JP2018163296A - 光ファイバ及び光ファイバの製造方法 - Google Patents

光ファイバ及び光ファイバの製造方法 Download PDF

Info

Publication number
JP2018163296A
JP2018163296A JP2017061066A JP2017061066A JP2018163296A JP 2018163296 A JP2018163296 A JP 2018163296A JP 2017061066 A JP2017061066 A JP 2017061066A JP 2017061066 A JP2017061066 A JP 2017061066A JP 2018163296 A JP2018163296 A JP 2018163296A
Authority
JP
Japan
Prior art keywords
optical fiber
refractive index
relative refractive
index difference
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017061066A
Other languages
English (en)
Other versions
JP6951852B2 (ja
Inventor
亮 宮部
Akira Miyabe
亮 宮部
相曽 景一
Keiichi Aiso
景一 相曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2017061066A priority Critical patent/JP6951852B2/ja
Priority to PCT/JP2018/011858 priority patent/WO2018181047A1/ja
Priority to CN201880019172.XA priority patent/CN110462474A/zh
Publication of JP2018163296A publication Critical patent/JP2018163296A/ja
Priority to US16/561,656 priority patent/US11079537B2/en
Application granted granted Critical
Publication of JP6951852B2 publication Critical patent/JP6951852B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0288Multimode fibre, e.g. graded index core for compensating modal dispersion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/01453Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering for doping the preform with flourine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/60Surface treatment of fibres or filaments made from glass, minerals or slags by diffusing ions or metals into the surface
    • C03C25/607Surface treatment of fibres or filaments made from glass, minerals or slags by diffusing ions or metals into the surface in the gaseous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0281Graded index region forming part of the central core segment, e.g. alpha profile, triangular, trapezoidal core
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/223Matching viscosities or softening points of glass layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/42Drawing at high speed, i.e. > 10 m/s
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/03Drawing means, e.g. drawing drums ; Traction or tensioning devices
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/11Doped silica-based glasses containing boron or halide containing chlorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/12Doped silica-based glasses containing boron or halide containing fluorine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

【課題】高張力及び高速で線引きを行った場合であっても伝送損失を低減することができる光ファイバ及び光ファイバの製造方法を提供する。
【解決手段】光ファイバ10は、塩素が添加されたコア部12と、フッ素が添加されたクラッド部14とを有し、コア部には、9000〜13000ppmの塩素が添加され、コア部の純シリカガラスに対する比屈折率差Δ1が、0.09〜0.13%であり、クラッド部の純シリカガラスに対する比屈折率差Δ2が、−0.36〜−0.17%であり、コア部の比屈折率差Δ1とクラッド部の比屈折率差Δ2の差分(Δ1−Δ2)が0.30%以上であり、波長1.31μmにおけるモードフィールド径が8.8〜9.6μmであり、コア部とクラッド部との界面に生じている応力差が60MPa以下である。
【選択図】図1

