JP2018167168A - NOx REMOVAL EQUIPMENT - Google Patents

NOx REMOVAL EQUIPMENT Download PDF

Info

Publication number
JP2018167168A
JP2018167168A JP2017065879A JP2017065879A JP2018167168A JP 2018167168 A JP2018167168 A JP 2018167168A JP 2017065879 A JP2017065879 A JP 2017065879A JP 2017065879 A JP2017065879 A JP 2017065879A JP 2018167168 A JP2018167168 A JP 2018167168A
Authority
JP
Japan
Prior art keywords
beam member
denitration
coal
prevention structure
denitration catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017065879A
Other languages
Japanese (ja)
Other versions
JP6836168B2 (en
Inventor
敏和 吉河
Toshikazu Yoshikawa
敏和 吉河
健治 引野
Kenji Hikino
健治 引野
啓一郎 盛田
Keiichiro Morita
啓一郎 盛田
英嗣 清永
Hidetsugu Kiyonaga
英嗣 清永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2017065879A priority Critical patent/JP6836168B2/en
Publication of JP2018167168A publication Critical patent/JP2018167168A/en
Application granted granted Critical
Publication of JP6836168B2 publication Critical patent/JP6836168B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

To provide NOx removal equipment capable of preventing easily clogging of open holes provided in a NOx removal catalyst.SOLUTION: NOx removal equipment 160, which is NOx removal equipment 160 for performing NOx removal from gas containing nitrogen oxide, includes a NOx removal catalyst layer 62 provided with a plurality of open holes 624 extending in a longer direction, and having a NOx removal catalyst 622 for performing NOx removal from gas containing nitrogen oxide passing through the open holes 624, a beam member 66 for reinforcement arranged on the upstream side of gas on the NOx removal catalyst layer 62, and a clogging prevention structure 10 for preventing clogging of the open holes 624.SELECTED DRAWING: Figure 3

Description

本発明は、石炭火力発電設備等において用いられる脱硝装置に関する。   The present invention relates to a denitration apparatus used in a coal-fired power generation facility or the like.

石炭火力発電設備では、石炭燃焼に伴い窒素酸化物が発生する。大気汚染防止法等の規制により、このような窒素酸化物の排出量は一定水準以下に抑える必要がある。このため、窒素酸化物を還元分解するための脱硝装置が設置されている。
脱硝装置は、脱硝触媒が充てんされており、アンモニア(ガス)を共存させることで、高温下で還元反応を発現している。
In coal-fired power generation facilities, nitrogen oxides are generated with coal combustion. Due to regulations such as the Air Pollution Control Law, such nitrogen oxide emissions must be kept below a certain level. For this reason, a denitration apparatus for reducing and decomposing nitrogen oxides is installed.
The denitration apparatus is filled with a denitration catalyst, and exhibits a reduction reaction at a high temperature by coexisting ammonia (gas).

脱硝触媒は、使用を続けていくと流れる空気に含まれる石炭灰によって脱硝触媒の貫通孔が閉塞される場合がある。その要因の一つとして、脱硝触媒の各層間に設置されている補強用の梁に石炭灰が堆積し、一定量堆積すると一気に脱硝触媒に落下する現象があげられる。   As the denitration catalyst continues to be used, the through-holes of the denitration catalyst may be blocked by coal ash contained in the flowing air. One of the factors is the phenomenon that coal ash accumulates on the reinforcing beams installed between the layers of the denitration catalyst, and drops to the denitration catalyst all at once when a certain amount accumulates.

石炭灰が一気に落下すると、石炭灰が塊となって貫通孔を閉塞する。貫通孔が閉塞すると、脱硝装置の入口と出口の差圧が上昇し、最終的には、石炭火力発電設備を停止した清掃が必要となる。また、貫通孔の一部が塞がれると、排ガスと脱硝触媒との接触面積が少なくなり、脱硝装置の性能が低下するとともに脱硝触媒の劣化も促進される。さらに、閉塞していない貫通孔へ排ガスが流れ込むため、流速が増大し、脱硝触媒が部分的に摩耗する。   When the coal ash falls at once, the coal ash becomes a lump and closes the through hole. When the through hole is closed, the differential pressure between the inlet and outlet of the denitration device increases, and eventually, the cleaning with the coal-fired power generation facility stopped is necessary. Further, when a part of the through hole is blocked, the contact area between the exhaust gas and the denitration catalyst is reduced, so that the performance of the denitration device is lowered and the deterioration of the denitration catalyst is promoted. Furthermore, since the exhaust gas flows into the through-holes that are not closed, the flow rate is increased and the denitration catalyst is partially worn.

このため、これらの石炭灰の除去が必要であり、このような石炭灰除去としては、石炭火力発電設備の運転中に脱硝触媒へ直接空気(または蒸気)を吹き付けて堆積した石炭灰を取り除く方法がある。しかしこれらは触媒の摩耗や破損の恐れがある。また、石炭火力発電設備を停止し、プロベスタ―で石炭灰を吸引する清掃方法や空気で石炭灰を除去するの清掃方法等もある(例えば、特許文献1参照)。   For this reason, it is necessary to remove these coal ash, and as such coal ash removal, a method of removing coal ash deposited by blowing air (or steam) directly onto the denitration catalyst during operation of the coal-fired power generation facility. There is. However, these may cause wear and damage to the catalyst. Further, there are a cleaning method in which the coal-fired power generation facility is stopped and the coal ash is sucked by a prober, a cleaning method in which the coal ash is removed by air, and the like (see, for example, Patent Document 1).

特開2001−223404号公報JP 2001-223404 A

しかし、これらの方法は石炭火力発電設備を数日停止して作業を行なう必要があるため、多大な費用が必要となる。
本発明は、脱硝触媒に設けられた貫通孔の閉塞を簡便に防止可能な、脱硝装置を提供することを目的とする。
However, these methods require a large cost because it is necessary to stop the coal-fired power generation facility for several days to work.
An object of this invention is to provide the denitration apparatus which can prevent easily the obstruction | occlusion of the through-hole provided in the denitration catalyst.

本発明の脱硝装置は、窒素酸化物を含むガスの脱硝を行う脱硝装置であって、長手方向に延びる複数の貫通孔が設けられ、該貫通孔を通る窒素酸化物を含むガスの脱硝を行う脱硝触媒を有する脱硝触媒層と、前記脱硝触媒層における前記ガスの上流側に配置された補強用の梁部材と、前記貫通孔の閉塞を防止する閉塞防止構造と、を備える。   The denitration apparatus of the present invention is a denitration apparatus that performs denitration of a gas containing nitrogen oxides, and is provided with a plurality of through holes extending in the longitudinal direction, and denitration of the gas containing nitrogen oxides passing through the through holes. A denitration catalyst layer having a denitration catalyst, a reinforcing beam member disposed on the upstream side of the gas in the denitration catalyst layer, and a blocking prevention structure for preventing blocking of the through hole.

