JP2018158396A - Surface-coated cutting tool - Google Patents

Surface-coated cutting tool Download PDF

Info

Publication number
JP2018158396A
JP2018158396A JP2017055875A JP2017055875A JP2018158396A JP 2018158396 A JP2018158396 A JP 2018158396A JP 2017055875 A JP2017055875 A JP 2017055875A JP 2017055875 A JP2017055875 A JP 2017055875A JP 2018158396 A JP2018158396 A JP 2018158396A
Authority
JP
Japan
Prior art keywords
hard coating
layer
coating layer
cutting
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017055875A
Other languages
Japanese (ja)
Inventor
亮介 山口
Ryosuke Yamaguchi
亮介 山口
拓矢 久保
Takuya Kubo
拓矢 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2017055875A priority Critical patent/JP2018158396A/en
Publication of JP2018158396A publication Critical patent/JP2018158396A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coating tool which has a hard coating layer having excellent crater abrasion resistance and flank abrasion resistance and exhibiting excellent abrasion resistance over a long-period use, when performing cutting work under a cutting condition accompanied by high heat generation.SOLUTION: A surface-coated cutting tool is obtained by forming a hard coating layer including a composite nitride layer on a surface of a tool base composed of a WC-based hard metal alloy or a TiCN-based cermet, where the hard coating layer has an average layer thickness of 1-10 μm and is formed of a composite nitride of Al and M (M is one or more metal of Ti, Cr, Si, Nb, Mo, Zr and Y containing at least Ti), and a region where (O/(O+N)) of an oxide and/or an acid nitride of a component constituting the hard coating layer is 0.55 or more extends with at least a width of 0.5 mm on a rake surface away from 0.05-0.2 mm from a cutting edge ridge line and exists at least in a range of 0.5 μm in a layer thickness direction.SELECTED DRAWING: Figure 1

Description

この発明は、高熱発生を伴う切削条件下で切削加工した場合に、硬質被覆層が優れた耐クレータ摩耗性と耐フランク摩耗性を備え、長期の使用にわって優れた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。 In this invention, the hard coating layer has excellent crater wear resistance and flank wear resistance when cutting under cutting conditions with high heat generation, and exhibits excellent wear resistance over long-term use. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool).

切削工具の切削性能の改善を目的として、従来、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された基体(以下、これらを総称して基体という)の表面に、硬質被覆層として、Ti−Al系の複合窒化物層を蒸着法により被覆形成した被覆工具があり、これらは優れた耐摩耗性を発揮することが知られている。
前記従来のTi−Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性に優れるものの、高速切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, for the purpose of improving the cutting performance of cutting tools, tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet or cubic boron nitride (hereinafter referred to as cBN). ) A coated tool in which a Ti-Al based composite nitride layer is formed as a hard coating layer on the surface of a substrate (hereinafter collectively referred to as a substrate) composed of a super-high pressure sintered body by vapor deposition. These are known to exhibit excellent wear resistance.
Although the conventional coated tool formed by coating the conventional Ti-Al based composite nitride layer is relatively excellent in wear resistance, it is hard to cause abnormal wear such as chipping when used under high-speed cutting conditions. Various proposals for improving the coating layer have been made.

例えば、特許文献1には、Ti(C、N、O)層の上に堆積される、内側アルミニウム酸化物の層、(Al、Ti)(C、N、O)層、外側アルミニウム酸化物の層からなるサンドイッチ構造の層を含み、前記内側アルミニウム酸化物層が、前記外側アルミニウム酸化物層の開口を通じて露出されており、前記開口が、切れ刃の少なくとも一部の幅を超え、かつ、直交する方向で切れ刃の少なくとも一部に沿って延在している被覆切削工具が記載されている。 For example, Patent Document 1 discloses an inner aluminum oxide layer, an (Al, Ti) (C, N, O) layer, and an outer aluminum oxide layer deposited on a Ti (C, N, O) layer. The inner aluminum oxide layer is exposed through an opening in the outer aluminum oxide layer, and the opening exceeds the width of at least a part of the cutting edge and is orthogonal A coated cutting tool is described that extends along at least a portion of the cutting edge in the direction of.

また、例えば、特許文献2には、(Ti、Al)(C、N)の硬質被覆層における少なくともすくい面と逃げ面の交わる切刃稜線部を、レーザー照射加熱表面層または電子ビーム照射加熱表面層とした硬質被覆層がすぐれた耐欠損性を有する表面被覆超硬合金製切削工具が記載されている。   Further, for example, Patent Document 2 discloses that a cutting edge ridge line portion where at least a rake face and a flank face intersect in a hard coating layer of (Ti, Al) (C, N), a laser irradiation heating surface layer or an electron beam irradiation heating surface. A surface-coated cemented carbide cutting tool having excellent fracture resistance with a hard coating layer as a layer is described.

