JP2018165392A - Water electrolysis system - Google Patents

Water electrolysis system Download PDF

Info

Publication number
JP2018165392A
JP2018165392A JP2017063619A JP2017063619A JP2018165392A JP 2018165392 A JP2018165392 A JP 2018165392A JP 2017063619 A JP2017063619 A JP 2017063619A JP 2017063619 A JP2017063619 A JP 2017063619A JP 2018165392 A JP2018165392 A JP 2018165392A
Authority
JP
Japan
Prior art keywords
electrolysis
power
power generation
generation device
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017063619A
Other languages
Japanese (ja)
Other versions
JP6826476B2 (en
Inventor
逸郎 福田
Itsuro Fukuda
逸郎 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2017063619A priority Critical patent/JP6826476B2/en
Publication of JP2018165392A publication Critical patent/JP2018165392A/en
Application granted granted Critical
Publication of JP6826476B2 publication Critical patent/JP6826476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Abstract

PROBLEM TO BE SOLVED: To efficiently operate a water electrolysis device.SOLUTION: A water electrolysis system 10 comprises a renewable energy power generation device 12 for generating electric power using renewable energy, and a water electrolysis device 20 operated by receiving electric power supply from the renewable energy power generation device 12. The water electrolysis device 20 includes an alkaline type electrolysis part 22, and a following type electrolysis part 24 for varying an electrolytic treatment amount according to electric power supplied from the renewable energy power generation device 12 by a water electrolysis method whose type is different from the alkaline type electrolysis part 22.SELECTED DRAWING: Figure 1

Description

本発明は、水を電解するための水電解システムに関する。   The present invention relates to a water electrolysis system for electrolyzing water.

近年、燃料電池等の燃料として、水素が注目されている。この水素を生成するための装置として、水電解装置がある。一般的に、水電解装置は、電解質と、電極(アノード、カソード)を有しており、電極に電流を流すことにより、アノードから酸素を取り出し、カソードから水素を取り出すことができる。   In recent years, hydrogen has attracted attention as a fuel for fuel cells and the like. As an apparatus for generating this hydrogen, there is a water electrolysis apparatus. In general, a water electrolysis apparatus has an electrolyte and electrodes (anode and cathode), and by flowing a current through the electrodes, oxygen can be taken out from the anode and hydrogen can be taken out from the cathode.

このように、水電解装置により水素を生成する場合には、水電解装置へ電流を流す必要があり、その電力を再生可能エネルギーから得ようとする試みがある。例えば、特許文献1、2では、太陽光発電や風力発電によって得られる電力を水電解装置へ供給し、水素を製造している。   Thus, when hydrogen is generated by a water electrolysis apparatus, it is necessary to pass a current through the water electrolysis apparatus, and there is an attempt to obtain the electric power from renewable energy. For example, in Patent Documents 1 and 2, electric power obtained by solar power generation or wind power generation is supplied to a water electrolysis device to produce hydrogen.

このように、再生可能エネルギーを利用すれば、二酸化炭素の排出なしで水素を得ることができる。一方、再生可能エネルギーを用いて発電する場合、発電量が天候等に左右されて安定しないため、水電解装置へ供給される電力も変動する。そのため、水電解装置では、発電量に対応した運転が必要となる。そこで、特許文献1では、再生可能エネルギーを用いた発電機から水電解装置へ供給される電力に応じて、適切な数の水電解スタックのみを運転することにより、水電解の効率低下を抑制している。また、特許文献2では、適切な数の水電解スタックのみを運転することに加えて、各々の水電解スタックへ供給する電力を調整している。   Thus, if renewable energy is used, hydrogen can be obtained without discharging carbon dioxide. On the other hand, when power is generated using renewable energy, the amount of power generated depends on the weather and the like and is not stable, so the power supplied to the water electrolysis device also varies. For this reason, the water electrolysis apparatus requires an operation corresponding to the amount of power generation. Therefore, in Patent Document 1, by operating only an appropriate number of water electrolysis stacks according to the electric power supplied from the generator using renewable energy to the water electrolysis apparatus, the decrease in efficiency of water electrolysis is suppressed. ing. In Patent Document 2, in addition to operating only an appropriate number of water electrolysis stacks, the power supplied to each water electrolysis stack is adjusted.

特開2005−126792号公報JP 2005-126792 A 特開2007−31813号公報JP 2007-31813 A

しかしながら、水電解装置の効率的な運転については、さらなる対応が求められる。   However, further measures are required for efficient operation of the water electrolysis apparatus.

本発明は、上記事実を考慮して成されたものであり、効率的に水電解装置を運転することを課題とする。   The present invention has been made in consideration of the above facts, and an object thereof is to efficiently operate a water electrolysis apparatus.