Description

本発明は、光ファイバ及び光ファイバの製造方法に関する。
長距離伝送用の光ファイバに対しては、伝送損失の低損失化が求められている。光ファイバの低損失化技術としては、純シリカコアを用いることでレイリー散乱を抑制する方法や、コアにハロゲン、アルカリ金属等を添加する方法等が知られている(非特許文献1、特許文献1〜3)。
非特許文献1には、純シリカコアの周囲にフッ素をドープしたクラッド層を設けることでクラッド層の屈折率を下げ、これにより光をガイドする構造も提案されている。また、特許文献1には、純粋石英コアとフッ素添加クラッドとを有する構造のファイバにおいて、コアとなる純粋石英ガラス中に微量の塩素を含有させることが記載されている。また、特許文献2には、SiOを含むコアがさらにKO、RbO等を含むシリカ系光学ファイバが記載されている。さらに、特許文献3には、コア領域に塩素およびフッ素が添加された光ファイバが記載されている。
特許第3106564号公報 特許第3270148号公報 特表2008−503028号公報
K. Nagayama et al., "Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance", Electronics Letters, 2002, Volume 38, Issue 20, pp. 1168-1169
特許文献2に記載されるようにコアにアルカリ金属を添加する方法は、線引き時の仮想温度を下げる効果により、伝送損失を低減する方法として有効なものであると考えられる。しかしながら、コアにアルカリ金属を添加した場合、コアを大型化することは困難である。
一方、塩素やフッ素は、少量であればコアに添加することが比較的容易である。また、これらが添加されたコアの大型化も可能である。特許文献1では、コアとなる純粋石英ガラス中に微量の塩素を含有させることで、コア内の粘性を下げて、線引き後の光ファイバ内の残留応力を低減することが記載されている。特許文献1によれば、残留応力を低減することで線引き後のコアとクラッドとの間の比屈折率差がプリフォーム段階での実測値とほぼ一致するとされている。しかしながら、特許文献1には、光ファイバの低損失特性を実現することができる残留応力等の詳細は明らかにされていない。
また、線引き張力を低くすれば、残留応力自体は低減することが可能である。しかしながら、そのためには、線引き速度を低減する必要があるため、生産性が低下することになる。また、線引き速度を低減すると、レイリー散乱による伝送損失が増大しうる。
また、特許文献3に記載されるように塩素とフッ素とが共添加されたコアの場合、クラッドに対するコアの比屈折率差(コアΔ)として所望の値を得るためには、コアについて、多くの塩素を添加するか、多くのフッ素を添加する必要がある。しかしながら、多量の塩素を添加することは技術的に困難である。また、コアに多くのフッ素を添加する場合、多量のフッ素をクラッドにも添加する必要があり、この結果、生産コストが増加するとともに、レイリー散乱が増加することになる。
本発明は、高張力及び高速で線引きを行った場合であっても光ファイバの特性を維持しつつ伝送損失を低減することができる光ファイバ及び光ファイバの製造方法を提供することを目的とする。
本発明の一観点によれば、塩素が添加されたコア部と、フッ素が添加されたクラッド部とを有し、前記コア部には、9000〜13000ppmの塩素が添加され、前記コア部の純シリカガラスに対する比屈折率差Δ1が、0.09〜0.13%であり、前記クラッド部の純シリカガラスに対する比屈折率差Δ2が、−0.36〜−0.17%であり、前記コア部の前記比屈折率差Δ1と前記クラッド部の前記比屈折率差Δ2の差分(Δ1−Δ2)が0.30%以上であり、波長1.31μmにおけるモードフィールド径が8.8〜9.6μmであり、前記コア部と前記クラッド部との界面に生じている応力差が60MPa以下であることを特徴とする光ファイバが提供される。
本発明の他の観点によれば、シリカ微粒子を堆積させて第1シリカスートを形成する工程と、前記第1シリカスートに塩素を添加しつつ前記第1シリカスートをガラス化して、9000〜13000ppmの塩素が添加されたコアロッドを形成する工程と、前記コアロッドにシリカ微粒子を堆積させて第2シリカスートを形成する工程と、前記第2シリカスートにフッ素を添加しつつ前記第2シリカスートをガラス化して、フッ素が添加されたクラッド層を形成し、前記コアロッドの純シリカガラスに対する比屈折率差Δ1′が0.09〜0.13%であり、前記クラッド層の純シリカガラスに対する比屈折率差Δ2′が−0.36〜−0.17%であり、前記コアロッドの前記比屈折率差Δ1′と前記クラッド層の前記比屈折率差Δ2′の差分(Δ1′−Δ2′)が0.30%以上であるガラス母材を形成する工程と、150m/min以上の線引き速度及び8〜60gfの線引き張力で前記ガラス母材を線引きする工程とを有することを特徴とする光ファイバの製造方法が提供される。
本発明によれば、高い線引き張力(高張力)及び速い線引き速度(高速)で線引きを行った場合であっても光ファイバの特性を維持しつつ伝送損失を低減した光ファイバを提供することができる。
図1は、本発明の一実施形態による光ファイバを示す断面図である。 図2は、本発明の一実施形態による光ファイバにおける径方向に沿った屈折率プロファイルを示す図である。 図3は、本発明の一実施形態による光ファイバの製造方法を示すフローチャートである。 図4は、本発明の一実施形態による光ファイバの製造方法に用いる製造装置を示す概略図である。
[一実施形態]
本発明の一実施形態による光ファイバ及び光ファイバの製造方法について図1から図4を用いて説明する。なお、本明細書で特に定義しない用語についてはITUT(International Telecommunication Union-Telecommunication Standardization Sector:国際電気通信連合)勧告G.650.1における定義、測定方法に従うものとする。
まず、本実施形態による光ファイバの構成について図1及び図2を用いて説明する。図1は、本実施形態による光ファイバを示す断面図である。図2は、本実施形態による光ファイバの屈折率の径方向におけるプロファイルを示す図である。
図1に示すように、本実施形態による光ファイバ10は、シングルモード光ファイバであり、塩素(Cl)が添加されたコア部12と、コア部12の外周に形成され、フッ素(F)が添加されたクラッド部14とを有している。コア部12とクラッド部14とによりガラス光ファイバ16が構成されている。また、本実施形態による光ファイバ10は、ガラス光ファイバ16のクラッド部14の外周に形成された被覆層18を有している。被覆層18は、クラッド部14の外周に形成されたプライマリ層(1次被覆層)20と、プライマリ層20の外周に形成されたセカンダリ層(2次被覆層)22とを有している。
