘着材層3a,3bは、両面テープに用いられるものであれば何でもよく、シリコーンゴム、シリコーンゲル、アクリル系粘着材層等を使用できる。この熱拡散部材は、熱部材の間隔が変化し又は間隔が変動しても、熱部材間の熱拡散シートの長さは一定である。   Hereinafter, it demonstrates using drawing. In the drawings, the same symbols indicate the same items. FIG. 1 is a schematic cross-sectional view of a heat conductive sheet in one embodiment of the present invention. This heat conductive sheet 1 has adhesive layers 3 a and 3 b integrated on both main surfaces of an oval heat diffusion sheet 2. The adhesive material layers 3a and 3b may be anything as long as they are used for double-sided tapes, and silicone rubber, silicone gel, acrylic adhesive material layers, and the like can be used. In this heat diffusion member, the length of the heat diffusion sheet between the heat members is constant even if the space between the heat members changes or the space varies.

図2は本発明の別の実施態様における熱伝導シートの模式的断面図である。この熱伝導シート4は長円状の熱拡散シート2a−2cのそれぞれの両主面に粘着材層3a−3fが一体されている。この熱拡散部材も熱部材の間隔が変化し又は間隔が変動しても、熱部材間の熱拡散シートの長さは一定である。   FIG. 2 is a schematic cross-sectional view of a heat conductive sheet in another embodiment of the present invention. The heat conductive sheet 4 has an adhesive material layer 3a-3f integrated with each main surface of each of the elliptical heat diffusion sheets 2a-2c. Even in this heat diffusion member, the length of the heat diffusion sheet between the heat members is constant even if the distance between the heat members changes or the distance fluctuates.

図3は本発明のさらに別の一実施態様における熱伝導シート5の模式的断面図であり、熱拡散シート2の内層に補強樹脂層6が一体化されている。この熱拡散部材も熱部材の間隔が変化し又は間隔が変動しても、熱部材間の熱拡散シートの長さは一定である。   FIG. 3 is a schematic cross-sectional view of a heat conductive sheet 5 in still another embodiment of the present invention, in which a reinforcing resin layer 6 is integrated with the inner layer of the heat diffusion sheet 2. Even in this heat diffusion member, the length of the heat diffusion sheet between the heat members is constant even if the distance between the heat members changes or the distance fluctuates.

図4A-Dは本発明のさらに別の一実施態様における熱伝導シートの模式的断面図である。図4Aの熱伝導シートは熱拡散シート11が外側に屈曲した例である。図4Bの熱伝導シートは熱拡散シート12が内側に屈曲した例である。図4Cの熱伝導シートは熱拡散シート13がジクザグ状に屈曲した形状の例である。図4Dの熱伝導シートは熱拡散シート14がZ字状に屈曲した形状の例である。
これらの熱拡散シートは粘着材層3a,3bにより熱部材である金属ブロック8,9に粘着一体化されて実装される。これらの熱拡散部材は、熱部材の間隔が変化し又は間隔が変動しても、熱部材間の熱拡散シートの長さは一定である。
4A to 4D are schematic cross-sectional views of a heat conductive sheet in still another embodiment of the present invention. The heat conductive sheet of FIG. 4A is an example in which the heat diffusion sheet 11 is bent outward. 4B is an example in which the thermal diffusion sheet 12 is bent inward. The heat conductive sheet of FIG. 4C is an example in which the heat diffusion sheet 13 is bent in a zigzag shape. The heat conductive sheet in FIG. 4D is an example of a shape in which the heat diffusion sheet 14 is bent in a Z shape.
These heat diffusion sheets are mounted by being adhesively integrated with the metal blocks 8 and 9 which are heat members by the adhesive material layers 3a and 3b. In these heat diffusion members, the length of the heat diffusion sheet between the heat members is constant even if the distance between the heat members changes or the distance fluctuates.

