JP2018169078A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2018169078A
JP2018169078A JP2017066147A JP2017066147A JP2018169078A JP 2018169078 A JP2018169078 A JP 2018169078A JP 2017066147 A JP2017066147 A JP 2017066147A JP 2017066147 A JP2017066147 A JP 2017066147A JP 2018169078 A JP2018169078 A JP 2018169078A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigerant pipe
pipe
heat exchanger
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017066147A
Other languages
Japanese (ja)
Inventor
景介 住
Keisuke Sumi
景介 住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2017066147A priority Critical patent/JP2018169078A/en
Publication of JP2018169078A publication Critical patent/JP2018169078A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

To provide an air conditioner capable of suppressing accumulation of liquid refrigerant in a lower stage of branch refrigerant pipe, to contribute to improving performance of a heat exchanger.SOLUTION: An air conditioner includes: a first flow divider 38 connected to a compressor 15 with a first refrigerant pipe; a second flow divider 42 arranged at a lower position than the first flow divider 38, and connected to an expansion valve 17 with a second refrigerant pipe 44; a heat exchanger 16 that has branch refrigerant pipes 34a, 34b, 34c, 34d forming flow passages in parallel between the first flow divider 38 and the second flow divider 42, and connected to a heat transfer fin 27; and a bypass pipe 45 connecting, among the branch refrigerant pipes, the branch refrigerant pipe 34d forming a flow passage at lower position than the second flow divider 42 and the second refrigerant pipe 44.SELECTED DRAWING: Figure 4

Description

本発明は、空気調和機に関し、特に、空気調和機の室外機に関する。   The present invention relates to an air conditioner, and more particularly to an outdoor unit of an air conditioner.

特許文献1は室外機の熱交換器を開示する。熱交換器は、冷房運転時に、圧縮機から吐出された冷媒が流入する複数の分岐冷媒流通路を備える。それぞれの分岐冷媒流通路の流出口には1つの分流器が接続される。分流器は最下方に配置される分岐冷媒流通路よりも重力方向上方に配置される。圧縮機から吐出される高温高圧の冷媒は、複数の分岐冷媒流通路に分流され、熱交換器の広い範囲で熱エネルギーの交換をする。こうして効率的な熱交換は実現される。   Patent document 1 discloses the heat exchanger of an outdoor unit. The heat exchanger includes a plurality of branch refrigerant flow passages into which refrigerant discharged from the compressor flows during cooling operation. One shunt is connected to the outlet of each branch refrigerant flow passage. The flow divider is arranged above the branch refrigerant flow passage arranged at the lowermost position in the gravity direction. The high-temperature and high-pressure refrigerant discharged from the compressor is divided into a plurality of branch refrigerant flow passages, and exchanges heat energy in a wide range of the heat exchanger. Thus, efficient heat exchange is realized.

特開2016−084970号公報JP 2006-084970 A

冷房運転時に冷媒の流量が低循環量となった場合には冷媒の流速が遅くなるため、ガス冷媒よりもさらに流速が遅くなる液冷媒は滞留しやすくなる。そのため最下方に配置されるの分岐冷媒流通路では、分岐冷媒流通路の最下端よりも重力方向上方に分流器が設けられている場合、最下段の分岐冷媒流通路に液冷媒が溜まりやすくなる。冷媒の循環が滞り、性能の低下が引き起こされることが懸念される。   When the flow rate of the refrigerant becomes a low circulation amount during the cooling operation, the flow rate of the refrigerant becomes slow, so that the liquid refrigerant whose flow rate becomes slower than the gas refrigerant is likely to stay. Therefore, in the branch refrigerant flow passage arranged at the lowermost position, when the flow divider is provided above the lower end of the branch refrigerant flow passage in the gravity direction, the liquid refrigerant easily collects in the lowermost branch refrigerant flow passage. . There is a concern that the circulation of the refrigerant will stagnate and the performance will be reduced.

本発明は、最下段の分岐冷媒流通路で発生する液冷媒の滞留を抑制し、熱交換器の性能向上に寄与することができる空気調和機を提供することを目的とする。   An object of this invention is to provide the air conditioner which can suppress the retention of the liquid refrigerant which generate | occur | produces in the lowermost branch refrigerant | coolant flow path, and can contribute to the performance improvement of a heat exchanger.

本発明によれば、第1冷媒管で圧縮機に接続される第1分流器と、前記第1分流器よりも低い位置に配置されて、第2冷媒管で膨張弁に接続される第2分流器と、前記第1分流器および前記第2分流器の間で並列に流路を形成して伝熱フィンに結合される分岐冷媒管を有する熱交換器と、前記分岐冷媒管のうち、前記第2分流器よりも低い位置に流路を形成する特定分岐冷媒管、および、前記特定分岐冷媒管と前記第2冷媒管を接続するバイパス管とを備える空気調和機は提供される。   According to the present invention, the first shunt connected to the compressor by the first refrigerant pipe and the second shunt disposed at a position lower than the first shunt and connected to the expansion valve by the second refrigerant pipe. Of the branch refrigerant pipe, a heat exchanger having a branch refrigerant pipe coupled to heat transfer fins by forming a flow path in parallel between the first flow divider and the second flow divider and the heat transfer fin, An air conditioner including a specific branch refrigerant pipe that forms a flow path at a position lower than the second shunt and a bypass pipe that connects the specific branch refrigerant pipe and the second refrigerant pipe is provided.