さらに、例えば、特許文献3には、インサート本体側から順に下地層とAlを主成分として形成された中間層と最外層とが被覆され、前記インサート本体の表面のうち、少なくとも逃げ面の全面と交差稜線部のうち該逃げ面に連なる逃げ面側切刃部とでは、ウェットブラストによって前記最外層が除去されることにより前記中間層が主として露出させられている一方、少なくとも前記すくい面のうち前記交差稜線部との境界よりも内側の一部には、前記最外層が残されていて、前記逃げ面において主として露出させられた前記中間層の表面粗さが、前記インサート本体の厚さ方向において前記逃げ面の中央付近で、カットオフ値0.08mmにおける算術平均粗さRaで0.3μm以下とされている表面被覆切削インサートが記載されている。 Further, for example, Patent Document 3 covers an intermediate layer and an outermost layer formed mainly of Al 2 O 3 in order from the insert body side, and at least the flank of the surface of the insert body. And the flank face cutting edge portion that is continuous with the flank face of the cross ridge line portion, while the intermediate layer is mainly exposed by removing the outermost layer by wet blasting, at least the rake face The outermost layer is left in a part inside the boundary with the intersecting ridge line portion, and the surface roughness of the intermediate layer mainly exposed at the flank is the thickness of the insert body. A surface-coated cutting insert having an arithmetic average roughness Ra of 0.3 μm or less at a cutoff value of 0.08 mm is described near the center of the flank in the longitudinal direction. To have.

特表2016−502936号公報JP-T-2006-502936 特開平10−251829号公報Japanese Patent Laid-Open No. 10-251829 特許第4797608号公報Japanese Patent No. 4797608

近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速高送り化、高効率化の傾向にあって加工時の負荷は高まっており、被覆工具には、より一層、耐クレータ摩耗性、耐フランク摩耗性等の耐異常損傷性が求められるとともに、長期の使用にわって優れた耐摩耗性が求められている。 In recent years, there has been a strong demand for energy saving and energy saving in cutting, and along with this, cutting has become a trend toward higher speed, higher feed and higher efficiency. Further, abnormal damage resistance such as crater wear resistance and flank wear resistance is required, and excellent wear resistance is required for long-term use.

しかし、前記特許文献1に記載された被覆工具では、高熱発生を伴う切削条件下で切削加工した場合に、皮膜開口部の端部にある段差部に過剰な負荷がかかり、刃先温度の上昇や膜の剥離を伴う損傷が生じやすく、十分な工具寿命を有するものとはいえない。 However, in the coated tool described in Patent Document 1, when cutting is performed under cutting conditions with high heat generation, an excessive load is applied to the stepped portion at the end of the coating opening, and the cutting edge temperature is increased. Damage associated with film peeling tends to occur, and it cannot be said that the tool has a sufficient tool life.

また、前記特許文献2に記載された被覆工具では、レーザー照射加熱表面層または電子ビーム照射加熱表面層が刃先稜線を含む逃げ面にも存在するため、高熱発生を伴う切削条件下で切削加工した場合に、耐摩耗性が不足する可能性がある。   Further, in the coated tool described in Patent Document 2, since the laser irradiation heating surface layer or the electron beam irradiation heating surface layer is also present on the flank surface including the edge of the cutting edge, cutting was performed under cutting conditions with high heat generation. In some cases, the wear resistance may be insufficient.

さらに、前記特許文献3に記載されたインサートは、ウェットブラストによって最外層を除去する際に部分的に逃げ面が薄くなる虞があり、高熱発生を伴う切削条件下で切削加工した場合に、この薄くなった部分の耐摩耗性が不足する可能性がある。   Furthermore, the insert described in Patent Document 3 has a possibility that the flank surface may partially become thin when the outermost layer is removed by wet blasting, and this is the case when cutting under cutting conditions with high heat generation. The wear resistance of the thinned portion may be insufficient.

そこで、本発明は、高熱発生を伴う切削条件下で切削加工した場合に、硬質被覆層が優れた耐クレータ摩耗性と耐フランク摩耗性を備え、長期の使用にわたって優れた耐摩耗性を発揮する被覆工具を提供することを目的とする。   Therefore, according to the present invention, the hard coating layer has excellent crater wear resistance and flank wear resistance when cutting under cutting conditions with high heat generation, and exhibits excellent wear resistance over a long period of use. The object is to provide a coated tool.