図5A-Dは本発明のさらに別の一実施態様における熱伝導シートの模式的断面図である。図5A-Cの熱拡散シート15〜17は、図4A-Cに示す熱拡散シートの左側屈曲部がないものである。図5Dは熱拡散シート18がU字形のシートの例である。これらの熱拡散シートも粘着材層3a,3bにより熱部材である金属ブロック8,9に粘着一体化されて実装される。これらの熱拡散部材は、熱部材の間隔が変化し又は間隔が変動しても、熱部材間の熱拡散シートの長さは一定である。   5A to 5D are schematic cross-sectional views of a heat conductive sheet in still another embodiment of the present invention. The thermal diffusion sheets 15 to 17 in FIGS. 5A to 5C are those without the left bent portion of the thermal diffusion sheet shown in FIGS. 4A to 4C. FIG. 5D shows an example in which the thermal diffusion sheet 18 is a U-shaped sheet. These heat diffusion sheets are also adhesively integrated and mounted on the metal blocks 8 and 9 which are heat members by the adhesive material layers 3a and 3b. In these heat diffusion members, the length of the heat diffusion sheet between the heat members is constant even if the distance between the heat members changes or the distance fluctuates.

以下実施例を用いて説明する。本発明は実施例に限定されるものではない。   This will be described below with reference to examples. The present invention is not limited to the examples.

<熱抵抗の測定方法>
ASTM D5470に従い、図6に示す方法により熱伝導シートの熱抵抗を測定した。図6において、金属ブロック8,9の間をスペーサーにより所定の距離Lを保持した。金属ブロック8,9の間には、シート状にした熱伝導シート1を配置した。金属ブロック8から金属ブロック9への定常状態における熱抵抗を測定した。すなわち、Coolingユニットは温度を10℃に設定されており、上部ヒーター部の温度が外気温度に対して±0.3℃になるよう電力をかけて測定した。熱抵抗値は下記式(数2)で算出する。
(数2) 熱抵抗値(Kcm2/W)=温度差ΔT(K)×製品面積(cm2)/通過する熱量(W)
得られた熱抵抗値(K・cm2/W)のKはケルビンである。金属ブロック8,9内には温度検出端挿入孔10a,10bに熱電対を入れて各金属ブロック8,9の温度を測定した。7はこの熱抵抗測定装置である。
<Measurement method of thermal resistance>
According to ASTM D5470, the thermal resistance of the heat conductive sheet was measured by the method shown in FIG. In FIG. 6, a predetermined distance L is maintained between the metal blocks 8 and 9 by a spacer. Between the metal blocks 8 and 9, the sheet-like heat conductive sheet 1 was disposed. The thermal resistance in a steady state from the metal block 8 to the metal block 9 was measured. That is, the temperature of the Cooling unit was set to 10 ° C., and power was applied so that the temperature of the upper heater portion was ± 0.3 ° C. with respect to the outside air temperature. The thermal resistance value is calculated by the following formula (Equation 2).
(Equation 2) Thermal resistance value (Kcm 2 / W) = Temperature difference ΔT (K) × Product area (cm 2 ) / Amount of heat passing (W)
K of the obtained thermal resistance value (K · cm 2 / W) is Kelvin. Thermocouples were inserted into the temperature detection end insertion holes 10a and 10b in the metal blocks 8 and 9, and the temperatures of the metal blocks 8 and 9 were measured. 7 is a thermal resistance measuring device.

(実施例1)
グラファイトシート、パナソニック社製、商品名”PGS EYG07 1810:厚さ100μm”を縦25mm,横50mm(幅)にカットし、長円状のシートにし、両主面に熱伝導性シリコーンゲル(富士高分子工業社製、商品名"30X-m"、 縦15mm,横15mm(幅)、厚さ0.3mm)を貼り付けた。このようにして図1に示す熱伝導シート1を作成した。この熱伝導シート1を図6に示す熱抵抗測定装置に入れ、室温(25℃)で定常状態における熱抵抗値を測定した。得られた熱抵抗値の結果は表1にまとめて示す。
Example 1
Graphite sheet, manufactured by Panasonic Corporation, trade name “PGS EYG07 1810: Thickness 100 μm” is cut into 25 mm length and 50 mm width (width) to make an oval sheet, and heat conductive silicone gel A product name “30X-m”, 15 mm in length, 15 mm in width (width), 0.3 mm in thickness) manufactured by Molecular Industries Co., Ltd. was attached. Thus, the heat conductive sheet 1 shown in FIG. 1 was produced. This heat conductive sheet 1 was put into the thermal resistance measuring apparatus shown in FIG. 6, and the thermal resistance value in a steady state was measured at room temperature (25 ° C.). The results of the obtained thermal resistance values are summarized in Table 1.