冷房運転時には、圧縮機から吐出された高温高圧の冷媒が第1分流器で分流されて分岐冷媒管に導入される。分岐冷媒管で冷媒は熱エネルギーを放出し液化する。過冷却状態となった液冷媒は自重によってバイパス管を通って第2冷媒管に流入する。液冷媒は第2分流器よりも低い位置にある分岐冷媒管内に留まらずに流通する。   During the cooling operation, the high-temperature and high-pressure refrigerant discharged from the compressor is diverted by the first diverter and introduced into the branch refrigerant pipe. In the branch refrigerant pipe, the refrigerant releases heat energy and liquefies. The supercooled liquid refrigerant flows into the second refrigerant pipe through the bypass pipe by its own weight. The liquid refrigerant flows without staying in the branch refrigerant pipe located at a position lower than that of the second flow divider.

暖房運転時には、膨張弁を通過した冷媒は第2冷媒管に導入される。冷媒は第2分流器で分流されて分岐冷媒管に導入される。分岐冷媒管で冷媒は熱エネルギーを吸収し気化する。ガス冷媒は圧縮機に吸入される。   During the heating operation, the refrigerant that has passed through the expansion valve is introduced into the second refrigerant pipe. The refrigerant is branched by the second flow divider and introduced into the branch refrigerant pipe. In the branch refrigerant pipe, the refrigerant absorbs heat energy and vaporizes. The gas refrigerant is sucked into the compressor.

前記バイパス管には、前記第2冷媒管から前記特定分岐冷媒管に向かう冷媒の流通を阻止する逆止弁が組み込まれてもよい。冷房運転時にはバイパス管を通って第2分流器を迂回して分岐冷媒管から第2冷媒管に液冷媒は流入する。暖房運転時には、バイパス管は閉じられるので、分岐冷媒管には必ず第2分流器から二相冷媒は流入する。二相冷媒は良好に熱交換器全体に行き渡ることができる。   The bypass pipe may incorporate a check valve that prevents the refrigerant from flowing from the second refrigerant pipe to the specific branch refrigerant pipe. During the cooling operation, the liquid refrigerant flows from the branch refrigerant pipe into the second refrigerant pipe, bypassing the second flow divider through the bypass pipe. Since the bypass pipe is closed during heating operation, the two-phase refrigerant always flows into the branch refrigerant pipe from the second shunt. The two-phase refrigerant can be well distributed throughout the heat exchanger.

前記第2冷媒管は、前記特定分岐冷媒管の最下位置よりも下方で前記熱交換器内に組み込まれて前記伝熱フィンに結合されてもよく、前記バイパス管は、前記熱交換器および前記膨張弁の間で前記第2冷媒管に接続されてもよい。冷房運転時に、分岐冷媒管で液化しきれなかったガス冷媒は第2分流器を通過して第2冷媒管で更に熱エネルギーを放出する。こうして冷媒の液化はさらに促進される。   The second refrigerant pipe may be incorporated in the heat exchanger below the lowest position of the specific branch refrigerant pipe and coupled to the heat transfer fin, and the bypass pipe may include the heat exchanger and The second refrigerant pipe may be connected between the expansion valves. During the cooling operation, the gas refrigerant that has not been liquefied in the branch refrigerant pipe passes through the second shunt and further releases thermal energy through the second refrigerant pipe. In this way, liquefaction of the refrigerant is further promoted.

以上のように開示の装置によれば、最下段の分岐冷媒管で液冷媒の滞留を抑制し、熱交換器の性能向上に寄与することができる。   As described above, according to the disclosed apparatus, it is possible to suppress the stagnation of the liquid refrigerant with the lowermost branch refrigerant pipe and contribute to the improvement of the performance of the heat exchanger.

本発明の一実施形態に係る空気調和機の構成を概略的に示す概念図である。It is a conceptual diagram which shows roughly the structure of the air conditioner which concerns on one Embodiment of this invention. 一実施形態に係る室外機の構造を概略的に示す正面図である。It is a front view showing roughly the structure of the outdoor unit concerning one embodiment. 斜め後方から観察される室外機の斜視図である。It is a perspective view of the outdoor unit observed from diagonally backward. 一実施形態に係る冷媒の流路を概略的に示す模式図である。It is a schematic diagram which shows schematically the flow path of the refrigerant | coolant which concerns on one Embodiment. 他の実施形態に係る冷媒の流路を概略的に示す模式図である。It is a schematic diagram which shows schematically the flow path of the refrigerant | coolant which concerns on other embodiment.

以下、添付図面を参照しつつ本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

(1)空気調和機の構成
図1は本発明の一実施形態に係る空気調和機11の構成を概略的に示す。空気調和機11は室内機12および室外機13を備える。室内機12は例えば建物内の室内空間に設置される。その他、室内機12は室内空間に相当する空間に設置されればよい。室内機12には室内熱交換器14が組み込まれる。室外機13には圧縮機15、室外熱交換器16、膨張弁17および四方弁18が組み込まれる。室内熱交換器14、圧縮機15、室外熱交換器16、膨張弁17および四方弁18は冷凍回路19を形成する。
(1) Configuration of Air Conditioner FIG. 1 schematically shows a configuration of an air conditioner 11 according to an embodiment of the present invention. The air conditioner 11 includes an indoor unit 12 and an outdoor unit 13. The indoor unit 12 is installed in an indoor space in a building, for example. In addition, the indoor unit 12 may be installed in a space corresponding to the indoor space. An indoor heat exchanger 14 is incorporated in the indoor unit 12. The outdoor unit 13 includes a compressor 15, an outdoor heat exchanger 16, an expansion valve 17, and a four-way valve 18. The indoor heat exchanger 14, the compressor 15, the outdoor heat exchanger 16, the expansion valve 17 and the four-way valve 18 form a refrigeration circuit 19.