請求項1に係る水電解システムは、再生可能エネルギーを用いて発電する発電装置と、前記発電装置から電力の供給を受けて運転され、アルカリ型電解部と、前記アルカリ型電解部と異なる種類の水電解方式で前記発電装置からの供給電力に応じて電解処理量を変化させる追従型電解部と、を有する水電解装置を備えている。   The water electrolysis system according to claim 1 is operated by receiving power from the power generation device that generates power using renewable energy, and is different from the alkaline electrolysis unit and the alkaline electrolysis unit. A water electrolysis apparatus having a follow-up electrolysis unit that changes an electrolytic treatment amount in accordance with power supplied from the power generation apparatus by a water electrolysis method.

請求項1に係る水電解システムでは、再生可能エネルギーを用いた発電により得られた電力が水電解装置へ供給され、電解処理が行われる。水電解装置は、アルカリ型電解部と追従型電解部を有している。アルカリ型電解部は、電解質として、アルカリ性の水溶液を用いた水電解装置であり、発電装置から供給される電力で運転され、水の電解処理を行う。追従型電解部は、アルカリ型電解部と異なる種類の水電解方式で電解処理を行う水電解装置であり、発電装置からの供給される電力に応じて、電解処理量を変化させる。   In the water electrolysis system according to the first aspect, electric power obtained by power generation using renewable energy is supplied to the water electrolysis apparatus, and electrolysis is performed. The water electrolysis apparatus has an alkaline electrolysis unit and a follow-up electrolysis unit. The alkaline electrolysis unit is a water electrolysis device using an alkaline aqueous solution as an electrolyte, and is operated with electric power supplied from a power generation device to perform electrolysis of water. The follow-up type electrolysis unit is a water electrolysis device that performs electrolysis using a different type of water electrolysis method from the alkaline electrolysis unit, and changes the amount of electrolysis according to the power supplied from the power generation device.

一般的に、アルカリ型電解方式の電解装置は、安価であるというメリット有するが、供給電力に応じた電解処理が行われず、供給電力の変動により電解処理の効率が低下する。一方、追従型電解部は、高価であるが、発電装置からの供給電力に応じて電解処理量を変化させるので、供給電力に変動があっても電解処理量が追従して、電解処理の効率を低下させずに電解処理を行うことができる。したがって、アルカリ型電解部と追従型電解部とを両方有することにより、システムのコストを抑制しつつ、供給電力の変動による電解効率の低下も抑制することができる。すなわち、電解装置を、すべてアルカリ型電解部で形成した場合と比較して、発電効率を向上させることができると共に、水電解装置をすべて追従型電解部とする場合と比較して、高価な追従型電解部のコストを抑制することができる。   In general, an alkaline electrolysis-type electrolysis apparatus has a merit that it is inexpensive, but the electrolysis process according to the supplied power is not performed, and the efficiency of the electrolysis process decreases due to the fluctuation of the supplied power. On the other hand, the follow-up type electrolysis unit is expensive, but changes the amount of electrolytic treatment in accordance with the power supplied from the power generation device. Electrolytic treatment can be performed without lowering. Therefore, by having both the alkaline electrolysis unit and the follow-up electrolysis unit, it is possible to suppress a reduction in electrolysis efficiency due to fluctuations in supply power while suppressing the cost of the system. That is, it is possible to improve the power generation efficiency as compared with the case where the electrolysis apparatus is entirely formed of an alkaline electrolysis part, and it is more expensive than the case where the water electrolysis apparatus is used as a tracking electrolysis part. The cost of the mold electrolysis unit can be suppressed.

請求項2に係る水電解システムは、前記アルカリ型電解部は、前記発電装置から平均して得られる電力に基づいて予め設定された定常電力に対応した電解処理能力を有する、ことを特徴とする。   The water electrolysis system according to claim 2 is characterized in that the alkaline electrolysis unit has an electrolysis treatment capability corresponding to steady power set in advance based on electric power obtained by averaging from the power generation device. .

請求項2に係る水電解システムでは、アルカリ型電解部が、定常電力に対応した電解処理能力を有している。定常電力は、発電装置から平均して得られる電力に基づいて予め設定されたものであり、この定常電力で効率的に電解処理が行われるように、アルカリ型電解部の電解処理能力が設定される。したがって、アルカリ型電解部で安定して電解処理を行うことができる。   In the water electrolysis system according to claim 2, the alkaline electrolysis unit has an electrolytic treatment capability corresponding to steady power. The steady power is preset based on the average power obtained from the power generator, and the electrolytic treatment capacity of the alkaline electrolysis unit is set so that the electrolytic treatment can be efficiently performed with the steady power. The Therefore, the electrolytic treatment can be stably performed in the alkaline electrolysis part.