前記閉塞防止構造は、前記梁部材に堆積する堆積物を除去する堆積物除去構造であり、前記梁部材に対して前記ガスの上流側を延びるとともに、前記梁部材の側を向く空気吹き部が設けられた筒部材と、前記筒部材に空気を供給する空気供給部とを備えてもよい。   The blockage preventing structure is a deposit removing structure that removes deposits deposited on the beam member, and has an air blowing portion that extends upstream of the gas with respect to the beam member and faces the beam member side. You may provide the provided cylindrical member and the air supply part which supplies air to the said cylindrical member.

前記閉塞防止構造は、前記梁部材に堆積する堆積物を除去する堆積物除去構造であり、前記梁部材に対して前記ガスの下流側を延びるとともに、前記梁部材の側を向く空気吹き部が設けられた筒部材と、前記筒部材に空気を供給する空気供給部とを備え、前記梁部材には複数の貫通孔が設けられていてもよい。   The blocking prevention structure is a deposit removing structure that removes deposits deposited on the beam member, and an air blowing portion that extends downstream of the gas with respect to the beam member and faces the beam member side. A cylindrical member provided and an air supply unit that supplies air to the cylindrical member may be provided, and the beam member may be provided with a plurality of through holes.

前記閉塞防止構造は、前記梁部材に堆積する堆積物を除去する堆積物除去構造であり、前記梁部材を振動させる駆動部を備えてもよい。   The blocking prevention structure is a deposit removing structure that removes deposits deposited on the beam member, and may include a drive unit that vibrates the beam member.

前記閉塞防止構造は、前記梁部材に堆積する堆積物を除去する堆積物除去構造であり、前記梁部材を回転させる駆動部を備えてもよい。   The blocking prevention structure is a deposit removing structure that removes deposits deposited on the beam member, and may include a drive unit that rotates the beam member.

前記閉塞防止構造は、前記脱硝触媒層を振動させる駆動部であってもよい。   The blocking prevention structure may be a drive unit that vibrates the denitration catalyst layer.

前記閉塞防止構造は、前記脱硝触媒層に沿って移動可能であって、超音波センサー及び超音波発生器を含む超音波システムと、前記超音波システムが取り付けられた可動アームとを備えてもよい。   The blocking prevention structure may include an ultrasonic system that is movable along the denitration catalyst layer and includes an ultrasonic sensor and an ultrasonic generator, and a movable arm to which the ultrasonic system is attached. .

本発明によれば、脱硝触媒に設けられた貫通孔の閉塞を簡便に防止可能な、脱硝装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the denitration apparatus which can prevent easily the obstruction | occlusion of the through-hole provided in the denitration catalyst can be provided.

実施形態の脱硝装置が使用される石炭火力発電設備100の構成図である。It is a lineblock diagram of coal thermal power generation equipment 100 in which a denitration device of an embodiment is used. 脱硝装置160の構成図である。1 is a configuration diagram of a denitration apparatus 160. FIG. 本発明の第1実施形態の閉塞防止構造10を説明する図である。It is a figure explaining blockade prevention structure 10 of a 1st embodiment of the present invention. 本発明の第2実施形態の閉塞防止構造20を説明する図であり、(a)は概念図、(b)は空気吹き出し孔を含む部分の断面図である。It is a figure explaining the blockade prevention structure 20 of 2nd Embodiment of this invention, (a) is a conceptual diagram, (b) is sectional drawing of the part containing an air blowing hole. 本発明の第3実施形態の閉塞防止構造30を説明する図である。It is a figure explaining blockade prevention structure 30 of a 3rd embodiment of the present invention. 本発明の第4実施形態の閉塞防止構造40を説明する図である。It is a figure explaining blockade prevention structure 40 of a 4th embodiment of the present invention. 本発明の第5実施形態の閉塞防止構造50を説明する図である。It is a figure explaining blockade prevention structure 50 of a 5th embodiment of the present invention. 本発明の第6実施形態の閉塞防止構造70を説明する図である。It is a figure explaining blockade prevention structure 70 of a 6th embodiment of the present invention.

以下、本発明の実施形態について、図面を参照しながら説明する。図1は、実施形態の脱硝装置160が使用される石炭火力発電設備100の構成図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a coal-fired power generation facility 100 in which the denitration apparatus 160 of the embodiment is used.

石炭火力発電設備100は、図1に示すように、石炭バンカ120と、給炭機125と、微粉炭機130と、燃焼ボイラ140と、燃焼ボイラ140の下流側に設けられた排気通路150と、この排気通路150に設けられた脱硝装置160、空気予熱器170、電気集塵装置190、ガスヒータ(熱回収用)180、誘引通風機210、脱硫装置220、ガスヒータ(再加熱用)230、脱硫通風機240、及び煙突250と、を備える。   As shown in FIG. 1, the coal-fired power generation facility 100 includes a coal bunker 120, a coal feeder 125, a pulverized coal machine 130, a combustion boiler 140, and an exhaust passage 150 provided on the downstream side of the combustion boiler 140. , A denitration device 160 provided in the exhaust passage 150, an air preheater 170, an electric dust collector 190, a gas heater (for heat recovery) 180, an induction fan 210, a desulfurization device 220, a gas heater (for reheating) 230, desulfurization A ventilator 240 and a chimney 250.

石炭バンカ120は、石炭サイロ(図示しない)から運炭設備によって供給された石炭を貯蔵する。給炭機125は、石炭バンカ120から供給された石炭を所定の供給スピードで微粉炭機130に供給する。
微粉炭機130は、給炭機125から供給された石炭を粉砕して微粉炭を製造する。微粉炭機130においては、石炭は、平均粒径60μm〜80μmに粉砕される。また、微粉炭の粒度分布は、150μm以上が10〜15%、75μm〜150μmが30〜40%、75μm未満が45〜60%程度となる。
微粉炭機130としては、ローラミル、チューブミル、ボールミル、ビータミル、インペラーミル等が用いられる。
The coal bunker 120 stores coal supplied from a coal silo (not shown) by a coal transportation facility. The coal feeder 125 supplies the coal supplied from the coal bunker 120 to the pulverized coal machine 130 at a predetermined supply speed.
The pulverized coal machine 130 pulverizes the coal supplied from the coal feeder 125 to produce pulverized coal. In the pulverized coal machine 130, the coal is pulverized to an average particle size of 60 μm to 80 μm. Moreover, the particle size distribution of pulverized coal is 10 to 15% for 150 μm or more, 30 to 40% for 75 μm to 150 μm, and about 45 to 60% for less than 75 μm.
As the pulverized coal machine 130, a roller mill, a tube mill, a ball mill, a beater mill, an impeller mill, or the like is used.