冷凍回路19は第1循環経路21を備える。第1循環経路21は四方弁18の第1口18aおよび第2口18bを相互に結ぶ。第1循環経路21には、圧縮機15が設けられている。圧縮機15の吸入管15aは四方弁18の第1口18aに冷媒配管を介して接続される。第1口18aからガス冷媒は圧縮機15の吸入管15aに供給される。圧縮機15は低圧のガス冷媒を所定の圧力まで圧縮する。圧縮機15の吐出管15bは四方弁18の第2口18bに冷媒配管を介して接続される。圧縮機15の吐出管15bからガス冷媒は四方弁18の第2口18bに供給される。冷媒配管は例えば銅管であればよい。   The refrigeration circuit 19 includes a first circulation path 21. The first circulation path 21 connects the first port 18a and the second port 18b of the four-way valve 18 to each other. A compressor 15 is provided in the first circulation path 21. The suction pipe 15a of the compressor 15 is connected to the first port 18a of the four-way valve 18 via a refrigerant pipe. The gas refrigerant is supplied to the suction pipe 15a of the compressor 15 from the first port 18a. The compressor 15 compresses the low-pressure gas refrigerant to a predetermined pressure. The discharge pipe 15b of the compressor 15 is connected to the second port 18b of the four-way valve 18 via a refrigerant pipe. Gas refrigerant is supplied from the discharge pipe 15 b of the compressor 15 to the second port 18 b of the four-way valve 18. The refrigerant pipe may be a copper pipe, for example.

冷凍回路19は第2循環経路22をさらに備える。第2循環経路22は四方弁18の第3口18cおよび第4口18dを相互に結ぶ。第2循環経路22には、第3口18c側から順番に室外熱交換器16、膨張弁17および室内熱交換器14が組み込まれる。室外熱交換器16は、通過する冷媒と周囲の空気との間で熱エネルギーを交換する。室内熱交換器14は、通過する冷媒と周囲の空気との間で熱エネルギーを交換する。第2循環経路22は例えば銅管などで形成されればよい。   The refrigeration circuit 19 further includes a second circulation path 22. The second circulation path 22 connects the third port 18c and the fourth port 18d of the four-way valve 18 to each other. The outdoor heat exchanger 16, the expansion valve 17, and the indoor heat exchanger 14 are incorporated into the second circulation path 22 in order from the third port 18c side. The outdoor heat exchanger 16 exchanges heat energy between the refrigerant passing therethrough and ambient air. The indoor heat exchanger 14 exchanges thermal energy between the refrigerant passing therethrough and ambient air. The second circulation path 22 may be formed of, for example, a copper pipe.

室外機13には送風ファン23が組み込まれる。送風ファン23は室外熱交換器16に通風する。送風ファン23は例えば羽根車の回転に応じて気流を生成する。気流は室外熱交換器16を通り抜ける。通り抜ける気流の流量は羽根車の回転数に応じて調整される。   A blower fan 23 is incorporated in the outdoor unit 13. The blower fan 23 ventilates the outdoor heat exchanger 16. The blower fan 23 generates an air flow according to the rotation of the impeller, for example. The airflow passes through the outdoor heat exchanger 16. The flow rate of the airflow passing through is adjusted according to the rotational speed of the impeller.

室内機12には送風ファン24が組み込まれる。送風ファン24は室内熱交換器14に通風する。送風ファン24は羽根車の回転に応じて気流を生成する。送風ファン24の働きで室内機12には室内空気が吸い込まれる。室内空気は室内熱交換器14を通り抜け冷媒と熱交換する。熱交換された冷気または暖気の気流は室内機12から吹き出される。通り抜ける気流の流量は羽根車の回転数に応じて調整される。   A blower fan 24 is incorporated in the indoor unit 12. The blower fan 24 ventilates the indoor heat exchanger 14. The blower fan 24 generates an air flow according to the rotation of the impeller. Indoor air is sucked into the indoor unit 12 by the action of the blower fan 24. The indoor air passes through the indoor heat exchanger 14 and exchanges heat with the refrigerant. The heat-exchanged cold air or warm air flow is blown out from the indoor unit 12. The flow rate of the airflow passing through is adjusted according to the rotational speed of the impeller.

冷凍回路19で冷房運転が実施される場合には、四方弁18は第2口18bおよび第3口18cを相互に接続し第1口18aおよび第4口18dを相互に接続する。したがって、圧縮機15の吐出管15bから高温高圧の冷媒が室外熱交換器16に供給される。冷媒は室外熱交換器16、膨張弁17および室内熱交換器14を順番に流通する。室外熱交換器16では冷媒から外気に放熱する。膨張弁17で冷媒は低圧まで減圧される。減圧された冷媒は室内熱交換器14で周囲の空気から吸熱する。冷気が生成される。冷気は送風ファン24の働きで室内空間に吹き出される。   When the cooling operation is performed in the refrigeration circuit 19, the four-way valve 18 connects the second port 18b and the third port 18c to each other and connects the first port 18a and the fourth port 18d to each other. Therefore, high-temperature and high-pressure refrigerant is supplied to the outdoor heat exchanger 16 from the discharge pipe 15 b of the compressor 15. The refrigerant flows through the outdoor heat exchanger 16, the expansion valve 17, and the indoor heat exchanger 14 in order. The outdoor heat exchanger 16 radiates heat from the refrigerant to the outside air. The refrigerant is decompressed to a low pressure by the expansion valve 17. The decompressed refrigerant absorbs heat from the surrounding air in the indoor heat exchanger 14. Cold air is generated. The cold air is blown out into the indoor space by the function of the blower fan 24.