請求項3に係る水電解システムは、前記発電装置からの電力は、前記追従型電解部よりも前記アルカリ型電解部へ前記定常電力分が優先的に供給される、ことを特徴とする。   The water electrolysis system according to a third aspect is characterized in that the steady-state power is preferentially supplied to the alkaline electrolysis unit over the follow-up electrolysis unit as the power from the power generation device.

請求項3に係る水電解システムによれば、定常電力分の電力がアルカリ型電解部へ優先的に供給される。すなわち、発電装置からの供給電力が定常電力よりも小さければ、すべてアルカリ型電解部へ供給され、定常電力以上であれば、定常電力分がアルカリ型電解部へ供給される。したがって、アルカリ型電解部へ供給される電力が定常電力に近くなり、変動が抑制されるので、電解処理効率の低下を抑制することができる。   According to the water electrolysis system of the third aspect, the power for the steady power is preferentially supplied to the alkaline electrolysis unit. That is, if the power supplied from the power generator is smaller than the steady power, all is supplied to the alkaline electrolysis unit, and if it is equal to or higher than the steady power, the steady power is supplied to the alkaline electrolysis unit. Therefore, since the electric power supplied to the alkaline electrolysis unit is close to the steady electric power and the fluctuation is suppressed, it is possible to suppress a decrease in the electrolytic treatment efficiency.

請求項4に係る水電解システムは、前記追従型電解部は、高分子形電解セル型または固体酸化物形電解セル型であることを特徴とする。   The water electrolysis system according to claim 4 is characterized in that the follow-up electrolysis unit is a polymer electrolysis cell type or a solid oxide electrolysis cell type.

このように、追従型電解部は、高分子形電解セル型や固体酸化物形電解セル型で構成することができる。   Thus, the follow-up type electrolysis unit can be constituted by a polymer type electrolytic cell type or a solid oxide type electrolytic cell type.

請求項5に係る水電解システムは、前記発電装置は、太陽光発電装置、風力発電装置、波力発電装置、の少なくとも1つを含むことを特徴とする。   The water electrolysis system according to claim 5 is characterized in that the power generation device includes at least one of a solar power generation device, a wind power generation device, and a wave power generation device.

このように、発電装置として、太陽光発電装置、風力発電装置、波力発電装置を好適に利用することができる。   Thus, a solar power generation device, a wind power generation device, and a wave power generation device can be suitably used as the power generation device.

本発明に係る水電解システムによれば、効率的に水電解装置を運転することができる。   According to the water electrolysis system according to the present invention, the water electrolysis apparatus can be operated efficiently.

本実施形態に係る水電解システムの構成を模式的に示すブロック図である。It is a block diagram showing typically the composition of the water electrolysis system concerning this embodiment. 本実施形態に係る水電解システムに供給される電力と電解処理を担当する電解部の関係を示すグラフである。It is a graph which shows the relationship between the electric power supplied to the water electrolysis system which concerns on this embodiment, and the electrolysis part in charge of an electrolysis process.

図1には、本発明の実施形態に係る水素製造システム10が示されている。水素製造システム10は、再生可能エネルギー発電装置12、水供給装置14、及び、水電解装置20を備えている。   FIG. 1 shows a hydrogen production system 10 according to an embodiment of the present invention. The hydrogen production system 10 includes a renewable energy power generation device 12, a water supply device 14, and a water electrolysis device 20.

再生可能エネルギー発電装置12は、太陽光発電装置、風力発電機、波力発電装置など、自然環境において繰り返し生起し、再生利用可能か、無尽蔵な供給が可能なエネルギーを用いた発電装置とされている。   The renewable energy power generation device 12 is a power generation device using energy that can be repeatedly generated and reused in an inexhaustible manner, such as a solar power generation device, a wind power generator, and a wave power generation device. Yes.

再生可能エネルギー発電装置12は、再生エネルギーを用いて発電を行う発電装置である。再生可能エネルギー発電装置12には、送電ラインLの一端が接続され、送電ラインLの他端は水電解装置20と接続されている。送電ラインLの他端側は、後述するアルカリ型電解部22と接続される第1ラインL1と、後述する追従型電解部24と接続される第2ラインL2に分電部LDを介して分岐されている。再生可能エネルギー発電装置12から送電ラインLを経て水電解装置20へ電力が供給される。   The renewable energy power generation device 12 is a power generation device that generates power using renewable energy. One end of the power transmission line L is connected to the renewable energy power generation device 12, and the other end of the power transmission line L is connected to the water electrolysis device 20. The other end side of the power transmission line L branches to a first line L1 connected to an alkaline electrolysis unit 22 described later and a second line L2 connected to a follow-up electrolysis unit 24 described later via a power distribution unit LD. Has been. Electric power is supplied from the renewable energy power generation device 12 to the water electrolysis device 20 via the power transmission line L.