燃焼ボイラ140は、微粉炭機130から供給された微粉炭を、強制的に供給された空気と共に燃焼する。微粉炭を燃焼することによりクリンカアッシュ及びフライアッシュなどの石炭灰が生成されると共に、排ガスが発生する。
尚、クリンカアッシュとは、微粉炭を燃焼させた場合に発生する石炭灰のうち、燃焼ボイラ140の底部に落下した塊状の石炭灰をいう。また、フライアッシュとは、微粉炭を燃焼させた場合に発生する石炭灰のうち、燃焼ガス(排ガス)と共に吹き上げられて排気通路150側に流通する程度の粒径(粒径200μm程度以下)の球状の石炭灰をいう。
The combustion boiler 140 burns the pulverized coal supplied from the pulverized coal machine 130 together with the forcibly supplied air. By burning pulverized coal, coal ash such as clinker ash and fly ash is generated and exhaust gas is generated.
In addition, clinker ash means the massive coal ash which fell to the bottom part of the combustion boiler 140 among the coal ash generate | occur | produced when pulverized coal is burned. In addition, fly ash has a particle size (particle size of about 200 μm or less) that is blown up with combustion gas (exhaust gas) and circulates to the exhaust passage 150 side among coal ash generated when pulverized coal is burned. Spherical coal ash.

排気通路150は、燃焼ボイラ140の下流側に配置され、燃焼ボイラ140で発生した排ガス及び生成された石炭灰を流通させる。この排気通路150には、上述のように、脱硝装置160、空気予熱器170、ガスヒータ(熱回収用)180、電気集塵装置190、誘引通風機210、脱硫装置220と、ガスヒータ(再加熱用)230、脱硫通風機240、及び煙突250が配置される。   The exhaust passage 150 is disposed on the downstream side of the combustion boiler 140 and distributes the exhaust gas generated in the combustion boiler 140 and the generated coal ash. In the exhaust passage 150, as described above, the denitration device 160, the air preheater 170, the gas heater (for heat recovery) 180, the electrostatic precipitator 190, the induction ventilator 210, the desulfurization device 220, the gas heater (for reheating) ) 230, a desulfurization ventilator 240, and a chimney 250 are disposed.

脱硝装置160は、後述するが、排ガス中の窒素酸化物を除去する。本実施形態では、脱硝装置160は、比較的高温(300℃〜400℃)の排ガス中に還元剤としてアンモニアガスを注入し、脱硝触媒との作用により排ガス中の窒素酸化物を無害な窒素と水蒸気に分解する、いわゆる乾式アンモニア接触還元法により排ガス中の窒素酸化物を除去する。   As will be described later, the denitration device 160 removes nitrogen oxides in the exhaust gas. In the present embodiment, the denitration device 160 injects ammonia gas as a reducing agent into the exhaust gas at a relatively high temperature (300 ° C. to 400 ° C.), and the nitrogen oxides in the exhaust gas are converted into harmless nitrogen by the action of the denitration catalyst. Nitrogen oxides in the exhaust gas are removed by a so-called dry ammonia catalytic reduction method that decomposes into water vapor.

空気予熱器170は、排気通路150における脱硝装置160の下流側に配置される。空気予熱器170は、脱硝装置160を通過した排ガスと押込式通風機75から送り込まれる燃焼用空気とを熱交換させ、排ガスを冷却すると共に、燃焼用空気を加熱する。   The air preheater 170 is disposed downstream of the denitration device 160 in the exhaust passage 150. The air preheater 170 exchanges heat between the exhaust gas that has passed through the denitration device 160 and the combustion air sent from the push-in type ventilator 75 to cool the exhaust gas and heat the combustion air.

ガスヒータ180は、排気通路150における空気予熱器170の下流側に配置される。ガスヒータ180には、空気予熱器170において熱回収された排ガスが供給される。ガスヒータ180は、排ガスから更に熱回収する。   The gas heater 180 is disposed on the downstream side of the air preheater 170 in the exhaust passage 150. The exhaust gas recovered by the air preheater 170 is supplied to the gas heater 180. The gas heater 180 further recovers heat from the exhaust gas.

電気集塵装置190は、排気通路150におけるガスヒータ180の下流側に配置される。電気集塵装置190には、ガスヒータ180において熱回収された排ガスが供給される。電気集塵装置190は、電極に電圧を印加することによって排ガス中の石炭灰(フライアッシュ)を収集する装置である。電気集塵装置190において捕集されるフライアッシュは、フライアッシュ回収装置126に回収される。   The electric dust collector 190 is disposed downstream of the gas heater 180 in the exhaust passage 150. The electric dust collector 190 is supplied with the exhaust gas heat recovered by the gas heater 180. The electric dust collector 190 is a device that collects coal ash (fly ash) in exhaust gas by applying a voltage to electrodes. The fly ash collected by the electric dust collector 190 is collected by the fly ash collection device 126.

誘引通風機210は、排気通路150における電気集塵装置190の下流側に配置される。誘引通風機210は、電気集塵装置190においてフライアッシュが除去された排ガスを、一次側から取り込んで二次側に送り出す。   The induction ventilator 210 is disposed on the downstream side of the electric dust collector 190 in the exhaust passage 150. The induction ventilator 210 takes in the exhaust gas from which fly ash has been removed in the electrostatic precipitator 190 from the primary side and sends it to the secondary side.

脱硫装置220は、排気通路150における誘引通風機210の下流側に配置される。脱硫装置220には、誘引通風機210から送り出された排ガスが供給される。脱硫装置220は、排ガスに石灰石と水との混合液を吹き付けることにより、排ガスに含有されている硫黄酸化物を混合液に吸収させて脱硫石膏スラリーを生成させ、この脱硫石膏スラリーを脱水処理することで脱硫石膏を生成する。脱硫装置220において生成された脱硫石膏は、この装置に接続された脱硫石膏回収装置222に回収される。   The desulfurization device 220 is disposed on the downstream side of the induction fan 210 in the exhaust passage 150. The desulfurization apparatus 220 is supplied with exhaust gas sent from the induction fan 210. The desulfurization apparatus 220 sprays a mixed liquid of limestone and water on the exhaust gas, thereby absorbing the sulfur oxide contained in the exhaust gas into the mixed liquid to generate a desulfurized gypsum slurry, and dehydrating the desulfurized gypsum slurry. This produces desulfurized gypsum. The desulfurized gypsum generated in the desulfurization apparatus 220 is recovered by a desulfurization gypsum recovery apparatus 222 connected to this apparatus.

ガスヒータ230は、排気通路150における脱硫装置220の下流側に配置される。ガスヒータ230には、脱硫装置220において硫黄酸化物が除去された排ガスが供給される。ガスヒータ230は、排ガスを加熱する。ガスヒータ180及びガスヒータ230は、排気通路150における、空気予熱器170と電気集塵装置190との間を流通する排ガスと、脱硫装置220と脱硫通風機240との間を流通する排ガスと、の間で熱交換を行うガスヒータとして構成してもよい。   The gas heater 230 is disposed on the downstream side of the desulfurization device 220 in the exhaust passage 150. The gas heater 230 is supplied with exhaust gas from which sulfur oxides have been removed in the desulfurization apparatus 220. The gas heater 230 heats the exhaust gas. The gas heater 180 and the gas heater 230 are disposed between the exhaust gas flowing between the air preheater 170 and the electrostatic precipitator 190 and the exhaust gas flowing between the desulfurization device 220 and the desulfurization ventilator 240 in the exhaust passage 150. It may be configured as a gas heater that performs heat exchange.