Figure 2018170357
Figure 2018170357

表1から明らかなとおり、実施例1のシート状グラファイトシートは、ギャップ距離Lが2.0〜3.0mmまで変わっても、熱抵抗値の変化はなかった。このことから、実施例1のシート状グラファイトシートは、熱部材の間隔が変化し又は間隔が変動しても、熱部材間の熱拡散シートの長さは一定であり、伝熱特性が大きく変わらないことが確認できた。   As apparent from Table 1, the sheet-like graphite sheet of Example 1 had no change in thermal resistance value even when the gap distance L changed from 2.0 to 3.0 mm. From this, in the sheet-like graphite sheet of Example 1, the length of the heat diffusion sheet between the heat members is constant even if the interval between the heat members changes or the interval fluctuates, and the heat transfer characteristics greatly change. It was confirmed that there was no.

(実施例2)
グラファイトシートのサイズを縦25mm,横(幅)40mmとした以外は実施例1と同様に実験した。距離L:2.0mmのとき熱抵抗値は6.9K・cm2/W、距離L:2.5mmのとき熱抵抗値も6.9K・cm2/Wであり、熱部材の間隔が変化し又は間隔が変動しても、熱部材間の熱拡散シートの長さは一定であり、伝熱特性が大きく変わらないことが確認できた。なお、実施例1のシート状グラファイトシートに比べて熱抵抗値が低いのは、横(幅)のサイズが狭くなっているため、たわみ部分の距離(長さ)が短くなっており、熱拡散距離も短いためである。
(Example 2)
The experiment was performed in the same manner as in Example 1 except that the size of the graphite sheet was 25 mm in length and 40 mm in width (width). When the distance L is 2.0 mm, the thermal resistance value is 6.9 K · cm 2 / W, and when the distance L is 2.5 mm, the thermal resistance value is 6.9 K · cm 2 / W, and the distance between the thermal members changes. However, even if the interval fluctuated, it was confirmed that the length of the heat diffusion sheet between the heat members was constant and the heat transfer characteristics did not change greatly. The reason why the thermal resistance value is lower than that of the sheet-like graphite sheet of Example 1 is that the lateral (width) size is narrow, so the distance (length) of the flexure portion is short, and thermal diffusion is reduced. This is because the distance is short.

(実施例3)
アルミニウム箔(厚さ50μm)を縦25mm,横50mm(幅)とした以外は実施例1と同様に実験した。距離L:2.5mmのとき熱抵抗値は8.3K・cm2/W、距離L:3.0mmのとき熱抵抗値も8.3K・cm2/Wであり、熱部材の間隔が変化し又は間隔が変動しても、熱部材間の熱拡散シートの長さは一定であり、伝熱特性が大きく変わらないことが確認できた。
(Example 3)
The experiment was performed in the same manner as in Example 1 except that the aluminum foil (thickness 50 μm) was 25 mm long and 50 mm wide (width). When the distance L is 2.5 mm, the thermal resistance value is 8.3 K · cm 2 / W, and when the distance L is 3.0 mm, the thermal resistance value is 8.3 K · cm 2 / W. However, even if the interval fluctuated, it was confirmed that the length of the heat diffusion sheet between the heat members was constant and the heat transfer characteristics did not change greatly.

(実施例4)
長円状シートの両主面の熱伝導性シリコーンゲルの代わりに両面テープ(リンテック社製、商品名”SI308NC”)、厚さ0.03mm、縦15mm,横15mm(幅)貼り付けた以外は実施例1と同様に実験した。距離L:2.0mmのとき熱抵抗値は5.7K・cm2/W、距離L:2.5mmのとき熱抵抗値も5.7K・cm2/Wであり、熱部材の間隔が変化し又は間隔が変動しても、熱部材間の熱拡散シートの長さは一定であり、伝熱特性が大きく変わらないことが確認できた。なお、粘着層の熱伝導率、厚さ、粘着強度による接触熱抵抗が製品の熱抵抗に影響することがわかった。
Example 4
Except for sticking double-sided tape (product name “SI308NC”, manufactured by Lintec Corporation), thickness 0.03 mm, length 15 mm, width 15 mm (width) instead of the heat conductive silicone gel on both main surfaces of the oval sheet The experiment was performed in the same manner as in Example 1. When the distance L is 2.0 mm, the thermal resistance value is 5.7 K · cm 2 / W, and when the distance L is 2.5 mm, the thermal resistance value is also 5.7 K · cm 2 / W. However, even if the interval fluctuated, it was confirmed that the length of the heat diffusion sheet between the heat members was constant and the heat transfer characteristics did not change greatly. It was found that the contact thermal resistance due to the thermal conductivity, thickness and adhesive strength of the adhesive layer affects the thermal resistance of the product.