水供給装置14は、不図示の水源と接続されており、純水を生成可能とされている。水供給装置14には、水供給路18の一端が接続され、水供給路18の他端は、水電解装置20と接続されている。水供給路18の他端側は、後述するアルカリ型電解部22と接続される第1水路18Aと、後述する追従型電解部24と接続される第2水路18Bに分岐されている。水供給装置14で生成された水は、水供給路18を通って水電解装置20へ供給される。   The water supply device 14 is connected to a water source (not shown) and can generate pure water. One end of a water supply path 18 is connected to the water supply apparatus 14, and the other end of the water supply path 18 is connected to a water electrolysis apparatus 20. The other end side of the water supply channel 18 is branched into a first water channel 18A connected to an alkaline electrolysis unit 22 described later and a second water channel 18B connected to a follow-up electrolysis unit 24 described later. The water generated by the water supply device 14 is supplied to the water electrolysis device 20 through the water supply path 18.

水電解装置20は、アルカリ型電解部22、及び、追従型電解部24を有している。アルカリ型電解部22は、電解質として、水酸化カリウム又は水酸化ナトリウムの水溶液などのアルカリ性の電解水を用いた水電解装置である。アルカリ型電解部22には、第1ラインL1が接続されており、再生可能エネルギー発電装置12から送電ラインL、第1ラインL1を経て電力が供給される。また、アルカリ型電解部22には、第1水路18Aが接続されており、水供給装置14から水供給路18、第1水路18Aを経て水が供給される。   The water electrolysis device 20 includes an alkaline electrolysis unit 22 and a follow-up electrolysis unit 24. The alkaline electrolysis unit 22 is a water electrolysis device using alkaline electrolyzed water such as an aqueous solution of potassium hydroxide or sodium hydroxide as an electrolyte. The alkaline electrolysis unit 22 is connected to the first line L1, and is supplied with electric power from the renewable energy power generation device 12 via the power transmission line L and the first line L1. The alkaline electrolysis unit 22 is connected to the first water channel 18A, and water is supplied from the water supply device 14 through the water supply channel 18 and the first water channel 18A.

アルカリ型電解部22のカソードには、第1水素路26Aの一端が接続され、第1水素路26Aの他端は、後述する第2水素路26Bと合流し、水素路26として水素貯蔵タンク30と接続されている。アルカリ型電解部22のアノードには、第1酸素路28Aの一端が接続され、第1酸素路28Aの他端は、後述する第2酸素路28Bと合流し、酸素路28として酸素貯蔵タンク32と接続されている。アルカリ型電解部22のカソードで生成された水素は、第1水素路26A、水素路26を通って水素貯蔵タンク30へ送出される。アルカリ型電解部22のアノードで生成された酸素は、第1酸素路28A、酸素路28を通って酸素貯蔵タンク32へ送出される。   One end of the first hydrogen path 26A is connected to the cathode of the alkaline electrolysis unit 22, and the other end of the first hydrogen path 26A merges with a second hydrogen path 26B described later, and the hydrogen storage tank 30 serves as the hydrogen path 26. Connected with. One end of a first oxygen path 28A is connected to the anode of the alkaline electrolysis unit 22, and the other end of the first oxygen path 28A merges with a second oxygen path 28B, which will be described later. The oxygen storage tank 32 serves as the oxygen path 28. Connected with. Hydrogen generated at the cathode of the alkaline electrolysis unit 22 is sent to the hydrogen storage tank 30 through the first hydrogen path 26A and the hydrogen path 26. Oxygen generated at the anode of the alkaline electrolysis unit 22 is sent to the oxygen storage tank 32 through the first oxygen path 28A and the oxygen path 28.