脱硫通風機240は、排気通路150におけるガスヒータ230の下流側に配置される。脱硫通風機240は、ガスヒータ230において加熱された排ガスを一次側から取り込んで二次側に送り出す。
煙突250は、排気通路150における脱硫通風機240の下流側に配置される。煙突250には、ガスヒータ230で加熱された排ガスが導入される。煙突250は、排ガスを排出する。
The desulfurization ventilator 240 is disposed downstream of the gas heater 230 in the exhaust passage 150. The desulfurization ventilator 240 takes in the exhaust gas heated in the gas heater 230 from the primary side and sends it to the secondary side.
The chimney 250 is disposed downstream of the desulfurization ventilator 240 in the exhaust passage 150. Exhaust gas heated by the gas heater 230 is introduced into the chimney 250. The chimney 250 discharges exhaust gas.

図2は、上記の脱硝装置160の構成図を示す。
脱硝装置160は、図2に示すように、筐体61と、この筐体61の内部に配置される複数段の脱硝触媒層62とを備える。
FIG. 2 is a configuration diagram of the denitration apparatus 160 described above.
As shown in FIG. 2, the denitration device 160 includes a casing 61 and a plurality of stages of denitration catalyst layers 62 disposed inside the casing 61.

筐体61は、脱硝装置160における脱硝反応の場となり、排ガスの入口側開口部63と出口側開口部64とが設けられている。排ガスは、図中矢印Aで示すように入口側開口部63から出口側開口部64へと流れる。脱硝触媒層62は、図示するように、例として、複数のハニカム型の脱硝触媒622を含む。   The casing 61 serves as a place for a denitration reaction in the denitration device 160, and is provided with an inlet side opening 63 and an outlet side opening 64 for exhaust gas. The exhaust gas flows from the inlet side opening 63 to the outlet side opening 64 as indicated by an arrow A in the figure. As illustrated, the denitration catalyst layer 62 includes a plurality of honeycomb-type denitration catalysts 622 as an example.

脱硝触媒622は、長手方向に延びる複数の貫通孔624が形成された長尺状(直方体状)である。複数の脱硝触媒622は、貫通孔624の延びる方向が排ガスの流路Aに沿うように配置される。本実施形態では、複数の脱硝触媒622は、ケーシング621に収容された状態で筐体61の内部に配置されている。   The denitration catalyst 622 has a long shape (cubic shape) in which a plurality of through holes 624 extending in the longitudinal direction are formed. The plurality of denitration catalysts 622 are arranged such that the direction in which the through holes 624 extend is along the exhaust gas flow path A. In the present embodiment, the plurality of denitration catalysts 622 are arranged inside the casing 61 while being accommodated in the casing 621.

そして、これらの脱硝触媒層62の間には、隙間65が設けられ、この隙間65には脱硝装置160の補強用のための梁部材66が設けられている。なお、梁部材66は図2に示す構造に限るものではなく、図2に示す形状は一例である。
脱硝装置160は、燃焼ボイラ140の下流側に配置され、燃焼ボイラ140で発生した排ガス及び生成された石炭灰を流通させる。このため、石炭火力発電設備100の稼働時において、脱硝触媒622の梁部材66上に石炭灰(堆積物)が堆積する。
この堆積した石炭灰は、適宜除去しないと塊となって脱硝触媒622の貫通孔624に落下し、貫通孔624を閉塞する可能性がある。貫通孔624が閉塞されると脱硝触媒622の脱硝機能が低下する。そこで、本実施形態では、貫通孔624の閉塞を防止する閉塞防止構造が設けられている。
A gap 65 is provided between the denitration catalyst layers 62, and a beam member 66 for reinforcing the denitration device 160 is provided in the gap 65. The beam member 66 is not limited to the structure shown in FIG. 2, and the shape shown in FIG. 2 is an example.
The denitration device 160 is disposed on the downstream side of the combustion boiler 140 and distributes the exhaust gas generated in the combustion boiler 140 and the generated coal ash. For this reason, coal ash (sediment) is deposited on the beam member 66 of the denitration catalyst 622 when the coal-fired power generation facility 100 is in operation.
If the accumulated coal ash is not removed as appropriate, it may become a lump and fall into the through-hole 624 of the denitration catalyst 622 and block the through-hole 624. When the through hole 624 is closed, the denitration function of the denitration catalyst 622 is lowered. Therefore, in this embodiment, a blocking prevention structure for preventing blocking of the through hole 624 is provided.

(第1実施形態)
図3は本発明の第1実施形態の閉塞防止構造(堆積物除去構造)10を説明する図である。図示するように、筐体61の側壁部67には、挿通孔68が設けられている。挿通孔68には、筒部材11が摺動可能に貫通している。
筒部材11における、筐体61の内部の部分は、梁部材66の上部(排ガスの流れの上流側)において、梁部材66に沿って延びている。筒部材11の先端には、梁部材66側(下流側)に突出した空気吹き出し部12が設けられている。
また、筒部材11における、筐体61の外部の部分には、筒部材11を、図中矢印で示す梁部材66の長さ方向B(排ガスの流入方向に直交する方向)に伸縮させるエアシリンダ等の伸縮機構13と、筒部材11に空気を送風するエアポンプ等の送風機構14が取り付けられている。
(First embodiment)
FIG. 3 is a view for explaining the blocking prevention structure (deposit removal structure) 10 according to the first embodiment of the present invention. As illustrated, an insertion hole 68 is provided in the side wall 67 of the housing 61. The cylindrical member 11 penetrates the insertion hole 68 so as to be slidable.
A portion of the cylindrical member 11 inside the housing 61 extends along the beam member 66 in the upper part of the beam member 66 (upstream side of the flow of exhaust gas). An air blowing portion 12 protruding toward the beam member 66 side (downstream side) is provided at the tip of the cylindrical member 11.
In addition, an air cylinder that extends and contracts the cylindrical member 11 in the length direction B of the beam member 66 indicated by an arrow in the drawing (a direction orthogonal to the inflow direction of the exhaust gas) is provided on a portion of the cylindrical member 11 outside the housing 61. A telescopic mechanism 13 such as an air pump and a blower mechanism 14 such as an air pump for blowing air to the cylindrical member 11 are attached.

石炭火力発電設備100の運転中において、梁部材66の上流側には、石炭灰が堆積してくる。そこで、石炭灰の堆積量が多くならないうちに、筒部材11を駆動する。すなわち、筒部材11の先端に設けられた空気吹き出し部12から空気を吹き出す。そうすると、空気は、梁部材66における、石炭灰が堆積している上流側に吹き出されるので、梁部材66に堆積した石炭灰が吹き飛ばされて、脱硝触媒622の貫通孔624に落下する。   During the operation of the coal-fired power generation facility 100, coal ash is accumulated on the upstream side of the beam member 66. Therefore, the cylindrical member 11 is driven before the amount of coal ash accumulation increases. That is, air is blown out from the air blowing portion 12 provided at the tip of the cylindrical member 11. Then, the air is blown to the upstream side of the beam member 66 where the coal ash is deposited, so that the coal ash deposited on the beam member 66 is blown off and falls into the through hole 624 of the denitration catalyst 622.