コア部12は、塩素が添加されたシリカガラスからなるものである。コア部12には、9000〜13000ppmの塩素が添加されている。コア部12に添加された塩素の濃度を9000ppm以上とすることで、クラッド部14へのフッ素の添加と相俟って、高い線引き張力(高張力)及び速い線引き速度(高速)で線引きを行った場合であっても、後述のように応力差を低減でき、モードフィールド径(Mode Filed Diameter:MFD)等の光ファイバの特性を維持しつつ伝送損失を低減することができる。塩素の濃度を13000ppm以下とするのは、13000ppmを超える濃度の塩素をシリカガラスに添加することは困難であり、製造コストが上昇してしまうためである。なお、同様の観点から、コア部12には、10000ppm以上の塩素が添加されていることが好ましく、10000〜13000ppmの塩素が添加されていることがより好ましい。
上記のように塩素が添加されたコア部12の純シリカガラスに対する比屈折率差Δ1は、添加された塩素の濃度に応じて、後述するように0.09〜0.13%になっている。なお、比屈折率差Δ1は、純シリカガラスの屈折率をn0、コア部12の屈折率をn1として、次式(1)で定義される。
Δ1={(n1−n0)/n0}×100(%) ……(1)
コア部12の直径は、特に限定されるものではないが、例えば8〜10μmである。
クラッド部14は、フッ素が添加されたシリカガラスからなるものである。クラッド部14は、コア部12よりも屈折率が低くなっている。クラッド部14には、後述するように、クラッド部14の純シリカガラスに対する比屈折率差Δ2が−0.36〜−0.17%になる濃度でフッ素が添加されている。なお、比屈折率差Δ2は、純シリカガラスの屈折率をn0、クラッド部14の屈折率をn2として、次式(2)で定義される。
Δ2={(n2−n0)/n0}×100(%) ……(2)
コア部12とクラッド部14とを含む光ファイバ10の直径は、特に限定されるものではないが、例えば80〜150μmであり、具体的には例えば125μmである。
被覆層18は、それぞれシリカガラスからなるコア部12及びクラッド部14を保護する機能を有するものである。例えば、被覆層18を構成するプライマリ層20はセカンダリ層22よりもヤング率の低い軟質層であり、セカンダリ層22はプライマリ層20よりもヤング率の高い硬質層である。プライマリ層20及びセカンダリ層22は、それぞれ例えば紫外線硬化型樹脂等の樹脂からなるものである。なお、被覆層18の材料は特に限定されるものではない。また、被覆層18を構成する層もプライマリ層20及びセカンダリ層22の2層に限定されるものではなく、単層であってもよいし、3層以上の複数層であってもよい。
上記本実施形態による光ファイバ10の屈折率の径方向におけるプロファイルは、図2に示すようになっている。図2に示すプロファイルの縦軸は、純シリカガラスの屈折率n0に対する相対屈折率(%)を示している。図2に示すプロファイルの横軸は、光ファイバ10の径方向における位置を示している。
図2に示すプロファイルから明らかなように、コア部12に塩素が添加されていることにより、コア部12の屈折率レベルが、純シリカガラスの屈折率レベルよりも高くなっている。すなわち、コア部12の屈折率n1が、純シリカガラスの屈折率n0よりも高くなっている。具体的には、コア部12の比屈折率差Δ1は、上述のようにコア部12に9000〜13000ppmの塩素が添加されていることにより、0.09〜0.13%になっている。好ましくは、比屈折率差Δ1は、コア部12に10000ppm以上の塩素が添加されていることにより、0.1%以上になっている。より好ましくは、比屈折率差Δ1は、コア部12に10000〜12000ppmの塩素が添加されていることにより、0.1〜0.12%になっている。なお、本明細書において、ppmとは、質量ppmを意味する。
一方、クラッド部14にフッ素が添加されていることにより、クラッド部14の屈折率レベルが、純シリカガラスの屈折率レベルよりも低くなっている。すなわち、クラッド部14の屈折率n2が、純シリカガラスの屈折率n0よりも低くなっている。具体的には、クラッド部14の比屈折率差Δ2は、クラッド部14にフッ素が添加されていることにより、−0.36〜−0.17%になっている。なお、クラッド部14に添加されるフッ素の濃度は、前記の範囲内の比屈折率差Δ2を実現するように適宜設定することができる。
コア部12の比屈折率差Δ1からクラッド部14の比屈折率差Δ2を差し引いた差分(Δ1−Δ2)は、0.30%以上になっている。コア部12の比屈折率差Δ1とクラッド部14の比屈折率差Δ2の差分(Δ1−Δ2)が0.30%以上であることにより、構造分散を抑制して伝送損失を低減し、伝送特性に優れた光ファイバ10を実現することができる。なお、同様の観点から、差分(Δ1−Δ2)は、0.33%以上であることが好ましい。
また、コア部12の比屈折率差Δ1に対するクラッド部14の比屈折率差Δ2の比Δ2/Δ1は、−3.9〜−1.3であることが好ましく、−3.3〜−1.5であることがより好ましい。比Δ2/Δ1がこのような範囲内であることにより、線引き工程においてコア部12とクラッド部14との粘度整合が図れ、コア部12とクラッド部14との界面に生じる残留応力が軽減され、伝送損失を低減することができる。
コア部12及びクラッド部14には応力が残留しており、光ファイバ10の半径方向には、残留する応力の分布が生じている。より具体的には、コア部12には、引っ張り応力が残留している。クラッド部14の少なくともコア部12に隣接する部分には、コア部12に残留する引っ張り応力よりも小さい引っ張り応力又は圧縮応力が残留している。この結果、コア部12とクラッド部14との界面には応力差が生じている。
本実施形態による光ファイバ10では、上記のようにコア部12に塩素が添加され、クラッド部14にフッ素が添加されていることにより、60MPa以下、好ましくは30MPa以下の応力差が、コア部12とクラッド部14との界面に生じている。なお、ここにいう応力差は、引っ張り応力の値をプラスの値、圧縮応力の値をマイナスの値として、引っ張り応力と圧縮応力との差分の絶対値をとったものである。本実施形態による光ファイバ10では、このようにコア部12とクラッド部14との界面に生じる応力差が小さくなっているため、伝送損失を低減することができる。