追従型電解部24は、供給された電力に追従して電解処理量を変化させる水電解装置である。一般的に、電解質として膜が用いられ、膜の一方面と他方面に正電極と負電極が形成されている。追従型電解部24としては、例えば、PEEC(Polymer Electrolyte Electrolysis Cell、高分子形電解セル)や、SOEC(Solid Oxide Electrolysis Cell、固体酸化物形電解セル)などを用いることができる。追従型電解部24には、第2ラインL2が接続されており、再生可能エネルギー発電装置12から送電ラインL、第2ラインL2を経て電力が供給される。送電ラインLの分岐部分には、第1ラインL1と第2ラインL2とに電力を分岐する分電部LDが設けられている。また、追従型電解部24には、第2水路18Bが接続されており、水供給装置14から水供給路18、第2水路18Bを経て水が供給される。   The follow-up electrolysis unit 24 is a water electrolysis device that changes the amount of electrolytic treatment following the supplied power. Generally, a membrane is used as the electrolyte, and a positive electrode and a negative electrode are formed on one side and the other side of the membrane. For example, PEEC (Polymer Electrolyte Electrolysis Cell), SOEC (Solid Oxide Electrolysis Cell), or the like can be used as the follow-up electrolysis unit 24. A second line L2 is connected to the follow-up type electrolysis unit 24, and power is supplied from the renewable energy power generation device 12 through the power transmission line L and the second line L2. A branching portion of the power transmission line L is provided with a power distribution unit LD that branches power into the first line L1 and the second line L2. The follow-up electrolysis unit 24 is connected to the second water channel 18B, and water is supplied from the water supply device 14 through the water supply channel 18 and the second water channel 18B.

追従型電解部24のカソードには、第2水素路26Bの一端が接続され、第2水素路26Bの他端は、第1水素路26Aと合流して、水素路26として水素貯蔵タンク30と接続されている。追従型電解部24のアノードには、第2酸素路28Bの一端が接続され、第2酸素路28Bの他端は、第1酸素路28Aと合流し、酸素路28として酸素貯蔵タンク32と接続されている。追従型電解部24のカソードで生成された水素は、第2水素路26B、水素路26を通って水素貯蔵タンク30へ送出される。追従型電解部24のアノードで生成された酸素は、第2酸素路28B、酸素路28を通って酸素貯蔵タンク32へ送出される。   One end of the second hydrogen passage 26B is connected to the cathode of the follow-up type electrolysis unit 24, and the other end of the second hydrogen passage 26B merges with the first hydrogen passage 26A to form the hydrogen storage tank 30 as the hydrogen passage 26. It is connected. One end of the second oxygen path 28B is connected to the anode of the follow-up electrolysis unit 24, and the other end of the second oxygen path 28B merges with the first oxygen path 28A and is connected to the oxygen storage tank 32 as the oxygen path 28. Has been. Hydrogen generated at the cathode of the follow-up electrolysis unit 24 is sent to the hydrogen storage tank 30 through the second hydrogen passage 26B and the hydrogen passage 26. Oxygen generated at the anode of the follow-up electrolysis unit 24 is sent to the oxygen storage tank 32 through the second oxygen path 28B and the oxygen path 28.

ここで、アルカリ型電解部22での電解処理と、追従型電解部24での電解処理について説明する。   Here, the electrolysis process in the alkaline electrolysis unit 22 and the electrolysis process in the follow-up electrolysis unit 24 will be described.

アルカリ型電解部22は、比較的安価であるというメリットを有するが、供給される電力の変化に対して電解処理量が追従しにくいというデメリットを有する。したがって、供給電力が予め設定された効率的に電解処理できる電力の範囲を外れると、電解処理の効率が低下する。   The alkaline electrolysis unit 22 has a merit that it is relatively inexpensive, but has a demerit that the amount of electrolytic treatment hardly follows a change in supplied power. Therefore, if the supplied power is out of a preset range of power that can be efficiently electrolyzed, the efficiency of electrolysis is reduced.

一方、追従型電解部24は、アルカリ型電解部22と比較して高価となるというデメリットを有するが、供給される電力の変化に対して電解処理量を追従させることができるというメリットを有する。したがって、供給電力が変化しても供給電力に応じた電解処理を行うことができ、電解処理の効率を維持できる。   On the other hand, the follow-up type electrolysis unit 24 has a demerit that it is more expensive than the alkali-type electrolysis unit 22, but has the advantage that the amount of electrolytic treatment can be made to follow a change in supplied power. Therefore, even when the supplied power changes, the electrolytic treatment according to the supplied power can be performed, and the efficiency of the electrolytic treatment can be maintained.