そして、筒部材11が伸縮機構13によって、方向Bに伸縮可能されると、空気吹き出し部12が梁部材66に沿って移動する。したがって梁部材66において方向Bに順次、堆積した石炭灰が吹き飛ばされていく。
なお、伸縮機構13による筒部材11の伸縮は、方向Bに沿って一定の速度で行って、梁部材66の全体に均一に空気が噴射されるようにしてもよく、また梁部材66において石炭灰が堆積しやすい箇所に重点的に噴射されるようにしてもよい。石炭灰が堆積しやすい箇所とは梁部材66の形状に対応した、例えば排ガスの流れに対して垂直方向の面積が大きい箇所等である。
When the tubular member 11 can be expanded and contracted in the direction B by the expansion and contraction mechanism 13, the air blowing portion 12 moves along the beam member 66. Therefore, the deposited coal ash is blown off sequentially in the direction B in the beam member 66.
The expansion and contraction of the cylindrical member 11 by the expansion and contraction mechanism 13 may be performed at a constant speed along the direction B so that air is uniformly injected over the entire beam member 66. You may make it intensively inject | pour into the location where ash tends to accumulate. Locations where coal ash is likely to accumulate are locations corresponding to the shape of the beam member 66, for example, locations having a large area in the direction perpendicular to the flow of exhaust gas.

本実施形態によると、伸縮機構13と送風機構14とを適宜作動させて、石炭火力発電設備100を停止することなく石炭灰を落下させることができる。したがって、石炭火力発電設備100を停止する作業と比べて頻繁に行うことが可能であるので、石炭灰の堆積量があまり多量にならないうちに石炭灰を落下させることができる。
石炭灰の堆積量が少ないと、落下した石炭灰は脱硝触媒622の貫通孔624を通り抜けることが可能であり、貫通孔624が閉塞されることがない。したがって、脱硝触媒622の貫通孔624が閉塞されて脱硝触媒622の脱硝機能が低下することがない。
According to the present embodiment, the coal ash can be dropped without stopping the coal-fired power generation facility 100 by appropriately operating the telescopic mechanism 13 and the blower mechanism 14. Therefore, since it can be performed more frequently than the operation of stopping the coal-fired power generation facility 100, the coal ash can be dropped before the coal ash accumulation amount becomes too large.
When the amount of coal ash deposited is small, the dropped coal ash can pass through the through hole 624 of the denitration catalyst 622, and the through hole 624 is not blocked. Therefore, the through-hole 624 of the denitration catalyst 622 is not blocked and the denitration function of the denitration catalyst 622 is not lowered.

また、貫通孔624の一部が塞がれると、排ガスは閉塞していない貫通孔624に流れ込むため、流速が増大し脱硝触媒622が摩耗する可能性があるが、貫通孔624が閉塞されないのでこのようなことがない。   In addition, when a part of the through hole 624 is blocked, the exhaust gas flows into the non-blocked through hole 624, so that the flow rate may increase and the denitration catalyst 622 may be worn, but the through hole 624 is not blocked. There is no such thing.

そして、直接、脱硝触媒622に空気(または蒸気)を吹き付けることなく貫通孔624の閉塞を防止できるので、脱硝触媒622を摩耗したり破損したりすることがない。   Since the through-hole 624 can be prevented from being blocked without directly blowing air (or steam) to the denitration catalyst 622, the denitration catalyst 622 is not worn or damaged.

さらに、本実施形態の脱硝装置160は、石炭火力発電設備100の運転中に石炭灰除去が可能であるので、計画外の設備停止や石炭灰清掃作業の可能性が減少し、コスト削減につながる。   Furthermore, since the denitration apparatus 160 of this embodiment can remove coal ash during the operation of the coal-fired power generation facility 100, the possibility of unplanned facility stoppage and coal ash cleaning work is reduced, leading to cost reduction. .

なお、閉塞防止構造10は、石炭火力発電設備100の運転中に連続して稼働してもよく、また一定の時間ごとに稼働してもよい。   The blocking prevention structure 10 may be continuously operated during the operation of the coal-fired power generation facility 100, or may be operated at regular intervals.

(第2実施形態)
図4は本発明の第2実施形態の閉塞防止構造(堆積物除去構造)20を説明する図であり、(a)は概念図、(b)は(a)のC−C線に沿った、空気吹き出し孔266Aを含む部分の断面図である。図中、第1実施形態と同様の構成には同一の符号を付し、説明を省略する。
本実施形態では筒部材21における、筐体61の内部の部分は、梁部材266の下流側において、梁部材266に沿って延びている。筒部材21の先端には、梁部材266側(上流側)に突出した空気吹き出し部22が設けられている。
そして、本実施形態の梁部材266は、複数の空気吹き出し孔266Aが設けられている。空気吹き出し孔266Aは、図4(b)に示すように梁部材266の内側から空気吹き出し孔266Aを通って外側に流れる空気が下方に向かうように斜めにカットされ、梁部材の淵に沿って空気が流れるようになっている。
(Second Embodiment)
FIGS. 4A and 4B are diagrams for explaining a blocking prevention structure (deposit removal structure) 20 according to the second embodiment of the present invention, where FIG. 4A is a conceptual diagram, and FIG. 4B is along the CC line of FIG. FIG. 6 is a cross-sectional view of a portion including an air blowing hole 266A. In the figure, components similar to those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the present embodiment, a portion of the cylindrical member 21 inside the housing 61 extends along the beam member 266 on the downstream side of the beam member 266. An air blowing portion 22 that protrudes toward the beam member 266 (upstream side) is provided at the tip of the cylindrical member 21.
The beam member 266 of this embodiment is provided with a plurality of air blowing holes 266A. As shown in FIG. 4B, the air blowing hole 266A is cut obliquely so that the air flowing from the inside of the beam member 266 to the outside through the air blowing hole 266A is directed downward, and along the ridges of the beam member. Air is flowing.

本実施形態においても石炭火力発電設備100の運転中において、梁部材266の上流側には、石炭灰が堆積してくる。そこで、石炭灰の堆積量が多くならないうちに、筒部材21を駆動する。すなわち、筒部材21の先端に設けられた空気吹き出し部22から空気を吹き出す。そうすると、梁部材266の内側から空気吹き出し孔266Aを通って外側に流れ、その流れ出た空気は、排ガスの流れによって方向Aに方向転換される。
このとき、梁部材266に堆積していた石炭灰も、空気の流れる方向Aに沿って下流方向に落とされて、脱硝触媒622の貫通孔624に落下する。したがって、本実施形態においても、第1実施形態と同様の効果を有する。
Also in the present embodiment, during the operation of the coal-fired power generation facility 100, coal ash is accumulated on the upstream side of the beam member 266. Therefore, the cylindrical member 21 is driven before the amount of coal ash accumulation increases. That is, air is blown out from the air blowing portion 22 provided at the tip of the cylindrical member 21. If it does so, it will flow outside through the air blowing hole 266A from the inner side of the beam member 266, and the air which flowed out will be turned to the direction A by the flow of waste gas.
At this time, the coal ash deposited on the beam member 266 is also dropped in the downstream direction along the air flow direction A and falls into the through hole 624 of the denitration catalyst 622. Therefore, this embodiment also has the same effect as the first embodiment.