上記のように構成された本実施形態による光ファイバ10は、後述するように高い線引き張力及び速い線引き速度で線引きが行われたものであり、このような場合であっても、伝送損失の低減が実現されている。具体的には、本実施形態による光ファイバ10は、波長1.55μm帯の光の伝送損失が0.174dB/km以下である。また、本実施形態による光ファイバ10は、波長1.31μm帯の光の伝送損失が0.314dB/km以下である。さらに、本実施形態による光ファイバ10のモードフィールド径は、8.8〜9.6μmである。本実施形態による光ファイバ10は、例えば、国際規格であるITUT勧告G.652B又はG.657A1を満たすものになっている。
このように、本実施形態によれば、高い線引き張力及び速い線引き速度で線引きを行った場合であっても光ファイバの特性を維持しつつ伝送損失を低減することができる。
本実施形態による光ファイバ10は、これを用いて光伝送媒体として例えば光ファイバケーブルを構成することができる。本実施形態による光ファイバ10を用いた光ファイバケーブルは、伝送損失が低減されており、長距離伝送に好適に用いることができる。
次に、本実施形態による光ファイバ10の製造方法についてさらに図3及び図4を用いて説明する。図3は、本実施形態による光ファイバ10の製造方法を示すフローチャートである。図4は、本実施形態による光ファイバ10の製造方法に用いる製造装置を示す概略図である。
本実施形態による光ファイバ10の製造方法は、第1シリカスートを形成する工程(ステップS12)と、塩素環境下で第1シリカスートをガラス化して塩素が添加されたコアロッドを形成する工程(ステップS14)とを有している。また、光ファイバ10の製造方法は、コアロッドの外周に第2シリカスートを形成する工程(ステップS16)を有している。また、光ファイバ10の製造方法は、フッ素環境下で第2シリカスートをガラス化してフッ素が添加されたクラッド層を形成し、コアロッドとクラッド層とを有するガラス母材形成する工程(ステップS18)を有している。さらに、光ファイバ10の製造方法は、ガラス母材を線引きしてガラス光ファイバ16を形成する工程(ステップS20)と、線引きされたガラス光ファイバ16を樹脂で被覆して被覆層18を形成する工程(ステップS22)とを有している。以下、各工程について詳述する。
まず、ステップS12では、例えばVAD(Vapor-phase Axial Deposition)法により、シリカ微粒子を堆積させて、コアロッドとなる第1シリカスートを形成する。コアロッドは、光ファイバ10のコア部12を形成するためのものである。なお、第1シリカスートの形成方法は、特に限定されるものではなく、VAD法のほか、OVD(Outside Vapor Deposition)法等の種々の方法を用いることができる。
次いで、ステップS14では、例えばガラス化炉内において、第1シリカスートを加熱することにより第1シリカスートをガラス化して、第1シリカスートがガラス化されてなるコアロッドを形成する。この際、例えばガラス化炉内に塩素(Cl)、四塩化ケイ素(SiCl)、四塩化炭素(CCl)、二塩化硫黄(SCl)、塩化チオニル(SOCl)等の塩素を含有する塩素含有ガスを導入することにより、塩素環境下で第1シリカスートを加熱する。これにより、第1シリカスートに塩素を添加しつつ第1シリカスートをガラス化して、塩素が添加されたコアロッドを形成する。コアロッドに添加された塩素の濃度は、光ファイバ10のコア部12に添加された塩素の濃度とほぼ同等である。すなわち、コアロッドには、9000〜13000ppmの塩素を添加し、好ましくは10000ppm以上の塩素を添加し、より好ましくは10000〜12000ppmの塩素を添加する。なお、第1シリカスートをガラス化するための加熱方法は、特に限定されるものではなく、種々の方法を用いることができる。
次いで、ステップS16では、ガラス化されたコアロッドの外周に、クラッド部14を形成するための第2シリカスートを外付けで形成する。第2シリカスートの形成では、例えば、中心軸を回転軸としてコアロッドを回転させながら、コアロッドの長手方向に沿ってガラス微粒子合成用のバーナーを往復移動させることにより、コアロッドの外周にガラス微粒子を堆積させる。こうしてコアロッドにガラス微粒子を堆積させて、コアロッドの外周に堆積したガラス微粒子からなる第2シリカスートを形成する。なお、第2シリカスートの形成方法は、特に限定されるものではなく、種々の方法を用いることができる。
次いで、ステップS18では、例えばガラス化炉内において、コアロッドの外周に形成された第2シリカスートを加熱することにより第2シリカスートをガラス化する。これにより、コアロッドの外周に、第2シリカスートがガラス化されてなるクラッド層を形成する。クラッド層は、光ファイバ10のクラッド部14を形成するためのものである。この際、例えばガラス化炉内に四フッ化ケイ素(SiF)、六フッ化硫黄(SF)、四フッ化炭素(CF)等のフッ素を含有するフッ素含有ガスを導入することにより、フッ素環境下で第2シリカスートを加熱する。これにより、第2シリカスートにフッ素を添加しつつガラス化して、フッ素が添加されたクラッド層を形成する。このとき、コアロッドにはフッ素を添加せずに、クラッド層のみにフッ素を添加する。クラッド層に添加されたフッ素の濃度は、光ファイバ10のクラッド部14に添加されたフッ素の濃度とほぼ同じである。フッ素の濃度は、上述したようにクラッド部14について所定の比屈折率差Δ2が得られるように適宜設定される。なお、第2シリカスートをガラス化するための加熱方法は、特に限定されるものではなく、種々の方法を用いることができる。
こうして、ステップS18において、塩素が添加されたコアロッドと、フッ素が添加されたクラッド層とを有するガラス母材を形成する。
ガラス母材におけるコアロッドの純シリカガラスに対する比屈折率差Δ1′は、光ファイバ10におけるコア部12の純シリカガラスに対する比屈折率差Δ1とほぼ同等である。また、ガラス母材におけるクラッド層の純シリカガラスに対する比屈折率差Δ2′は、光ファイバ10におけるクラッド部14の純シリカガラスに対する比屈折率差Δ2とほぼ同等である。すなわち、コアロッドの純シリカガラスに対する比屈折率差Δ1′は、0.09〜0.13%である。クラッド層の純シリカガラスに対する比屈折率差Δ2′は、−0.36〜−0.17%である。コアロッドの比屈折率差Δ1′とクラッド層の比屈折率差Δ2′の差分(Δ1′−Δ2′)は、0.30%以上である。また、比屈折率差Δ1′、Δ2′、差分(Δ1′−Δ2′)の好ましい範囲も、それぞれ比屈折率差Δ1、Δ2、差分(Δ1−Δ2)の好ましい範囲とほぼ同等である。なお、比屈折率差Δ1′、Δ2′は、純シリカガラスの屈折率をn0、コアロッドの屈折率をn1′、クラッド層の屈折率をn2′として、それぞれ次式(3)及び(4)で定義される。