(実施例5)
実施例1のグラファイトシートを使用し、図3の長円に変えて、図5Dに示すU字形のシートを作成し、両主面(直線部分)には両面テープ(リンテック社製、商品名”SI308NC”)、厚さ0.03mm、縦15mm,横15mm(幅)貼り付けた以外は実施例1と同様に実験した。距離L:2.5mmのとき熱抵抗値は15.7K・cm2/W、距離L:3.0mmのとき熱抵抗値は15.8K・cm2/Wであり、熱部材の間隔が変化し又は間隔が変動しても、熱部材間の熱拡散シートの長さは一定であり、伝熱特性が大きく変わらないことが確認できた。
(Example 5)
The graphite sheet of Example 1 was used, and the U-shaped sheet shown in FIG. 5D was prepared instead of the ellipse shown in FIG. 3, and double-sided tape (trade name, manufactured by Lintec Co., Ltd.) was used on both main surfaces (straight portions). SI308NC "), a thickness of 0.03 mm, a length of 15 mm, and a width of 15 mm (width). When the distance L is 2.5 mm, the thermal resistance value is 15.7 K · cm 2 / W, and when the distance L is 3.0 mm, the thermal resistance value is 15.8 K · cm 2 / W, and the distance between the thermal members changes. However, even if the interval fluctuated, it was confirmed that the length of the heat diffusion sheet between the heat members was constant and the heat transfer characteristics did not change greatly.

1,4,5 熱伝導シート
2,2a−2c,11−18 熱拡散シート
3a−3f 粘着材層
6 補強樹脂層
7 熱抵抗測定装置
8,9 熱部材(金属ブロック)
10a,10b 温度検出端挿入孔
1, 4, 5 Thermal conductive sheet 2, 2a-2c, 11-18 Thermal diffusion sheet 3a-3f Adhesive material layer 6 Reinforced resin layer 7 Thermal resistance measuring device 8, 9 Thermal member (metal block)
10a, 10b Temperature detection end insertion hole

Claims (8)

熱部材間に配置する熱伝導シートであって、
前記熱伝導シートは、熱拡散シートと、前記熱拡散シートを前記熱部材に面接触させて固定するための粘着材層を含み、
前記熱部材間の間隔が変動しても、前記熱部材間の熱拡散シートの長さは一定であることを特徴とする熱伝導シート。
A heat conductive sheet disposed between the heat members,
The thermal conductive sheet includes a thermal diffusion sheet and an adhesive layer for fixing the thermal diffusion sheet in surface contact with the thermal member,
Even if the space | interval between the said heat members fluctuates, the length of the heat diffusion sheet between the said heat members is constant, The heat conductive sheet characterized by the above-mentioned.
前記熱拡散シートの熱部材間の形状は、円弧又は屈曲を有する形状である請求項1に記載の熱伝導シート。   The heat conductive sheet according to claim 1, wherein a shape between the heat members of the heat diffusion sheet is a shape having an arc or a bend. 前記熱拡散シートは長円形状又はU字状であり、直線部分に粘着材層が一体化されている請求項1又は2に記載の熱伝導シート。   3. The heat conductive sheet according to claim 1, wherein the heat diffusion sheet has an oval shape or a U shape, and an adhesive layer is integrated with a straight portion. 前記熱拡散シートは1個以上配置されている請求項1〜3のいずれかに記載の熱伝導シート。   The heat conductive sheet according to claim 1, wherein at least one heat diffusion sheet is disposed. 前記熱拡散シートは、グラファイトシート、金属箔及び熱伝導性シリコーンゴムシートから選ばれる少なくとも一つをシートとしたものである請求項1〜4のいずれかに記載の熱伝導シート。   The heat conduction sheet according to any one of claims 1 to 4, wherein the heat diffusion sheet is a sheet made of at least one selected from a graphite sheet, a metal foil, and a heat conductive silicone rubber sheet. 前記金属箔は、アルミニウム、銅及び金から選ばれる少なくとも一つである請求項5に記載の熱伝導シート。   The heat conductive sheet according to claim 5, wherein the metal foil is at least one selected from aluminum, copper, and gold. 前記熱拡散シートは、内層に補強樹脂層が配置されている請求項1〜6のいずれかに記載の熱伝導シート。   The heat conductive sheet according to any one of claims 1 to 6, wherein a reinforcing resin layer is disposed on an inner layer of the heat diffusion sheet. 前記粘着材層は、熱伝導性粘着材層である請求項1〜7のいずれかに記載の熱伝導シート。   The heat conductive sheet according to claim 1, wherein the pressure-sensitive adhesive layer is a heat conductive pressure-sensitive adhesive layer.
JP2017065535A 2017-03-29 2017-03-29 Heat conduction sheet Active JP6698046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017065535A JP6698046B2 (en) 2017-03-29 2017-03-29 Heat conduction sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017065535A JP6698046B2 (en) 2017-03-29 2017-03-29 Heat conduction sheet