冷凍回路19で暖房運転が実施される場合には、四方弁18は第2口18bおよび第4口18dを相互に接続し第1口18aおよび第3口18cを相互に接続する。圧縮機15から高温高圧の冷媒が室内熱交換器14に供給される。冷媒は室内熱交換器14、膨張弁17および室外熱交換器16を順番に流通する。室内熱交換器14では冷媒から周囲の空気に放熱する。暖気が生成される。暖気は送風ファン24の働きで室内空間に吹き出される。膨張弁17で冷媒は低圧まで減圧される。減圧された冷媒は室外熱交換器16で周囲の空気から吸熱する。その後、冷媒は圧縮機15に戻る。   When the heating operation is performed in the refrigeration circuit 19, the four-way valve 18 connects the second port 18b and the fourth port 18d to each other and connects the first port 18a and the third port 18c to each other. A high-temperature and high-pressure refrigerant is supplied from the compressor 15 to the indoor heat exchanger 14. The refrigerant flows through the indoor heat exchanger 14, the expansion valve 17, and the outdoor heat exchanger 16 in order. The indoor heat exchanger 14 radiates heat from the refrigerant to the surrounding air. Warm air is generated. Warm air is blown into the indoor space by the function of the blower fan 24. The refrigerant is decompressed to a low pressure by the expansion valve 17. The decompressed refrigerant absorbs heat from the surrounding air in the outdoor heat exchanger 16. Thereafter, the refrigerant returns to the compressor 15.

(2)室外機の構成
図2に示されるように、室外熱交換器16は、室外機13の底板26に組み付けられて、底板26から垂直方向に立ち上がる。室外熱交換器16は、地面GDに直交する垂直面に広がって、相互に平行に配列される複数の伝熱フィン27と、伝熱フィン27を貫通しながら水平方向に延びる銅管からなる伝熱管28とを備える。伝熱フィン27と伝熱管28とは結合される。室外熱交換器16は、風の流通方向に対して前後に重ねられる風下側の伝熱ユニット29aと、風上側の伝熱ユニット29bで構成される。個々の伝熱ユニット29a、29bごとに垂直方向に1列の伝熱管28が配列される。伝熱フィン27および冷媒管28は銅やアルミニウムその他の伝熱素材から形成される。ここで伝熱ユニット29a、29bは、1枚のフィンに伝熱管28を挿通する挿通穴を2列有するもので一体的に作られていても良い。
(2) Configuration of Outdoor Unit As shown in FIG. 2, the outdoor heat exchanger 16 is assembled to the bottom plate 26 of the outdoor unit 13 and rises from the bottom plate 26 in the vertical direction. The outdoor heat exchanger 16 extends in a vertical plane perpendicular to the ground GD, and is composed of a plurality of heat transfer fins 27 arranged in parallel to each other and a copper pipe extending in the horizontal direction while penetrating the heat transfer fins 27. And a heat pipe 28. The heat transfer fins 27 and the heat transfer tubes 28 are coupled. The outdoor heat exchanger 16 includes a leeward heat transfer unit 29a and a windward heat transfer unit 29b that are stacked in the front-rear direction with respect to the wind flow direction. One row of heat transfer tubes 28 is arranged in the vertical direction for each of the heat transfer units 29a and 29b. The heat transfer fins 27 and the refrigerant tubes 28 are formed of copper, aluminum or other heat transfer material. Here, the heat transfer units 29a and 29b may be integrally formed with two rows of insertion holes through which the heat transfer tubes 28 are inserted into one fin.

室外熱交換器16に囲まれて送風ファン23は配置される。送風ファン23は、水平軸線31回りに回転自在に支持されるハブ23aと、ハブ23aから径方向外方に広がる複数の羽根23bとを備える。羽根23bは室外機13の底板26に平行な水平軸線31に平行に気流を生成する。室外熱交換器16は、室外機13の背面と背面に連続する一方の側面とに沿って広がる。 The blower fan 23 is disposed surrounded by the outdoor heat exchanger 16. The blower fan 23 includes a hub 23a that is rotatably supported around the horizontal axis 31 and a plurality of blades 23b that extend radially outward from the hub 23a. The blades 23 b generate an air flow parallel to a horizontal axis 31 parallel to the bottom plate 26 of the outdoor unit 13. The outdoor heat exchanger 16 extends along the back surface of the outdoor unit 13 and one side surface continuous to the back surface.