Δ1′={(n1′−n0)/n0}×100(%) ……(3)
Δ2′={(n2′−n0)/n0}×100(%) ……(4)
次いで、ステップS20及びステップS22では、ガラス母材の線引き及び被覆層18の形成を連続的に行う。図4は、ステップS20のガラス母材の線引き及びステップS22の被覆層18の形成を行うための製造装置24を示している。
図4に示すように、製造装置24において、ステップS18で形成されたガラス母材26の周囲には、加熱装置であるヒータ28が配置されている。
ヒータ28の下方には、ガラス光ファイバ30の外周に紫外線硬化型樹脂を塗布する樹脂塗布装置(ダイス)32が設けられている。樹脂塗布装置32には、例えば、プライマリ層20用の被覆材料とセカンダリ層22用の被覆材料とが別々に保持される。
樹脂塗布装置32の下方には、プライマリ層20用の被覆材料及びセカンダリ層22用の被覆材料が被覆されたガラス光ファイバ34に対して紫外線を照射する紫外線照射装置36が設けられている。紫外線照射装置36は、半導体発光素子、水銀ランプ等の任意の紫外線光源を有している。
紫外線照射装置36の下方には、外周にプライマリ層20及びセカンダリ層22が形成されたガラス光ファイバ(すなわち、図1の光ファイバ10)をガイドするガイドローラ38が設けられている。ガイドローラ38の側方には、ガイドローラ38によりガイドされた光ファイバを巻き取る巻き取り装置40が設けられている。
まず、ステップS20では、ガラス母材26の端部が、ヒータ28により加熱されて溶融し、線引きされてガラス光ファイバ30(すなわち、図1のガラス光ファイバ16)が引き出される。
ステップS20において、ガラス母材は、150m/min以上の線引き速度及び8〜60gfの線引き張力で線引きされる。このように速い線引き速度及び高い線引き張力で線引きを行った場合であっても、上述のようにコアロッドに塩素を添加し、クラッド層にフッ素を添加することにより、光ファイバ10における残留応力を低減して伝送損失を低減することができる。なお、光ファイバ10における残留応力を低減する観点からは、線引き速度は、1000m/min以下であることが好ましい。また、生産性を向上する観点からは、線引き速度は、300m/min以上であることが好ましく、600m/min以上であることがより好ましい。すなわち、線引き速度は、300〜1000m/minであることが好ましく、600〜1000m/minであることがより好ましい。
次いで、ステップS22では、ガラス母材26から引き出されたガラス光ファイバ30に、樹脂塗布装置32によりプライマリ層20用の被覆材料とセカンダリ層22用の被覆材料とが一括して塗布される。
樹脂塗布装置32により紫外線硬化型樹脂が塗布されたガラス光ファイバ34は、紫外線照射装置36に入り、紫外線が照射される。その結果、ガラス光ファイバ34の外周に被覆された2層の紫外線硬化型樹脂は硬化され、該2層の紫外線硬化型樹脂はプライマリ層20及びセカンダリ層22になる。こうして、ステップS22において、プライマリ層20とセカンダリ層22とを有する被覆層18が形成される。
なお、上記では、プライマリ層20及びセカンダリ層22を1つのダイスで塗布して硬化させるWet−On−Wet法を用いているが、プライマリ層20及びセカンダリ層22を別々のダイスで塗布して硬化させるWet−On−Dry法を用いてもよい。また、被覆層18を形成するステップS22は、必ずしもステップS20の線引き後に連続的に行う必要はなく、別途行ってもよい任意の工程である。
外周にプライマリ層20及びセカンダリ層22が形成されたガラス光ファイバ(すなわち、図1の光ファイバ10)は、ガイドローラ38にガイドされ、巻き取り装置40に巻き取られる。
こうして、本実施形態による光ファイバ10が製造される。
次に、本実施形態による光ファイバの評価結果について説明する。
(実施例1)
VAD設備において、添加物を含まないシリカスートを形成した。これをガラス化設備において塩素を添加しつつガラス化し、透明なコアロッドを形成した。形成されたコアロッドには、塩素が10000ppm添加された。また、コアロッドの純シリカガラスに対する比屈折率差Δ1は0.1%であった。このコアロッドに対して、クラッド部分を形成すべくシリカスートの外付けを行った。コアロッドに外付けされたシリカスートを、SiFを流しつつガラス化することにより、コアロッドの外周に、フッ素が添加されたクラッド層を形成した。このフッ素が添加されたクラッド層の純シリカガラスに対する比屈折率差Δ2は−0.255%であった。こうして形成されたガラス母材において、コア部を形成する部分の外径d1とクラッド部を形成する部分の外径d2との比d1:d2は、1:13.9であった。また、ガラス母材の外径は80mmであった。形成したガラス母材に対して、線引き速度を300m/minとし、線引き張力を18gfとした条件下で線引きを行って光ファイバを形成した。形成した光ファイバの伝送損失特性は、波長1.55μm帯の光の伝送損失が0.166dB/kmであり、波長1.31μm帯の光の伝送損失が0.296dB/kmであった。また、光ファイバのコア部とクラッド部との界面に生じている応力差は25MPaであった。また、この光ファイバの波長1.31μmにおけるモードフィールド径(MFD)は9.10μmであった。
(実施例2〜20及び比較例1〜9)
実施例2〜20及び比較例1〜9については、以下の表1に示すように上記実施例1と一部条件を変更して光ファイバを製造した。
各実施例及び比較例の条件及び評価結果を表1に示す。なお、表1における項目のうち、「塩素濃度」とは、光ファイバのコア部における塩素の濃度である。「1.55μm損失」とは、波長1.55μm帯の光の伝送損失である。また、「1.33μm損失」とは、波長1.31μm帯の光の伝送損失である。「応力差」は、光ファイバのコア部とクラッド部との界面に生じている応力差である。「MFD」は波長1.31μmにおける光ファイバのモードフィールド径を示している。
表1に示されるように、実施例全般において、波長1.55μm帯の光の伝送損失及び波長1.31μm帯の光の伝送損失のいずれもが、比較例全般と比較して低減されていることがわかる。これにより、本実施形態によれば、高い線引き張力及び速い線引き速度で線引きを行った場合であっても光ファイバの特性を維持しつつ伝送損失が低減されていることが確認された。
本発明は、上記実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲において適宜変更が可能である。
10…光ファイバ
12…コア部
14…クラッド部
16…ガラス光ファイバ
18…被覆層
20…プライマリ層(1次被覆層)
22…セカンダリ層(2次被覆層)