本発明者らは、少なくともTiとAlの複合窒化物(以下、(AlTi1−x)Nで示すことがある)を含む硬質被覆層を形成してなる被覆工具の耐クレータ摩耗性と耐フランク摩耗性の改善をはかるべく、刃先稜線近傍における硬質皮膜層をレーザー照射によって変質させたときの耐クレータ摩耗性、耐フランク摩耗性の改善について、鋭意研究を重ねた結果、次のような知見を得た。 The inventors of the present invention have provided crater wear resistance of a coated tool formed by forming a hard coating layer containing at least a composite nitride of Ti and Al (hereinafter sometimes referred to as (Al x Ti 1-x ) N). In order to improve the flank wear resistance, as a result of earnest research on the improvement of crater wear resistance and flank wear resistance when the hard coating layer in the vicinity of the edge of the cutting edge is altered by laser irradiation, the following results were obtained. Obtained knowledge.

すなわち、硬質皮膜層をレーザー照射によって変質させると、硬質被覆層の層厚方向に形成される照射部では該層を構成する物質の少なくとも一部が酸化物および/または酸窒化物に変質するが、刃先稜線を含んで変質させたときは、耐クレータ摩耗性、耐フランク摩耗性不十分であるものの、刃先稜線から所定距離離れたすくい面の所定領域のみを変質させると耐クレータ摩耗性が顕著に向上するという驚くべき事実を見出したのである。   That is, when the hard coating layer is altered by laser irradiation, at least part of the material constituting the layer is altered to oxide and / or oxynitride in the irradiated portion formed in the layer thickness direction of the hard coating layer. When it is altered including the edge of the cutting edge, crater wear resistance and flank wear resistance are insufficient, but if only a predetermined area of the rake face that is a predetermined distance away from the edge of the cutting edge is altered, the crater wear resistance is remarkable. They found the surprising fact that they improved.

すなわち、本発明は、この知見に基づいてなされたものであって、
「(1)WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に複合窒化物層を含む硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、1〜10μmの平均層厚を有し、かつAlとM(Mは、少なくともTiを含む、Ti、Cr、Si、Nb、Mo、Zr、Yのうち1種以上の金属)の複合窒化物からなり、
前記硬質被覆層を構成する成分の酸化物および/または酸窒化物の(O/(O+N))が0.55以上である領域が、切刃稜線から0.05〜0.2mm離れたすくい面上に少なくとも幅0.5mm延在して層厚方向に少なくとも0.5μmの範囲で存在する、
ことを特徴とする表面被覆切削工具。
(2)前記(O/(O+N))が、0.70以上であることを特徴とする(1)に記載の表面被覆切削工具。
(3)前記複合窒化物層の平均組成が、(AlTi1−x)N(但し、xは原子比で、x≧0.45)であることを特徴とする(1)または(2)に記載の表面被覆切削工具。
(4)前記複合窒化物層の平均組成が、(AlTi1−x−yMe)N(但し、x、yは原子比で、0.40≦x≦0.75、0.01≦y≦0.10。Meは、Cr、Si、Nb、Mo、Zr、Yのうち1種または2種以上)であることを特徴とする(1)または(2)に記載の表面被覆切削工具。」
である。
That is, the present invention has been made based on this finding,
“(1) In a surface-coated cutting tool in which a hard coating layer including a composite nitride layer is formed on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet,
The hard coating layer has an average layer thickness of 1 to 10 μm, and Al and M (M is at least one of Ti, Cr, Si, Nb, Mo, Zr, and Y, including at least Ti) )
The rake face where the region where (O / (O + N)) of the oxide and / or oxynitride of the component constituting the hard coating layer is 0.55 or more is separated from the cutting edge ridge line by 0.05 to 0.2 mm Extending at least 0.5 mm wide and present in the range of at least 0.5 μm in the layer thickness direction,
A surface-coated cutting tool characterized by that.
(2) The surface-coated cutting tool according to (1), wherein (O / (O + N)) is 0.70 or more.
(3) An average composition of the composite nitride layer is (Al x Ti 1-x ) N (where x is an atomic ratio and x ≧ 0.45) (1) or (2 ) Surface-coated cutting tool.
(4) The composite nitride layer has an average composition of (Al x Ti 1-xy Me y ) N (where x and y are atomic ratios, 0.40 ≦ x ≦ 0.75, 0.01 ≦ y ≦ 0.10, Me is one or more of Cr, Si, Nb, Mo, Zr, and Y), or surface-coated cutting according to (1) or (2) tool. "
It is.