そこで、再生可能エネルギー発電装置12から平均して得られる電力に基づいて、定常電力値P0を予め設定し、アルカリ型電解部22の電解処理能力が、定常電力値P0に対応したものになるように設定する。すなわち、アルカリ型電解部22を、再生可能エネルギー発電装置12から出力される平均電力に基づく定常電力値P0で効率的に電解処理できるように設計する。定常電力値P0は、例えば、過去の気象条件から導き出せる再生可能エネルギー発電装置12の年間平均出力、各月毎の月間平均出力の内で最も低い月の月間平均出力、年間平均出力よりも低い値(例えば10%低い値や20%低い値)、などに設定することができる。また、例えば、過去のデータに基づいて、所定の電力量となる確率が30%以上、50%以上、等となる電力値を設定してもよい。   Therefore, the steady power value P0 is set in advance based on the power obtained by averaging from the renewable energy power generation device 12, so that the electrolytic treatment capacity of the alkaline electrolysis unit 22 corresponds to the steady power value P0. Set to. That is, the alkaline electrolysis unit 22 is designed so that it can be efficiently electrolyzed with the steady power value P0 based on the average power output from the renewable energy power generation device 12. The steady power value P0 is, for example, a value that is lower than the annual average output of the renewable energy power generation apparatus 12 that can be derived from past weather conditions, the monthly average output of the lowest month among the monthly average outputs of each month, and the annual average output (For example, 10% lower value or 20% lower value). In addition, for example, based on past data, a power value at which the probability of a predetermined power amount is 30% or more, 50% or more, or the like may be set.

また、追従型電解部24については、電解処理能力の最大が、再生可能エネルギー発電装置12により供給される電力の最大値から定常電力値P0を差し引いた電力に対応できるように設計する。   The follow-up electrolysis unit 24 is designed so that the maximum electrolytic treatment capacity can correspond to the power obtained by subtracting the steady power value P0 from the maximum power supplied by the renewable energy power generation device 12.

そして、再生可能エネルギー発電装置12からの電力が、定常電力P0に達するまでは、追従型電解部24よりもアルカリ型電解部22へ優先的に供給されるように、分電部LDで分配する。具体的には、再生可能エネルギー発電装置12により供給される電力が定常電力P0を超える場合には、定常電力P0分をアルカリ型電解部22へ供給し、余剰分の電力を追従型電解部24へ供給する。再生可能エネルギー発電装置12により供給される電力が定常電力P0以下の場合には、すべての電力をアルカリ型電解部22へ供給する。   Then, until the electric power from the renewable energy power generation device 12 reaches the steady power P0, it is distributed by the power distribution unit LD so as to be preferentially supplied to the alkaline electrolysis unit 22 rather than the follow-up electrolysis unit 24. . Specifically, when the power supplied by the renewable energy power generation device 12 exceeds the steady power P0, the steady power P0 is supplied to the alkaline electrolysis unit 22, and the surplus power is supplied to the follow-up electrolysis unit 24. To supply. When the power supplied by the renewable energy power generation device 12 is equal to or lower than the steady power P0, all power is supplied to the alkaline electrolysis unit 22.

上記のように、電解処理能力、及び、再生可能エネルギー発電装置12により供給される電力の分配が行われ、本実施形態の水電解システム10では、以下のように水電解処理が行われる。図2に示されるように、アルカリ型電解部22では、再生可能エネルギー発電装置12により供給される電力が定常電力P0よりも小さい場合を除き、定常電力P0で電解処理が行われる。再生可能エネルギー発電装置12により供給される電力が定常電力P0よりも小さい場合には、当該供給された電力で電解処理が行われる。一方、追従型電解部24では、再生可能エネルギー発電装置12により供給される電力からアルカリ型電解部22へ供給される電力を差し引いた電力で電解処理が行われる。   As described above, the electrolytic treatment capacity and the electric power supplied by the renewable energy power generation device 12 are distributed, and the water electrolysis treatment is performed as follows in the water electrolysis system 10 of the present embodiment. As shown in FIG. 2, in the alkaline electrolysis unit 22, the electrolytic process is performed with the steady power P <b> 0 except when the power supplied by the renewable energy power generation device 12 is smaller than the steady power P <b> 0. When the power supplied by the renewable energy power generation device 12 is smaller than the steady power P0, the electrolysis process is performed with the supplied power. On the other hand, in the follow-up type electrolysis unit 24, the electrolysis process is performed with power obtained by subtracting the power supplied to the alkaline electrolysis unit 22 from the power supplied from the renewable energy power generation device 12.