室外熱交換器16の一端では伝熱ユニット29a、29bごとに上下1対ずつの伝熱管28からなる複数のヘアピン管32が伝熱フィン27に挿通される。図3に示されるように、室外熱交換器16の他端ではヘアピン管を連結するU字管33の接続に基づき上下方向に4つの流路を構成する分岐冷媒管34a、34b、34c、34dおよび、それらが合流して1つの流路となる共通冷媒管35が形成される。個々の分岐冷媒管34a〜34dは、底板26に平行な水平方向に延びる伝熱管28からなる複数のヘアピン管32とヘアピン管を連結するU字管33とで構成される。分岐冷媒管34a〜34dの流入口36a、36b、36c、36dには分岐冷媒管34a〜34dごとに個別に連結管37を介して第1分流器38が接続される。分岐冷媒管34a〜34dの流出口39a、39b、39c、39dには分岐冷媒管34a〜34dごとに個別に連結管41を介して第2分流器42が接続される。こうして第1分流器38および第2分流器42の間には4本の流路が並列に設けられる。分岐冷媒管34a〜34dは並列に流路を形成する。第2分流器42は第1分流器38よりも重力方向に低い位置に配置される。ここでは、「流入口」および「流出口」は、冷房運転時の冷媒の流れに基づき便宜的に名付けられたものであって、暖房運転時には「流入口」から室外熱交換器16の冷媒は流出し、「流出口」から室外熱交換器16に冷媒は流入する。   At one end of the outdoor heat exchanger 16, a plurality of hairpin tubes 32 including a pair of upper and lower heat transfer tubes 28 are inserted into the heat transfer fins 27 for each of the heat transfer units 29 a and 29 b. As shown in FIG. 3, at the other end of the outdoor heat exchanger 16, branch refrigerant pipes 34a, 34b, 34c, 34d that constitute four flow paths in the vertical direction based on the connection of the U-shaped pipe 33 that connects the hairpin pipes. And the common refrigerant | coolant pipe | tube 35 in which they merge and become one flow path is formed. Each of the branch refrigerant tubes 34 a to 34 d is composed of a plurality of hairpin tubes 32 including heat transfer tubes 28 extending in the horizontal direction parallel to the bottom plate 26 and a U-shaped tube 33 connecting the hairpin tubes. The first flow divider 38 is connected to the inlets 36a, 36b, 36c, and 36d of the branch refrigerant pipes 34a to 34d via the connecting pipe 37 for each of the branch refrigerant pipes 34a to 34d. The second flow divider 42 is connected to the outlets 39a, 39b, 39c, and 39d of the branch refrigerant pipes 34a to 34d via the connecting pipe 41 individually for each of the branch refrigerant pipes 34a to 34d. Thus, four flow paths are provided in parallel between the first flow divider 38 and the second flow divider 42. The branch refrigerant pipes 34a to 34d form flow paths in parallel. The second flow divider 42 is disposed at a position lower than the first flow divider 38 in the direction of gravity. Here, the “inlet” and “outlet” are named for convenience based on the refrigerant flow during the cooling operation, and the refrigerant of the outdoor heat exchanger 16 is transferred from the “inlet” during the heating operation. The refrigerant flows out and flows into the outdoor heat exchanger 16 from the “outlet”.

第1分流器38は1つの第1冷媒管43で圧縮機15に接続される。第2分流器42は1つの第2冷媒管44で膨張弁17に接続される。第2冷媒管44は一部に共通冷媒管35を含む。したがって、第2冷媒管44は、分岐冷媒管34a〜34dのうち最下方に配置される分岐冷媒管34d(特定分岐冷媒管)の最下位置よりも下方で室外熱交換器16内に組み込まれて伝熱フィン27に結合される。   The first flow divider 38 is connected to the compressor 15 by one first refrigerant pipe 43. The second flow divider 42 is connected to the expansion valve 17 by one second refrigerant pipe 44. The second refrigerant pipe 44 includes a common refrigerant pipe 35 in part. Therefore, the second refrigerant pipe 44 is incorporated into the outdoor heat exchanger 16 below the lowermost position of the branch refrigerant pipe 34d (specific branch refrigerant pipe) disposed at the lowermost position among the branch refrigerant pipes 34a to 34d. To the heat transfer fin 27.

図4に示されるように、上から1番目の分岐冷媒管34aは、流入口36aから前側の伝熱ユニット29a内で水平方向に往復しながら上方に向かい、後側の伝熱ユニット29b内で水平方向に往復しながら流出口39aまで下降する。分岐冷媒管34aの連結管41は流出口39aからさらに下降して第2分流器42に結合される。   As shown in FIG. 4, the first branch refrigerant pipe 34a from the top is directed upward while reciprocating in the horizontal direction in the front heat transfer unit 29a from the inlet 36a, and in the rear heat transfer unit 29b. It descends to the outlet 39a while reciprocating in the horizontal direction. The connecting pipe 41 of the branch refrigerant pipe 34a is further lowered from the outlet 39a and coupled to the second flow divider 42.

上から2番目の分岐冷媒管34bは、流入口36aよりも低い位置に配置される流入口36bから前側の伝熱ユニット29a内で水平方向に往復しながら下降し、後側の伝熱ユニット29b内で水平方向に往復しながら流出口39bまで上昇する。流出口39bは流出口39aよりも低い位置に位置する。分岐冷媒管34bの連結管41は流出口39bから下降して第2分流器42に結合される。   The second branch refrigerant pipe 34b from the top descends while reciprocating in the horizontal direction in the front heat transfer unit 29a from the inlet 36b disposed at a position lower than the inlet 36a, and the rear heat transfer unit 29b. Ascending to the outlet 39b while reciprocating in the horizontal direction. The outflow port 39b is located at a position lower than the outflow port 39a. The connecting pipe 41 of the branch refrigerant pipe 34b descends from the outlet 39b and is coupled to the second flow divider 42.