本発明の表面切削工具では、すくい面側では、酸化物および/または酸窒化物に変質した物質によって、すくい面側の硬質被覆層の耐酸化性や耐クレータ摩耗性が向上し、一方、切れ刃稜線部と逃げ面においてはそのままの硬質の複合窒化物層が覆っているために高フランク摩耗性を得ることができるという、顕著な効果を奏する。
また、すくい面側では、酸化物および/または酸窒化物が存在する領域と存在しない領域との間に段差がないため、段差に起因する損傷も起こらないから、より耐クレータ摩耗性が向上する。
In the surface cutting tool of the present invention, on the rake face side, the oxidation and / or crater wear resistance of the hard coating layer on the rake face side is improved by the substance transformed into oxide and / or oxynitride, while Since the edge of the edge line and the flank face are covered with the hard composite nitride layer as it is, there is a remarkable effect that high flank wear can be obtained.
Further, since there is no step between the region where the oxide and / or oxynitride is present and the region where the oxide and / or oxynitride is not present on the rake face side, damage due to the step does not occur, and thus crater wear resistance is further improved. .

本発明の表面被覆切削工具の刃先稜線近傍を示す模式図である。It is a mimetic diagram showing the edge edge line neighborhood of the surface covering cutting tool of the present invention.

以下、数値範囲の限定理由を含め、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail including reasons for limiting the numerical range.

(1)複合窒化物層の組成
本発明の複合窒化物層は、AlとM(Mは、少なくともTiを含む、Ti、Cr、Si、Nb、Mo、Zr、Yのうち1種以上の金属)の複合窒化物で耐フランク摩耗性を満足するものであればよい。しかし、平均組成が、(AlTi1−x)N(但し、xは原子比で、x≧0.45)または(AlTi1−x−yMe)N(但し、x、yは原子比で、0.40≦x≦0.75、0.01≦y≦0.10。Meは、Cr、Si、Nb、Mo、Zr、Yのうち1種または2種以上)であることが、より望ましい。
ここで、(Ti1−xAl)Nにおいて、x≧0.45とした理由は、0.45以上ではレーザー照射によって緻密なAl酸窒化物が形成され、より一層耐酸化性の向上がなされるためである。また、同様に、(AlTi1−x−yMe)Nにおいて、0.40≦x≦0.75および0.01≦y≦0.10を満足すると、レーザー照射によって緻密な酸窒化物が確実に形成されて、耐酸化性がより一層の向上するためである。
(1) Composition of composite nitride layer The composite nitride layer of the present invention is composed of Al and M (M is at least one metal selected from Ti, Cr, Si, Nb, Mo, Zr, and Y, including at least Ti. ) Composite nitrides that satisfy the flank wear resistance. However, the average composition is (Al x Ti 1-x ) N (where x is an atomic ratio, x ≧ 0.45) or (Al x Ti 1-xy Me y ) N (where x, y Is an atomic ratio of 0.40 ≦ x ≦ 0.75, 0.01 ≦ y ≦ 0.10, and Me is one or more of Cr, Si, Nb, Mo, Zr, and Y). It is more desirable.
Here, in (Ti 1-x Al x ) N, the reason for x ≧ 0.45 is that when 0.45 or more, a dense Al oxynitride is formed by laser irradiation, and the oxidation resistance is further improved. Because it is made. Similarly, in (Al x Ti 1-xy Me y ) N, when 0.40 ≦ x ≦ 0.75 and 0.01 ≦ y ≦ 0.10 are satisfied, dense oxynitridation is performed by laser irradiation. This is because the product is surely formed and the oxidation resistance is further improved.

(2)複合窒化物層の平均層厚
複合窒化物層の平均層厚は、1〜10μmとする。この範囲とした理由は、1μm未満では、層が薄いために十分な耐摩耗性(特に、逃げ面の耐フランク摩耗性)を得ることができず、10μmを超えると、層が厚くなりチッピングが生じやすくなるためである。
(2) Average layer thickness of composite nitride layer The average layer thickness of a composite nitride layer shall be 1-10 micrometers. The reason for this range is that if the thickness is less than 1 μm, sufficient wear resistance (particularly, flank wear resistance of the flank) cannot be obtained because the layer is thin, and if it exceeds 10 μm, the layer becomes thick and chipping occurs. This is because it tends to occur.