Claims (11)

  1. 塩素が添加されたコア部と、
    フッ素が添加されたクラッド部とを有し、
    前記コア部には、9000〜13000ppmの塩素が添加され、
    前記コア部の純シリカガラスに対する比屈折率差Δ1が、0.09〜0.13%であり、
    前記クラッド部の純シリカガラスに対する比屈折率差Δ2が、−0.36〜−0.17%であり、
    前記コア部の前記比屈折率差Δ1と前記クラッド部の前記比屈折率差Δ2の差分(Δ1−Δ2)が0.30%以上であり、
    波長1.31μmにおけるモードフィールド径が8.8〜9.6μmであり、
    前記コア部と前記クラッド部との界面に生じている応力差が60MPa以下であることを特徴とする光ファイバ。
  2. 前記コア部に添加される塩素濃度が、10000ppm以上であることを特徴とする請求項1記載の光ファイバ。
  3. 前記コア部の前記比屈折率差Δ1に対する前記クラッド部の前記比屈折率差Δ2の比Δ2/Δ1の値が、−3.3〜−1.5であることを特徴とする請求項1又は2に記載の光ファイバ。
  4. 前記クラッド部の前記比屈折率差Δ2が−0.30%以上であることを特徴とする請求項1〜3のいずれか1項に記載の光ファイバ。
  5. 前記コア部と前記クラッド部との前記界面に生じている応力差が30MPa以下であることを特徴とする請求項1〜4のいずれか1項に記載の光ファイバ。
  6. 波長1.55μm帯の光の伝送損失が0.174dB/km以下であることを特徴とする請求項1〜5のいずれか1項に記載の光ファイバ。
  7. 波長1.31μm帯の光の伝送損失が0.314dB/km以下であることを特徴とする請求項1〜6のいずれか1項に記載の光ファイバ。
  8. 請求項1〜7のいずれか1項に記載の光ファイバを用いた光ファイバケーブル。
  9. シリカ微粒子を堆積させて第1シリカスートを形成する工程と、
    前記第1シリカスートに塩素を添加しつつ前記第1シリカスートをガラス化して、9000〜13000ppmの塩素が添加されたコアロッドを形成する工程と、
    前記コアロッドにシリカ微粒子を堆積させて第2シリカスートを形成する工程と、
    前記第2シリカスートにフッ素を添加しつつ前記第2シリカスートをガラス化して、フッ素が添加されたクラッド層を形成し、前記コアロッドの純シリカガラスに対する比屈折率差Δ1′が0.09〜0.13%であり、前記クラッド層の純シリカガラスに対する比屈折率差Δ2′が−0.36〜−0.17%であり、前記コアロッドの前記比屈折率差Δ1′と前記クラッド層の前記比屈折率差Δ2′の差分(Δ1′−Δ2′)が0.30%以上であるガラス母材を形成する工程と、
    150m/min以上の線引き速度及び8〜60gfの線引き張力で前記ガラス母材を線引きする工程とを有することを特徴とする光ファイバの製造方法。
  10. 前記線引き速度が、300〜1000m/minであることを特徴とする請求項9記載の光ファイバの製造方法。
  11. 前記線引き速度が、600〜1000m/minであることを特徴とする請求項10記載の光ファイバの製造方法。
JP2017061066A 2017-03-27 2017-03-27 光ファイバ及び光ファイバの製造方法 Active JP6951852B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017061066A JP6951852B2 (ja) 2017-03-27 2017-03-27 光ファイバ及び光ファイバの製造方法
PCT/JP2018/011858 WO2018181047A1 (ja) 2017-03-27 2018-03-23 光ファイバ及び光ファイバの製造方法
CN201880019172.XA CN110462474A (zh) 2017-03-27 2018-03-23 光纤及光纤的制造方法
US16/561,656 US11079537B2 (en) 2017-03-27 2019-09-05 Optical fiber and manufacturing method of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017061066A JP6951852B2 (ja) 2017-03-27 2017-03-27 光ファイバ及び光ファイバの製造方法