本実施形態の水電解システム10によれば、アルカリ型電解部22では、概ね定常電力P0で電解処理が行われるので、効率よく電解処理を行うことができる。また、追従型電解部24では、余剰の電力で電解処理が行われるが、電力に応じて電解処理が行われるので、電解処理の効率低下を抑制することができる。また、追従型電解部24の電解処理能力は、再生可能エネルギー発電装置12により供給される電力の最大値から定常電力値P0を差し引いた電力に対応できる程度で足りる。したがって、すべての電解装置を追従型電解部24で構成する場合と比較して、追従型電解部24で対応可能な電解処理能力を小さくすることができる。   According to the water electrolysis system 10 of the present embodiment, in the alkaline electrolysis unit 22, the electrolysis process is generally performed with the steady power P 0, so that the electrolysis process can be performed efficiently. Moreover, in the follow-up type electrolysis unit 24, the electrolysis process is performed with surplus power, but since the electrolysis process is performed according to the power, a reduction in the efficiency of the electrolysis process can be suppressed. In addition, the electrolytic treatment capacity of the follow-up type electrolysis unit 24 is sufficient to cope with the power obtained by subtracting the steady power value P0 from the maximum value of the power supplied by the renewable energy power generation device 12. Therefore, compared with the case where all the electrolysis apparatuses are configured by the follow-up type electrolysis unit 24, the electrolytic treatment capability that can be handled by the follow-up type electrolysis unit 24 can be reduced.

10 水電解システム
12 再生可能エネルギー発電装置
20 水電解装置
22 アルカリ型電解部
24 追従型電解部
P0 定常電力
DESCRIPTION OF SYMBOLS 10 Water electrolysis system 12 Renewable energy power generation apparatus 20 Water electrolysis apparatus 22 Alkali type electrolysis part 24 Tracking type electrolysis part P0 Steady power

Claims (5)

再生可能エネルギーを用いて発電する発電装置と、
前記発電装置から電力の供給を受けて運転され、アルカリ型電解部と、前記アルカリ型電解部と異なる種類の水電解方式で前記発電装置からの供給電力に応じて電解処理量を変化させる追従型電解部と、を有する水電解装置と、
を備えた水電解システム。
A power generation device that generates power using renewable energy;
The follow-up type is operated by receiving power supply from the power generation device, and changes the amount of electrolytic treatment according to the power supplied from the power generation device in a water electrolysis system of a different type from the alkaline electrolysis unit and the alkaline electrolysis unit. An electrolysis unit, and a water electrolysis device,
Water electrolysis system equipped with.
前記アルカリ型電解部は、前記発電装置から平均して得られる電力に基づいて予め設定された定常電力に対応した電解処理能力を有する、ことを特徴とする請求項1に記載の水電解システム。   2. The water electrolysis system according to claim 1, wherein the alkaline electrolysis unit has an electrolytic treatment capacity corresponding to a steady power set in advance based on electric power obtained on average from the power generation device. 前記発電装置からの電力は、前記追従型電解部よりも前記アルカリ型電解部へ前記定常電力分が優先的に供給される、ことを特徴とする請求項1または請求項2に記載の水電解システム。   3. The water electrolysis according to claim 1, wherein the power from the power generator is preferentially supplied to the alkaline electrolysis unit over the follow-up electrolysis unit. system. 前記追従型電解部は、高分子形電解セル型電解装置または固体酸化物形電解セル型電解装置であることを特徴とする、請求項1〜請求項3のいずれか1項に記載の水電解システム。   4. The water electrolysis according to claim 1, wherein the follow-up electrolysis unit is a polymer electrolysis cell electrolysis device or a solid oxide electrolysis cell electrolysis device. 5. system. 前記発電装置は、太陽光発電装置、風力発電装置、波力発電装置、の少なくとも1つを含むことを特徴とする、請求項1〜4のいずれか1項に記載の水電解システム。   5. The water electrolysis system according to claim 1, wherein the power generation device includes at least one of a solar power generation device, a wind power generation device, and a wave power generation device.
JP2017063619A 2017-03-28 2017-03-28 Water electrolysis system Active JP6826476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017063619A JP6826476B2 (en) 2017-03-28 2017-03-28 Water electrolysis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017063619A JP6826476B2 (en) 2017-03-28 2017-03-28 Water electrolysis system

Publications (2)

Publication Number Publication Date
JP2018165392A true JP2018165392A (en) 2018-10-25
JP6826476B2 JP6826476B2 (en) 2021-02-03

Family

ID=63922431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017063619A Active JP6826476B2 (en) 2017-03-28 2017-03-28 Water electrolysis system

Country Status (1)