(3)硬質被覆層を構成する成分の酸化物および/または酸窒化物の領域
まず、本発明における切刃稜線を次のように定義する。
切刃稜線とは、すくい面と逃げ面とをそれぞれ直線で近似したときに、当該直線が屈曲する点を結んだ領域(すなわち、硬質被覆層表面におけるすくい面の屈曲点から逃げ面の屈曲点までの領域)の中で、前記近似直線の交点から最も近い硬質被覆層表面の点であり、刃先稜線からすくい面側への距離を論じるときは逃げ面の前記近似曲線を起点としてすくい面の前記近似曲線に平行に測った距離をいうことにする。
本発明の表面被覆切削工具において、硬質被覆層を構成する成分の酸化物および/または酸窒化物は、通常の切削加工においてすくい面摩耗が発生し易く、かつフランク摩耗が発生し難い領域に存在する必要がある。すなわち、切刃稜線から0.05〜0.2mm離れた(図1のD)すくい面上に少なくとも幅0.5mm延在して(図1のW)層厚方向に少なくとも0.5μmの範囲で存在する(図1のT)こととした。切刃稜線部から0.05mm以内に酸化物および/または酸窒化物が存在すると耐フランク摩耗性が低下し、また、酸化物および/または酸窒化物の幅が0.5mm未満および層厚方向に0.5μm未満では耐クレータ性の向上が不十分となる。
なお、硬質被覆層を構成する成分の酸化物および/または酸窒化物の存在する領域は、オージェ発光分光分析装置を用いて測定したOとNの比率(O/(O+N))が、0.55以上を満たす領域とする。
(3) Oxide and / or oxynitride region of component constituting hard coating layer First, the cutting edge ridge line in the present invention is defined as follows.
Cutting edge ridge line is a region connecting points where the rake face and flank face are approximated by straight lines (that is, the rake face bending point from the rake face bending point on the hard coating layer surface). The area of the surface of the hard coating layer closest to the intersection of the approximate lines, and when discussing the distance from the edge of the cutting edge to the rake face side, Let us say the distance measured parallel to the approximate curve.
In the surface-coated cutting tool of the present invention, the oxide and / or oxynitride as a component constituting the hard coating layer is present in a region where rake face wear easily occurs and flank wear hardly occurs in normal cutting. There is a need to. That is, the width extends at least 0.5 mm on the rake face separated from the cutting edge ridge line by 0.05 to 0.2 mm (D in FIG. 1) (W in FIG. 1) in the range of at least 0.5 μm in the layer thickness direction (T in FIG. 1). The presence of oxide and / or oxynitride within 0.05 mm from the edge of the cutting edge reduces the flank wear resistance, and the width of the oxide and / or oxynitride is less than 0.5 mm and in the layer thickness direction. If the thickness is less than 0.5 μm, the improvement in crater resistance is insufficient.
In the region where the oxides and / or oxynitrides of the components constituting the hard coating layer are present, the ratio of O and N (O / (O + N)) measured using an Auger emission spectroscopic analyzer is 0.00. The region satisfies 55 or more.

(4)硬質被覆層を構成する成分の酸化物および/または酸窒化物におけるOとNの比率(O/(O+N))
硬質被覆層を構成する成分の酸化物および/または酸窒化物におけるOとNの比率(O/(O+N))は、原子比で0.55以上とする。この理由は、0.55未満では耐クレータ性の向上が不十分となるためであり、耐クレータ摩耗性の向上をより確実にするために、この比率は0.70以上がより好ましい。
(4) Ratio of O and N in oxide and / or oxynitride as component constituting hard coating layer (O / (O + N))
The ratio of O and N (O / (O + N)) in the oxide and / or oxynitride of the component constituting the hard coating layer is 0.55 or more in atomic ratio. The reason for this is that if it is less than 0.55, the improvement in crater resistance will be insufficient, and in order to further improve the crater wear resistance, this ratio is more preferably 0.70 or more.

(5)硬質被覆層を構成する成分の酸化物および/または酸窒化物の製造方法
硬質被覆層を構成する成分の酸化物および/または酸窒化物は、レーザー照射によって製造でき、レーザー照射としては、例えば、パルスレーザー照射をあげることができる。
このパルスレーザー照射条件の一例として、以下のようなものがある。
・種別 Nd:YAGレーザー(波長1064nm)
・出力 5W
・ビーム集光直径 100μm
・繰り返し周波数 250kHz
・走査速度 500mm/s
・走査線間隔 2μm
(5) Method for producing oxide and / or oxynitride of component constituting hard coating layer The oxide and / or oxynitride of the component constituting hard coating layer can be produced by laser irradiation. For example, pulse laser irradiation can be mentioned.
Examples of the pulse laser irradiation conditions include the following.
・ Type Nd: YAG laser (wavelength 1064nm)
・ Output 5W
・ Beam condensing diameter 100μm
・ Repetition frequency: 250 kHz
・ Scanning speed 500mm / s
・ Scanning line spacing 2μm