Publications (2)

Publication Number Publication Date
JP2018163296A true JP2018163296A (ja) 2018-10-18
JP6951852B2 JP6951852B2 (ja) 2021-10-20

Family

ID=63677386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017061066A Active JP6951852B2 (ja) 2017-03-27 2017-03-27 光ファイバ及び光ファイバの製造方法

Country Status (4)

Country Link
US (1) US11079537B2 (ja)
JP (1) JP6951852B2 (ja)
CN (1) CN110462474A (ja)
WO (1) WO2018181047A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158349A (ja) * 2019-03-27 2020-10-01 古河電気工業株式会社 光ファイバの製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021107915A (ja) * 2019-12-27 2021-07-29 住友電気工業株式会社 光ファイバ
EP4109150A4 (en) * 2020-02-21 2023-06-28 Sumitomo Electric Industries, Ltd. Optical fiber
CN115201961A (zh) * 2022-06-14 2022-10-18 江苏亨通光导新材料有限公司 一种陆地用g.654.e光纤及其制作工艺

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524873A (ja) * 1991-07-24 1993-02-02 Sumitomo Electric Ind Ltd 光フアイバ用ガラス母材の製造方法
US5410567A (en) * 1992-03-05 1995-04-25 Corning Incorporated Optical fiber draw furnace
JPH1045421A (ja) * 1996-07-31 1998-02-17 Sumitomo Electric Ind Ltd 光ファイバの製造方法
JPH10310445A (ja) * 1997-03-25 1998-11-24 Corning Inc 自動スレッディング及び巻き取り方法
WO2000042458A1 (fr) * 1999-01-18 2000-07-20 Sumitomo Electric Industries, Ltd. Fibre optique et son procede de fabrication
JP2003519792A (ja) * 1999-12-28 2003-06-24 コーニング インコーポレイテッド ファイバ線引き時に光ファイバの引張試験を行い、再挿通するための方法および装置
JP2005162610A (ja) * 2002-04-30 2005-06-23 Corning Inc 光ファイバの作製方法
JP2014526066A (ja) * 2011-08-19 2014-10-02 コーニング インコーポレイテッド 低曲げ損失光ファイバ
WO2016168042A1 (en) * 2015-04-15 2016-10-20 Corning Incorporated Low loss optical fibers with fluorine and chlorine codoped core regions
US20170003445A1 (en) * 2015-06-30 2017-01-05 Corning Incorporated Optical fiber with large effective area and low bending loss