Publications (2)

Publication Number Publication Date
JP2018170357A true JP2018170357A (en) 2018-11-01
JP6698046B2 JP6698046B2 (en) 2020-05-27

Family

ID=64018942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017065535A Active JP6698046B2 (en) 2017-03-29 2017-03-29 Heat conduction sheet

Country Status (1)

Country Link
JP (1) JP6698046B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023073843A1 (en) * 2021-10-27 2023-05-04 ファナック株式会社 Substrate fixing structure, machine, and robot

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04350958A (en) * 1991-05-28 1992-12-04 Matsushita Electric Ind Co Ltd Heat dissipator of semiconductor integrated circuit
JPH1098289A (en) * 1996-09-19 1998-04-14 Sony Corp Radiation structure of electronic component
JP2009231757A (en) * 2008-03-25 2009-10-08 Fujitsu Ltd Radiation member and circuit substrate device
WO2014021046A1 (en) * 2012-07-30 2014-02-06 株式会社村田製作所 Electronic apparatus and heat conductive sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04350958A (en) * 1991-05-28 1992-12-04 Matsushita Electric Ind Co Ltd Heat dissipator of semiconductor integrated circuit
JPH1098289A (en) * 1996-09-19 1998-04-14 Sony Corp Radiation structure of electronic component
JP2009231757A (en) * 2008-03-25 2009-10-08 Fujitsu Ltd Radiation member and circuit substrate device
WO2014021046A1 (en) * 2012-07-30 2014-02-06 株式会社村田製作所 Electronic apparatus and heat conductive sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023073843A1 (en) * 2021-10-27 2023-05-04 ファナック株式会社 Substrate fixing structure, machine, and robot

Also Published As

Publication number Publication date
JP6698046B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
US9222735B2 (en) Compliant multilayered thermally-conductive interface assemblies
US20100321897A1 (en) Compliant multilayered thermally-conductive interface assemblies
TWI489597B (en) Compliant multilayered thermally-conductive interface assemblies and memory modules including the same
JP6846879B2 (en) How to make a heat sink
EP3035397B1 (en) Heat-conductive adhesive sheet, manufacturing method for same, and electronic device using same
JP2003188323A (en) Graphite sheet and its manufacturing method
JP5384522B2 (en) Heat sink and heat sink forming method using wedge locking system
JP4265796B2 (en) Heat receiving sheet, electronic device, and method of manufacturing heat receiving sheet
CN104669702A (en) Graphite heat conduction film compound block and manufacturing method thereof
US20190106572A1 (en) Filler for heat transfer member and heat transfer member
JP2008277432A (en) Heat dissipation structure
JP2018170357A (en) Thermally conductive sheet
JP6446489B2 (en) Heat spreader
US20190120568A1 (en) Graphite heat sink and method of manufacturing the same
JP7499869B2 (en) Connecting the parts
KR20150143578A (en) Printed wiring board, manufacturing method for same, and thermally conductive body
KR102075360B1 (en) Thermal diffusion sheet and the manufacturing method thereof
KR101309746B1 (en) Heatsink and method for manufacturing heatsink
KR101143524B1 (en) Thermal diffusion seat
JP2014192401A (en) Heat sink
JP6459407B2 (en) Sheet-like member, manufacturing method thereof, substrate unit, and electronic device
JP2014079927A (en) Heat-dissipating member and method for manufacturing heat-dissipating member
KR20140075254A (en) Thermal diffusion sheet and the manufacturing method thereof
JP2021170611A (en) Heat conduction sheet and electronic device using the same
JP2017079244A (en) Cooling structure of semiconductor module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200427

R150 Certificate of patent or registration of utility model

Ref document number: 6698046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250