次に、本発明の被覆工具を実施例によって説明する。
なお、以下の実施例では、工具基体として、WC基超硬合金を用いた場合について説明するが、TiCN基サーメットを工具基体として用いた場合も同様である。
Next, the coated tool of this invention is demonstrated by an Example.
In the following examples, the case where a WC-based cemented carbide is used as the tool base will be described, but the same applies to the case where a TiCN-based cermet is used as the tool base.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格CNMG120408のインサート形状をもったWC基超硬合金製の基体A〜Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are shown in Table 1. After blending into the blending composition, adding wax, ball mill mixing in acetone for 24 hours, drying under reduced pressure, press-molding into a compact of a predetermined shape at a pressure of 98 MPa, and this compact in a vacuum of 5 Pa. Vacuum sintering is performed at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, bases A to C made of WC-base cemented carbide having an ISO standard CNMG120408 insert shape are manufactured. did.

次に、これら工具基体A〜Cの表面に、通常のPVD装置を用いて、表2に示されるターゲットと成膜条件の組合せにより複合窒化物層を成膜した。
続いて、この成膜した窒化物層に対して、
・種別 Nd:YAGレーザー(波長1064nm)
・出力 5W
・ビーム集光直径 100μm
・繰り返し周波数 250kHz
・走査速度 500mm/s
・走査線間隔 2μm
のレーザーを、表3に示す硬質被覆層を構成する成分の酸化物および/または酸窒化物の存在する領域を得るように照射し本発明工具1〜10を作製した。
Next, a composite nitride layer was formed on the surfaces of these tool bases A to C by a combination of targets and film formation conditions shown in Table 2 using an ordinary PVD apparatus.
Subsequently, for this deposited nitride layer,
・ Type Nd: YAG laser (wavelength 1064nm)
・ Output 5W
・ Beam condensing diameter 100μm
・ Repetition frequency: 250 kHz
・ Scanning speed 500mm / s
・ Scanning line spacing 2μm
The tools 1 to 10 of the present invention were produced by irradiating the laser of 1 so as to obtain regions where oxides and / or oxynitrides of components constituting the hard coating layer shown in Table 3 were present.

[比較例]
比較の目的で、前記実施例と同じ工具基体と表2に示されるターゲットと成膜条件の組合せにより複合窒化物層を成膜し、実施例と同じレーザーを、表3に示す硬質被覆層を構成する成分の酸化物および/または酸窒化物の存在する領域を得るように照射し比較工具1〜10を作製した。
[Comparative example]
For the purpose of comparison, a composite nitride layer was formed by a combination of the same tool base as in the above example, the target shown in Table 2 and the film formation conditions, and the same laser as in the example was applied to the hard coating layer shown in Table 3. Irradiation was performed so as to obtain a region in which constituent oxides and / or oxynitrides were present, and comparative tools 1 to 10 were produced.

前記で作製した本発明1〜10および比較例1〜10について、収束イオンビーム(Focused Ion Beam:FIB)を用いて工具基体表面に垂直な縦断面を切り出し、複合窒化物層の組成を、その層厚方向に沿って、工具基体表面に平行な方向の幅が10μmであり、硬質被覆層の厚み領域が全て含まれるよう設定された視野について、オージェ発光分光分析装置により測定し、複合窒化物層全体の平均組成を求めた。
また、その縦断面における層厚を、走査型電子顕微鏡を用いて測定し、5ヶ所の測定値の平均値から、平均層厚を算出した。結果を表3に示す。
なお、前記複合窒化層を構成する成分の酸化物および/または酸窒化物の領域は、当該酸化物および/または酸窒化物における(O/(O+N))が0.55以上である領域とした。
About this invention 1-10 produced above and Comparative Examples 1-10, the vertical cross section perpendicular | vertical to the tool base | substrate surface was cut out using the focused ion beam (Focused Ion Beam: FIB), and the composition of a composite nitride layer was changed. The composite nitride is measured with an Auger emission spectrophotometer for the visual field set so that the width in the direction parallel to the tool substrate surface is 10 μm along the layer thickness direction and the entire thickness region of the hard coating layer is included. The average composition of the entire layer was determined.
Moreover, the layer thickness in the longitudinal cross section was measured using the scanning electron microscope, and average layer thickness was computed from the average value of five measured values. The results are shown in Table 3.
The oxide and / or oxynitride region of the component constituting the composite nitride layer is a region where (O / (O + N)) in the oxide and / or oxynitride is 0.55 or more. .