Country Link
JP (1) JP6826476B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244972A1 (en) 2018-06-21 2019-12-26 キヤノン株式会社 Image capture device, accessory device, and control method therefor
WO2022219850A1 (en) 2021-04-13 2022-10-20 Eneos株式会社 Deterioration determination support device, water electrolysis device, and deterioration determination support method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228101A (en) * 1998-02-09 1999-08-24 Shinko Pantec Co Ltd Hydrogen/oxygen production process and application process of hydrogen
JP2005145218A (en) * 2003-11-14 2005-06-09 Ishikawajima Harima Heavy Ind Co Ltd Hydrogen manufacturing facility and hydrogen manufacturing transportation system on ocean
WO2013046958A1 (en) * 2011-09-30 2013-04-04 株式会社日立製作所 Hydrogen production system
WO2014163044A1 (en) * 2013-04-05 2014-10-09 株式会社日立製作所 Solar photovoltaic power generation system provided with hydrogen production means
WO2015064644A1 (en) * 2013-10-29 2015-05-07 国立大学法人横浜国立大学 Positive electrode for alkaline water electrolysis
JP2015528851A (en) * 2012-05-28 2015-10-01 ハイドロジェニクス コーポレイション Electrolysis device and energy system
JP5908334B2 (en) * 2012-04-27 2016-04-26 株式会社東芝 Electrolytic hydrogen generation system, electrolytic hydrogen generation method and program
WO2017149606A1 (en) * 2016-02-29 2017-09-08 株式会社 東芝 Hydrogen production system, and hydrogen production method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228101A (en) * 1998-02-09 1999-08-24 Shinko Pantec Co Ltd Hydrogen/oxygen production process and application process of hydrogen
JP2005145218A (en) * 2003-11-14 2005-06-09 Ishikawajima Harima Heavy Ind Co Ltd Hydrogen manufacturing facility and hydrogen manufacturing transportation system on ocean
WO2013046958A1 (en) * 2011-09-30 2013-04-04 株式会社日立製作所 Hydrogen production system
JP5908334B2 (en) * 2012-04-27 2016-04-26 株式会社東芝 Electrolytic hydrogen generation system, electrolytic hydrogen generation method and program
JP2015528851A (en) * 2012-05-28 2015-10-01 ハイドロジェニクス コーポレイション Electrolysis device and energy system
WO2014163044A1 (en) * 2013-04-05 2014-10-09 株式会社日立製作所 Solar photovoltaic power generation system provided with hydrogen production means
WO2015064644A1 (en) * 2013-10-29 2015-05-07 国立大学法人横浜国立大学 Positive electrode for alkaline water electrolysis
WO2017149606A1 (en) * 2016-02-29 2017-09-08 株式会社 東芝 Hydrogen production system, and hydrogen production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244972A1 (en) 2018-06-21 2019-12-26 キヤノン株式会社 Image capture device, accessory device, and control method therefor
WO2022219850A1 (en) 2021-04-13 2022-10-20 Eneos株式会社 Deterioration determination support device, water electrolysis device, and deterioration determination support method

Also Published As

Publication number Publication date
JP6826476B2 (en) 2021-02-03

Similar Documents

Publication Publication Date Title
KR101829311B1 (en) Environment-friendly Energy Storage System for Frequency Regulation
CN113373477B (en) Method and system for controlling flow and pressure of electrolyte of dynamic hydrogen production electrolytic tank
JP6574891B2 (en) Hydrogen production system and hydrogen production method
JP6936179B2 (en) Hydrogen production system
JP2019200839A (en) Power generation system
JP7286071B2 (en) Hydrogen supply system and hydrogen supply method
CN112736270A (en) Proton conduction SOEC and oxygen ion conduction SOFC combined device
JP2017020053A (en) Water electrolysis device and energy storage-feed system using the same
US20230043491A1 (en) Off-grid electrolysis control method and device thereof independent of grid
JP6826476B2 (en) Water electrolysis system
CN113832475B (en) Hydrogen production system by renewable energy sources
US11658324B2 (en) Redox flow battery and method for operating a redox flow battery
US11271230B2 (en) Method for electrical supply of an apparatus by an autonomous hybrid station
CN113949054A (en) Power grid autonomous system and method
CN114678568B (en) Modeling method for proton exchange membrane fuel cell
CN214012988U (en) Proton conduction SOEC and oxygen ion conduction SOFC combined device
Faizan et al. An overview of fuel cell based distribution generation integration
KR20090124176A (en) Renewable energy-regenerative fuel cells hybrid system for residence
JP2019026858A (en) Electrolysis system, and electric power control method of electrolysis system
KR20200123884A (en) Solid oxide fuel cell system using ballast water treatment system
KR20130008192A (en) Hybrid electric generating system using solid oxide electrolyzer cell (soec) and solid oxide fuel cell(sofc)
Choi et al. Operational Characteristics of High-Performance kW class Alkaline Electrolyzer Stack for Green Hydrogen Production
JP2015230813A (en) Fuel battery system and operation method for the same
JP2015201351A (en) Power unit and power generation method thereof
KR101149509B1 (en) Apparatus for load following fuel cell power generation system in a ship and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210115

R150 Certificate of patent or registration of utility model

Ref document number: 6826476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250