(第3実施形態)
図5は本発明の第3実施形態の閉塞防止構造(堆積物除去構造)30を説明する図である。
本実施形態では梁部材366は、駆動部31に連結されており、駆動部31によって方向Aと、その方向Aと方向Bとに振動可能である。
(Third embodiment)
FIG. 5 is a diagram for explaining a blocking prevention structure (deposit removal structure) 30 according to a third embodiment of the present invention.
In the present embodiment, the beam member 366 is connected to the drive unit 31, and can be vibrated in the direction A, the direction A, and the direction B by the drive unit 31.

本実施形態においても石炭火力発電設備100の運転中において、梁部材366の上流側には、石炭灰が堆積してくる。そこで、石炭灰の堆積量が多くならないうちに、駆動部31を起動する。そうすると、梁部材366が方向Aと方向Bとに振動を開始する。この振動によって梁部材366の上流側に堆積していた石炭灰が振り落されて、脱硝触媒622の貫通孔624に落下する。したがって、本実施形態においても、第1実施形態と同様の効果を有する。   Also in the present embodiment, during the operation of the coal-fired power generation facility 100, coal ash is accumulated on the upstream side of the beam member 366. Therefore, the drive unit 31 is activated before the amount of coal ash accumulation increases. Then, the beam member 366 starts to vibrate in the direction A and the direction B. Due to this vibration, the coal ash accumulated on the upstream side of the beam member 366 is shaken off and falls into the through hole 624 of the denitration catalyst 622. Therefore, this embodiment also has the same effect as the first embodiment.

(第4実施形態)
図6は本発明の第4実施形態の閉塞防止構造(堆積物除去構造)40を説明する図である。
本実施形態では梁部材466が、例えば円筒形状で、梁部材466の外周に、例えば円筒形状の外筒466Bが配置されている。外筒466Bは駆動部41に連結されており、駆動部41によって回転可能である。
(Fourth embodiment)
FIG. 6 is a view for explaining a blocking prevention structure (deposit removal structure) 40 according to the fourth embodiment of the present invention.
In the present embodiment, the beam member 466 has, for example, a cylindrical shape, and a cylindrical outer cylinder 466B, for example, is disposed on the outer periphery of the beam member 466. The outer cylinder 466 </ b> B is connected to the drive unit 41 and can be rotated by the drive unit 41.

本実施形態においても石炭火力発電設備100の運転中において外筒466Bの上流側には、石炭灰が堆積してくる。そこで、石炭灰の堆積量が多くならないうちに、駆動部41を起動する。そうすると、外筒466Bが回転する。この回転によって外筒466Bに堆積した石炭灰が振り落されて、脱硝触媒622の貫通孔624に落下する。したがって、本実施形態においても、第1実施形態と同様の効果を有する。   Also in the present embodiment, coal ash accumulates on the upstream side of the outer cylinder 466B during operation of the coal-fired power generation facility 100. Therefore, the drive unit 41 is activated before the amount of coal ash accumulation increases. Then, the outer cylinder 466B rotates. By this rotation, the coal ash deposited on the outer cylinder 466B is shaken off and falls into the through hole 624 of the denitration catalyst 622. Therefore, this embodiment also has the same effect as the first embodiment.

(第5実施形態)
図7は本発明の第5実施形態の閉塞防止構造(堆積物除去構造)50を説明する図である。
本実施形態で閉塞防止構造50は、脱硝触媒層62に設けられている。閉塞防止構造50は脱硝触媒層62を方向Aと方向Bとに振動可能な駆動部51である。
(Fifth embodiment)
FIG. 7 is a view for explaining a blocking prevention structure (deposit removal structure) 50 according to a fifth embodiment of the present invention.
In the present embodiment, the blocking prevention structure 50 is provided in the denitration catalyst layer 62. The blocking prevention structure 50 is a drive unit 51 that can vibrate the denitration catalyst layer 62 in the direction A and the direction B.

本実施形態において、石炭火力発電設備100の運転中において、梁部材の上流側には、石炭灰が堆積してくる。そこで、石炭灰の堆積量が多くならないうちに、駆動部51を起動する。そうすると、脱硝触媒層62が方向Aと方向Bとに振動を開始する。この振動によって脱硝触媒の梁部材の上流側に堆積した石炭灰が振り落されて、脱硝触媒の貫通孔に落下する。したがって、本実施形態においても、第1実施形態と同様の効果を有する。   In the present embodiment, during the operation of the coal-fired power generation facility 100, coal ash is deposited on the upstream side of the beam member. Therefore, the drive unit 51 is activated before the amount of coal ash accumulation increases. Then, the denitration catalyst layer 62 starts to vibrate in the direction A and the direction B. Due to this vibration, the coal ash deposited on the upstream side of the beam member of the denitration catalyst is shaken off and falls into the through hole of the denitration catalyst. Therefore, this embodiment also has the same effect as the first embodiment.

(第6実施形態)
図8は本発明の第6実施形態の閉塞防止構造70を説明する図である。
図示するように、筐体61の側壁部67には、挿通孔68が設けられている。挿通孔68には、可動アーム71が摺動可能に貫通している。可動アーム71における、筐体61の内部の部分は、脱硝触媒層62の上部を脱硝触媒層62に沿って延びている。可動アーム71の先端には、脱硝触媒層62側(下流側)に突出した超音波システム72が取り付けられている。
超音波システム72は、超音波センサーと、超音波発生器とを含む。また、可動アーム71における、筐体61の外部の部分には、可動アーム71を、方向Bに移動させる移動部73と、超音波システム72を駆動する駆動部74が取り付けられている。
(Sixth embodiment)
FIG. 8 is a view for explaining a blocking prevention structure 70 according to the sixth embodiment of the present invention.
As illustrated, an insertion hole 68 is provided in the side wall 67 of the housing 61. The movable arm 71 passes through the insertion hole 68 so as to be slidable. A portion of the movable arm 71 inside the casing 61 extends along the denitration catalyst layer 62 above the denitration catalyst layer 62. An ultrasonic system 72 protruding to the denitration catalyst layer 62 side (downstream side) is attached to the tip of the movable arm 71.
The ultrasound system 72 includes an ultrasound sensor and an ultrasound generator. In addition, a moving unit 73 that moves the movable arm 71 in the direction B and a driving unit 74 that drives the ultrasonic system 72 are attached to a portion of the movable arm 71 outside the housing 61.