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146534A (en) 1991-11-12 1992-09-08 At&T Bell Laboratories SiO2 -based alkali-doped optical fiber
CA2355823A1 (en) * 2000-08-28 2002-02-28 Sumitomo Electric Industries, Ltd. Optical fiber and method of making the same
US7565820B2 (en) 2002-04-30 2009-07-28 Corning Incorporated Methods and apparatus for forming heat treated optical fiber
US20070022786A1 (en) 2003-04-28 2007-02-01 Foster John D Methods and apparatus for forming heat treated optical fiber
KR100594062B1 (ko) * 2004-02-13 2006-06-30 삼성전자주식회사 낮은 잔류 응력 불연속성을 갖는 광섬유
JP4558368B2 (ja) * 2004-04-09 2010-10-06 古河電気工業株式会社 光ファイバの製造方法
US7251158B2 (en) 2004-06-10 2007-07-31 Spansion Llc Erase algorithm for multi-level bit flash memory
JP4999063B2 (ja) * 2006-10-19 2012-08-15 古河電気工業株式会社 光ファイバ
JP5545236B2 (ja) 2011-02-03 2014-07-09 住友電気工業株式会社 光ファイバ母材製造方法
JP2012162410A (ja) 2011-02-03 2012-08-30 Sumitomo Electric Ind Ltd 光ファイバ母材製造方法
CN102225843B (zh) * 2011-05-13 2013-07-31 烽火通信科技股份有限公司 光纤预制棒的制造方法
US9031371B2 (en) * 2012-05-08 2015-05-12 Sumitomo Electric Industries, Ltd. Multi-mode optical fiber
US9020316B2 (en) * 2013-02-28 2015-04-28 Corning Incorporated Low attenuation optical fibers with an F-graded index core
US9658395B2 (en) * 2014-10-21 2017-05-23 Ofs Fitel, Llc Low loss optical fiber and method of making the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524873A (ja) * 1991-07-24 1993-02-02 Sumitomo Electric Ind Ltd 光フアイバ用ガラス母材の製造方法
US5410567A (en) * 1992-03-05 1995-04-25 Corning Incorporated Optical fiber draw furnace
JPH1045421A (ja) * 1996-07-31 1998-02-17 Sumitomo Electric Ind Ltd 光ファイバの製造方法
JPH10310445A (ja) * 1997-03-25 1998-11-24 Corning Inc 自動スレッディング及び巻き取り方法
WO2000042458A1 (fr) * 1999-01-18 2000-07-20 Sumitomo Electric Industries, Ltd. Fibre optique et son procede de fabrication
JP2003519792A (ja) * 1999-12-28 2003-06-24 コーニング インコーポレイテッド ファイバ線引き時に光ファイバの引張試験を行い、再挿通するための方法および装置
JP2012053066A (ja) * 1999-12-28 2012-03-15 Corning Inc ファイバ線引き時に光ファイバの引張試験を行い、再挿通するための方法および装置
JP2005162610A (ja) * 2002-04-30 2005-06-23 Corning Inc 光ファイバの作製方法
JP2005523868A (ja) * 2002-04-30 2005-08-11 コーニング インコーポレイテッド 線引き中のガラス光ファイバの熱処理のための方法及び装置
JP2014526066A (ja) * 2011-08-19 2014-10-02 コーニング インコーポレイテッド 低曲げ損失光ファイバ
WO2016168042A1 (en) * 2015-04-15 2016-10-20 Corning Incorporated Low loss optical fibers with fluorine and chlorine codoped core regions
US20170003445A1 (en) * 2015-06-30 2017-01-05 Corning Incorporated Optical fiber with large effective area and low bending loss

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158349A (ja) * 2019-03-27 2020-10-01 古河電気工業株式会社 光ファイバの製造方法

Also Published As

Publication number Publication date
WO2018181047A1 (ja) 2018-10-04
CN110462474A (zh) 2019-11-15
US11079537B2 (en) 2021-08-03
US20190391323A1 (en) 2019-12-26
JP6951852B2 (ja) 2021-10-20

Similar Documents

Publication Publication Date Title
JP7190236B2 (ja) フッ素および塩素が共ドープされたコア領域を有する低損失光ファイバ
US11237321B2 (en) High chlorine content low attenuation optical fiber
CN107850728B (zh) 具有大有效面积和低弯曲损耗的光纤
US11079537B2 (en) Optical fiber and manufacturing method of optical fiber
CN111372899B (zh) 纤芯共掺杂了两种或更多种卤素的低损耗光纤
KR102034362B1 (ko) 도핑 최적화된 최저 감쇠 단일모드 광섬유
JP6337509B2 (ja) 光ファイバ母材製造方法
JP6527973B2 (ja) 光ファイバ
US10155687B2 (en) Optical fiber preform
JP7380546B2 (ja) 光ファイバ
CN108700704B (zh) 光纤
WO2014199922A1 (ja) 光ファイバ
JP5949016B2 (ja) 光ファイバ製造方法
JP4124254B2 (ja) 光ファイバ、光ファイバ母材の製造方法、及び光ファイバの製造方法
WO2013140688A1 (ja) 光ファイバの製造方法
JP6916235B2 (ja) 光ファイバの製造方法
CN106604899B (zh) 光纤预制棒、光纤和光纤的制造方法
JP2014118334A (ja) 光ファイバ製造方法
JP3952734B2 (ja) 光ファイバの製造方法
KR20110134329A (ko) 수산기 함량과 굴곡손실 특성이 개선된 광섬유 모재 및 광섬유와 그 제조방법
WO2023054620A1 (ja) 光ファイバおよびその製造方法
JP2021107915A (ja) 光ファイバ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210927

R151 Written notification of patent or utility model registration

Ref document number: 6951852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151