上から3番目の分岐冷媒管34cは、流入口36bよりも低い位置に配置される流入口36cから前側の伝熱ユニット29a内で水平方向に往復しながら上方に向かい、後側の伝熱ユニット29b内で水平方向に往復しながら流出口39cまで下降する。流出口39cは流出口39bよりも低い位置に位置する。分岐冷媒管34cの連結管41は流出口39cからさらに下降して第2分流器42に結合される。   The third branch refrigerant pipe 34c from the top is directed upward while reciprocating in the horizontal direction in the heat transfer unit 29a on the front side from the flow inlet 36c disposed at a position lower than the flow inlet 36b, and is located on the rear heat transfer unit. It descends to the outlet 39c while reciprocating in the horizontal direction in 29b. The outlet 39c is located at a position lower than the outlet 39b. The connecting pipe 41 of the branch refrigerant pipe 34c is further lowered from the outlet 39c and coupled to the second flow divider 42.

最下位置の分岐冷媒管34dは、流入口36cよりも低い位置に配置される流入口36dから前側の伝熱ユニット29a内で水平方向に往復しながら第2分流器42よりも低い位置まで下降し、後側の伝熱ユニット29b内で水平方向に往復しながら流出口39dまで上昇する。すなわち、分岐冷媒管34dは第2分流器42よりも低い位置に流路を形成する。流出口39dは流出口39cよりも低い位置に位置する。分岐冷媒管34dの連結管41は流出口39dから下降して第2分流器42に結合される。   The lowermost branch refrigerant pipe 34d descends from the inlet 36d disposed at a position lower than the inlet 36c to a position lower than the second flow divider 42 while reciprocating horizontally in the front heat transfer unit 29a. Then, it moves up to the outlet 39d while reciprocating in the horizontal direction in the rear heat transfer unit 29b. That is, the branch refrigerant pipe 34 d forms a flow path at a position lower than the second flow divider 42. The outflow port 39d is located at a position lower than the outflow port 39c. The connecting pipe 41 of the branch refrigerant pipe 34d descends from the outlet 39d and is coupled to the second flow divider 42.

室外機13は、分岐冷媒管34dから延びて第2冷媒管44に接続されるバイパス管45を備える。バイパス管45は共通冷媒管35の流出口46と膨張弁17との間で第2冷媒管44に合流する。バイパス管45は流出口46から第2冷媒管44に向かって下降する。バイパス管45には逆止弁47が組み込まれる。逆止弁47は、分岐冷媒管34dから第2冷媒管44に向かう冷媒の流通を許容するとともに、第2冷媒管44から分岐冷媒管34dに向かう冷媒の流通を阻止する。   The outdoor unit 13 includes a bypass pipe 45 extending from the branch refrigerant pipe 34 d and connected to the second refrigerant pipe 44. The bypass pipe 45 joins the second refrigerant pipe 44 between the outlet 46 of the common refrigerant pipe 35 and the expansion valve 17. The bypass pipe 45 descends from the outlet 46 toward the second refrigerant pipe 44. A check valve 47 is incorporated in the bypass pipe 45. The check valve 47 allows the refrigerant to flow from the branch refrigerant pipe 34d to the second refrigerant pipe 44, and prevents the refrigerant from flowing from the second refrigerant pipe 44 to the branch refrigerant pipe 34d.

(3)室外機の動作
次に室外機13の動作を説明する。冷房運転時には、圧縮機15から吐出された冷媒が第1分流器38で分流されて分岐冷媒管34a〜34dに導入される。分岐冷媒管34a〜34dで冷媒は熱エネルギーを放出し液化する。液冷媒は自重によって分岐冷媒管34dからバイパス管45を通って第2冷媒管44に流入する。液冷媒は第2分流器42よりも低い位置にある分岐冷媒管34d内に留まらずに流通する。ガス冷媒は分岐冷媒管34dの流出口39dから第2分流器42へ流れる。効率的なエネルギー交換は実現される。分岐冷媒管34a〜34dで液化しきれなかったガス冷媒は第2分流器42を通過して第2冷媒管44(共通冷媒管35)で更に熱エネルギーを放出する。こうして冷媒の液化はさらに促進される。
(3) Operation of outdoor unit Next, the operation of the outdoor unit 13 will be described. During the cooling operation, the refrigerant discharged from the compressor 15 is diverted by the first diverter 38 and introduced into the branch refrigerant tubes 34a to 34d. In the branch refrigerant tubes 34a to 34d, the refrigerant releases heat energy and liquefies. The liquid refrigerant flows from the branch refrigerant pipe 34d through the bypass pipe 45 into the second refrigerant pipe 44 by its own weight. The liquid refrigerant flows without staying in the branch refrigerant pipe 34d located at a position lower than the second flow divider 42. The gas refrigerant flows from the outlet 39d of the branch refrigerant pipe 34d to the second flow divider 42. Efficient energy exchange is realized. The gas refrigerant that has not been liquefied in the branch refrigerant pipes 34a to 34d passes through the second flow divider 42 and further releases thermal energy through the second refrigerant pipe 44 (common refrigerant pipe 35). In this way, liquefaction of the refrigerant is further promoted.

暖房運転時には、膨張弁17を通過した冷媒が第2冷媒管44に導入される。冷媒は第2分流器42で分流されて分岐冷媒管34a〜34dに導入される。分岐冷媒管34a〜34dで冷媒は熱エネルギーを吸収し気化する。ガス冷媒は圧縮機15に吸い込まれる。   During the heating operation, the refrigerant that has passed through the expansion valve 17 is introduced into the second refrigerant pipe 44. The refrigerant is divided by the second flow divider 42 and introduced into the branch refrigerant pipes 34a to 34d. In the branch refrigerant pipes 34a to 34d, the refrigerant absorbs heat energy and vaporizes. The gas refrigerant is sucked into the compressor 15.