次に、本発明工具1〜10および比較工具1〜10について、以下の切削加工試験を実施した。
<切削試験1>
被切削材 :JIS SCM440(HB330)の丸棒
切削速度 :220m/min
送り :0.28mm/rev
切込み :0.2mm
切削時間 :5分
乾式での高速切削加工
<切削試験2>
被切削材 :JIS S10C(HB200)の丸棒
切削速度 :320m/min
送り :0.45mm/rev
切込み :2.5mm
切削時間 :15分
乾式での高速高送り旋削加工
表4に前記加工試験の結果を示す。表4において、
逃げ面摩耗量は、逃げ面に対して垂直方向からの光学顕微鏡像より、切れ刃稜線部から逃げ面摩耗終端までの距離を測定し、すくい面摩耗量は、すくい面に対して垂直方向からの光学顕微鏡像より、すくい面の硬質被覆層が損耗した領域の面積を測定した。
Next, the following cutting test was implemented about this invention tool 1-10 and the comparative tools 1-10.
<Cutting test 1>
Workpiece: Round bar cutting speed of JIS SCM440 (HB330): 220 m / min
Feeding: 0.28mm / rev
Cutting depth: 0.2mm
Cutting time: 5 minutes high-speed cutting with dry method <Cutting test 2>
Workpiece: JIS S10C (HB200) round bar cutting speed: 320 m / min
Feeding: 0.45mm / rev
Cutting depth: 2.5mm
Cutting time: 15 minutes dry type high speed high feed turning Table 4 shows the results of the machining test. In Table 4,
The amount of flank wear is measured from the optical microscope image perpendicular to the flank by measuring the distance from the edge of the cutting edge to the end of the flank wear. From the optical microscope image, the area of the region where the hard coating layer on the rake face was worn was measured.

表4に示される結果から、本発明工具1〜10は、硬質被覆層が1〜10μmの平均膜厚を有し、かつAlとM(Mは、少なくともTiを含む、Ti、Cr、Si、Nb、Mo、Zr、Yのうち1種以上の金属)の複合窒化物からなり、前記硬質被覆層を構成する成分の酸化物および/または酸窒化物が、切刃稜線から0.05〜0.2mm離れたすくい面上に少なくとも0.5mm延在して層厚方向に少なくとも0.5μmの範囲で存在するため、高熱発生を伴う切削条件下で切削加工した場合に、硬質被覆層が優れた耐クレータ摩耗性と耐フランク摩耗性を備え、長期の使用にわって優れた耐摩耗性を発揮する。
これに対して、比較工具1〜10は、いずれも、硬質被覆層を構成する成分の酸化物および/または酸窒化物が、切刃稜線部から0.05〜0.2mm離れたすくい面上に少なくとも0.5mm延在して層厚方向に少なくとも0.5μmの範囲に存在せず、および/または、逃げ面にも存在するため、逃げ面もしくはすくい面摩耗の早期の進行により、比較的短時間で使用寿命に至ってしまう。
From the results shown in Table 4, the inventive tools 1 to 10 have a hard coating layer having an average film thickness of 1 to 10 μm, and Al and M (M includes at least Ti, Ti, Cr, Si, Nb, Mo, Zr, and Y), and the oxide and / or oxynitride of the component constituting the hard coating layer is 0.05 to 0 from the cutting edge ridgeline. Because it extends at least 0.5mm on the rake face 2mm apart and exists in the layer thickness direction in the range of at least 0.5μm, the hard coating layer is excellent when cutting under cutting conditions with high heat generation It has excellent crater wear resistance and flank wear resistance, and exhibits excellent wear resistance over long-term use.
On the other hand, all of the comparative tools 1 to 10 are on the rake face where the oxide and / or oxynitride of the component constituting the hard coating layer is 0.05 to 0.2 mm away from the cutting edge ridge line portion. At least 0.5 mm and does not exist in the range of at least 0.5 μm in the layer thickness direction, and / or exists on the flank face. The service life will be reached in a short time.

本発明の表面被覆工具は、高熱発生を伴う切削条件下で切削加工した場合に、硬質被覆層が優れた耐クレータ摩耗性と耐フランク摩耗性を備え、長期の使用にわって優れた耐摩耗性を発揮するから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 The surface-coated tool of the present invention has excellent crater wear resistance and flank wear resistance when it is machined under cutting conditions with high heat generation, and has excellent wear resistance over long-term use. Therefore, it is possible to satisfactorily cope with high performance of the cutting device, labor saving and energy saving of the cutting work, and further cost reduction.