石炭火力発電設備100の運転中において、梁部材に石炭灰が堆積し、一定量堆積した後、一気に脱硝触媒622に落下する場合がある。そうすると、脱硝触媒層62の脱硝触媒の貫通孔が閉塞される可能性がある。
そこで、本実施形態では、移動部73及び駆動部74によって、超音波システム72を駆動する。可動アーム71の先端に設けられた超音波システム72は、脱硝触媒層62に沿って方向B移動しつつ、超音波センサーによって、脱硝触媒層62における貫通孔の閉塞箇所を探し出す。そして、閉塞箇所が発見されると超音波発生器より超音波を発生し、貫通孔を閉塞している石炭灰の塊を分解し、貫通孔の閉塞を解消する。
本実施形態においても石炭火力発電設備100の運転中に石炭灰除去が可能であるので、計画外のシステム停止や石炭灰清掃作業の可能性が減少し、コスト削減につながる。
During the operation of the coal-fired power generation facility 100, coal ash is deposited on the beam member, and after being deposited in a certain amount, it may fall onto the denitration catalyst 622 all at once. Then, there is a possibility that the through hole of the denitration catalyst in the denitration catalyst layer 62 is blocked.
Therefore, in the present embodiment, the ultrasonic system 72 is driven by the moving unit 73 and the driving unit 74. The ultrasonic system 72 provided at the distal end of the movable arm 71 moves in the direction B along the denitration catalyst layer 62 and searches for a blocking portion of the through hole in the denitration catalyst layer 62 by an ultrasonic sensor. And if a blockage location is discovered, an ultrasonic wave will generate | occur | produce from an ultrasonic generator, the lump of the coal ash which has block | closed the through-hole will be decomposed | disassembled, and blockage | closure of a through-hole will be eliminated.
Also in this embodiment, since coal ash removal is possible during the operation of the coal-fired power generation facility 100, the possibility of unplanned system stop and coal ash cleaning work is reduced, leading to cost reduction.

以上、本発明の実施形態について述べたが、本発明はこれら限定されず、例えば上記の実施形態の閉塞防止構造を複数組み合わせて触媒装置に設けてもよい。   As mentioned above, although embodiment of this invention was described, this invention is not limited to these, For example, you may provide in a catalyst apparatus combining two or more blockage | closure prevention structures of said embodiment.

10,20,30,40,50,70 閉塞防止構造(堆積物除去構造)
11,21 筒部材
12,22 吹き出し部
13 伸縮機構
14 送風部
31,41,51 駆動部
61 筐体
62 脱硝触媒層
63 入口側開口部
64 出口側開口部
65 隙間
66,266,366,466 梁部材
67 側壁部
68 挿通孔
71 可動アーム
72 超音波システム
73 移動部
74 駆動部
100 石炭火力発電設備
160 脱硝装置
266A 吹き出し孔
466B 外筒
621 ケーシング
622 脱硝触媒
624 貫通孔
10, 20, 30, 40, 50, 70 Blocking prevention structure (deposit removal structure)
11, 21 Tubular member 12, 22 Blow-out part 13 Telescopic mechanism 14 Blower part 31, 41, 51 Drive part 61 Housing 62 Denitration catalyst layer 63 Inlet side opening part 64 Outlet side opening part 65 Clearance 66, 266, 366, 466 Beam Member 67 Side wall part 68 Insertion hole 71 Movable arm 72 Ultrasonic system 73 Moving part 74 Drive part 100 Coal-fired power generation facility 160 Denitration device 266A Outlet hole 466B Outer cylinder 621 Casing 622 Denitration catalyst 624 Through hole

Claims (7)

窒素酸化物を含むガスの脱硝を行う脱硝装置であって、
長手方向に延びる複数の貫通孔が設けられ、該貫通孔を通る窒素酸化物を含むガスの脱硝を行う脱硝触媒を有する脱硝触媒層と、
前記脱硝触媒層における前記ガスの上流側に配置された補強用の梁部材と、
前記貫通孔の閉塞を防止する閉塞防止構造と、
を備える脱硝装置。
A denitration apparatus for denitrating a gas containing nitrogen oxide,
A denitration catalyst layer having a denitration catalyst provided with a plurality of through holes extending in the longitudinal direction and denitrating a gas containing nitrogen oxides passing through the through holes;
A reinforcing beam member disposed on the upstream side of the gas in the denitration catalyst layer;
A blocking prevention structure for blocking the through hole;
A denitration apparatus comprising:
前記閉塞防止構造は、前記梁部材に堆積する堆積物を除去する堆積物除去構造であり、
前記梁部材に対して前記ガスの上流側を延びるとともに、前記梁部材の側を向く空気吹き部が設けられた筒部材と、
前記筒部材に空気を供給する空気供給部と、を備える、
請求項1に記載の脱硝装置。
The blocking prevention structure is a deposit removing structure that removes deposits deposited on the beam member,
A cylindrical member provided with an air blowing portion that extends upstream of the gas with respect to the beam member and faces the beam member;
An air supply unit for supplying air to the cylindrical member,
The denitration apparatus according to claim 1.
前記閉塞防止構造は、前記梁部材に堆積する堆積物を除去する堆積物除去構造であり、
前記梁部材に対して前記ガスの下流側を延びるとともに、前記梁部材の側を向く空気吹き部が設けられた筒部材と、
前記筒部材に空気を供給する空気供給部と、を備え、
前記梁部材には複数の貫通孔が設けられている、
請求項1に記載の脱硝装置。
The blocking prevention structure is a deposit removing structure that removes deposits deposited on the beam member,
A cylindrical member provided with an air blowing portion that extends downstream of the gas with respect to the beam member and faces the beam member;
An air supply unit for supplying air to the cylindrical member,
The beam member is provided with a plurality of through holes,
The denitration apparatus according to claim 1.
前記閉塞防止構造は、前記梁部材に堆積する堆積物を除去する堆積物除去構造であり、
前記梁部材を振動させる駆動部を備える、
請求項1に記載の脱硝装置。
The blocking prevention structure is a deposit removing structure that removes deposits deposited on the beam member,
A drive unit for vibrating the beam member;
The denitration apparatus according to claim 1.
前記閉塞防止構造は、前記梁部材に堆積する堆積物を除去する堆積物除去構造であり、
前記梁部材を回転させる駆動部を備える、
請求項1に記載の脱硝装置。
The blocking prevention structure is a deposit removing structure that removes deposits deposited on the beam member,
A drive unit for rotating the beam member;
The denitration apparatus according to claim 1.
前記閉塞防止構造は、
前記脱硝触媒層を振動させる駆動部である、
請求項1に記載の脱硝装置。
The blocking prevention structure is
A drive unit that vibrates the denitration catalyst layer;
The denitration apparatus according to claim 1.
前記閉塞防止構造は、
前記脱硝触媒層に沿って移動可能であって、超音波センサー及び超音波発生器を含む超音波システムと、
前記超音波システムが取り付けられた可動アームとを備える、
請求項1に記載の脱硝装置。
The blocking prevention structure is
An ultrasonic system that is movable along the denitration catalyst layer and includes an ultrasonic sensor and an ultrasonic generator;
A movable arm to which the ultrasonic system is attached,
The denitration apparatus according to claim 1.
JP2017065879A 2017-03-29 2017-03-29 Denitration device Active JP6836168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017065879A JP6836168B2 (en) 2017-03-29 2017-03-29 Denitration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017065879A JP6836168B2 (en) 2017-03-29 2017-03-29 Denitration device

Publications (2)

Publication Number Publication Date
JP2018167168A true JP2018167168A (en) 2018-11-01
JP6836168B2 JP6836168B2 (en) 2021-02-24