前述のように、バイパス管45には逆止弁47が組み込まれるので、冷房運転時にはバイパス管45を通って第2分流器42を迂回して分岐冷媒管34dから第2冷媒管44に液冷媒は流入する。その一方で、暖房運転時には、バイパス管45は閉じられるので、分岐冷媒管34dには必ず第2分流器42から二相冷媒は流入する。   As described above, since the check valve 47 is incorporated in the bypass pipe 45, during cooling operation, the liquid refrigerant passes from the branch refrigerant pipe 34d to the second refrigerant pipe 44 through the bypass pipe 45 and bypasses the second flow divider 42. Flows in. On the other hand, since the bypass pipe 45 is closed during heating operation, the two-phase refrigerant always flows from the second flow divider 42 into the branch refrigerant pipe 34d.

本願の他の実施例として、図5に示されるように、最下方の分岐冷媒管34dは、室外熱交換器16に区画される流入口51から水平方向に往復しながら重力方向下方に下降する第1下降部52と、室外熱交換器16内で第1下降部52の下端よりも重力方向上方に位置する導入口53から水平方向に往復しながら重力方向下方に下降する第2下降部54と、第1下降部52の流出口55に第2下降部54の導入口53を接続する接続管56とを備えてもよい。第2下降部54の流出口57は第2分流器42よりも低い位置に位置するものの、液冷媒は第2分流器42よりも低い位置にある第2下降部54内に留まらずに流通するため、分岐冷媒管34dを流通するガス冷媒はスムースに第2分流器42に流れ込むことができる。   As another embodiment of the present application, as shown in FIG. 5, the lowermost branch refrigerant pipe 34 d descends downward in the gravity direction while reciprocating in the horizontal direction from the inlet 51 defined in the outdoor heat exchanger 16. The first descending portion 52 and the second descending portion 54 that descends downward in the gravitational direction while reciprocating in the horizontal direction from the inlet 53 located above the lower end of the first descending portion 52 in the outdoor heat exchanger 16 in the gravitational direction. And a connecting pipe 56 that connects the inlet 53 of the second descending portion 54 to the outlet 55 of the first descending portion 52. Although the outlet 57 of the second descending portion 54 is located at a position lower than the second flow divider 42, the liquid refrigerant flows without staying in the second descending portion 54 located at a position lower than the second flow divider 42. Therefore, the gas refrigerant flowing through the branch refrigerant pipe 34d can smoothly flow into the second flow divider 42.

11…空気調和機、15…圧縮機、16…熱交換器(室外熱交換器)、17…膨張弁、27…伝熱フィン、34a…分岐冷媒管、34b…分岐冷媒管、34c…分岐冷媒管、34d…特定分岐冷媒管(分岐冷媒管)、38…第1分流管、42…第2分流器、43…第1冷媒管、44…第2冷媒管、45…バイパス管、47…逆止弁、51…流入口、52…第2下降部、53…導入口、54…第2下降部。   DESCRIPTION OF SYMBOLS 11 ... Air conditioner, 15 ... Compressor, 16 ... Heat exchanger (outdoor heat exchanger), 17 ... Expansion valve, 27 ... Heat transfer fin, 34a ... Branch refrigerant pipe, 34b ... Branch refrigerant pipe, 34c ... Branch refrigerant Pipe, 34d ... specific branch refrigerant pipe (branch refrigerant pipe), 38 ... first shunt pipe, 42 ... second shunt pipe, 43 ... first refrigerant pipe, 44 ... second refrigerant pipe, 45 ... bypass pipe, 47 ... reverse Stop valve, 51 ... inlet, 52 ... second descending portion, 53 ... inlet port, 54 ... second descending portion.

Claims (3)

第1冷媒管で圧縮機に接続される第1分流器と、
前記第1分流器よりも低い位置に配置されて、第2冷媒管で膨張弁に接続される第2分流器と、
前記第1分流器および前記第2分流器の間で並列に流路を形成して伝熱フィンに結合される分岐冷媒管を有する熱交換器と、
前記分岐冷媒管のうち、前記第2分流器よりも低い位置に流路を形成する特定分岐冷媒管、および、前記第2冷媒管を接続するバイパス管と
を備えることを特徴とする空気調和機。
A first shunt connected to the compressor by a first refrigerant pipe;
A second shunt disposed at a position lower than the first shunt and connected to the expansion valve by a second refrigerant pipe;
A heat exchanger having a branch refrigerant pipe coupled in parallel to the heat transfer fin by forming a flow path in parallel between the first flow divider and the second flow divider;
An air conditioner comprising: a specific branch refrigerant pipe that forms a flow path at a position lower than the second shunt of the branch refrigerant pipe; and a bypass pipe that connects the second refrigerant pipe. .
請求項1に記載の空気調和機において、前記バイパス管には、前記第2冷媒管から前記特定分岐冷媒管に向かう冷媒の流通を阻止する逆止弁が組み込まれることを特徴とする空気調和機。   2. The air conditioner according to claim 1, wherein the bypass pipe incorporates a check valve for preventing a refrigerant from flowing from the second refrigerant pipe to the specific branch refrigerant pipe. 3. . 請求項1または2に記載の空気調和機において、前記第2冷媒管は、前記特定分岐冷媒管の最下位置よりも下方で前記熱交換器の前記伝熱フィンに結合され、前記バイパス管は、前記熱交換器および前記膨張弁の間で前記第2冷媒管に接続されることを特徴とする空気調和機。   3. The air conditioner according to claim 1, wherein the second refrigerant pipe is coupled to the heat transfer fin of the heat exchanger below a lowermost position of the specific branch refrigerant pipe, and the bypass pipe is The air conditioner is connected to the second refrigerant pipe between the heat exchanger and the expansion valve.
JP2017066147A 2017-03-29 2017-03-29 Air conditioner Pending JP2018169078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017066147A JP2018169078A (en) 2017-03-29 2017-03-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017066147A JP2018169078A (en) 2017-03-29 2017-03-29 Air conditioner