Claims (4)

WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に複合窒化物層を含む硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、1〜10μmの平均層厚を有し、かつAlとM(Mは、少なくともTiを含む、Ti、Cr、Si、Nb、Mo、Zr、Yのうち1種以上の金属)の複合窒化物からなり、
前記硬質被覆層を構成する成分の酸化物および/または酸窒化物の(O/(O+N))が0.55以上である領域が、切刃稜線から0.05〜0.2mm離れたすくい面上に少なくとも幅0.5mm延在して層厚方向に少なくとも0.5μmの範囲で存在する、
ことを特徴とする表面被覆切削工具。
In a surface-coated cutting tool formed by forming a hard coating layer containing a composite nitride layer on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet,
The hard coating layer has an average layer thickness of 1 to 10 μm, and Al and M (M is at least one of Ti, Cr, Si, Nb, Mo, Zr, and Y, including at least Ti) )
The rake face where the region where (O / (O + N)) of the oxide and / or oxynitride of the component constituting the hard coating layer is 0.55 or more is separated from the cutting edge ridge line by 0.05 to 0.2 mm Extending at least 0.5 mm wide and present in the range of at least 0.5 μm in the layer thickness direction,
A surface-coated cutting tool characterized by that.
前記(O/(O+N))が、0.70以上であることを特徴とする請求項1に記載の表面被覆切削工具。 The surface-coated cutting tool according to claim 1, wherein the (O / (O + N)) is 0.70 or more. 前記複合窒化物層の平均組成が、(AlTi1−x)N(但し、xは原子比で、x≧0.45)であることを特徴とする請求項1または2に記載の表面被覆切削工具。 3. The surface according to claim 1, wherein an average composition of the composite nitride layer is (Al x Ti 1-x ) N (where x is an atomic ratio and x ≧ 0.45). Coated cutting tool. 前記複合窒化物層の平均組成が、(AlTi1−x−yMe)N(但し、x、yは原子比で、0.40≦x≦0.75、0.01≦y≦0.10。Meは、Cr、Si、Nb、Mo、Zr、Yのうち1種または2種以上)であることを特徴とする請求項1または2に記載の表面被覆切削工具。 The composite nitride layer has an average composition of (Al x Ti 1-xy Me y ) N (where x and y are atomic ratios, 0.40 ≦ x ≦ 0.75, 0.01 ≦ y ≦ The surface-coated cutting tool according to claim 1 or 2, wherein Me is one or more of Cr, Si, Nb, Mo, Zr, and Y).
JP2017055875A 2017-03-22 2017-03-22 Surface-coated cutting tool Pending JP2018158396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017055875A JP2018158396A (en) 2017-03-22 2017-03-22 Surface-coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017055875A JP2018158396A (en) 2017-03-22 2017-03-22 Surface-coated cutting tool

Publications (1)

Publication Number Publication Date
JP2018158396A true JP2018158396A (en) 2018-10-11

Family

ID=63795333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017055875A Pending JP2018158396A (en) 2017-03-22 2017-03-22 Surface-coated cutting tool

Country Status (1)

Country Link
JP (1) JP2018158396A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111304618A (en) * 2020-04-14 2020-06-19 上海工具厂有限公司 Nano composite coating and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111304618A (en) * 2020-04-14 2020-06-19 上海工具厂有限公司 Nano composite coating and preparation method thereof

Similar Documents

Publication Publication Date Title
KR102326622B1 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance
JP5838769B2 (en) Surface coated cutting tool
KR20040078062A (en) Surface coated cutting tool of cermet
JP2017013223A (en) Surface coating and cutting tool
WO2016017790A1 (en) Coated cutting tool
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
CN113853265B (en) Cutting tool
JP6853451B2 (en) Composite sintered body cutting tool
JP4716250B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP2018164961A (en) Surface coat cutting tool by which hard coating layer exhibits excellent wear resistance and chipping resistance and manufacturing method therefor
JP6296295B2 (en) Surface coated cutting tool with excellent wear resistance
JP7453613B2 (en) surface coated cutting tools
JP2018144138A (en) Surface-coated cutting tool having hard coating layer excellent in wear resistance and chipping resistance
JP2018144139A (en) Surface-coated cutting tool having hard coating layer excellent in wear resistance and chipping resistance
JP2021126738A (en) Surface-coated cutting tool exhibiting excellent chipping resistance and wear resistance in strong intermittent cutting
JP2018158396A (en) Surface-coated cutting tool
JP5858363B2 (en) Substrate for cutting tool and surface-coated cutting tool including the same
JP2019155569A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JP2019155570A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JP2009166193A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP6573171B2 (en) Surface coated cutting tool with excellent chipping and wear resistance with excellent hard coating layer
JP5267767B2 (en) Surface coated cutting tool
JP6191873B2 (en) Surface coated cutting tool with excellent chipping resistance
JP6959577B2 (en) Surface coating cutting tool
JP6959578B2 (en) Surface coating cutting tool