Family

ID=64018371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017065879A Active JP6836168B2 (en) 2017-03-29 2017-03-29 Denitration device

Country Status (1)

Country Link
JP (1) JP6836168B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110201533A (en) * 2019-04-26 2019-09-06 华电电力科学研究院有限公司 A kind of clear ash exhauster of SCR denitration system catalyst and its working method

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5167258A (en) * 1974-12-09 1976-06-10 Babcock Hitachi Kk
JPS53132944U (en) * 1977-03-28 1978-10-21
JPS5428289A (en) * 1977-08-05 1979-03-02 Hitachi Ltd Production of denitration catalys
JPS5435164A (en) * 1977-08-24 1979-03-15 Mitsubishi Heavy Ind Ltd Treating method for exhaust gas from crematory
JPS54110968A (en) * 1978-02-20 1979-08-30 Babcock Hitachi Kk Dust remover
JPS5795228U (en) * 1980-11-28 1982-06-11
JPS57173823U (en) * 1981-03-03 1982-11-02
JPS60183030A (en) * 1984-02-29 1985-09-18 Fuji Paudaru Kk Granulation and coating apparatus
JPS60183030U (en) * 1984-05-15 1985-12-04 石川島播磨重工業株式会社 Catalyst basket structure
JPH03109925A (en) * 1989-09-22 1991-05-09 Babcock Hitachi Kk Denitration reactor
JPH05285396A (en) * 1992-04-06 1993-11-02 Ishikawajima Harima Heavy Ind Co Ltd Catalyst for waste gas denitrification device
JP2002048329A (en) * 2000-08-03 2002-02-15 Babcock Hitachi Kk Exhaust gas treatment apparatus provided with straightening equipment
JP2002219336A (en) * 2001-01-26 2002-08-06 Babcock Hitachi Kk Vertical down-flow type catalytic reactor
JP2003112015A (en) * 2001-10-05 2003-04-15 Babcock Hitachi Kk Denitration reactor
JP2010142683A (en) * 2008-12-16 2010-07-01 Mitsubishi Heavy Ind Ltd Denitrification device
JP2011125803A (en) * 2009-12-18 2011-06-30 Mitsubishi Heavy Ind Ltd Denitrifying device and method
WO2012004980A1 (en) * 2010-07-08 2012-01-12 バブコック日立株式会社 Flue gas denitrification system
JP2012139638A (en) * 2010-12-28 2012-07-26 Mitsubishi Heavy Ind Ltd Blocking condition inspection method

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5167258A (en) * 1974-12-09 1976-06-10 Babcock Hitachi Kk
JPS53132944U (en) * 1977-03-28 1978-10-21
JPS5428289A (en) * 1977-08-05 1979-03-02 Hitachi Ltd Production of denitration catalys
JPS5435164A (en) * 1977-08-24 1979-03-15 Mitsubishi Heavy Ind Ltd Treating method for exhaust gas from crematory
JPS54110968A (en) * 1978-02-20 1979-08-30 Babcock Hitachi Kk Dust remover
JPS5795228U (en) * 1980-11-28 1982-06-11
JPS57173823U (en) * 1981-03-03 1982-11-02
JPS60183030A (en) * 1984-02-29 1985-09-18 Fuji Paudaru Kk Granulation and coating apparatus
JPS60183030U (en) * 1984-05-15 1985-12-04 石川島播磨重工業株式会社 Catalyst basket structure
JPH03109925A (en) * 1989-09-22 1991-05-09 Babcock Hitachi Kk Denitration reactor
JPH05285396A (en) * 1992-04-06 1993-11-02 Ishikawajima Harima Heavy Ind Co Ltd Catalyst for waste gas denitrification device
JP2002048329A (en) * 2000-08-03 2002-02-15 Babcock Hitachi Kk Exhaust gas treatment apparatus provided with straightening equipment
JP2002219336A (en) * 2001-01-26 2002-08-06 Babcock Hitachi Kk Vertical down-flow type catalytic reactor
JP2003112015A (en) * 2001-10-05 2003-04-15 Babcock Hitachi Kk Denitration reactor
JP2010142683A (en) * 2008-12-16 2010-07-01 Mitsubishi Heavy Ind Ltd Denitrification device
JP2011125803A (en) * 2009-12-18 2011-06-30 Mitsubishi Heavy Ind Ltd Denitrifying device and method
WO2012004980A1 (en) * 2010-07-08 2012-01-12 バブコック日立株式会社 Flue gas denitrification system
JP2012139638A (en) * 2010-12-28 2012-07-26 Mitsubishi Heavy Ind Ltd Blocking condition inspection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110201533A (en) * 2019-04-26 2019-09-06 华电电力科学研究院有限公司 A kind of clear ash exhauster of SCR denitration system catalyst and its working method
CN110201533B (en) * 2019-04-26 2024-01-23 华电电力科学研究院有限公司 SCR denitration system catalyst ash removal and discharge device and working method thereof

Also Published As

Publication number Publication date
JP6836168B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
US7776141B2 (en) Methods and apparatus for performing flue gas pollution control and/or energy recovery
JP6419183B2 (en) Combined cleaning method for heat exchangers
JPWO2014038354A1 (en) Desulfurization equipment and dust removal system
KR20110045676A (en) Wet scrubber system using a centrifugal force
JP6627312B2 (en) Coal-fired power plant
JP6836168B2 (en) Denitration device
JP6978345B2 (en) Denitration catalyst polishing device and denitration catalyst polishing method
KR101263829B1 (en) Exhaust gas ventilation apparatus having dust removing fucntion
JP6233545B2 (en) Coal-fired power generation facility
JP7258492B2 (en) Exhaust gas treatment method and exhaust gas treatment device
JP6586812B2 (en) Coal-fired power generation facility
JP6848598B2 (en) How to reuse denitration catalyst
JP5762326B2 (en) Exhaust gas treatment equipment
JP2019150739A (en) Polishing time determination method of nox removal catalyst and regeneration process of nox removal catalyst
EP3417927A1 (en) Scr-system for removing ash from a flue gas stream generated in a combustion system
WO2021171628A1 (en) Denitration catalyst abrasion device
JP7171457B2 (en) DUST RECOVERY DEVICE, EXHAUST VACUUM PROCESSING DEVICE INCLUDING THE SAME, AND DUST COLLECTION METHOD
KR102057851B1 (en) Exhaustion Gas Cleaning System for Thermal Power Plant
RU2728979C1 (en) Device for air-impact cleaning of surfaces of draft and dust capture equipment
JP7202842B2 (en) Ash processing equipment, power plant, and method of operating ash processing equipment
JP5063761B2 (en) Thermal power generation system
JP7464523B2 (en) Denitrification catalyst polishing method and denitrification catalyst polishing device
WO2017022520A1 (en) Method for inhibiting degradation of denitration device
CN217613493U (en) A leading dust collector in advance for high ash flue gas deNOx systems
JP6504314B1 (en) NOx removal equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210119

R150 Certificate of patent or registration of utility model

Ref document number: 6836168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150