Publications (1)

Publication Number Publication Date
JP2018169078A true JP2018169078A (en) 2018-11-01

Family

ID=64020233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017066147A Pending JP2018169078A (en) 2017-03-29 2017-03-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP2018169078A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111412636A (en) * 2020-04-07 2020-07-14 珠海格力电器股份有限公司 Air conditioner without communication circuit between indoor unit and outdoor unit and control method thereof
CN111637583A (en) * 2020-05-25 2020-09-08 宁波奥克斯电气股份有限公司 Condenser flow path structure, control method and air conditioner
WO2022163800A1 (en) * 2021-01-29 2022-08-04 ダイキン工業株式会社 Refrigeration cycle device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0495271U (en) * 1991-01-07 1992-08-18
JPH1019416A (en) * 1996-07-03 1998-01-23 Toshiba Corp Heat exchanger
JP2000320927A (en) * 1999-05-12 2000-11-24 Kimura Kohki Co Ltd Refrigerant coil
JP2008256304A (en) * 2007-04-06 2008-10-23 Daikin Ind Ltd Refrigerating device
JP2009287837A (en) * 2008-05-29 2009-12-10 Hitachi Appliances Inc Refrigeration cycle device
WO2014083651A1 (en) * 2012-11-29 2014-06-05 株式会社日立製作所 Air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0495271U (en) * 1991-01-07 1992-08-18
JPH1019416A (en) * 1996-07-03 1998-01-23 Toshiba Corp Heat exchanger
JP2000320927A (en) * 1999-05-12 2000-11-24 Kimura Kohki Co Ltd Refrigerant coil
JP2008256304A (en) * 2007-04-06 2008-10-23 Daikin Ind Ltd Refrigerating device
JP2009287837A (en) * 2008-05-29 2009-12-10 Hitachi Appliances Inc Refrigeration cycle device
WO2014083651A1 (en) * 2012-11-29 2014-06-05 株式会社日立製作所 Air conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111412636A (en) * 2020-04-07 2020-07-14 珠海格力电器股份有限公司 Air conditioner without communication circuit between indoor unit and outdoor unit and control method thereof
CN111412636B (en) * 2020-04-07 2021-05-25 珠海格力电器股份有限公司 Air conditioner without communication circuit between indoor unit and outdoor unit and control method thereof
CN111637583A (en) * 2020-05-25 2020-09-08 宁波奥克斯电气股份有限公司 Condenser flow path structure, control method and air conditioner
CN111637583B (en) * 2020-05-25 2022-06-14 宁波奥克斯电气股份有限公司 Condenser flow path structure, control method and air conditioner
WO2022163800A1 (en) * 2021-01-29 2022-08-04 ダイキン工業株式会社 Refrigeration cycle device
JP2022117023A (en) * 2021-01-29 2022-08-10 ダイキン工業株式会社 Refrigeration cycle device
JP7125632B2 (en) 2021-01-29 2022-08-25 ダイキン工業株式会社 refrigeration cycle equipment
CN116829885A (en) * 2021-01-29 2023-09-29 大金工业株式会社 Refrigeration cycle device
EP4286768A4 (en) * 2021-01-29 2024-04-03 Daikin Industries, Ltd. Refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP6352401B2 (en) Air conditioner
CN108139089B (en) Outdoor unit and indoor unit of air conditioner
JP6371046B2 (en) Air conditioner and heat exchanger for air conditioner
JP2011112303A (en) Outdoor unit of air conditioner
JP6223596B2 (en) Air conditioner indoor unit
JP6553981B2 (en) Heat exchange equipment for heat pump equipment
JP2018169078A (en) Air conditioner
EP2985549B1 (en) Air conditioner
WO2020129180A1 (en) Heat exchanger and refrigeration cycle device
KR101988034B1 (en) Air conditioner
JP2010216692A (en) Heat exchange device for outdoor unit of air conditioning system
JP2016142417A (en) Air conditioner
CA3028624C (en) Central air conditioning and heat pump system with energy efficient arrangement
JP2014122770A (en) Heat exchanger
TWI731588B (en) air conditioner
JP3177302U (en) Air conditioning unit
JPWO2017042940A1 (en) Heat exchanger
JP6614876B2 (en) Air conditioner indoor unit
JP4902625B2 (en) Heat pump water heater and refrigeration equipment
JP2018115809A (en) Air conditioner
JP6885857B2 (en) Air conditioner
KR102174514B1 (en) Air conditioning system
JP2017110896A (en) Air conditioner
JP6869382B2 (en) Air conditioner
JP2017048953A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210106

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210630